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A RANDOM SCHRÖDINGER OPERATOR ASSOCIATED WITH THE
VERTEX REINFORCED JUMP PROCESS ON INFINITE GRAPHS

CHRISTOPHE SABOT AND XIAOLIN ZENG

Abstract. This paper concerns the Vertex reinforced jump process (VRJP), the Edge
reinforced random walk (ERRW) and their link with a random Schrödinger operator. On
infinite graphs, we define a 1-dependent random potential β extending that defined in [20]
on finite graphs, and consider its associated random Schrödinger operator Hβ. We construct
a random function ψ as a limit of martingales, such that ψ = 0 when the VRJP is recurrent,
and ψ is a positive generalized eigenfunction of the random Schrödinger operator with
eigenvalue 0, when the VRJP is transient. Then we prove a representation of the VRJP on
infinite graphs as a mixture of Markov jump processes involving the function ψ, the Green
function of the random Schrödinger operator and an independent Gamma random variable.
On Z

d, we deduce from this representation a zero-one law for recurrence or transience of
the VRJP and the ERRW, and a functional central limit theorem for the VRJP and the
ERRW at weak reinforcement in dimension d ≥ 3, using estimates of [10, 8]. Finally, we
deduce recurrence of the ERRW in dimension d = 2 for any initial constant weights (using
the estimates of Merkl and Rolles, [15, 17]), thus giving a full answer to the old question of
Diaconis. We also raise some questions on the links between recurrence/transience of the
VRJP and localization/delocalization of the random Schrödinger operator Hβ .

1. Introduction

This paper concerns the Vertex Reinforced Jump Process (VRJP) and the Edge Reinforced
Random Walk (ERRW) and their relation with a random Schrödinger operator associated
with a stationary 1-dependent random potential (i.e. the potential is independent at distance
larger or equal to 2).

The VRJP is a continuous time self-interacting process introduced in [5], investigated on
trees in [3, 2] and on general graphs in [20, 21]. We first recall its definition. Let G = (V,E)
be an undirected graph with finite degree at each vertex. We write i ∼ j if i ∈ V , j ∈ V and
{i, j} is an edge of the graph. We always assume that the graph is connected and has no
trivial loops (i.e. vertex i such that i ∼ i). Let (Wi,j)i∼j be a set of positive conductances,
Wi,j > 0, Wi,j = Wj,i. The VRJP is the continuous time process (Ys)s≥0 on V , starting at
time 0 at some vertex i0 ∈ V , which, conditionally on the past at time s, if Ys = i, jumps to
a neighbour j of i at rate

Wi,jLj(s),

where

Lj(s) := 1 +

∫ s

0

1{Yu=j} du.
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2 C. SABOT AND X. ZENG

In [20], Sabot and Tarrès introduced the following time change of the VRJP

(1.1) Zt = YD−1(t),

where D(s) is the following increasing function

D(s) =
∑

i∈V
(L2

i (s)− 1).

We call this process the VRJP in exchangeable time scale and denote by P
VRJP

i0
its law

starting from the vertex i0. When the graph is finite it is proved in [20, Theorem 2] that
the VRJP in exchangeable time scale (Zt)t≥0 is a mixture of Markov jump processes. More
precisely, there exists a random field (uj)j∈V such that Z is a mixture of Markov jump
processes with jump rates from i to j

1

2
Wi,je

uj−ui.

The law of (uj) is explicit, c.f. [20, Theorem 2], and forthcoming Theorem B. It appears to
be a marginal of a supersymmetric sigma-field which had been investigated previously by
Disertori, Spencer, Zirnbauer (c.f. [9], [10], [24]). As a consequence of this representation
and of [9], [10], it was proved in [20] the following: when the graph has bounded degree, there
exists a real λ0 > 0 such that if Wi,j ≤ λ0 for all i ∼ j, then the VRJP is positively recurrent,
more precisely, Z is a mixture of positive recurrent Markov jump processes. When the graph
is the grid Z

d, with d ≥ 3, there exists λ1 < +∞ such that if Wi,j ≥ λ1 for all i ∼ j, the
VRJP is transient. Hence, it shows a phase transition between recurrence and transience in
dimension d ≥ 3. The question of the representation of the VRJP on infinite graphs as a
mixture of Markov jump processes is non trivial, especially in the transient case. It is possible
to prove such a representation by a weak convergence argument, following [16], but it gives
little information on the mixing law. In this paper we prove such a representation involving
the Green function and a generalized eigenfunction of a random Schrödinger operator.

Let us give a flavour of the main results of the paper in the case of the VRJP on Z
d with

Wi,j = W constant. We construct a positive 1-dependent random potential (βj)j∈Zd (i.e.
two subsets of the β’s are independent if their indices are at least at distance 2) and with
marginal given by inverse of Inverse Gaussian law with parameters ( 1

dW
, 1). This field is a

natural extension to infinite graphs of the field defined by Sabot, Tarrès, Zeng in [22]. We
consider the random Schrödinger operator

Hβ = −W∆+ V,

where ∆ is the usual discrete (non-positive) Laplacian and V is the multiplication operator
defined by Vj = 2βj − 2dW . Hence, it corresponds to the Anderson model with a random
potential which is not i.i.d. but only stationary and 1-dependent. When the VRJP is transient
we prove that there exists a positive generalized eigenfunction ψ of Hβ with eigenvalue 0,
stationary and ergodic. Let (G(i, j))i∈Zd,j∈Zd be defined by

G(i, j) = Ĝ(i, j) +
1

2
γ−1ψ(i)ψ(j),

where Ĝ = (Hβ)
−1 is the Green function (which happens to be well-defined in an appropriate

sense) and γ is an extra random variable independent of the field β with law Gamma(1
2
, 1).

We prove the following representation for the VRJP: the VRJP in exchangeable time scale
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Z starting from the point i0 is a mixture of Markov jump processes with jump rates from i
to j

1

2
Wi,j

G(i0, j)

G(i0, i)
.(1.2)

When the VRJP is recurrent the same representation is valid with ψ = 0. In fact, the function
ψ is the a.s. limit of a martingale, the limit being positive when the VRJP is transient and
0 when the VRJP is recurrent. It is remarkable that when the VRJP is recurrent it can be
represented as a mixture with β-measurable jump rates, but when the VRJP is transient
it involves an extra independent Gamma random variable. This representation extends to
infinite graphs the representation given in [22] for finite graphs. A new feature appears in
the transient case, where the generalized eigenfunction ψ is involved in the representation.
We suspect that recurrence/transience of the VRJP is related to localization/delocalization
of the random Schrödinger operator Hβ at the bottom of the spectrum.

The representation (1.2) has several consequences on the VRJP and the ERRW. The
ERRW is a reinforced process introduced by Diaconis and Coppersmith in 1986 (see Sec-
tion 2.5 for a definition). The recurrence of the 2-dimensional ERRW is a famous open
question raised by Diaconis, see [4, 18, 12, 17] for early references. Important progress has
been done recently in the understanding of this process. In particular, in [20], an explicit
relation between the ERRW and the VRJP was stated, thus somehow reducing the analysis
of the ERRW to that of the VRJP. In [20, 1], it was proved by rather different methods
that the ERRW on any graph with bounded degree at strong enough reinforcement is pos-
itive recurrent. In [8], it was proved that the ERRW is transient on Z

d, d ≥ 3, at weak
reinforcement.

The representation (1.2) allows us to complete the picture both in dimension 2 and in
the transient regime. More precisely, we prove a functional central limit theorem for the
ERRW and for the discrete time process associated with the VRJP in dimension d ≥ 3 at
weak reinforcement, using the estimates of [10, 8]. Using the polynomial estimate provided
by Merkl and Rolles, [17], we are able to prove recurrence of ERRW on Z

2 for all initial
constant weights, hence giving a full answer to the question of Diaconis.

2. Statements of the results

2.1. Notations. We denote by R+ (resp. R∗
+) the set of non-negative (resp. positive) reals.

Let G = (V,E) be an undirected, locally finite, connected graph without trivial loops or
multiples edges. For i, j ∈ V , write i ∼ j if i is a neighbor of j. We write dG for the graph
distance in G, and for two subsets U, U ′ of V , we define dG(U, U

′) = inf i∈U,j∈U ′ dG(i, j). We
suppose given, for each edge e = {i, j} ∈ E, a positive real Wi,j > 0, understood as the
conductance of the edge e. In this case we call (G, (We)e∈E) a graph with conductances.
Convention: We adopt the notation

∑
i∼j for the sum on all undirected edges {i, j}, counting

only once each edge.
When β = (βi)i∈V ∈ R

V is a real vector indexed by the vertices and U ⊂ V , we write
βU for the restriction of β to U , i.e. βU = (βi)i∈U . When A = (Ai,j)i,j∈V ∈ R

V×V is a real
function on V × V and U ⊂ V , U ′ ⊂ V , we write AU,U ′ for the restriction of A to U × U ′,
i.e. AU,U ′ = (Ai,j)i∈U,j∈U ′.

It will be convenient to define the continuous time processes that appear in the text on
the same canonical space. In the sequel, we will denote by D([0,∞), V ) the space of càdlàg
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functions from [0,∞) to V . The law of the VRJP in exchangeable time scale defined in (1.1),
starting from i0, will be denoted by P

VRJP

i0
, which is a probability onD([0,∞), V ). The VRJP

will always be defined on the canonical space and (Zt)t∈R+ will denote the canonical process
defined by Zt(ω) = ω(t) for ω ∈ D([0,∞), V ).

Remark 1. We do not allow multiple edges or trivial loops since it does not bring more
generality to the VRJP. Indeed, from its definition, it follows that the VRJP on a graph with
multiple edges and trivial loops has the same law as the VRJP on the graph where trivial loops
are removed and multiple edges are replaced by a single edge by summing the conductances
of the multiples edges. Similarly, the law on random potentials that appears in the sequel can
always be reduced to graphs without multiple edges or trivial loops. Nevertheless, in Section 5
it simplifies notations to allow trivial loops.

2.2. Representation of the VRJP on infinite graphs. Define the operator P = (Pi,j)i,j∈V
by

Pi,j =

{
Wi,j, if i ∼ j,
0, otherwise.

We define below a probability distribution on potentials on the graph. A potential on the
graph will generically be denoted β = (βi)i∈V ∈ R

V . With the potential β ∈ R
V , we associate

the Schrödinger operator on G
Hβ = −P + 2β,(2.1)

where β represents the operator of multiplication by the potential (βi) (or equivalently the
diagonal operator with diagonal terms (βi)i∈V ).

We denote by

DW
V = {β ∈ R

V , (Hβ)U,U > 0 for all finite subsets U ⊂ V },(2.2)

where (Hβ)U,U > 0 means that the restriction of Hβ to U ×U is positive definite. Obviously,
DW
V ⊂ (R∗

+)
V since when U = {i} the restriction of Hβ is the real 2βi. We endow DW

V with
its Borelian σ-field denoted B(DW

V ).
The following statement extends the random potential defined in [22, Theorem 1] to infinite

graphs.

Proposition 1. Let (G, (We)e∈E) be a graph with conductances as defined in Section 2.1.
There exists a unique probability distribution νWV defined on (DW

V ,B(DW
V )), such that for any

finite subset U ⊂ V and any (λi)i∈U ∈ R
U
+:

∫
e−

∑
i∈U λiβiνWV (dβ) = e−

∑
i∼j, i,j∈U Wi,j(

√
(1+λi)(1+λj )−1)−∑

i∼j,i∈U,j/∈U Wi,j(
√
1+λi−1) 1∏

i∈U
√
1 + λi

.

In particular, we have the following properties: on the probability space (DW
V ,B(DW

V ), νWV (dβ)),

• (1-dependence) if U, U ′ ⊂ V are such that dG(U, U
′) ≥ 2, then the random variables

β 7→ βU and β 7→ βU ′ are independent,
• (Reciprocal inverse Gaussian marginals) for i ∈ V , the random variable β 7→ 1

2βi
has

an inverse Gaussian distribution with parameter ( 1
Wi
, 1) where Wi =

∑
j∼iWi,j.

Remark 2. On finite graphs, the density of νWV is explicit, c.f. [22, Theorem 1] and Theo-
rem A below.
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In the sequel, the probability space (DW
V ,B(DW

V ), νWV ) will be considered as the canonical
space of random potentials on the graph. We write EνWV

for the expectation with respect

to νWV . We will introduce several random variables on this probability space, and adopt the
following notation: when β 7→ Xβ is a measurable function we will write X for the associated
random variable and Xβ for its realization on the potential β. In particular, we will write
H for the random Schrödinger operator β 7→ Hβ defined above. By abuse of notation, we
sometimes consider βi for i ∈ V or βU for U ⊂ V as random variables (more precisely, the
random variables are β 7→ βi and β 7→ βU).

Definition 1. Let (Vn)n∈N be an increasing sequence of finite connected subsets of V such
that

∪∞
n=0Vn = V.

For n ∈ N, we define F (n) ⊂ B(DW
V ) as the sub σ-field generated by the random variable

β 7→ βVn. For n ∈ N and β ∈ DW
V , we define a random operator (Ĝ

(n)
β (i, j))i,j∈V by

Ĝ
(n)
β (i, j) =

{
((Hβ)Vn,Vn)

−1(i, j), if i, j ∈ Vn,

0, otherwise.

For n ∈ N and β ∈ DW
V , we define a random function (ψ

(n)
β (i))i∈V as the unique solution of

the following equation: {
Hβ(ψ

(n)
β )(i) = 0, for i ∈ Vn,

ψ
(n)
β (i) = 1, for i ∈ V c

n .

By definition, the random variables Ĝ(n) : β 7→ Ĝ
(n)
β and ψ(n) : β 7→ ψ

(n)
β are F (n)-measurable.

The fact that there is a unique solution to the equation defining ψ
(n)
β is elementary, see

the proof in Section 4.2.
Our main theorem is the following.

Theorem 1. (i) For all i, j ∈ V , the sequence of random variables Ĝ(n)(i, j) is non-
decreasing and converges a.s. to

Ĝ(i, j) := lim
n→∞

Ĝ(n)(i, j).

Moreover, νWV -almost surely, 0 < Ĝ(i, j) < ∞ and the limit does not depend on the
choice of the sequence of subsets Vn.

(ii) Under the probability νWV , for all i ∈ V , ψ(n)(i) is a positive F (n)-martingale. It
converges a.s. to a random variable ψ(i), such that ψ(i) ≥ 0 a.s., and the limit does
not depend on the choice of the increasing sequence (Vn). Moreover, the quadratic
variation of the vectorial martingale (ψ(n)(i))i∈V is given a.s. by

〈ψ(i), ψ(j)〉n = Ĝ(n)(i, j).

In particular, ψ(n)(i) is bounded in L2 if and only if EνWV (Ĝ(i, i)) <∞.

(iii) For any real γ > 0 and β ∈ DW
V , we define

Gβ,γ(i, j) = Ĝβ(i, j) +
1

2
γ−1ψβ(i)ψβ(j).
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For i0 ∈ V and x ∈ V , denote by P β,γ,i0
x the law of the Markov jump process which

starts at x ∈ V and jumps from i to j at rate

1

2
Wi,j

Gβ,γ(i0, j)

Gβ,γ(i0, i)
.(2.3)

Then the VRJP in exchangeable time scale, defined in section 2.1, with conductances
(Wi,j) and starting from i0 is a mixture of these Markov jump processes and has law

P
VRJP

i0
( · ) =

∫
P β,γ,i0
i0

( · )νWV (dβ)
1γ>0√
πγ
e−γdγ.(2.4)

(iv) For νWV -almost all β, all γ > 0 and all i0 ∈ V , we have,

• the Markov process P β,γ,i0
i0

is transient if and only if ψβ(j) > 0 for all j ∈ V ,

• the Markov process P β,γ,i0
i0

is recurrent if and only if ψβ(j) = 0 for all j ∈ V .

N.B.: Note that P β,γ,i0
x is well defined for νWV -almost all β and all γ > 0 by (i) and (ii).

Notations . We denote by

νWV (dβ, dγ) := νWV (dβ)⊗ 1γ>0√
πγ
e−γdγ(2.5)

the probability distribution which appears in (2.4), under which γ is Gamma(1
2
, 1)-distributed

and independent of β. In general, we simply write G(i, j) for Gβ,γ(i, j) and consider it as a
random variable on the probability space (DW

V × R
∗
+,B(DW

V )⊗ B(R∗
+), ν

W
V (dβ, dγ)).

Remark 3. When the VRJP is recurrent, G = Ĝ, and the representation of the VRJP (2.4)
only involves the variable β and not γ.

Remark 4. The representation (2.3) extends to infinite graphs the representation provided
in [22, Theorem 2] for finite graphs. An interesting new feature appears in the transient
regime, where the generalized eigenfunction ψ and the extra gamma random variable enter
the expression of G(i, j). As it appears in the proof, the eigenfunction ψ can be interpreted
as the mixing field of a VRJP starting from infinity.

Denote by τ+i0 = inf{t ≥ 0, Zt = i0, ∃s < t s.t. Zs 6= i0} the first return time to i0 by
(Zt)t≥0. The point (iv) of the previous theorem is in fact a consequence of the following more
precise assertion.

Proposition 2. We have, for νWV -almost all β, for all γ > 0 and i0, i ∈ V ,

P β,γ,i0
i (τ+i0 = ∞) =





ψ(i0)2

4γβ̃i0 Ĝ(i0,i0)G(i0,i0)
, if i = i0,

ψ(i0)
2γ

Ĝ(i0,i0)ψ(i)−Ĝ(i0,i)ψ(i0)

Ĝ(i0,i0)G(i0,i)
, if i 6= i0,

where β̃i0 =
∑

j∼i0
1
2
Wi0,j

G(i0,j)
G(i0,i0)

. In particular, ψ(i0) = 0 if and only if P β,γ,i0
i0

(τ+i0 = ∞) = 0.

Using Doob’s h transform, the law of the process (Zt) conditioned on the event {τ+0 <∞}
or {τ+0 = ∞} can be computed and takes a rather nice form, both under the law P

V RJP
i0

, or

under the law P β,γ,i0
i0

for νWV -almost all β. We provide these formulae in Section 7.
A natural question that emerges from point (iv) of the theorem is that of a 0-1 law for

transience/recurrence. We provide an answer below in the case of vertex transitive graphs
with conductances. We say that (G,W ) is vertex transitive if the group of automorphisms of
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G that leaves invariant (Wi,j) is transitive on vertices. In particular, it is the case for the cubic
lattice Z

d with constant conductances Wi,j =W . Denote by A the group of automorphisms
that leave W invariant.

Proposition 3. If (G,W ) is vertex transitive and G is infinite, then under the distribution

νWV (dβ), the random variables (βi)i∈V , (ψ(i))i∈V , (Ĝ(i, j))i,j∈V are stationary and ergodic for
the group of transformations A. Moreover, the VRJP is either recurrent or transient, i.e.

P
VRJP
i0 ( every vertex is visited i.o. ) = 1 or P

VRJP
i0 ( every vertex is visited f.o. ) = 1.

In the first case ψ(i) = 0 for all i ∈ V , a.s., in the second case ψ(i) > 0 for all i ∈ V , a.s.

N.B: The action of A on Ĝ is (τĜ)(i, j) = Ĝ(τi, τj) for τ ∈ A.

2.3. Relation with random Schrödinger operators. Let us now relate Theorem 1 to
the properties of the random Schrödinger operator H : β 7→ Hβ associated with the random
potential (βj) under the law νWV , defined in (2.1) and Proposition 1.

Theorem 2. Under νWV (dβ):

(i) The spectrum of H is a.s. included in [0,∞).

(ii) The operator Ĝ is the inverse of H in the following sense: for all i, j ∈ V , a.s.

Ĝ(i, j) = lim
ǫ>0,ǫ→0

(H + ǫ)−1(i, j).

(iii) We have (Hψ)(i) = 0 a.s. for all i ∈ V .

(iv) In the case of the grid Z
d and when Wi,j = W is constant, (Ĝ(i, j)) and (ψ(i)) are

stationary ergodic for the spacial shift. Moreover, in the transient case, ψ is a.s. a
positive generalized eigenfunction with eigenvalue 0 in the sense that Hψ = 0 and ψ
has at most polynomial growth. More precisely, for all p > d and C > 0, a.s. there
exists a random integer K > 0 such that

|ψ(i)| ≤ C‖i‖p∞ ∀i ∈ Z
d such that ‖i‖∞ ≥ K.

2.4. Functional central limit theorem. We denote by (Z̃n)n∈N the discrete time process

that describes the successive jumps of (Zt)t∈R+ . From Theorem 1 (iii), under P
V RJP
i0

, Z̃n is
a mixture of Markov chains starting from i0 and with conductances

(2.6) Wi,jG(i0, i)G(i0, j),

under the probability distribution νWV (dβ, dγ).
We prove below a functional central limit theorem for the discrete time VRJP on Z

d,
d ≥ 3, at weak reinforcement (i.e. for W large enough).

Theorem 3. Consider the cubic graph Z
d, d ≥ 3, with constant conductances Wi,j = W .

Denote

Z̃
(n)
t =

Z̃[nt]√
n
.

There exists λ2 > 0 such that if W > λ2, the discrete time VRJP satisfies a functional central

limit theorem, i.e. under P
VRJP

0 , for any real 0 < T < ∞, (Z̃
(n)
t )t∈[0,T ] converges in law (for

the Skorokhod topology) to a d-dimensional Brownian motion (Bt)t∈[0,T ] with non degenerate
isotropic diffusion matrix σ2Id, for some 0 < σ2 <∞.
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2.5. Consequences for the Edge Reinforced Random Walk (ERRW). The Edge
Reinforced Random Walk (ERRW) is a famous discrete time process introduced in 1986 by
Coppersmith and Diaconis, [4, 12].

Endow the edges of the graph G = (V,E) with some positive weights (ae)e∈E. Let (Xn)n∈N
be a random process that takes values in V , and let Fn = σ(X0, . . . , Xn) be the filtration of
its past. For any e ∈ E, n ∈ N, let

(2.7) Nn(e) = ae +
n∑

k=1

1{{Xk−1,Xk}=e}

be the number of crossings of the (undirected) edge e up to time n plus the initial weight ae.
Then (Xn)n∈N is called Edge Reinforced Random Walk (ERRW) with starting point i0 ∈ V

and weights (ae)e∈E, if X0 = i0 and, for all n ∈ N,

(2.8) P(Xn+1 = j | Fn) = 1{j∼Xn}
Nn({Xn, j})∑

k∼Xn
Nn({Xn, k})

.

We denote by P
ERRW
i0

the law of the ERRW starting from the initial vertex i0. We will
assume that the ERRW is defined on the canonical space V N, i.e. that (Xn)n∈N is the
canonical process on V N.

Important progress has been done in the last ten years in the understanding of this process,
c.f. e.g. [1, 8, 17, 20]. In particular, in was proved in 2012 by Sabot, Tarrès, [20], and Angel,
Crawford, Kozma, [1], on any graph with bounded degree at strong reinforcement (i.e. for

ae < λ̃0 for some fixed λ̃0 > 0) that the ERRW is a mixture of positive recurrent Markov
chains. It was proved by Disertori, Sabot, Tarrès [8] that on Z

d, d ≥ 3, the ERRW is

transient at weak reinforcement (i.e. for ae > λ̃1 for some fixed λ̃1 <∞).
From [20, Theorem 1], we know that the ERRW has the law of a VRJP in independent con-

ductances. More precisely, consider (We)e∈E as independent random variables with gamma
distribution with parameters (ae, 1). Consider the VRJP in conductances (We)e∈E and its

underlying discrete time process (Z̃n). Then the annealed law of (Z̃n) (after expectation with
respect to W ) is that of the ERRW (Xn) with initial weights (ae). Hence, we can apply The-
orem 1 at fixed W and then integrate on W . We thus consider the joint law ν̃aV (dW, dβ, dγ)
on (R∗

+)
E × (R∗

+)
V × R

∗
+ obtained from νWV (dβ, dγ) after randomization with respect to W .

More formally, let ν̃aV (dW ) be the probability distribution on (R∗
+)

E such that under ν̃aV (dW )
the random variables W 7→ We are independent with gamma distribution with parameters
(ae, 1), then ν̃aV (dW, dβ, dγ) is the probability distribution on (R∗

+)
E× (R∗

+)
V ×R

∗
+ such that

for any bounded measurable test function F ,
∫
F (W,β, γ)ν̃aV (dW, dβ, dγ) =

∫ (∫
F (W,β, γ)νWV (dβ, dγ)

)
ν̃aV (dW ).

In the sequel, ν̃aV (dW, dβ), ν̃
a
V (dβ) will denote the corresponding marginal distributions, and

ν̃aV (dW ) is the W marginal. (By definition, ν̃aV (dW, dβ) is supported on the set of (W,β)
such that β ∈ DW

V .) From Theorem 1, we see that the ERRW starting from i0 is a mixture
of reversible Markov chains with conductances

xi,j = Wi,jG(i0, i)G(i0, j),(2.9)

where G is defined in Theorem 1, and (W,β, γ) are distributed according to ν̃aV (dW, dβ, dγ).

More formally, if P̃ x
i0

denotes the law of the Markov chain starting at i0 and with conductances
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(xi,j)i∼j, then

P
ERRW
i0 (·) =

∫
P̃ x
i0(·)ν̃aV (dW, dβ, dγ).

An important point is that we keep the 1-dependence of the field β, after taking expectation
with respect to W .

Proposition 4. Under ν̃aV (dβ), (βj)j∈V is 1-dependent: if U, U ′ ⊂ V are such that dG(U, U
′) ≥

2, then (βi)i∈U and (βj)j∈U ′ are independent.

Proof. Indeed, from Proposition 1, the Laplace transform of (βi)i∈U under νWV (dβ) only
involves the conductances Wi,j for i or j in U . This implies that, if dG(U, U

′) ≥ 2, the joint
Laplace transform of (βi)i∈U and (βi)i∈U ′ is still the product of Laplace transforms even after
taking expectation with respect to the random variables (We), i.e. under ν̃aV ( dβ). �

This yields a counterpart of Proposition 3 for the ERRW.

Proposition 5. Assume (G, (ai,j)) is vertex transitive with automorphism group A, and
G infinite. Then under the distribution ν̃aV (dW, dβ), the random variables (We)e∈E, (βi)i∈V ,

(ψ(i))i∈V , (Ĝ(i, j))i,j∈V are stationary and ergodic for the group of transformations A. More-
over, the ERRW is either recurrent or transient, i.e.

P
ERRW
i0 ( every vertex is visited i.o. ) = 1, or P

ERRW
i0 ( every vertex is visited f.o. ) = 1.

In the first case ψ(i) = 0 for all i ∈ V , a.s., in the second case ψ(i) > 0 for all i ∈ V , a.s.

N.B: The action of A on Ĝ and W is (τĜ)(i, j) = Ĝ(τi, τj), τWi,j =Wτi,τj for τ ∈ A.

Remark 5. In [16], it was proved on infinite graphs that the ERRW is a mixture of Markov
chains, obtained as a weak limit of the mixing law of the ERRW on finite approximating
graphs. The difference in the representation we give in (2.9) is that the random variables

ψ, Ĝ are obtained as almost sure limits and hence are measurable functions of the random
variables β. This yields stationarity and ergodicity, which are the key ingredients in the 0-1
law, and in forthcoming Theorems 4 and 5.

Remark 6. It seems that this 0-1 law is new, both for the VRJP and the ERRW. In [16],
it was proved that if the ERRW comes back with probability 1 to its starting point then it
visits infinitely often all points, a.s., which is a weaker result. This was proved using the
representation of the ERRW as mixture of Markov chains of [16]. (A short proof of this last
result can also be given, c.f. [23].)

We now give a counterpart of Theorem 3 for the ERRW. It is a consequence of Theorem 1
and of the delocalization result proved by Disertori, Sabot, Tarrès in [8].

Theorem 4. Consider the cubic graph Z
d, d ≥ 3, with constant weights ai,j = a. Denote

X
(n)
t =

X[nt]√
n
.

There exists λ̃2 > 0 such that if a > λ̃2, the ERRW satisfies a functional central limit

theorem, i.e. under P
ERRW

0 , for any real 0 < T < ∞, (X
(n)
t )t∈[0,T ] converges in law (for

the Skorokhod topology) to a d-dimensional Brownian motion (Bt)t∈[0,T ] with non degenerate
isotropic diffusion matrix σ2Id, for some 0 < σ2 <∞.
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Finally, we can deduce recurrence of the ERRW in dimension 2 from Theorem 1, Propo-
sition 5 and the estimates obtained by Merkl and Rolles in [15, 17]1.

Theorem 5. The ERRW (Xn)n≥0 on Z
2 with constant weights ai,j = a is a.s. recurrent, i.e.

P
ERRW
0 ( every vertex is visited infinitely often ) = 1.

In [15, 17], by a Mermin-Wagner type argument, Merkl and Rolles proved a polynomial
decrease of the form

E

((
xℓ
x0

) 1
4

)
≤ c(a)|ℓ|−ξ(a),(2.10)

for some constants c(a) > 0, ξ(a) > 0, depending only on a, and where xℓ is the conduc-
tance at the site ℓ for the mixing measure of the ERRW, uniformly for a sequence of finite
approximating graphs. When 0 < ξ < 1, it does not give by itself enough information to
prove recurrence. It was used in the case of a diluted 2-dimensional graph to prove positive
recurrent at strong reinforcement. The extra information given by the representation (2.9)
and the stationarity of ψ, implies that the polynomial estimate (2.10) is incompatible with
ψ(i) > 0 and hence is incompatible with transience. Detailed arguments are provided in
Section 8.

Remark 7. We expect similarly that the 2-dimensional VRJP with constant conductances
Wi,j = W > 0 is recurrent. This would be implied by an estimate of the type (2.10) for
the mixing field of the VRJP, which is still not available. More precisely, we can see from
the proof of Theorem 5 in Section 8, that recurrence of the 2-dimensional VRJP would be
implied by Theorem 1, Proposition 3, and an estimate of the type

E
(
eη(uℓ−u0)

)
≤ ǫ(‖ℓ‖∞),

for η > 0 and ǫ(n) a positive function such that limn→∞ ǫ(n) = 0, where (uj) is the mixing
field of the VRJP starting from 0 (c.f. TheoremB) on finite boxes with wired boundary
condition as in Section 4.2. We learned from G. Kozma and R. Peled that they have a proof
of such an estimate.

2.6. Open questions. The most important question certainly concerns the relation between
the properties of the VRJP and the spectral properties of the random Schrödinger operator
Hβ. For example on Z

d with constant weights Wi,j = W , is recurrence/transience of the
VRJP related to the localized/delocalized regimes of Hβ? A more precise question would
be: does the transient regime of the VRJP coincide with the existence of extended states
at least at the bottom of the spectrum of Hβ? It might at first seem inconsistent to expect
extended states at the bottom of the spectrum since the Anderson model with i.i.d. potential
is expected to be localized at the edges of the spectrum (a fact which is proved in several
cases). But this localization is a consequence of Lifshitz tails, and there are good reasons
to expect that Lifshitz tails fail for the potential β, which is not i.i.d. but 1-dependent.
Indeed, the bottom of the spectrum of Hβ is 0, it does not coincide with the minimum of
the support of the distribution of 2β translated by the spectrum of −P , as it is the case for
i.i.d. potential. In fact, on a finite set, the minimum of the spectrum is reached on the set
det(2β − P ) = 0 which is a set of codimension 1, hence it is "big".

1We are grateful to Franz Merkl and Silke Rolles for a useful discussion on that subject
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Another natural question concerns the uniform integrability of the martingale ψ(n)(i).
Let us ask a more precise question: is it true (at least for Z

d with constant weights) that
transience of the VRJP implies that the martingale ψ(n)(i) is bounded in L2? It is quite

natural to expect such a property from relation (5.2) since Ĝ(n)(i, i) appears to be the
quadratic variation of ψ(n)(i). This would have several consequences. Firstly, it would imply
that in dimension d ≥ 3, the VRJP satisfies a functional central limit theorem as soon
as the VRJP is transient, by the same argument as that of the proof of Theorem 3. It
would also imply directly that the VRJP is recurrent as soon as the reversible Markov chain
in conductances (Wi,j) is recurrent, if the group of automorphisms of (G,W ) is transitive.
Indeed, assume that the property is true and the VRJP is transient. By Theorem 1, the

discrete time process (Z̃n) would be represented as a mixture of reversible Markov chains
with conductances Wi,jG(0, i)G(0, j). From Proposition 2 applied to i0 = 0, we have that

Ĝ(0, i)

Ĝ(0, 0)
≤ ψ(i)

ψ(0)
.

Hence, (Z̃n) is equivalently a mixture of Markov chains with conductances

ψ(0)2

G(0, 0)2
Wi,jG(0, i)G(0, j) ≤Wi,jψ(i)ψ(j).

But (ψ(i)) is stationary ergodic, if ψ0 is squared integrable, we would have

EνWV
(Wi,jψ(i)ψ(j)) ≤ CWi,j

for some constant C > 0. Usual arguments imply that the Markov chain in conductance
Wi,jψ(i)ψ(j) is recurrent if the Markov chain in conductances (Wi,j) is recurrent (c.f. e.g.
Exercise 2.75, [14]). We arrive at a contradiction.

2.7. Organization of the paper. In Section 3, we gather several results in the case of finite
graphs, in particular we recall the main results of [22]. In Section 4, we define the important
notion of restriction with wired boundary condition and the compatibility property. Section 5
is the key step in the paper where the martingale property is proved. In Section 6, we prove
Theorem 1, Propositions 2 and 3 and Theorem 2. In Section 7, we provide extra computations
of h-transforms. In section 8, we prove recurrence of ERRW in dimension 2 for all initial
constant weights. In Section 9, we prove functional central limit theorems for the VRJP and
the ERRW, Theorems 3 and 4.

3. The random potential β on finite graphs

In this section we assume that G = (V,E) is a finite graph and gather several results in
this case. Recall that every undirected edge e = {i, j} is labeled with a positive conductance
We = Wi,j. In the case of a finite graph, the Schrödinger operator Hβ defined in (2.1) can
be represented by the V × V -matrix given by

Hβ(i, j) =





2βi, i = j,

−Wi,j , i 6= j, i ∼ j,

0, otherwise,

and the set DW
V defined in (2.2) is the set of potentials β such that Hβ is positive definite.
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3.1. The probability distribution νWV on finite graphs and relation to the VRJP.
We recall [22, Theorem 1], which defines the probability distribution νWV (dβ) by its density
on any finite graph.

Theorem A (Theorem 1, Definition 1 and Proposition 1 of [22]). Let (G, (We)e∈E) be a
finite graph with conductances. The measure below is a probability on DW

V :

(3.1) νWV (dβ) := 1Hβ>0

(
2

π

)|V |/2
exp(−

∑

i∈V
βi +

∑

e∈E
We)

dβV√
detHβ

with dβV =
∏

i∈V dβi, and where Hβ > 0 means that Hβ is positive definite.
The Laplace transform of the probability distribution νWV (dβ) is given, for all (λi) ∈ R

V
+,

by

(3.2)

∫
e−〈λ,β〉νWV (dβ) = exp

(
−
∑

i∼j
Wi,j(

√
(λi + 1)(λj + 1)− 1)

)
∏

i∈V

1√
λi + 1

.

Moreover, we have the following properties: under νWV (dβ),

• (1-dependence): if U, U ′ ⊂ V are such that dG(U, U
′) ≥ 2, then the random variables

β 7→ βU and β 7→ βU ′ are independent,
• (Reciprocal inverse Gaussian marginals) for i ∈ V , the random variable β 7→ 1

2βi
has

an inverse Gaussian distribution with parameter ( 1
Wi
, 1) where Wi =

∑
j∼iWi,j.

If we apply formula (3.2) to (λi) ∈ R
V
+ such that λV \U = 0 for a subset U ⊂ V , we find

the expression of Proposition 1. Hence, it implies Proposition 1 in the case of a finite graph.
The field β is closely related to the VRJP, as shown in the next two theorems. In [20],

it is shown that the VRJP in exchangeable time scale defined in Section 2.1 is a mixture of
Markov jump processes, more precisely:

Theorem B (Theorem 2 of [20]). Assume V finite. The following measure is a probability
distribution on the set {(ui)i∈V ∈ R

V , ui0 = 0}:
(3.3)

QW
i0
(du) =

1
√
2π

|V |−1
exp

(
−
∑

i∈V
ui −

∑

i∼j
Wi,j(cosh(ui − uj)− 1)

)
√
D(W,u)duV \{i0}

where duV \{i0} =
∏

i∈V \{i0} dui and D(W,u) =
∑

T∈T
∏

{i,j}∈T Wi,je
ui+uj , where the sum is

over T , the set of spanning trees of the graph G.

For (ui)i∈V ∈ R
V , we denote by P

(u)
i0

the law of the Markov jump process starting at vertex
i0 and with jump rates from i to j given by

1

2
Wi,je

uj−ui.

The law of the VRJP in exchangeable time scale starting at i0 is a mixture of Markov jump
processes, with mixing law given by

P
V RJP
i0

(·) =
∫
P

(u)
i0

(·)QW
i0
(du).
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Remark 8. By the matrix-tree theorem, D(W,u) is any diagonal minor of the |V | × |V |
matrix (mi,j) with coefficients

mi,j =





0, if i 6∼ j, i 6= j,

−Wi,je
ui+uj , if i ∼ j, i 6= j,∑

k∈V,k∼iWi,ke
ui+uk , if i = j.

Remark 9. The probability measure QW
i0
(du) appeared previously to [20] in a rather different

context in the work of Disertori, Spencer, Zirnbauer, [10]. In particular, the fact that QW
i0
(du)

is a probability measure was proved there as a consequence of a Berezin identity applied to a
supersymmetric extension of that measure.

On finite graphs, the random environment (ui) of the previous theorem can be represented
thanks to the Green function of the random potential (βi, i ∈ V ) distributed according to
νWV (dβ). Let us first recall [22, Proposition 1].

Proposition A (Proposition 1 of [22]). Assume V finite. For β ∈ DW
V , we denote by

Gβ := (Hβ)
−1

the Green function of the Schrödinger operator Hβ. For β ∈ DW
V , i, j ∈ V , we define uβ(i, j)

by

(3.4) euβ(i,j) =
Gβ(i, j)

Gβ(i, i)
.

For i0 ∈ V , (uβ(i0, j))j∈V is the unique solution of the equation
{
uβ(i0, i0) = 0,∑

j∼iWi,je
uβ(i0,j)−uβ(i0,i) = βi, if i 6= i0.

(3.5)

In particular, the function β 7→ (uβ(i0, j))j∈V is (βj)j∈V \{i0}-measurable. Moreover, for all
β ∈ DW

V ,

(3.6) βi0 =
1

2Gβ(i0, i0)
+

1

2

∑

j∼i0

Wi,je
uβ(i0,j)−uβ(i0,i0).

As usual, we simply denote by G(i, j) and u(i, j) the associated random variables on the
probability space (DW

V ,B(DW
V ), νWV ). Let us now recall [22, Theorem 3].

Theorem C (Theorem 3 of [22]). Assume V finite. For all i0 ∈ V , under the probability
νWV (dβ),

(i) the random field (u(i0, j))j∈V has the distribution QW
i0

of Theorem B,
(ii) 1

2G(i0,i0)
has a gamma distribution with parameters (1/2, 1),

(iii) G(i0, i0) is independent of (βj)j 6=i0, hence independent of the field (u(i0, j))j∈V .

Remark 10. Here we only consider the VRJP with initial local time 1, in fact, the above
correspondence between β and VRJP still holds for the process starting with any positive

local times (φi, i ∈ V ), in such case, there is a corresponding density νW,φ
2

V , which is defined
in [22], see Definition 1 and Theorem 3. We choose here to normalize the initial local time to
1 since it is equivalent to the general case by a change of time and W , see [22] Appendix B.
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Combining Theorem B and Theorem C, it gives a representation of the VRJP in exchange-
able time scale starting from different points in terms of the probability on random potentials
νWV . We state this representation below.

Corollary 1. Assume V finite. For β ∈ DW
V , define P β,i0

x as the law of the Markov jump
process starting from x and with jump rates from i to j given by

1

2
Wi,j

Gβ(i0, j)

Gβ(i0, i)
.

Then, the VRJP in exchangeable time scale is a mixture of these Markov jump processes,

P
VRJP

i0
( · ) =

∫
P β,i0
i0

( · )νWV (dβ).(3.7)

3.2. Representation as a sum on paths. We call path in G from i to j a finite sequence
σ = (σ0, . . . , σm) in V such that σ0 = i, σm = j and σk ∼ σk+1, for k = 0, . . . , m − 1. The
length of σ is defined by |σ| = m. We denote by PV

i,j be the collection of paths in V from i

to j, and P̄V
i,j be the collection of paths σ = (σ0 = i, . . . , σm = j) in V from i to j such that

σk 6= j, k = 0, . . . , m− 1. For a path σ and for β ∈ DW
V , we set

(3.8) Wσ =
m−1∏

k=0

Wσk ,σk+1
, (2β)σ =

m∏

k=0

(2βσk), (2β)−σ =
m−1∏

k=0

(2βσk).

For the trivial path σ = (σ0), we define Wσ = 1, (2β)σ = 2βσ0 , (2βσ)
− = 1. (Note that these

definitions make sense also in the case of infinite graphs.)
The following representation of the Green function G(·, ·) as a sum on paths will be

convenient.

Proposition 6. Assume that V is finite. For all β ∈ DW
V , we have, with the notations of

Theorem A,

(3.9) Gβ(i, j) =
∑

σ∈PV
i,j

Wσ

(2β)σ
, exp(uβ(i, j)) =

∑

σ∈P̄V
j,i

Wσ

(2β)−σ
.

Proof. Write Dβ for the diagonal V × V matrix with (βi)i∈V as diagonal coefficients, then
Hβ = (Id−PD−1

β )Dβ. Since Hβ > 0, by Perron-Frobenius theorem, we have that ρ(PD−1
β ) <

1, where ρ(PD−1
β ) is the spectral radius of PD−1

β . Hence, we can write the following conver-
gent expansion,

Gβ = H−1
β = D−1

β

∞∑

k=0

(PD−1
β )k,

which exactly corresponds to (3.9).
For the expansion of exp(uβ(i, j)), note first that

∑
σ∈P̄V

j,i

Wσ

β−
σ

≤ βiGβ(j, i) < ∞. A path

in PV
j,i can be cut at its first visit to i, turning it into the concatenation of a path in P̄V

j,i and

a path in PV
i,i, and this operation is bijective. It implies that

(3.10)
∑

σ∈P̄V
j,i

Wσ

(2β)−σ


Gβ(i, i) =


∑

σ∈P̄V
j,i

Wσ

(2β)−σ




∑

σ∈PV
i,i

Wσ

(2β)σ


 =

∑

σ∈PV
j,i

Wσ

(2β)σ
= Gβ(i, j),

hence the result. �
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3.3. A priori estimates on QW
i0
(du). The following proposition is borrowed from [10,

Lemma 3]. For convenience, we give a shorter proof of that estimate based on spanning trees
instead of fermionic variables, following the proof of the corresponding result for the ERRW,
c.f. [8, Lemma 7].

Proposition 7. Let (G = (V,E),W ) be a finite graph with conductances. Fix a vertex i0.
Let η > 0 and let e1 = {e1, e1}, . . . , eK = {eK , eK} be K distinct undirected edges such that
Wek ≥ 2η for all k = 1, . . . , K. Then

∫
exp

(
η

K∑

k=1

cosh
(
uek − uek

))
QW
i0 (du) ≤ eηK2K/2

where QW
i0 (du) is the probability distribution defined in Theorem B.

Proof. We remind that QW
i0
(du) is defined by

QW
i0
(du) =

1
√
2π

|V |−1
exp(−

∑

i

ui −
∑

i∼j
Wi,j(cosh(ui − uj)− 1))

√
D(W,u)duV \{i0},

with duV \{i0} =
∏

i 6=i0 dui and D(W,u) =
∑

T∈T
∏

{i,j}∈T Wi,je
ui+uj where the sum is on

spanning trees.

Let W̃ = W−η
∑K

k=1 1ek , (i.e. W̃ is equal to W−η on the edges e1, . . . , eK , and unchanged

on the other edges). By assumption, we have W̃i,j > 0 on the edges, and for all spanning
trees T , since edges appear at most once:

∏

{i,j}∈T
Wi,je

ui+uj ≤
(

K∏

k=1

Wek

Wek − η

)
∏

{i,j}∈T
W̃i,je

ui+uj ≤ 2K
∏

{i,j}∈T
W̃i,je

ui+uj ,

which implies D(W,u) ≤ 2KD(W̃ , u). From the expression of QW
i0 (du), we deduce that

exp

(
η

K∑

k=1

cosh
(
uek − uek

))
QW
i0 (du) ≤ eηK2K/2QW̃

i0 (du).

It implies that
∫

exp

(
η

K∑

k=1

cosh
(
uek − uek

))
QW
i0
(du) ≤ eηK2K/2

∫
QW̃
i0
(du) = eηK2K/2.

�

4. The wired boundary condition and Kolmogorov extension to infinite

graphs

4.1. Restriction with wired boundary condition. Our objective is to extend the rela-
tions between the VRJP and the β field to the case of infinite graphs. To this end, we need
an appropriate boundary condition, which turns out to be the wired boundary condition.

Definition 2. Let G = (V,E) be a connected graph with finite degree at each site, and V1 a
strict finite subset of V . We define the restriction of G to V1 with wired boundary condition

as the graph G1 = (Ṽ1 = V1 ∪ {δ}, E1) where δ is an extra point and

E1 = {{i, j} ∈ E, s.t. i ∈ V1, j ∈ V1, i ∼ j} ∪ {{i, δ}, i ∈ V1 s.t. ∃j /∈ V1, i ∼ j}.
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If (Wi,j){i,j}∈E is a set of positive conductances, we define (W
(1)
i,j ){i,j}∈E1 as the set of restricted

conductances by




W
(1)
i,j =Wi,j , if i, j ∈ V1, {i, j} ∈ E1,

W
(1)
i,δ =

∑
j /∈V1,j∼iWi,j , if {i, δ} ∈ E1,

0, otherwise.

Remark 11. Intuitively, this restriction corresponds to identifying all points in V \ V1 to
a single point δ and to delete the edges connecting points of V \ V1. The new weights are
obtained by summing the weights of the edges identified by this procedure.

The following lemma is fundamental and is the justification for the choice of this notion
of restriction.

Lemma 1. Let (G = (V,E),W ) be a finite graph with conductances and νWV the associated
distribution on random potentials defined in Theorem A. Let V1 be a strict subset of V and

(G1 = (Ṽ1, E1),W
(1)) be the restriction of (G,W ) to V1 with wired boundary condition. Let

νW
(1)

Ṽ1
be the distribution of random potential associated with (G1,W

(1)). We denote by
(
νWV
)
|V1

and
(
νW

(1)

Ṽ1

)
|V1

the marginal distributions on V1 of νWV and νW
(1)

Ṽ1
. Then

(
νWV
)
|V1 =

(
νW

(1)

Ṽ1

)
|V1
.

Remark 12. Note that there is no such compatibility relation with the more usual notion
of restriction of graph. The wired boundary condition is fundamental and in fact will be
responsible for the extra gamma random variable that appears in the representation of the
VRJP on the infinite graph.

Proof. Taking (λi)i∈V ∈ R
V
+ such that λV \V1 = 0 in Theorem A, we get that

∫
e−

∑
i∈V1

λiβiνWV (dβ)

= exp


−

∑

i∼j,i,j∈V1

Wi,j(
√
(1 + λi)(1 + λj)− 1)−

∑

i∼j,i∈V1,j /∈V1

(Wi,j(
√

1 + λi − 1))


∏

i∈V1

1√
1 + λi

.

Applying Theorem A to the graph G1 with (λi)i∈Ṽ1 ∈ R
Ṽ1
+ such that λδ = 0, we get

∫
e−

∑
i∈V1

λiβiνW
(1)

Ṽ1
(dβ)

= exp


−

∑

i∼j,i,j∈V1

W
(1)
i,j (
√
(1 + λi)(1 + λj)− 1)−

∑

i∈V1,i
G1∼δ

(W
(1)
i,δ (
√

1 + λi − 1))



∏

i∈V1

1√
1 + λi

.

By definition of W
(1)
i,j , these Laplace transforms are equal, hence the marginal distributions

are equal. �
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4.2. Kolmogorov extension: proof of Proposition 1 and Definition 1. Let G = (V,E)
be a connected infinite graph with finite degree at each site with conductances (Wi,j). We
remind that (Vn)n≥1 is an increasing sequence of finite strict subsets of V that exhausts V ,
i.e. ∪nVn = V.

Let Gn = (Ṽn = Vn∪{δn}, En) be the restriction of G to Vn with wired boundary condition,
and (W (n)) the restricted conductances. By construction, if n < m, then (Gn,W (n)) is the
restriction of (Gm,W (m)) to Vn with wired boundary condition. Lemma 1 implies that the

sequence of marginal distributions
(
νW

(n)

Ṽn

)
|Vn

is a compatible sequence of probabilities. By

Kolmogorov extension theorem, it implies that there exists a probability measure νWV such
that (

νWV
)
|Vn =

(
νW

(n)

Ṽn

)
|Vn
,

for all integer n. By Theorem A, νWV ( dβ) is supported by the set of potentials β such
that (Hβ)Vn,Vn is positive definite for all integers n, hence by DW

V . It also implies the other
properties of νWV (dβ).

The solution of the equation defining ψ
(n)
β in Definition 1 exists and is unique since it is

equivalent to (ψ
(n)
β )V c

n
= 1 and

(Hβ)Vn,Vn(ψ
(n)
β )Vn(i) =

∑

j∼i,j∈V c
n

Wi,j , for i ∈ Vn.(4.1)

Since (Hβ)Vn,Vn is positive definite for β ∈ DW
V , it defines ψ

(n)
β uniquely.

4.3. Coupling lemma. Definition of G(n), and relations with Ĝ(n), ψ(n) and γ.
Consider the probability νWV (dβ, dγ) defined in (2.5). It will be convenient to couple the

measure νWV (dβ, dγ) and the measure νW
(n)

Ṽn
(dβ) in the following way.

Lemma 2. For β ∈ DW
V and γ > 0, we define β(n) ∈ R

Ṽn by

(4.2) β
(n)
Vn

= βVn , β
(n)
δn

=
∑

j∈Vn,j∼δn

1

2
W

(n)
j,δn
ψ

(n)
β (j) + γ.

Then, β(n) ∈ DW (n)

Ṽn
and under νWV (dβ, dγ), β(n) is distributed according to νW

(n)

Ṽn
.

Let H
(n)

β(n) be the Schrödinger operator associated with Gn, W (n) and potential β(n). Let

G
(n)

β(n) = (H
(n)

β(n))
−1, be its Green function. Then,

G
(n)

β(n)(δn, δn) =
1

2γ
,

and, for all i ∈ Vn,

ψ
(n)
β (i) =

G
(n)

β(n)(δn, i)

G
(n)

β(n)(δn, δn)
= e

u
(n)

β(n)
(δn,i)

,

where u
(n)

β(n) is the field defined in Proposition A for the graph Gn and with the potential β(n).

As usual, we often omit the subscript β and write H(n), G(n), u(n), and consider them as
random variables on DW

V × R
∗
+ under νWV (dβ, dγ).



18 C. SABOT AND X. ZENG

Proof. Let β ∈ DW
V and γ > 0. Denote in this proof by (u(j))j∈Ṽn the vector defined by

u(j) =

{
0, if j = δn,

logψ
(n)
β (j), if j ∈ Vn.

Then, by definition of ψ
(n)
β and β(n), we have (H

(n)

β(n)(e
u))Vn = (Hβ(ψ

(n)
β ))Vn = 0 and

H
(n)

β(n)(e
u)(δn) = 2β

(n)
δn

−
∑

j∈Vn,j∼δn

W
(n)
δn,j

ψ
(n)
β (j) = 2γ.

Since (eu(j)) is a vector with positive coefficients, by general results on symmetric M-matrices,

see Theorem 2.7 page 141 of [19], it implies that H
(n)

β(n) > 0. Moreover, it implies that

1
2γ
eu(·) = G

(n)

β(n)(δn, ·), hence that G
(n)

β(n)(δn, δn) =
1
2γ

and eu(·) =
G

(n)

β(n)
(δn,·)

G
(n)

β(n)
(δn,δn)

= e
u
(n)

β(n)
(δn,·)

.

Finally, by Theorem C, the law of (β
(n)
Vn
, G

(n)

β(n)(δn, δn)) is the same under νWV (dβ, dγ) and

νW
(n)

Ṽn
(dβ(n)), and since β(n) 7→ (β

(n)
Vn
, G

(n)

β(n)(δn, δn)) is a bijection by Proposition A, it implies

that under νWV (dβ, dγ), β(n) has law νW
(n)

Ṽn
. �

Proposition 8. With the definition of Proposition 2, for all i, j ∈ Vn, all β ∈ DW
V , all γ > 0,

G
(n)

β(n)(i, j) = Ĝ
(n)
β (i, j) +

1

2γ
ψ

(n)
β (i)ψ

(n)
β (j).

Proof. For simplicity, we omit the subscripts β, β(n) in Ĝ
(n)
β , ψ

(n)
β , G

(n)

β(n) in the expression

below. By Proposition 6, Lemma 2, using (β(n))Vn = βVn , we find that

G(n)(i, j) =
∑

σ∈P Ṽn
i,j

W
(n)
σ

(2β(n))σ
, Ĝ(n)(i, j) =

∑

σ∈PVn
i,j

Wσ

(2β)σ
(4.3)

and

ψ(n)(i) =
G(n)(δn, i)

G(n)(δn, δn)
=

∑

σ∈P Ṽn
i,δn

W
(n)
σ

(2β)−σ
.

Therefore, if we denote P Ṽn
i,δn,j

the collection of paths on Ṽn starting from i, visiting δn at
least once, and ending at j, that is,

P Ṽn
i,δn,j

= {σ = (σ0, · · · , σm) ∈ P Ṽn
i,j , such that ∃0 ≤ k ≤ m, σk = δn}

then, since (W (n))Vn,Vn = WVn,Vn and (β(n))Vn = βVn ,

G(n)(i, j)− Ĝ(n)(i, j) =
∑

σ∈P Ṽn
i,δn,j

W
(n)
σ

(2β(n))σ

= (
∑

σ∈P̄ Ṽn
i,δn

W
(n)
σ

(2β(n))−σ
) · (

∑

σ∈P Ṽn
δn,j

W
(n)
σ

(2β(n))σ
)

= ψ(n)(i)G(n)(δn, j) = ψ(n)(i)ψ(n)(j)G(n)(δn, δn) = ψ(n)(i)ψ(n)(j)
1

2γ
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where we used Lemma 2 in the last equality. �

5. The martingale property

We remind that F (n) = σ(βi, i ∈ Vn) is the sub σ-field generated by the random variables
β 7→ βi, i ∈ Vn. The following proposition is the key property for the main theorem.

Proposition 9. With the notations of Definition 1, for all n ∈ N, ψ(n) has finite moments.
Moreover, we have, νWV -a.s.,

(5.1) EνWV

(
ψ(n+1)(i)|F (n)

)
= ψ(n)(i), ∀i ∈ V,

and for all i, j ∈ V ,
(5.2)

EνWV

(
ψ(n+1)(i)ψ(n+1)(j)− ψ(n)(i)ψ(n)(j)|F (n)

)
= EνWV

(
Ĝ(n+1)(i, j)− Ĝ(n)(i, j)|F (n)

)
.

Remark 13. In Theorem B, by the change of variables ũ(·) = u(·) −
∑

i∈V u(i)

|V | , the new

variables (ũ(i))i∈V are in the space {
∑

i∈V ũ(i) = 0} and the density becomes

Q̃W
i0
(dũ) =

1
√
2
|V |−1

eũ(i0)e−
∑

i∼j Wi,j(cosh(ũ(i)−ũ(j))−1)
√
D(W, ũ)dũV \{i0}.

We see from this expression that eũ(i)−ũ(i0) · Q̃W
i0

= Q̃W
i , hence that

∫
eũ(i)−ũ(i0)Q̃W

i0
(dũ) = 1.

Applied to V = Ṽn, i0 = δn, we get EνWV (ψ(n)(i)) = 1 which is a particular case of (5.1).

The original proof of that property was rather technical (see the second arXiv version of
the present paper). Some time after the first version of this paper was posted on arXiv,
a simpler proof of the martingale property (5.1) was given in [7]. Moreover, using some
supersymmetric arguments, the following more general property was proved.

Lemma 3 ([7]). Let λ ∈ (R+)
V be a non-negative function on V with bounded support, then

E

(
e−〈λ,ψ(n+1)〉− 1

2〈λ,Ĝ(n+1)λ〉|F (n)
)
= e−〈λ,ψ(n)〉− 1

2〈λ,Ĝ(n)λ〉.

We provide here a different proof of this assertion based on elementary computations on
the measures νWV on finite sets. It also provides a simpler proof of the original assertion
Proposition 9 by differentiating in λ.

5.1. Marginal and conditional laws of νWV . In this subsection, we suppose that G =
(V,E) is finite. We state some identities on marginal and conditional laws of the distribution
νWV , which will be instrumental in the proof of the martingale property in the next subsection.

Let us first remark that the law νWV defined in Theorem A can be extended to the case where
P = (Wi,j)i,j∈V has non-zero, diagonal coefficients. Indeed, if some diagonal coefficients of P

are positive, then changing from variables (βi) to variables (βi − 1
2
Wi,i), we get the law νW̃V

where (W̃i,j) is obtained from (Wi,j) by replacing all diagonal entries by 0. While it is not
very natural from the point of view of the VRJP to allow non-zero diagonal coefficients, it
is convenient in this section to allow this possibility since it simplifies the statements about
conditional law.

Recall that for any function ζ : V 7→ R and any subset U ⊂ V , we write ζU for the
restriction of ζ to the subset U . Similarly, if A is a V × V matrix and U ⊂ V , U ′ ⊂ V , we
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write AU,U ′ for its restriction to the block U × U ′. We also write dβU =
∏

i∈U dβi to denote
integration on variables βU .

In the next lemma we give an extension of the family of probability distributions νWV . This
extension was proposed by Letac, in the unpublished note [13] discussing the integral defined
in [22]. We give a proof of this lemma using Theorem A.

Lemma 4 (Letac, [13]). Let V be finite and P = (Wi,j)i,j∈V be a symmetric matrix with
non-negative coefficients. Let (ηi)i∈V ∈ R

V
+ be a vector with non-negative coefficients. Then

the following measure on DW
V

νW,ηV (dβ) := e−
1
2〈η,(Hβ)

−1η〉e〈η,1〉νWV (dβ)(5.3)

= 1Hβ>0

(
2

π

)|V |/2
e−

1
2〈1,Hβ1〉− 1

2〈η,(Hβ)
−1η〉 1√

detHβ

e〈η,1〉dβV

is a probability distribution, where 1 in the scalar products 〈1, Hβ1〉 and 〈η, 1〉 is to be un-

derstood as the vector



1
...
1


. Its Laplace transform is, for any λ ∈ R

V
+

(5.4)

∫
e−〈λ,β〉νW,ηV (dβ) = e

−〈η,√λ+1−1〉−∑
i∼j Wi,j

(√
(1+λi)(1+λj )−1

)∏

i∈V

1√
1 + λi

where
√
λ+ 1− 1 should be considered as the vector (

√
λi + 1− 1)i∈V .

It appears in the following lemma that this extension describes all marginal laws of νWV ,

and that the larger family νW,ηV is stable by taking marginals and conditional distributions.

Lemma 5. Assume that V is finite and let U ⊂ V be a subset. Under νW,ηV (dβ),

(i) βU is distributed according to ν
WU,U ,η̂
U , where

η̂ = ηU + PU,Uc(1Uc),(5.5)

(ii) conditionally on βU , βUc is distributed according to ν
|W,qη
Uc , where qP = (|Wi,j)i,j∈Uc and

qη ∈ (R+)
Uc

are the matrix and vector defined by

qP = PUc,Uc + PUc,U ((Hβ)U,U)
−1 PU,Uc , qη = ηUc + PUc,U ((Hβ)U,U)

−1 (ηU).

Remark 14. Note that qP has non-zero diagonal coefficients.

N.B. As we can observe, all the quantities with q· are relative to vectors or matrices on U c,
while the quantities with ·̂ are relative to vectors or matrices on U .

Lemma 6. Let G = (V,E) be a finite connected graph endowed with conductances P =
(Wi,j)i,j∈V . Let (ηi)i∈V ∈ R

V
+ be a vector with non-negative coefficients. Let U ⊂ V . For

β ∈ DW
V , define ψβ = Gβη where Gβ = H−1

β ; define η̂ = ηU + PU,Uc1Uc, ĜU
β = ((Hβ)U,U)

−1

and ψ̂β = ĜU
β (η̂). For any λ ∈ R

V
+, we have, νW,ηV a.s.,

(5.6) EνW,η
V

(e−〈λ,ψ〉− 1
2
〈λ,Gλ〉 |FU ) = e−〈λU ,ψ̂〉−〈λUc ,1Uc〉− 1

2〈λU ,ĜUλU〉

where FU = σ(βi, i ∈ U).
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Proof of Lemma 4 and Lemma 5. Lemma 4 and the assertions (i) and (ii) of Lemma 5 are

consequences of the same decomposition of the measure νW,ηV . It is partially inspired by
computations in [13]. We write Hβ as block matrix

Hβ =

(
HU,U −PU,Uc

−PUc,U HUc,Uc

)
and define ĜU = (HU,U)

−1.

Now, define the Schur’s complement

qHUc

= HUc,Uc − PUc,UĜ
UPU,Uc,(5.7)

and

qGUc

=
(

qHUc
)−1

.

We have

(5.8) Hβ =

(
IU 0

−PUc,UĜ
U IUc

)(
HU,U 0

0 qHUc

)(
IU −ĜUPU,Uc

0 IUc

)
.

Remark that with notations of (ii) of Lemma 5 we have

qHUc

= 2βUc − qP.

By (5.8), we have

(5.9)
〈1, Hβ1〉

=
〈
1Uc , qHUc

1Uc

〉
+ 〈1U , HU,U1U〉+

〈
1Uc , PUc,UĜ

UPU,Uc1Uc

〉
− 2 〈1U , PU,Uc1Uc〉 .

On the other hand, by (5.8) again, we have

(5.10) Gβ = H−1
β =

(
IU ĜUPU,Uc

0 IUc

)(
ĜU 0

0 qGUc

)(
IU 0

PUc,UĜ
U IUc

)

therefore, since (
IU 0

PUc,UĜ
U IUc

)(
ηU
ηUc

)
=

(
ηU
qη

)
,

we get,

(5.11) 〈η,Gβη〉 =
〈
ηU , Ĝ

UηU

〉
+
〈

qη, qGUc

qη
〉
.

Combining (5.9) and (5.11) we have

〈1, Hβ1〉+ 〈η,Gβη〉 − 2 〈η, 1〉 =
〈
1Uc , qHUc

1Uc

〉
+
〈

qη, qGUc

qη
〉
− 2 〈qη, 1Uc〉(5.12)

+ 〈1U , HU,U1U〉+
〈
η̂, ĜU η̂

〉
− 2 〈η̂, 1U〉 .

By (5.8), we also have

detHβ = detHU,U det qHUc

, 1Hβ>0 = 1HU,U>01 qHUc>0.(5.13)
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Combining (5.12) and (5.13), we have,

(
2

π

)|V |/2
e−

1
2〈1,Hβ1〉− 1

2〈η,Gβη〉+〈η,1〉 1Hβ>0√
detHβ

=

(
2

π

)|U |/2
e−

1
2〈1U ,HU,U1U〉− 1

2〈η̂,ĜU η̂〉+〈η̂,1U 〉 1HU,U>0

detHU,U
(5.14)

·
(
2

π

)|Uc|/2
e−

1
2〈1Uc , qHUc

1Uc〉− 1
2〈qη, qGUc

qη〉+〈qη,1Uc 〉 1 qHUc>0√
det qHUc

.

We remark that the left-hand side is the density of νW,ηV (dβ), that the first term of the

right-hand side corresponds to the density of ν
WU,U ,η̂
U (dβU) and that, βU being fixed, the

second term of the right-hand side is the density of ν
|W,qη
Uc (dβUc). (Indeed, as remarked above,

qHUc
= 2βUc − qP and qP , qη are βU -measurable).

Proof of Lemma 4. Take η = 0. Then qη = 0. Integrating on dβUc on both sides of (5.14),
with βU fixed, gives

∫ (
2

π

)|V |/2
e−

1
2〈1,Hβ1〉 1Hβ>0√

detHβ

dβUc =

(
2

π

)|U |/2
e−

1
2〈1U ,HU,U1U〉− 1

2〈η̂,ĜU η̂〉+〈1U ,η̂〉 1HU,U>0

detHU,U

since
∫
ν

|W
Uc(dβUc) = 1 by Theorem A. Integrating on dβU , it gives

∫
ν
WU,U ,η̂
U (dβU) = 1,

since νWV is a probability. Hence, ν
WU,U ,η̂
U is a probability. This implies Lemma 4 since this

restriction procedure allows to obtain all possible parameters of the family of measures νW,ηV .

Indeed, for V , W , η, consider Ṽ = V ∪ {δ} the set obtained by adding an extra point, and

define (W̃i,j)i,j∈Ṽ by W̃V,V = W and Wi,δ = ηi for i ∈ V . Then if we apply the previous

identity to Ṽ and U := V ⊂ Ṽ , we get η̂ = η and νW,ηV is a probability by the previous
argument.
Proof of Lemma 5. Integrating on dβUc on both sides of (5.14), with βU fixed, gives

∫ (
2

π

)|V |/2
e−

1
2〈1,Hβ1〉− 1

2〈η,Gβη〉+〈η,1〉 1Hβ>0√
detHβ

(dβUc)

=

(
2

π

)|U |/2
e−

1
2〈1U ,HU,U1U〉− 1

2〈η̂,ĜU η̂〉+〈1U ,η̂〉 1HU,U>0

detHU,U

since
∫
ν

|W,qη
Uc (dβUc) = 1 by Lemma 4. Hence, the marginal distribution of βU is ν

WU,U ,η̂
U ,

proving (i). Finally, (ii) is a consequence of the conditional probability density formula.
Indeed, if we denote temporary by f(β) the density of νWV (dβ), by fU(βU) its marginal

density on U and by fβUUc (βUc) the conditional density of βUc conditioned on βU , we have by
(5.14) and (i),

fβUUc (βUc) =
f(β)

fU(βU)
=

(
2

π

)|Uc|/2
e−

1
2〈1Uc , qHUc

1Uc〉− 1
2〈qη, qGUc

qη〉+〈qη,1Uc〉 1 qHUc>0√
det qHUc

.
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Since qHUc
= 2βUc − qP , qGUc

= ( qHUc
)−1 and qP , qη are βU -measurable, it implies that the

right-hand side is the density of ν
|W,qη
Uc (dβUc). �

Proof of Lemma 6. We take the same notations as in the proof of Lemma 5. By Lemma 5,

under νWV (dβ), the law of βUc , conditionally on βU , is ν
|W,qη
Uc . Now, we set

qψ = qGUc

qη.

By (5.10), we have

〈λ, ψ〉+ 1

2
〈λ,Gλ〉 = 〈λ,Gη〉+ 1

2
〈λ,Gλ〉

=
(
λU , λUĜ

UPU,Uc + λUc

)(
ĜU 0

0 qGUc

)(
ηU

PUc,UĜ
UηU + ηUc

)

+
1

2

(
λU , λUĜ

UPU,Uc + λUc

)(
ĜU 0

0 qGUc

)(
λU

PUc,UĜ
UλU + λUc .

)

If we define qλ = λUc + PUc,UĜ
UλU ∈ R

Uc

+ , we have

〈λ, ψ〉+ 1

2
〈λ,Gλ〉 =

〈
qλ, qψ

〉
+

1

2

〈
qλ, qGUc

qλ
〉
+
〈
λU , Ĝ

UηU

〉
+

1

2

〈
λU , Ĝ

UλU

〉

=
〈

qλ, qψ
〉
+

1

2

〈
qλ, qGUcqλ

〉
+
〈
λU , ψ̂

〉
+

1

2

〈
λU , Ĝ

UλU

〉
−
〈
1Uc , qλ− λUc

〉
.

Now, remark that
〈

qλ, qψ
〉
+

1

2

〈
qλ, qGUcqλ

〉
+

1

2

〈
qη, qGUc

qη
〉
=

1

2

〈
qλ+ qη, qGUc

(qλ+ qη)
〉
.

We get,

EνW,η
V

(
e−〈λ,ψ〉− 1

2
〈λ,Gλ〉 |FU

)
= e−〈λU ,ψ̂〉−〈λUc ,1Uc〉− 1

2〈λU ,ĜUλU〉E
ν

|W,qη
Uc

(
e−〈qλ, qψ〉− 1

2〈qλ, qGUc
qλ〉+〈1Uc ,qλ〉)

= e−〈λU ,ψ̂〉−〈λUc ,1Uc〉− 1
2〈λU ,ĜUλU〉E

ν
|W,qλ+qη
Uc

(1)

which concludes the proof of the lemma, using that ν
|W,qλ+qη
Uc is a probability �

5.2. Proof of Lemma 3. Remark that since ψ(n) is defined for all n by{
(Hβψ

(n))Vn = 0,

ψ
(n)
V c
n
= 1,

we have ψ
(n)
Vn

= ((Hβ)Vn,Vn)
−1(η(n)), where η(n) = PVn,V c

n
(1V c

n
). Moreover, by Lemma 5 (i),

under νWV (dβ), we know that βVn has law νW,η
(n)

Vn
. Using Lemma 6 applied to V = Vn+1 and

U = Vn, we have that Ĝ
(n+1)
Vn+1,Vn+1

corresponds to Gβ in Lemma 6 and Ĝ
(n)
Vn,Vn

to ĜU , η(n+1) to

η, and η(n) to η̂. Hence, we get that a.s.

EνWV

(
e
−
〈
λVn+1

,ψ
(n+1)
Vn+1

〉
− 1

2〈λVn+1
,Ĝ(n+1)λVn+1〉 ∣∣F (n)

)
= e

−
〈
λVn ,ψ

(n)
Vn

〉
−〈λVn+1\Vn

,1Vn+1\Vn〉− 1
2〈λVn ,Ĝ(n)λVn〉

= e
−
〈
λVn+1

,ψ
(n)
Vn+1

〉
− 1

2〈λVn ,Ĝ(n)λVn〉

since ψ
(n)
Vn+1\Vn = 1. This concludes the proof since ψ(n) and ψ(n+1) both equal 1 on V c

n+1.
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6. Passing to the limit: proof of Theorem 1, Proposition 2, Proposition 3

6.1. Proof of Theorem 1 i) and ii).

Proof of Theorem 1 i) and ii). By the path representation (4.3), we know that Ĝ
(n)
β (i, j)

is non-decreasing for all i, j ∈ V since the set of paths PVn
i,j is non-decreasing, and that

Ĝ
(n)
β (i, j) ≤ G(n)(i, j) since PVn

i,j ⊂ P Ṽn
i,j . Hence, it convergences a.s. to a random vari-

able Ĝ(i, j). Since Ĝ(n)(i, j) > 0 as soon as i, j ∈ Vn (indeed, Vn is connected), we have

Ĝ(i, j) > 0 a.s.. It remains to prove that Ĝ(i, j) < ∞. As Ĝ(n)(i, i) converges a.s. to Ĝ(i, i)
and is non-decreasing, for any h ≥ 0,

νWV (Ĝ(i, i) ≤ h) = νWV ( lim
n→∞

Ĝ(n)(i, i) ≤ h)

= lim
n→∞

νWV (Ĝ(n)(i, i) ≤ h)

≥ lim
n→∞

νWV (G(n)(i, i) ≤ h)

= P

(
1

2Γ
≤ h

)
,

where Γ is a gamma random variable with parameters (1
2
, 1). In the last equality, we used

that 1
2G(n)(i,i)

has gamma law with parameters (1
2
, 1) by Theorem C. Therefore, Ĝ(i, i) < ∞

a.s. For the off diagonal term, since (Hβ)Vn,Vn is positive definite, we have by Cauchy-Schwarz
inequality

Ĝ(n)(i, j) =
〈
δi, Ĝ

(n)δj

〉
≤
√〈

δi, Ĝ(n)δi

〉〈
δj , Ĝ(n)δj

〉
=

√
Ĝ(n)(i, i)Ĝ(n)(j, j)

therefore, Ĝ(i, j) ≤
√
Ĝ(i, i)Ĝ(j, j) and Ĝ(i, j) is a.s. finite.

From Proposition 9, we know that ψ(n)(i) is a positive martingale for all i ∈ V . As a
positive martingale, ψ(n)(i) converges a.s. to some non-negative integrable random variable
ψ(i).

It remains to show that the limits ψ and Ĝ do not depend on the choice of the exhausting
sequence (Vn). Assume that (Ωn) is another increasing exhausting sequence, we can similarly
construct the martingale φ(n)(i) associated with Ωn. As (Ωn) and (Vn) are exhausting,
we can construct a subsequence nk such that the alternating sequence Vn1 ,Ωn2 , Vn3, . . . is
increasing and thus the alternating sequence ψ(n1)(i), φ(n2)(i), ψ(n3)(i), . . . is a martingale for
all i ∈ V . This martingale converges a.s. and this identifies the limits of ψ(n)(i) and φ(n)(i).

The argument is the same for Ĝ since the sequence of Green functions associated with the
alternating sequence of subsets is non-decreasing and converges a.s. �

6.2. Representation of the VRJP as a mixture on the infinite graphs: proof of
iii). With the coupling of Section 4.3, by Proposition 8, we have for β ∈ DW

V and γ > 0,

G(n)(i, j) = Ĝ(n)(i, j) +
1

2γ
ψ(n)(i)ψ(n)(j).

By Theorem 1 (i) and (ii), we have that νWV (dβ, dγ)-a.s.

(6.1) lim
n→∞

G(n)(i, j) = G(i, j),
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where G(i, j) is defined in Theorem 1 (iii).
The next corollary of Proposition 7 gives the necessary uniform integrability on jump rates

to extend the representation of the VRJP for finite graphs to infinite graphs.

Corollary 2. For any i, j ∈ V , there exists n0 ∈ N, such that the family of random variables{
G(n)(i0,j)

G(n)(i0,i)

}
n≥n0

is uniformly integrable under νWV (dβ, dγ).

Proof. Choose n0 such that i, j ∈ Vn0, and i and j are connected by a path in Vn0. Denote by
K the distance between i and j for the graph distance in Vn0 and let (σ0 = i, σ1, . . . , σK = j)
be a directed path from i to j in Vn0. Note that it is also a directed path in any Vn for
n ≥ n0 since Vn is increasing. Let

η :=
1

2
min

k=0,...,K−1
(Wσk,σk+1

) > 0.

Let c(η) > 0 be a positive constant depending only on η such that e2x ≤ c(η)eη cosh(x) for all
reals x (which exists since 2|x| ≤ η cosh(x) for x large enough and since cosh(x) ≥ 1 for all
x). We can write with Notation (3.4), for n ≥ n0,

(
G(n)(i0, j)

G(n)(i0, i)

)2

= e2(u
(n)(i0,j)−u(n)(i0,i)) =

K−1∏

k=0

e2(u
(n)(i0,σk+1)−u(n)(i0,σk))

≤ c(η)K
K−1∏

k=0

eη cosh((u
(n)(i0,σk+1)−u(n)(i0,σk)).

By Theorem C and Lemma 2, under νWV (dβ, dγ), u(n)(i0, ·) has law QW
i0 . Proposition 7 then

implies that for n ≥ n0,

EνWV

((
G(n)(i0, j)

G(n)(i0, i)

)2
)

≤ eηK2K/2c(η)K .

The family is uniformly bounded in L2, in particular uniformly integrable. �

Consider now a connected finite subset Λ ⊂ V containing i0 and set

∂+Λ = {j ∈ Λc, ∃i ∈ Λ such that i ∼ j }.
Consider also a real t0 > 0. Let T be the following stopping time

T = t0 ∧ inf{t ≥ 0, Zt /∈ Λ}.
By construction, the law of the VRJP in exchangeable time scale on G up to time T equals
the law of the VRJP in exchangeable time scale on Gn up to time T , for all n such that
Λ∪ ∂+Λ ⊂ Vn. For convenience, in this proof we write P

VRJP,G
i0

for its law on G and P
VRJP,Gn

i0

for its law on Gn. Hence, our previous discussion formally means that PVRJP,G
i0

((Zt)t≤T ∈ ·) =
P
VRJP,Gn

i0
((Zt)t≤T ∈ ·), for n large enough. We denote by

ℓi(T ) =

∫ T

0

1Zu=i du

the local time of Z up to time T . Using Corollary 1 and the coupling in Lemma 2, the VRJP
in exchangeable time scale on Gn, starting at i0, is a mixture of Markov jump processes with
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jump rates from i to j

1

2
W

(n)
i,j

G(n)(i0, j)

G(n)(i0, i)
(6.2)

under the law νWV (dβ, dγ). We denote by

β̃
(n)
i =

∑

j∼i

1

2
W

(n)
i,j

G(n)(i0, j)

G(n)(i0, i)

the holding time at site i (note that β̃
(n)
i = β

(n)
i for i 6= i0). We denote by PMJP

i0 the law of the
Markov jump process with jump rates 1

2
Wi,j starting at i0. The Radon-Nykodim derivative

of the law of (Zt)t≤T under the law of the Markov jump process with jump rates (6.2) with
respect to its law under PMJP

i0 is

(6.3) e−
∑

i∈Λ ℓi(T )(β̃
(n)
i − 1

2
Wi)

G(n)(i0, ZT )

G(n)(i0, i0)
,

where as usual Wi =
∑

j∼iWi,j. We postpone the proof of this formula to the end this
subsection.

Formula (6.3) implies that for all positive bounded test functions F , for n large enough,

E
VRJP,G
i0

(F ((Zt)t≤T )) = E
VRJP,Gn

i0
(F ((Zt)t≤T ))

=

∫ ∑

j∈Λ∪∂+Λ

EMJP
i0

(
1ZT=jF ((Zt)t≤T )e

−
∑

i∈Λ ℓi(T )(β̃
(n)
i − 1

2
Wi)

G(n)(i0, j)

G(n)(i0, i0)

)
νWV (dβ, dγ).(6.4)

From (6.1), we have a.s.

lim
n→∞

β̃
(n)
i = β̃i :=

∑

j∼i

1

2
Wi,j

G(i0, j)

G(i0, i)
.

Remark that in (6.4), the term e−
∑

i∈Λ ℓi(T )(β̃
(n)
i − 1

2
Wi) is bounded since Λ ∪ ∂+Λ is finite and

T ≤ t0. Using the uniform integrability of G(n)(i0,j)

G(n)(i0,i0)
, Corollary 2, we get, letting n tend to

∞, that

E
VRJP,G
i0

(F ((Zt)t≤T ))

=

∫ ∑

j∈Λ∪∂+Λ

EMJP
i0

(
1ZT=jF ((Zt)t≤T )e

−
∑

i∈Λ
1
2
ℓi(T )(β̃i− 1

2
Wi)

G(i0, j)

G(i0, i0)

)
νWV (dβ, dγ)

=

∫
Eβ,γ,i0
i0

(F ((Zt)t≤T )) ν
W
V (dβ, dγ)

where Eβ,γ,i0
i0

is the expectation associated with the probability P β,γ,i0
i0

defined in Theorem 1.
Since Λ and t0 can be chosen arbitrarily, the previous identity characterizes the law of
(Z(t))t≥0. This concludes the proof of Theorem 1 (iii).

Proof of formula (6.3). Consider the Markov jump process on the graph Gn with jump rates
1
2
W (n), denote by P

MJP,(n)
i0

its law starting from i0. At each vertex i, its waits an exponential

random time with parameter 1
2
W

(n)
i , then jumps to j ∼ i with probability proportional
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to W
(n)
i,j . On time interval [0, t], the probability that it follows the discrete path (σ0 =

i0, σ1, . . . , σn) and jumps at times 0 < s1 < . . . < sn < t has distribution
(
n−1∏

k=0

W
(n)
σk ,σk+1

W
(n)
σk

)(
e−

1
2
W

(n)
σn (t−sn)

n−1∏

k=0

W (n)
σk
e−

∑n−1
k=0

1
2
W

(n)
σk

(sk+1−sk)

)
ds1 · · · dsn

=

(
n−1∏

k=0

W (n)
σk,σk+1

)
e−

1
2

∑
i∈Ṽn

W
(n)
i ℓi((σk),(sk))ds1 · · · dsn,

where ℓi((σk), (sk)) is the total time spent at position i by the trajectory with discrete path
(σk) and jump times (sk). The same formula is true for the Markov jump process with jump

rates (6.2) with 1
2
W

(n)
i,j replaced by 1

2
W

(n)
i,j

G(n)(i0,j)

G(n)(i0,i)
. By cancellation of the ratios G(n)(i0,j)

G(n)(i0,i)

along the trajectory, it gives that on time interval [0, t], the Radon-Nikodym derivative of
the law of the Markov jump process with jump rates (6.2) starting at i0 with respect to

P
MJP,(n)
i0

is

Mt := e−
∑

i∈Ṽn
ℓi(t)(β̃

(n)
i − 1

2
W

(n)
i )G

(n)(i0, Zt)

G(n)(i0, i0)
.

Moreover, Mt is a martingale and is bounded on finite time intervals. Since T is a bounded

stopping time, T ≤ t0, we have (6.3) for the stopping time T since W
(n)
Vn,Vn

=WVn,Vn. �

6.3. Proof of Proposition 2, and iv) of Theorem 1.

Proof of Proposition 2. Recall notation of Section 3.2 and identities (3.9). As n 7→ Ĝ(n)(i, j)
is increasing, we have

Ĝ(i, j) =
∑

σ∈PV
i,j

Wσ

(2β)σ
.(6.5)

By arguments similar to (3.10), we have

Ĝ(i0, i)

Ĝ(i0, i0)
=
∑

σ∈P̄V
i,i0

Wσ

(2β)−σ
.

We recall that (Z̃n)n∈N denotes the discrete time process which describes successive jumps of

the process (Zt)t∈R+ . Clearly, {τ+i0 < ∞} = {∃n ≥ 1, s.t. Z̃n = i0}. Therefore, if we denote

{(Z̃n) ∼ σ} = {Z̃0 = σ0, . . . , Z̃m = σm} with m = |σ|, then for i 6= i0

(6.6)

h(i) := P β,γ,i0
i (τ+i0 <∞) =

∑

σ∈P̄V
i,i0

P β,γ,i0
i ((Z̃n) ∼ σ)

=
∑

σ∈P̄V
i,i0

Wσ

(2β)−σ

G(i0, i0)

G(i0, i)
=

Ĝ(i0, i)

Ĝ(i0, i0)
· G(i0, i0)
G(i0, i)

.

It follows from G(i, j) = Ĝ(i, j) + 1
2γ
ψ(i)ψ(j) that, for i 6= i0,

P β,γ,i0
i (τ+i0 = ∞) = 1− h(i) =

ψ(i0)

2γ

Ĝ(i0, i0)ψ(i)− Ĝ(i0, i)ψ(i0)

Ĝ(i0, i0)G(i0, i)
.



28 C. SABOT AND X. ZENG

Therefore,

P β,γ,i0
i0

(τ+i0 = ∞) =
∑

j∼i0

Wi0,jG(i0, j)

2β̃i0G(i0, i0)
P β,γ,i0
j (τ+i0 = ∞)

=
∑

j∼i0

ψ(i0)Wi0,j

4γβ̃i0

Ĝ(i0, i0)ψ(j)− Ĝ(i0, j)ψ(i0)

Ĝ(i0, i0)G(i0, i0)
.(6.7)

By definition, for n large enough, we have HĜ(n)(i0, ·) = 1i0(·). Taking the limit n→ ∞, we

have HĜ(i0, ·) = 1i0(·). By (iii) of Theorem 2 (proved in section 6.5), we have Hψ(·) = 0,
therefore, ∑

j∼i0
Wi0,j[ψ(j)Ĝ(i0, i0)− ψ(i0)Ĝ(i0, j)] = ψ(i0),

hence P β,γ,i0
i0

(τ+i0 = ∞) = ψ(i0)2

4γβ̃i0 Ĝ(i0,i0)G(i0,i0)
. �

Proof of Theorem 1, (iv). From Proposition 2, we see that P β,γ,i0
i0

(τ+i0 = ∞) > 0 if and only

if ψ(i0) > 0. Since the Markov jump process P β,γ,i0
i0

is irreducible (G is connected), (iv)
follows. �

6.4. Ergodicity and the 0-1 law: proof of Proposition 3 and 5.

Proof of Proposition 3. From the expression of the Laplace transform of β, c.f. Proposition 1,
we see that under νWV (dβ), (βi)i∈V is stationary for the action of A.

By 1-dependence, c.f. Proposition 1, it is also ergodic. Indeed, assume that (τn) ∈ AN is
a sequence of automorphims such that dG(i0, τn(i0)) → ∞ for some vertex i0. We prove that
(τn) is mixing in the sense that for all A,B ∈ σ(βi, i ∈ V )

(6.8) lim
n→∞

νWV (τ−1
n (B) ∩A) = νWV (A)νWV (B).

Assume that V1 ⊂ V is finite and that A,B ∈ σ(βj, j ∈ V1). By 1-dependence, τ−1
n (B) is

independent of A for n large enough. This implies that (6.8) is true for all A,B in the algebra
P = ∪

V1 finiteσ(βj , j ∈ V1). Now, any measurable set in σ{βj, j ∈ V } can be approximated

by an element in P, i.e. for ǫ > 0 and A,B in σ{βj, j ∈ V } we can find A0, B0 ∈ P such
that νWV (A∆A0) < ǫ and νWV (B∆B0) < ǫ where ∆ is the symmetric difference (see e.g. [11,
Theorem D, Section 13, page 56]). Hence, also νWV (τ−1

n (B)∆τ−1
n (B0)) < ǫ since τn is measure

preserving. This easily imply (6.8) for all A and B. Finally, if A is τ -invariant, (6.8) implies
(νWV (A))2 = νWV (A), hence νWV (A) equals 0 or 1.

Let us prove stationarity and ergodicity of the random variables (Ĝ(i, j))i,j∈V . We also de-
note by τ the transformation on R

V×V given by, for (M(i, j)) ∈ R
V×V , τM(i, j) =M(τi, τj).

Since the limit Ĝβ(i, j) does not depend on the choice of the sequence Vn, a.s., we have that

τ(Ĝβ) = Ĝτ(β), by choosing the approximating sequences Vn and τVn. It implies that (Ĝ(i, j))

is stationary. Moreover, if A ∈ B(RV×V ) is τ -invariant, then the set {β, Ĝβ ∈ A} is a.s.

τ -invariant. Hence, A has measure 0 or 1 under the law of Ĝ. The proof is similar for the
random variables (ψ(i))i∈V .

The event {ψ(i) = 0, ∀i ∈ V } is clearly invariant by A, hence has probability 0 or 1.
Together with (iv) of Theorem 1 it concludes the proof of the proposition. �

Proof of Proposition 5. The proof is similar to the proof of Proposition 3. �
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6.5. Proof of Theorem 2: relation with spectral properties of the random schrö-
dinger operator.

Proof of Theorem 2 (i). By Proposition 1, since νWV is supported on DW
V , we have a.s. that

HVn×Vn > 0 and passing to the limit, we get H ≥ 0. Hence, σ(H) ⊂ [0,+∞). �

Proof of Theorem 2 (ii). As −ε is strictly outside the spectrum of H a.s., the equation (H+

ε)Ĝε = Id has a unique finite solution, we can verify that
∑

σ∈PV
i,j

Wσ

(2β+ε)σ
is a solution to this

equation. Now by (6.5) we have

(H + ε)−1(i, j) =
∑

σ∈PV
i,j

Wσ

(2β + ε)σ
≤
∑

σ∈PV
i,j

Wσ

(2β)σ
= Ĝ(i, j) <∞.

Therefore, as
∑

σ∈Pi,j

Wσ

(2β+ε)σ
is increasing as ε → 0, it converges a.s. to Ĝ(i, j). �

Proof of Theorem 2 (iii). We have, for all i ∈ Vn, β ∈ DW
V , ψ

(n)
β (i) =

∑
j∼i

Wi,j

2βi
ψ

(n)
β (j). As

ψ(n)(i) converges a.s. to ψ(i), the above equality holds in the limit, i.e., for all i ∈ V , a.s.

ψ(i) =
∑

j∼i

Wi,j

2βi
ψ(j),

this exactly means (Hψ)(i) = 0. �

Proof of Theorem 2 (iv). By Fatou’s Lemma, the limit ψ(i) satisfies EνWV
(ψ(i)) ≤ 1. By

Markov inequality

νWV (ψ(i) ≥ C‖i‖p∞) ≤ 1

C‖i‖p∞
.

Let ∂B(0, n) be the sphere of radius n for ‖ · ‖∞, i.e. ∂B(0, n) = {i ∈ Z
d, ‖i‖∞ = n}. When

p > d,
∑

i∈Zd, i 6=0

νWV (ψ(i) ≥ C‖i‖p∞) =
∑

n≥1

∑

i∈∂B(0,n)

νWV (ψ(i) ≥ C‖i‖p∞)

≤
∑

n≥1

∑

i∈∂B(0,n)

1

C‖i‖p∞

≤ C ′
∑

n

nd−1

np
<∞

for some constant C ′ > 0. By Borel-Cantelli lemma, a.s. only a finite number of i satisfies
ψ(i) ≥ C‖i‖p∞. �

7. h-transforms

Corollary 3. Recall that τ+i0 = inf{t ≥ 0, Zt = i0, ∃s < t s.t. Zs 6= i0} is the first return
time to i0 of the process (Zt)t≥0.

(i) For almost all β and i0 ∈ V , denote by P̂ β,i0
i0

the law of the Markov jump process with
jump rate from i to j





1
2
Wi,j

Ĝ(i0,j)

Ĝ(i0,i)
, i 6= i0,

β̃i0
Wi0,j

Ĝ(i0,j)∑
k∼i0

Wi0,k
Ĝ(i0,k)

, i = i0, j ∼ i0,
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where as before β̃i0 =
∑

j∼i0
1
2
Wi0,j

G(i0,j)
G(i0,i0)

. Then, for νWV -almost all β, for γ > 0,

P β,γ,i0
i0

(
(Zt)t≤τ+i0

∈ · | τ+i0 <∞
)
= P̂ β,i0

i0

(
(Zt)t≤τ+i0

∈ ·
)
.

(ii) The VRJP in exchangeable time scale, conditionally on {τ+i0 < ∞} and up to its first
return time to i0, is given by the following mixture:

P
VRJP

i0 ( (Zt)t≤τ+i0
∈ · |τ+i0 <∞) =

∫
P̂ β,i0
i0

((Zt)t≤τ+i0
∈ ·)P

β,γ,i0
i0

(τ+i0 <∞)

PVRJP

i0
(τ+i0 <∞)

νWV (dβ, dγ).

(iii) Let i0 ∈ V . A.s. on the event {ψ(i) > 0, ∀i ∈ V }, qG(i0, j) := Ĝ(i0, i0)ψ(j) −
Ĝ(i0, j)ψ(i0) is positive for all j 6= i0, and we define qP β,γ,i0

i0
as the law of the Markov

jump process starting at i0 and with jump rate from i to j




1
2
Wi,j

qG(i0,j)
qG(i0,i)

, i 6= i0, j 6= i0,

β̃i0
Wi0,j

qG(i0,j)∑
k∼i0

Wi0,k
qG(i0,k)

, i = i0, j ∼ i0,

0, i ∼ i0 j = i0.

Then, νWV -almost surely on this event, for γ > 0,

P β,γ,i0
i0

(
(Zt)t≥0 ∈ · | τ+i0 = ∞

)
= qP β,γ,i0

i0
((Zt)t≥0 ∈ ·) .

(iv) The VRJP in exchangeable time scale, conditionally on the event {τ+i0 = ∞}, is a
mixture of Markov jump processes with mixing law

P
VRJP

i0
( · |τ+i0 = ∞) =

∫
qP β,γ,i0
i0

(·)P
β,γ,i0
i0

(τ+i0 = ∞)

PVRJP

i0
(τ+i0 = ∞)

νWV (dβ, dγ).

Remark 15. Note that in the case (i), the conditional jump rates do not depend on γ.

Proof of Corollary 3. (i) Recall from (6.6) that for i 6= i0

h(i) = P β,γ,i0
i (τ+i0 <∞) =

Ĝ(i0, i)G(i0, i0)

Ĝ(i0, i0)G(i0, i)
.

For i 6= i0, we have

P β,γ,i0
i0

( Xt+dt = j |Xt = i, t ≤ τ+i0 <∞) ∼ h(j)

h(i)
P β,γ,i0
i0

( Xt+dt = j |Xt = i).

Hence, the jump rate of P β,γ,i0
i0

( · |τ+i0 <∞), up to time τ+i0 , from i to j is

1

2
Wi,j

G(i0, j)

G(i0, i)

h(j)

h(i)
=

1

2
Wi,j

Ĝ(i0, j)

Ĝ(i0, i)
.

The jump rate of P β,γ,i0
i0

( · |τ+i0 <∞), up to time τ+i0 , from i0 to j is given by

1

2
Wi0,j

G(i0, j)

G(i0, i0)

h(j)

P β,γ,i0
i0

(τ+i0 <∞)
= β̃i0

Wi0,jĜ(i0, j)∑
k∼i0 Wi0,kĜ(i0, k)

,

where β̃i0 =
∑

l∼i0
1
2
Wi0,l

G(i0,l)
G(i0,i0)

.
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(ii) From (i), we have

P
VRJP

i0
( (Zt)t≤τ+i0

∈ · |τ+i0 <∞)

=

∫
P β,γ,i0
i0

( (Zt)t≤τ+i0
∈ · |τ+i0 <∞)

P β,γ,i0
i0

(τ+i0 <∞)

PVRJP

i0
(τ+i0 <∞)

νWV (dβ, dγ)

=

∫
P̂ β,i0
i0

((Zt)t≤τ+i0
∈ ·)P

β,γ,i0
i0

(τ+i0 <∞)

PVRJP
i0

(τ+i0 <∞)
νWV (dβ, dγ).

(iii) The fact that qG(i0, j) is positive for j 6= i0 when ψ > 0 is a consequence of Proposition 2,
and Theorem 1 (iv). Similarly to (i), for i 6= i0, we have

P β,γ,i0
i0

( Xt+dt = j |Xt = i, τ+i0 = ∞) ∼ 1− h(j)

1 − h(i)
P β,γ,i0( Xt+dt = j |Xt = i).

Hence, the jump rate of P β,γ,i0
i0

( · |τ+i0 = ∞), from i 6= i0 to j is

1

2
Wi,j

G(i0, j)

G(i0, i)

1− h(j)

1− h(i)
=

1

2
Wi,j

Ĝ(i0, i0)ψ(j)− Ĝ(i0, j)ψ(i0)

Ĝ(i0, i0)ψ(i)− Ĝ(i0, i)ψ(i0)
=

1

2
Wi,j

qG(i0, j)

qG(i0, i)
.

The jump rate of P β,γ,i0
i0

( · |τ+i0 = ∞), from i0 to j is given by

1

2
Wi0,j

G(i0, j)

G(i0, i0)

1− h(j)

P β,γ,i0
i0

(τ+i0 = ∞)
= β̃i0

Wi0,j
qG(i0, j)∑

k∼i0 Wi0,k
qG(i0, k)

,

where β̃i0 =
∑

l∼i0
1
2
Wi0,l

G(i0,l)
G(i0,i0)

.

(iv) follows easily from (iii) in the same way as in (ii).
�

8. Proof of recurrence of 2-dimensional ERRW: Theorem 5

Consider the square grid G = (Z2, E) with constant edge weight ae = a > 0. From (2.9)
in Section 2.5, we know that the ERRW on Z

2 is a mixture of reversible Markov chains with
conductances

(8.1) xi,j =Wi,jG(0, i)G(0, j)

where (W,β, γ) are distributed according ν̃aV (dW, dβ, dγ). We will use [15] to prove the
following lemma.

Lemma 7. There exists c(a) > 0 and ξ(a) > 0, depending only on a, such that for ℓ ∈ Z
2,

(8.2) Eν̃aV

((
xℓ
x0

) 1
4

)
≤ c(a)‖ℓ‖−ξ(a)∞ ,

where xi =
∑

j∼i xi,j and (xi,j) is defined in (8.1).

Proof. This estimate follows from Theorem 2.8 of [15] (it can also be deduced from [17,
Lemma 2.5]) which gives a similar estimate on finite boxes. In [15, Theorem 2.8], the
estimate is stated for a periodic torus, but it is clear in the proof that the only necessary
ingredient is that the finite graph with conductances is invariant by the reflection exchanging
0 and ℓ. For this reason we choose the approximating sequence Vn = B( ℓ

2
, n) ∩ Z

2, where

B( ℓ
2
, n) is the ball with center ℓ/2 and radius n. Consider as in Section 4.2 the graph
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Gn = (Ṽn = Vn ∪ {δn}, En), and the associated weights (a
(n)
e )e∈En obtained by restriction of

(G, (ae)e∈E) to Vn with wired boundary condition. Clearly, central symmetry with respect
to ℓ

2
(mapping δn to itself) leaves (Gn, a(n)) invariant and exchanges 0 and ℓ.

With the coupling defined in Section 4.3, we define for i ∼ j, i, j in Ṽn,

x
(n)
i,j =W

(n)
i,j G

(n)(0, i)G(n)(0, j).

where W (n) is obtained by restriction with wired boundary condition from W . By additivity

of Gamma random variables, under ν̃aV , (W
(n)
e )e∈En are independent Gamma random vari-

ables with parameters (a
(n)
e )e∈En. Hence, the ERRW on Gn, with initial weights a(n), starting

from 0, is a mixture of reversible Markov chains with conductances (x
(n)
e )e∈En.

From Theorem 1, with the coupling defined in Section 4.3, we have that for all i, j ∈ Z
2,

i ∼ j, a.s.

lim
n→∞

x
(n)
i,j = xi,j .(8.3)

The proof of Theorem 2.8 of [15], can be readily adapted to prove the following estimate.

Lemma 8. There exists c(a) > 0 and ξ(a) > 0 only depending on a such that for ℓ ∈ Z
2

and n large enough,

Eν̃aV



(
x
(n)
ℓ

x
(n)
0

) 1
4


 ≤ c(a)‖ℓ‖−ξ(a)∞ ,

where, with the usual convention, x
(n)
ℓ =

∑
j∼ℓ x

(n)
ℓ,j .

Then, Lemma 7 follows from Lemma 8, (8.3) and Fatou’s lemma. �

We now deduce recurrence of the ERRW from the estimate (8.2) and from Theorem 1 and
Proposition 5. We have, for ℓ 6= 0,

xℓ =
∑

j∼ℓ
Wℓ,jG(0, ℓ)G(0, j) = 2βℓG(0, ℓ)

2 ≥ βℓ
2γ2

ψ(0)2ψ(ℓ)2.

Similarly,

x0 =
∑

j∼0

W0,jG(0, 0)G(0, j) = G(0, 0)(2β0G(0, 0)− 1).

Hence,

xℓ
x0

≥ ψ(0)2

2γ2G(0, 0)(2β0G(0, 0)− 1)
βℓψ(ℓ)

2.(8.4)

Assume the ERRW is transient. By Proposition 5 it implies that, a.s., ψ(i) > 0 for all i.
Choose first η > 0 such that

ν̃aV

(
ψ(0)2

2γ2G(0, 0)(2β0G(0, 0)− 1)
≤ η

)
≤ 1

2
.

For all ǫ > 0, we have by (8.2)

ν̃aV

(
xℓ
x0

≥ ǫ

)
≤ 1

ǫ
1
4

c(a)‖ℓ‖−ξ(a)∞ .(8.5)
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On the other hand, we have by (8.4)

ν̃aV

(
xℓ
x0

≥ ǫ

)
≥ ν̃aV

(
ψ(0)2

2γ2G(0, 0)(2β0G(0, 0)− 1)
> η, βℓψ(ℓ)

2 >
ǫ

η

)

= 1− ν̃aV

({
ψ(0)2

2γ2G(0, 0)(2β0G(0, 0)− 1)
≤ η

}
∪
{
βℓψ(ℓ)

2 ≤ ǫ

η

})

≥ 1

2
− ν̃aV

(
βℓψ(ℓ)

2 ≤ ǫ

η

)
.(8.6)

By Proposition 5, βℓψ(ℓ)
2 is stationary with respect to translations. Together with (8.6) and

(8.5), it implies that

ν̃aV

(
β0ψ(0)

2 ≤ ǫ

η

)
= ν̃aV

(
βℓψ(ℓ)

2 ≤ ǫ

η

)
≥ 1

2
− 1

ǫ
1
4

c(a)‖ℓ‖−ξ(a)∞ .

By sending ℓ to infinity, we get ν̃aV

(
β0ψ(0)

2 ≤ ǫ
η

)
≥ 1

2
. Letting ǫ → 0, this is incompatible

with ψ(0) > 0 a.s., hence with transience of ERRW.

9. Proof of Functional central limit theorems for the VRJP and the

ERRW: Theorem 3 and 4

Proof of Theorem 3 and Theorem 4. Let us start by the VRJP on Z
d, d ≥ 3, with constant

weights Wi,j = W . Assume that the VRJP is transient.
Recall that (Xn)n∈N is the canonical discrete process on (Zd)N. For νWV -almost all β, let

us define P̃ ψ
x to be the law of the reversible Markov chain, starting at x, with conductances

Wi,jψ(i)ψ(j), i.e. with transition probabilities

P̃ ψ
x (Xn+1 = j|Xn = i) =

Wi,jψ(j)∑
l∼iWi,lψ(l)

.

Denote by P̃ β,γ,0
x the law of the underlying discrete time process associated with the Markov

jump process P β,γ,0
x , so that for i ∼ j

P̃ β,γ,0
x (Xn+1 = j|Xn = i) =

Wi,jG(0, j)∑
l∼iWi,lG(0, l)

.

As ψ is a generalized eigenfunction of Hβ, for any i ∈ V ,

βi =
∑

j∼i

1

2
Wi,j

ψ(j)

ψ(i)
.

It then follows by Proposition 6 that, for i 6= 0,

hψ(i) := P̃ ψ
i (τ

+
0 <∞) =

∑

σ∈P̄V
i,0

P̃ ψ
i (Xn ∼ σ) =

∑

σ∈P̄V
i,0

Wσ

(2β)−σ

ψ(0)

ψ(i)
=
Ĝ(0, i)

Ĝ(0, 0)

ψ(0)

ψ(i)
.

(recall that P̄V
i,0 is defined in Section 3.2.) Consider the Markov chain P̃ ψ

0 ( · |τ+0 = ∞)

(Doob’s (1 − hψ)-transform). By similar computation as in the proof of Proposition 3, we
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have that the transition probability of P̃ ψ
0 ( · |τ+0 = ∞) from i to j is

Wi,jψ(j)(1− hψ(j))∑
l∼iWi,lψ(l)(1− hψ(l))

=
Wi,j

qG(0, j)
∑

l∼iWi,l
qG(0, l)

for j 6= 0, and 0 when j = 0. Therefore, we see that the transition probabilities of P̃ ψ
0 ( · |τ+0 =

∞) are the same as those of P̃ β,γ,0
0 ( · | τ+0 = ∞), c.f. iii) of Proposition 3. Moreover, if we

denote

ξ0 = sup{n; Xn = 0},
then, by strong Markov property

P̃ ψ
0 (Xn ∈ ·|τ+0 = ∞) = P̃ ψ

0 ((X ◦ θξ0)n ∈ ·)

P̃ β,γ,0
0 (Xn ∈ ·|τ+0 = ∞) = P̃ β,γ,0

0 ((X ◦ θξ0)n ∈ ·)
where θn is the shift in time by n. It follows that (X ◦ θξ0)n has the same law under P̃ ψ

0 and

under P̃ β,γ,0
0 .

Remark also, from Proposition 3, that Wi,jψ(i)ψ(j) are stationary and ergodic conduc-
tances under νWV (dβ). We can thus apply Theorem 4.5 and Theorem4.6 of [6]. In order to
have a functional central limit theorem we need to show that, c.f. Theorem 4.5 of [6],

EνWV
(Wi,jψ(i)ψ(j)) <∞.(9.1)

In order to show that it has non-degenerate asymptotic covariance we need to show that,
c.f. Theorem 4.6 and identity (4.20) of [6],

EνWV

(
1

Wi,jψ(i)ψ(j)

)
<∞.(9.2)

By invariance of the law of the conductances by symmetries of Zd, we know that the limit
diffusion matrix is of the form σ2Id.

The same reasoning works in the case of the ERRW with constant weights ai,j = a: in
this case (Wi,j) are i.i.d., but as shown in Proposition 5, Wi,jψ(i)ψ(j) is also stationary and
ergodic under ν̃aV (dW, dβ).

Estimates (9.1) and (9.2) are provided by [10] in the VRJP case, and by [8] in the ERRW
case. This is summarized in the following lemma.

Lemma 9. (i) (VRJP case) Consider the VRJP on Z
d, for d ≥ 3, with constant weights

Wij = W There exists 0 < λ2 < ∞ such that for W > λ2, the VRJP is transient and such
that (9.1), (9.2) are true under νWV (dβ).

(ii) (ERRW case) Consider the ERRW on Z
d, for d ≥ 3, with constant weights aij = a

There exists 0 < λ̃2 < ∞ such that for a > λ̃2, the ERRW is transient and (9.1), (9.2) are
true under ν̃aV (dW, dβ).

The proof of that lemma is given below. We first apply it to prove the functional central
limit theorem. Consider the VRJP case. Assume that the condition of the lemma is satisfied.
Define

X
(n)
t =

X⌊nt⌋√
n
.
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From [6], we know that there exists 0 < σ2 <∞ such that for all bounded Lipschitz function
F for the Skorokhod topology, for all ǫ > 0, for all 0 < T <∞,

lim
n→∞

Q∗
(∣∣∣Ẽψ

0 (F ((X
(n)
0≤t≤T ))− E(F ((B0≤t≤T ))

∣∣∣ ≥ ǫ
)
= 0,(9.3)

where Bt is a d-dimensional Brownian motion with covariance σ2Id, and where Q∗ is the
invariant measure for the processes viewed from the particle

Q∗(dβ) =

∑
j∼0W0,jψ(0)ψ(j)

EνWV
(
∑

j∼0W0,jψ(0)ψ(j))
· νWV (dβ).

It is clear, since Q∗ and νWV are equivalent probability distributions that (9.3) is also true
when Q∗ is replaced by νWV . This implies an annealed functional central limit theorem for

the process (Xn) under the annealed law EνWV

(
P̃ ψ
0 (·)

)
:

lim
n→∞

∣∣∣EνWV
(
Ẽψ

0 (F ((X
(n)
0≤t≤T )

)
− E (F ((B0≤t≤T ))

∣∣∣ = 0.(9.4)

Let Υ
(n)
t := 1√

n
(X ◦ θξ0)[nt]. Denote d◦ the Skorohod metric on D([0,∞),Rd), the space of

càdlag functions f : [0,∞) → R
d. As

|X(n)
t −Υ

(n)
t | = 1√

n
|X[nt] −X[nt+ξ0]| ≤

|ξ0|√
n
−−−→
n→∞

0,

we have

d◦(X(n),Υ(n)) → 0.(9.5)

Recall that F is a bounded Lipschitz function for the Skorohod topology, therefore,

|F (X(n)
t )− F (Υ

(n)
t )| → 0

and (9.4) is valid for X(n) replaced by Υ(n). But Υ(n) has the same law under P̃ ψ
0 and P̃ β,γ,0

0 .

This implies the functional central limit theorem (9.4), for the law EνWV

(
P̃ β,γ,0
0 (·)

)
in place of

EνWV

(
P̃ ψ
0 (·)

)
starting from 0. By Theorem 1, the law EνWV

(
P̃ β,γ,0
0 (·)

)
is that of the discrete

time process (Z̃n) under P
V RJP
0 .

The proof is exactly the same for the ERRW, one just needs to replace the law νWV (dβ)
by the law ν̃aV (dW, dβ). �

Proof of Lemma 9. Let us start by the ERRW case, ii). Consider the sequence of subsets of
Z
d, Vn = [−n, n]d. Recall that

ψ(n)(j) = eu
(n)(δn,j),

when j ∈ Vn. Consider the point yn = (−n, 0, . . . , 0), so that yn is at the boundary of the set,
yn ∼ δn. By [8, Lemma 7] (which is the ERRW’s counterpart of Proposition 7, Section 3.3),
we have for a > 16,

Eν̃aV

(
(cosh(u(δn, yn))

8
)
≤ 2.(9.6)

(Indeed, the proof does not depend on the graph structure, nor on the choice of the rooting.)

From, [8, Theorem 4], there exists 0 < λ̃2 <∞ such that if a > λ̃2, then for all i, j in Vn,

Eν̃aV

((
cosh(u(n)(δn, i)− u(n)(δn, j))

)8) ≤ 2.(9.7)
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Remark that in [8], the rooting of the field is at 0 and the graph is the restriction of the
graph Z

d to Vn. But an attentive reading of the proof shows that the result is also valid
for the graph Gn = (Vn ∪ {δn}, En) and rooting δn as well. Indeed, the estimate is based on
the protected Ward’s estimates, [8, Lemma 4], which remain valid for diamonds inside the
set Vn, and on the estimate on effective conductances, [8, Proposition 3], which is in fact an
estimate inside a "diamond". Remark that the estimate (9.7) is also valid when i or j is at
the boundary of the set Vn (in fact the proof is written in the case where the diamond Ri,j

is inside the set Vn, which is the case when j = yn and i ∈ Z
d fixed for n large enough).

Specified to j = yn and i ∈ Z
d fixed, it gives for n large enough

Eν̃aV

((
cosh(u(n)(δn, i)− u(n)(δn, yn))

)8) ≤ 2.(9.8)

By Cauchy-Schwartz inequality, and by (9.6) and (9.8), we get that

Eν̃aV

(
(ψ(n)(i))±4

)
≤ Eν̃aV

(
e±8u(n)(δn,yn)

) 1
2
Eν̃aV

(
e±8(u(n)(δn,i)−u(n)(δn,yn))

) 1
2 ≤ C±

for some constant C± > 0 independent of n. From this we deduce by Fatou’s lemma for all
i, j in Z

d, i ∼ j,

Eν̃aV

(
((Wi,jψ(i)ψ(j))

±1) ≤ Eν̃aV

(
(Wi,j)

±2) 1
2
Eν̃aV

(
(ψ(0))±4) 1

2 <∞,

for a large enough.
The proof is very similar in the VRJP case, and uses Theorem 1 of [10]. As previously,

the estimate is valid in the case we are interested in, that is for the graph Gn, rooted at δn,
and for x ∈ Z

d, y = yn for n large enough. �
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