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Abstract. We introduce a fast and theoretically founded method for
learning landmark-based SVMs in a multi-view classification setting which
leverages the complementary information of the different views and lin-
early scales with the size of the dataset. The proposed method – called
MVL-SVM – applies a non-linear projection to the dataset through
multi-view similarity estimates w.r.t. a small set of randomly selected
landmarks, before learning a linear SVM in this latent space joining all
the views. Using the uniform stability framework, we prove that our
algorithm is robust to slight changes in the training set leading to a
generalization bound depending on the number of views and landmarks.
We also show that our method can be easily adapted to a missing-view
scenario by only reconstructing the similarities to the landmarks. Em-
pirical results, both in complete and missing view settings, highlight the
superior performances of our method, in terms of accuracy and execution
time, w.r.t. state of the art techniques.

Keywords: Multi-view Learning · Linear SVM · Landmark induced Latent
Space · Uniform Stability · Missing Views.

1 Introduction

Machine learning has mainly focused, during the past decades, on settings where
training data is embedded in a single feature set. However, data collected nowa-
days is rarely of a single nature. They are rather observed in multiple, possibly
heterogeneous views, where each view can take the form of a different source of
information. Examples of multi-view datasets are documents translated in dif-
ferent languages, corpora of pictures with descriptive captions, clips with both
audio and video streams and so on. Dealing with such scenarios led to the de-
velopment of the multi-view learning setting [29,26,22] facing new challenges
and requiring scientific breakthroughs. Basically, the need for designing multi-
view algorithms relies on the observation that standard learning methods with
good performance on single-view problems are, in most cases, inefficient in a
multi-view setting [11,23,14]. Indeed, the views of an instance don’t necessar-
ily stand-alone because they might individually carry insufficient information
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about the task at hand. Even worse, they can be noisy or missing for a part of
the training set. Thus, learning a model jointly on the ensemble of views has
been proved to be more expressive than view-specific models, because it exploits
the possible complementarity between views [29].

The simplest solution to tackle multi-view problems consists in working on
the concatenated space of views, i.e. treating each view as a subset of features.
However, as the nature of the views can be heterogeneous, i.e. their correspond-
ing features might lie in different input spaces, such a solution is often unfeasible.
Moreover, it does not take into account the statistical specificities of each view
and can suffer from the curse of dimensionality. A rich literature of methods
has been proposed over the years to provide solutions for extracting information
from multiple sources. Common multi-view state of the art approaches learn a
set of single-view models either by co-training [5], in the attempt to capture both
the commonalities and idiosyncrasies of the views, or by co-regularization [21,11]
over the predictions, aiming at maximizing their agreement (see [29,26,22] for
surveys). However, because of the computational overhead originated by train-
ing and testing with multiple models, these methods are generally slower than
standard single-view algorithms.

A few techniques [14,18,15] have also been proposed suggesting to address
the problem in a unified space common to all views, allowing us to learn a sin-
gle model while exploiting the different sources of information. However, this
interesting idea faces a major issue: the cost required to extract the complemen-
tary information usually results in algorithms nonetheless barely competitive in
terms of execution time. Following this promising line of work, we propose in
this paper a new latent space-based approach, called MVL-SVM, which lever-
ages the complementary information and which is fast, scalable and provably
effective. As shown in Fig.1, we base our work on Support Vector Machines
(SVMs) [9] which are well known for their robustness, simplicity, efficiency as
well as their theoretical foundations via generalization guarantees. In order to
keep the time complexity and memory usage low, we formulate our problem as
a Linear SVM in a joint space created by comparing the instances, a view at a
time, to a small set of randomly selected landmarks, also observed in multiple
views. The instance/landmark comparison is carried out by mean of similarity
functions, such as the RBF kernel, each defined on a view. Doing so, we solve
a linearized joint problem over all views, in which the statistical characteristics
of the views are recoded in similarity estimates with points spread over their
spaces. Additionally, by applying non-linear mappings, we efficiently capture
the non-linearities and multi-modalities of the view spaces while avoiding the
drawbacks of Kernel SVMs (see [20,16,2,6]). Such benefits would not be possible
without projecting the points on landmarks: the mapping ensures that the al-
gorithm works on homogeneous features and it also controls the dimensionality
of the projected space. To theoretically validate our method, we derive a tight
generalization bound by proving its stability w.r.t. changes in the training set,
utilizing the framework of the Uniform Stability [7]. Finally, we propose an im-
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putation technique for adapting MVL-SVM to the missing-view context, which
exploits the information coming from the landmarks.

Fig. 1: Overview of the proposed MVL-SVM method. From V views (3 here) of
possibly different nature, points are projected on randomly selected landmarks
l1, · · · , lL using view specific non-linear mappings µ1, · · · , µV . Then, a linear
separator is learned in RLV , the joint space of projections.

To sum up, our contribution is three-fold:

1. We introduce a simple, fast and scalable multi-view learning algorithm which
benefits from a latent space constructed from similarities to a small set of
landmarks. We also show that our approach can be adapted to a missing-view
scenario.

2. Using the uniform stability framework, we show that our algorithm is robust
to slight changes in the training set leading to a generalization bound that
converges uniformly with the number of training examples and that directly
depends on the number of views and landmarks.

3. Our experimental results highlight that MVL-SVM allows us to reach very
competitive performance in much less time than state of the art methods,
overcoming the main issue related to classic latent space-based approaches.

The remainder of the document is organized as follows: Section 2 is devoted to
the related work; In Section 3, we present MVL-SVM’s algorithm before deriving
in Section 4 generalization guarantees in the form of an upper bound on the true
risk; An extension of our approach to the missing-view scenario is presented in
Section 5; Our experimental results are reported in Section 6.

2 Related Work

The key to effectively tackling multi-view problems is arguably exploiting the
diversity between views. As mentioned earlier, the different views rarely contain,
alone, sufficient information for the task at hand and leveraging their comple-
mentarity is imperative. We can distinguish two principal families of approaches
which address multi-view problems: those which optimize a set of single-view
learners and combine their predictions, and those which learn a single model in
a common space shared by all views.
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Co-training and co-regularization methods [5,11] belong to the first cate-
gory. Basically, they train multiple view-specific models either by alternatively
optimizing them, “teaching” one another, or by fostering their smoothness in
predictions. The final step of such techniques consists in aggregating the pre-
dictions of the view-specific classifiers, for instance by majority vote [21,11] or
by weighted majority vote [19,13]. Note that these methods usually face the fol-
lowing issues: their performances are degraded by the computational overload
of training and testing multiple learners; also, by usually making the assump-
tion that the views’ common information is the only worth keeping, they boil
down to denoising the single views from their uncorrelated information. Yet, it
is worth noticing that the information relevant to the task is not necessarily the
one the views share, but the one that can be extracted by aggregating the views’
incomplete information.

The second category of multi-view learning algorithms contains methods
working on Vector-valued Kernel Hilbert Spaces (vvRKHS) [17], whose repro-
ducing kernel outputs, for a pair of multi-view points, a matrix of similarities,
each component weighting the similarity of the points observed in a pair of views.
These methods are extremely powerful, because they are able to keep the statisti-
cal specificities of each view and to extract the complementary information from
the diversity of the sources. Of particular interest is Multi-view Metric Learn-
ing (MVML [14]) which combines vvRKHS with Metric Learning [27,3] and has
proved to outperform Kernel-based state of the art methods, such as Multiple
Kernel Learning [12]. MVML jointly learns a classifier and a kernel matrix encod-
ing the within-view and between-view relationships. Although the computations
are sped up by working on an approximated Gram matrix, obtained through the
Nyström technique [25], this powerful approach is not sufficiently competitive
in terms of execution time. To overcome this complexity issue of kernel-based
methods, L3-SVM has been recently proposed in [28] for single-view classifica-
tion as a different way to take advantage of the discriminatory capabilities of
kernels while being fast and scalable. Through clustering and projections on
landmarks, this algorithm speeds up the learning process while training expres-
sive classifiers, competitive with Kernel-SVMs. This algorithm also comes with
a generalization bound on the true risk, even though it is derived independently
from the number of clusters. In this paper, we aim at (i) benefiting from this
promising landmarks-based SVM paradigm, (ii) adapting it to the multi-view
scenario and (iii) deriving theoretical guarantees which take into account both
the number of landmarks and views.

Another open problem in multi-view learning is how to deal with realizations
of the points that are partially incomplete, i.e. some views of multiple instances
are missing. In order to apply a multi-view algorithm, one might have to discard
the points with missing views, which may result in a loss of performance, or
to complete them using different techniques while trying not to introduce bias.
Common practices consist in replacing the missing values with zeros or with the
mean or median values of the considered feature. On the other hand, multi-view
kernel specific techniques have been proposed to complete the Gram matrices
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of incomplete views. By making the assumption that similarities between points
should be consistent from one view to another, the missing values of a view’s
Gram matrix are inferred by aligning its eigen-space to the ones of the other
views. This can be done by Graph Laplacian regularization [24] (finding the
matrix that minimizes its product with the Graph Laplacian matrix of a com-
plete reference view) or by learning convex combinations of normalized kernel
matrices [4]. A first limitation of such approaches comes from the fact that they
cannot be applied on non square matrices. This prevents us from using them
on matrices containing the similarities to a subset of points, like in landmarks-
based SVM approaches. Beyond this constraint, the assumption that views are
strongly similar and the constraint of having the points altogether observed in
a view seem too strong. Another multi-view imputation technique relies on the
existence of view generating functions for approximating the missing values. For
example, in [1], the authors resort to translation functions for documents in
multiple-languages. Unfortunately, depending on the application at hand, such
functions are not always available.

In this paper, we make use of the information coming from a small set of
randomly selected landmarks to impute the missing values. As for Laplacian
imputation [24], we do not need to reconstruct the actual missing features of a
point, but only its similarities w.r.t. the landmarks, which drastically simplifies
the problem. Through Least Square minimization, we impute the missing sim-
ilarities by learning the linear combinations of the landmarks projected in the
latent space.

3 Multi-view Landmarks-based SVM (MVL-SVM)

3.1 Notations and Problem Statement

We consider the problem of learning from a dataset S = {zi = (xi, yi)}mi=1 of m
instances i.i.d. according to a joint distribution D and observed in a multi-view
space of V views, so that xi ∈ X ⊆ Rn1+···+nV , in which views are potentially
of different dimensionality, and yi ∈ Y = {−1, 1}. In the following, we will use
the notation [xi]v to refer to the realization of point xi in the view v. Moreover,

we denote L = {lp}Lp=1 ∈ X
L, a set of L landmarks of the input space selected

randomly from the training sample.
We aim at learning a classifier f : X → R in the joint space defined by the

different views as follows (see also Fig.1):

f(x) = θTµL(x) + b (1)

where θ ∈ RLV is a vector of weights, each associated to a view v of a land-
mark p and µL(xi) = [µ1([xi]1, [l1]1), . . . , µ1([xi]1, [lL]1), . . . , µV ([xi]V , [lL]V )] can
be interpreted as the mapping function from the input space X to a new land-
mark space H ⊆ RLV . The sign of the function is retained for prediction
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(ŷ = sign(f(x))), i.e. test examples need to be projected as well on the la-
tent space. Notice that each point is compared to the set of landmarks one view
at a time and that the problem is now linear in the space H. To capture the
non-linearities of the space, we rely on the choice of view-specific score functions
µv : Rnv × Rnv → R between representations of points in a given view.

The choice of projecting the dataset on selected landmarks is crucial for the
discriminatory power of the resulting classifier. As a matter of fact, it enables to
express the statistical peculiarities of a view space through similarity estimates
and additionally it allows us to work on a latent space common to all views,
which has multiple benefits: firstly, it allows to control the dimensionality of the
space by choosing the number of landmarks; secondly, it enables to learn a unique
classifier, avoiding the problem of combining the outputs of view-specific models;
lastly, and most importantly, it loosens the assumptions on the relationship
between view information, especially the one on their correlation.

3.2 Optimization Problem and Algorithm

As for standard SVM, our objective function consists in maximizing the mar-
gin between the class hyperplanes while minimizing a surrogate function of the
classification error:

F (f) =
1

2
‖f‖2 +

c

m

m∑
i=1

`(f, zi) (2)

where `(f, z) = max(0, 1− yf(x)) is the hinge loss. We formulate the multi-
view classification problem as a soft-margin SVM learning that we solve in its
primal form:

arg min
θ,b,ξ

1

2
‖θ‖2 +

c

m

m∑
i=1

ξi

s.t. yi
(
θTµL(xi) + b

)
≥ 1− ξi ; ξi ≥ 0 ∀i = 1..m. (3)

The main difference with standard-SVM is the working input space and its
interpretation. Basically, we learn how to linearly combine the point-landmark
similarities, describing how they should change over the views for a class. The
pseudo-code of MVL-SVM is reported in Algorithm 1.

To recapitulate, our landmark-induced latent space allows us to efficiently
extract the complementarity between views while capturing their statistical pe-
culiarities. Moreover, MVL-SVM’s flexibility makes it suited to deal with mul-
tiple not necessarily correlated views, potentially heterogeneous and of different
dimensionality. This flexibility, combined with its scalability, makes MVL-SVM
applicable to a wide set of problems.
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Input: a sample S = {zi = (xi, yi)}mi=1 ⊆ Rn1+···+nV × {−1, 1}
and a set of view-specific score functions {µv : Rnv × Rnv → R}Vv=1

1. Select L = {lp}Lp=1 uniformly from {xi}mi=1;
2. Project S on the latent space:
for i = 1 to m do
µL(xi) = [µ1([xi]1, [l1]1), . . . , µ1([xi]1, [lL]1), . . . , µV ([xi]V , [lL]V )]

end for
3. Learn θ ∈ RLV as the minimizer of Problem (3);

4. Use sign(θTµL(x) + b) for prediction.

Algorithm 1: MVL-SVM algorithm.

4 Theoretical Results

Since the parameters θ and b are optimized from a finite set of training exam-
ples, a key question is how the learned model behaves at test time. Using the
theoretical framework of the Uniform Stability [7], we analyze in this section
the generalization properties of our algorithm by deriving an upper bound on
its true risk. We will see that the stability of our method and, consequently, its
generalization capabilities, depend on the choice of the projection functions, the
number of selected landmarks and the characteristic of the dataset, such as the
number of views and the size of the training set.

4.1 MVL-SVM’s uniform stability

An algorithm is said to enjoy uniform stability if it outputs similar solutions from
slightly different datasets. Let S be the original dataset and Si the set obtained
after replacing the ith sample zi of S by a new sample z′i drawn according to the
unknown underlying distribution D. We say that an algorithm is uniformly stable
if, on a new instance, the difference between the loss suffered by the solution f
learned from S and the loss suffered by the solution f i learned from Si converges
in O( 1

m ). More formally,

Definition 1. (Uniform Stability) A learning algorithm A has uniform sta-
bility 2 βm w.r.t. the loss function ` with β ∈ R+ if

sup
z∼D
|`(f, z)− `(f i, z)| ≤ 2

β

m
.

The uniform stability is directly implied by the triangle inequality if

sup
z∼D
|`(f, z)− `(f\i, z)| ≤ β

m

where f\i is learned on S\i, the set S without the ith instance zi.
The notion of σ-admissibility is helpful for studying the uniform stability of

an algorithm. In order for the algorithm to be stable, it is necessary to prove
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that, for a given point, the difference between its loss function evaluated for any
two possible hypotheses is bounded by the difference of hypotheses’ predictions,
scaled by a constant.

Definition 2. (σ-admissibility) A loss function `(f, z) is σ-admissible w.r.t.
f if it is convex w.r.t. its first argument and ∀f1, f2 and ∀z = (x, y) ∈ Z:

|`(f1, z)− l(f2, z)| ≤ σ|f1(x)− f2(x)|.

In our case, and according to [7], we know that the hinge loss is 1-admissible.
We can now present our main theoretical result.

Theorem 1. Uniform Stability Given the inverse regularizer weight c (from

Eq. (3)), MVL-SVM has uniform stability cLVM2

m , where M = 1 if µv uses the
RBF kernel.

Proof. As `(f, z) is 1-admissible, ∀z = (x, y) ∈ Z,

|`(f\i, z)− `(f, z)| ≤ |f\i(x)− f(x)| = |∆f(x)| (4)

with ∆f = f\i−f . By denoting ∆θ = θ\i−θ, we can derive, ∀z = (x, y) ∈ Z,

|∆f(x)| = |θ\iµL(x)T − θµL(x)T |
= |(θ\i − θ)µL(x)T |

≤
∥∥∥θ\i − θ∥∥∥ ‖µL(x)‖ (5)

≤ ‖∆θ‖ ‖µL(x)‖

≤ ‖∆θ‖
√
LV ‖µL(x)‖∞ (6)

≤ ‖∆θ‖
√
LV max

l,v
(µv([x]v, [l]v))

≤ ‖∆θ‖
√
LVM (7)

with M = maxl,v(µv([x]v, [l]v)).
Eq. (5) is due to the Cauchy-Swartz inequality and Eq. (6) is because ‖µL(x)‖ ≤√

LV ‖µL(x)‖∞ recalling that µL(x) ∈ RLV .
The value of M depends on the chosen scores functions {µv}Vv=1. For instance,

if all µv are the RBF kernel M = 1.
From Lemma 21 of [7] we get:

2 ‖∆θ‖2 ≤ c

m
|∆f(xi)|.

Then, by instantiating Eq. (7) for x = xi, we get

‖∆θ‖2 ≤ c

2m
|∆f(xi)| ≤

c

2m
‖∆θ‖

√
LVM
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and as ‖∆θ‖ > 0, we obtain

‖∆θ‖ ≤ c

2m

√
LVM. (8)

So, plugging Eq. (8) in Eq. (7), we get

∀z = (x, y), |∆f(x)| ≤ ‖∆θ‖
√
LVM ≤ cLVM2

2m

which, with Eq. (4), gives the cLVM2

m uniform stability. ut

Note that the stability of MVL-SVM depends on the number of landmarks L.
Our method is stable only if L� m

V , which is not a strong condition considering
that usually m � V . Moreover, this bound expresses that, the smaller L, the
more stable the algorithm. This is consistent with the fact that L controls the
dimensionality of the projected space in which the multi-view model is learned.

4.2 Generalization bound

From [7], we know that:

Theorem 2. Let A be an algorithm with uniform stability 2β
m w.r.t. a loss `

such that 0 ≤ `(f, z) ≤ E, for f the minimizer of F and ∀z ∈ Z. Then, for any
i.i.d. sample S of size m and for any δ ∈ (0, 1), with probability 1− δ:

RD(f) ≤ R̂S(f) +
2β

m
+
(
4β + E

)√ ln 1
δ

2m

where RD(f) is the true risk on distribution D and R̂S(f) is the empirical
risk on sample S.

Corollary 1. The generalization bound of MVL-SVM derived using the Uni-
form Stability framework is as follows:

RD(f)≤R̂S(f) +
cLVM2

m
+
(

2cLVM2+1+2c
√
LVM

)√ ln 1
δ

2m
.

Proof. The constant E can be estimated by considering the following:

F (f) ≤ F (0)

1

2
‖θ‖2 +

c

m

m∑
i=1

max(0, 1− yi(θµL(xi)
T )) ≤ 1

2
‖0‖2 +

c

m

m∑
i=1

max(0, 1− yi(0µL(xi)
T ))

1

2
‖θ‖2 ≤ c (9)

‖θ‖2 ≤ 2c
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Eq. (9) is because ∀a, b, c ∈ R+, a+ b ≤ c implies that b ≤ c. Thus,

`(f, z) = max(0, 1− yθµL(x)T )

≤ 1 + |θµL(x)T |
≤ 1 + ‖θ‖ ‖µL(x)‖ (10)

≤ 1 + 2c
√
LVM = E

Eq. (10) comes again from the Cauchy-Swartz inequality. ut

5 Learning with Missing Views

Up to this section, we have made the implicit assumption that all the instances
were observed in all the views. Because it is common in real-case scenarios that
some points are observed only in a subset of views, we now illustrate how to
adapt our formulation to the so-called missing-view setting.

The formulation from Eq. 3 is applicable only when all the points of the
training and test sets are observed in all the views. To extend our method to
the context of missing views, we apply a reconstruction step before learning. As
we want to preserve the scalability of our approach, we do not impute missing
values in the original input space: we rather design a dedicated method that
imputes missing values by directly leveraging the information coming from the
set of landmarks. We simply formulate our imputation as a Least Square over
the known values as follows:

arg min
R

‖M −RP‖2F ′ (11)

with M the m×LV matrix of projection values, P the L×LV matrix of
projected landmarks, R the unknown m×L reconstruction matrix and ‖.‖F ′ the
Frobenius norm considering only the non-missing values (in our case, the missing
values are those of M). The problem from Eq. (11) boils down to learning linear
combinations of landmark similarities over all the views and, for this reason, all
the views of the landmarks need to be known. Doing so, we avoid estimating the
actual missing features and we directly impute the view-dependent similarities
between points and landmarks.

It is worth noting that each point projection is reconstructed independently
and that the system is always (over-)determined for each point, as at least one
block of size L of the point projection is known (at least one view’s features are
given) and the number of unknowns is L.

6 Experimental Results

In this section, we report and analyze the performances of our method w.r.t. the
state of the art algorithms, in terms of both classification accuracy and training
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and testing execution times. We perform two sets of experiments: (i) learning
with complete views and (ii) learning with missing views. We will specifically
study the behavior of MVL-SVM w.r.t. the number of landmarks keeping in
mind that the larger the number of landmarks, the better the discriminatory
power of the classifier, but the slower the learning process.

An implementation of our method, based on the Liblinear library [10], to-
gether with the other existing algorithms (when the codes are open-source) is
available at https://github.com/vzantedeschi/multiviewLSVM.

6.1 Datasets, Methods and Experimental Setup

For these experiments, we employ two multi-class datasets that provide multi-
view representations of the instances:

– Flower17 1 contains 1360 pictures of 17 categories of flowers, which come
with 7 different distance matrices between pictures (i.e. the 7 views);

– uWaveGesture [8] is formed by 4478 vectors describing 8 different gestures
as captured by 3 accelerometers (the 3 views).

In order to prove the significance of embedding the datasets in a single space,
we compare methods that learn a single classifier on a latent space and meth-
ods that learn a set of single-views classifiers. Moreover, we principally com-
pare MVL-SVM to SVM-based approaches, to highlight the interest of using
landmark-mappings. Multi-class classification is carried-out through the one-vs-
all procedure.

We report the results of the following baselines:

– MVML [14] that optimizes over both the classifier and the metric matrix,
and which is designed to make the most of the between-view and within-view
relationships;

– the co-regularization technique SVM-2k [11], which regularizes over the pre-
dictions enforcing their smoothness. Originally designed for 2 view learning,
we adapted this algorithm to work with V ≥ 2 views by learning a SVM-2k
for every pair of views and combining their predictions using a majority vote;

– SVMs which consists in learning a Kernel-SVM per view and aggregating
their predictions by majority vote.

All the previous methods, and ours, utilize the Radial Basis Function (RBF,
squared exponential) kernel for comparing the points, with a radius that we fixed
equal to the square root of the number of features. We make use of the 3 train-val-
test splits provided for Flower17, and of the train-test split for uWaveGesture,
tuning by cross-validation over the training set. We repeat each experiment 5
times, reporting the average test value and its standard deviation when it is
not null. For MVL-SVM, at each iteration we randomly select a new set of
landmarks to underline how the chosen landmarks affect the expressiveness of

1 http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/

https://github.com/vzantedeschi/multiviewLSVM
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the latent space. We tune the hyper-parameters of the methods by grid-search
over the following set-values: for MVML, we evaluate λ ∈ {10−8, . . . , 10} and
η ∈ {10−3, . . . , 102}, as indicated in the original paper; for SVM-2K, we consider
c1, c2 and d ∈ {10−4, . . . , 1} and fix ε = 10−3; for both SVMs and MVL-SVM,
we consider c ∈ {10−3, . . . , 104}.

6.2 Learning with Complete Views

In this first experiment, we compare the methods on complete datasets, where all
the points are observed on all the views. In particular, we study the impact of the
dimensionality of our latent space, controlled by the number of landmarks, on the
performances of MVL-SVM. As the rank of the Nyström-approximated Gram
matrix of MVML and the number of landmarks of MVL-SVM are comparable,
because they both measure the number of computed similarities, we draw them
on the same axis and compare these two methods also on this criterion. We
explore values from 10 to the size of the training set (validation set not included).
Because of MVML’s huge computational complexity (see Fig. 3), its results in
Figure 2 are truncated at a smaller approximation level.

Fig. 2: Average test accuracies (with standard deviations) w.r.t. the number of
landmarks/Nyström rank.

Figure 2 shows the test accuracies on both datasets. It is manifest how work-
ing on a latent space is of great benefit: both methods that exploit this idea show
significant better test accuracies than those that learn view-specific classifiers,
especially for the uWaveGestures dataset where views are very complementary.
It is worth noting that MVL-SVM is able to reach the best performance even
with a small number of landmarks (10 for uWaveGestures and 50 for Flower17).

Moreover, majority-vote techniques seem more sensitive to the choice of
points selected for training (see Flower17) than MVL-SVM, which is consistently
robust to the variations in the set of landmarks.

Figures 3 and 4 highlight the other important advantage of MVL-SVM: its
fastness. At training time, MVL-SVM’s execution time is linear in the number of
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landmarks and several magnitudes smaller than baselines’ times. At test time,
MVL-SVM is only slightly beaten by MVML, but it could be accounted to
optimizations in the code. Notice how learning multiple learners (SVM-2k and
SVMs) considerably slows down both training and test steps. Handling multiple
models is, indeed, a heavy overhead.

Overall, MVL-SVM achieves significantly better test accuracy that the con-
sidered baselines, even with a limited number of landmarks, while training several
order of magnitude faster and being comparably fast at test time.

a

(a) Flower17.

b

(b) uWaveGestures.

Fig. 3: Training and test times w.r.t. the number of landmarks. MVL-SVM is
very fast and scales linearly with the number of landmarks, unlike MVML.

6.3 Learning with Missing Views

With this second series of experiments, we aim at evaluating the validity of the
imputation technique proposed in Section 5. We make use of the two previously
described datasets that we modify for the current task: we drop random views
of their points with a ratio of missing views over total number of views (mV )
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Fig. 4: Average test accuracies w.r.t. the training time. Compared to the other
methods, MVL-SVM reaches high accuracy even with very low computational
budget. The x axis is in logarithmic scale.

varying in the interval [0, 0.5]. For MVL-SVM, the number of landmarks L is
fixed to 200. In Figure 5, we draw the test accuracies in this new setting for
both datasets, comparing MVL-SVM to SVMs both with and without any
reconstruction technique. When no imputation is applied as preprocessing, the
points with missing views are dropped for MVL-SVM, while for SVMs, as it
deals with a view at a time, they are still used for training the view-specific
models corresponding to the available views. For SVMs, we impute the missing
values using Graph Laplacian imputation [24] by fixing the Gram matrix of the
view with the most points as the reference view for reconstructing all the other
views. Remark that the points missing from the reference view will not have
their views reconstructed, which might explain the drop in accuracy of SVMs
for a ratio bigger than 0.3 for Flower17.

Fig. 5: Test accuracies (with standard deviations) w.r.t. the ratio of missing
views, using 200 landmarks for MVL-SVM. Imputation of missing value is critical
for MVL-SVM to achieve good accuracy when facing missing views. Thanks to
the proposed missing value imputation, MVL-SVM remains more accurate even
in case of missing views.
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Notice how preprocessing the dataset is fundamental for applying MVL-SVM
to the missing-view scenario. This is not surprising as, using a latent space,
we can train the model only on points observed in all the views. Even if the
accuracy of both methods (with reconstruction) still slightly decays with the
ratio of missing views, the gain in performances is dramatic.

7 Conclusion and Perspectives

We proposed MVL-SVM, an effective technique for tackling multi-view problems,
training a linear-SVM on a landmark-induced latent space, unifying the view in-
formation, constructed by applying non-linear multi-view similarity estimates
between the instances and a set of randomly selected landmarks. We addition-
ally introduced an imputation technique making it suited for the missing-view
context. We also showed MVL-SVM’s validity, from both theoretical and empir-
ical point of view: we derived a generalization bound using the uniform stability
framework, and we showed empirically that our approach outperforms the con-
sidered baselines in terms of accuracy while being several order of magnitude
faster. MVL-SVM rely on a set of landmarks that is shared for all views. Ac-
cording to the application at hand, it might be interesting to consider more
landmarks in some of the views, and future work includes considering different
landmarks in the views. Additionally, by using block-sparsity in the final linear-
separator, automated landmark selection could be achieved, giving MVL-SVM
an even better test-time execution speed. The missing view imputation technique
can also be improved by considering a joint optimization of the reconstruction
matrix R and the linear classifier (θ, b).
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