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Abstract In the context of model inversion, a struc-
tural invariant of the transfer matrix, the essential order,
is used as a model specification criterion to determine the
highest time-differentiation order reached by an output
in the inverse model. Originally defined for linear time-
invariant (LTI) regular systems, we propose an algebraic
extension to the class of LTI descriptor systems with
regular matrix pencil and show that, from a descriptor
system inversion viewpoint, this invariant characterizes
the highest time-differentiation of the output like in the
regular case. A bond graph determination procedure on
the direct model is given using (bi)causal path inspection
and the notion of families of different causal paths.
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1 Introduction

This paper is concerned with structural analysis of bond
graph model in the context of model inversion, using
a structural invariant of the transfer matrix called the
essential order [1]. This invariant has originally been de-
fined for LTI regular systems to solve the dynamic state
feedback decoupling problem [2] and can be interpreted
as the highest time-differentiation order reached by an
output in the inverse model [2]. The determination of
essential order uses the notion of structure at infinity of
the transfer matrix, used in control theory among other
for feedback decoupling or perturbation rejection [3], for
which several graph-theoretical determination procedures
have been developed for structured systems with directed
graph (digraph) [4] [5] and bond graph [6] [7]. For model
inversion problems of regular systems, the existing alge-
braic structural framework [8] has been derived in bond
graph with the determination of structural inversibility
conditions [9] [10], determination of relative degrees [6]
[10] and determination of essential orders [11] [12] [13].
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Almost all of these previous bond graph declinations
use the notion of bicausality [14]. An application of a
design methodology based on inverse model of regular
system can be found in [15], including an highlight on
the time-differentiation order of the output as a model
specification criterion (Differentiability Criterion); this
application, graphically declined on bond graph and
motivation of the present works, gives structural bond
graphic design model rules on the matching between
model specification (given in term of differentiability of
the outputs) and model implementation. The procedure
provides also, graphically, structural information on
the bond graph model for potential redesign in case of
mismatch.

The present paper aims to generalize the existing
bond graph framework on model inversion, especially the
notion of essential order, to the class of LTI descriptor
systems with regular matrix pencil. Such a system can
be described by :

Σ :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

where x(t) ∈ Rn is the descriptor state vector, u(t) ∈ Rm
the input vector, y(t) ∈ Rp the output vector and
E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n , D ∈ Rp×m, with a
regular matrix pencil (sE −A), that is det(sE −A) 6= 0.
Descriptor systems have been widely studied in the
literature [16, 17, 18] to answer to mechatronic modeling
requirements to represent algebraic constraint equations
that could occur in electrical networks [17] [18] or
mechanical systems [19], leading to differential-algebraic
equation (DAE) with singular matrix E in (1). De-
scriptor systems are also usually called singular system,
generalized state space systems or differential algebraic
systems [18]. Structural analysis on linear descriptor
system has been proposed graph-theoretically on digraph
[20], on matroids [21] and on bond graph [22]. Impor-
tants bond graph contributions on structural analysis
have also been proposed to study the class of hybrid
systems that can also be brought into a descriptor form
[23]. Descriptor system inversion is not yet completely
formalized on bond graph, while it has been formalized
within the algebraic framework in [24].

The present paper is organized as follows : the section 2
brings some background on structure at infinity of
rational matrix and structure at infinity by row/column.
Based on the structure at infinity of the (potentially
non proper) transfer matrix, the section 3 proposes the
definition of the Generalized Essential Order (GEO),
a proof of its algebraic determination and its unicity,

and its interpretation in the context of inverse model.
Then a determination of the GEO is given on the direct
(bi)causal bond graph model related to the descriptor
system, using directed graph and the analogies between
the two graphical approaches. An illustrative example
is given in section 4. The Conclusion suggests some
directions of the future works.

2 Preliminaries

A rational fraction g(s) is defined as the quotient of two
polynomials, g(s) = n(s)

d(s) with n(s) ∈ R[s], d(s) ∈ R[s]

and d(s) 6= 0. A rational fraction g(s) = n(s)
d(s) is proper

if deg d(s) ≥ deg n(s) and strictly proper if deg d(s) >
deg n(s), where deg(·) denotes the degree of (·). A ratio-
nal (resp. proper rational, strictly proper rational) ma-
trix has entries that are rational (resp. proper rational,
strictly proper rational) fraction.

Definition 1. [3] Let G(s) be a (p×m) rational (poten-
tially not proper) matrix of rank r. Its Smith-McMillan
factorization at infinity is defined as :

G(s) = B1(s)

(
∆∞(s) 0

0 0

)
B2(s) (2)

with B1(s) and B2(s) biproper matrices (i.e. proper and
with proper inverse), ∆∞(s) = diag(s−t1 , ..., s−tr ), with
integers ti ∈ Z such that t1 ≤ t2 ≤ ... ≤ tr. The sequence
{ti}i=1,...,r is uniquely defined and is called the structure
at infinity of G(s) : when ti ≥ 0 (resp. ti < 0), ti is the
i-th order of a zero (resp. pole) at infinity.

The structure at infinity can also be determined with
the examination of the minors of G(s). Applied to the ra-
tional (potentially not proper) p×m full-row rank transfer
function T (s) of (1), given by T (s) = C(sE−A)−1B+D,
the structure at infinity of T (s) can be formulated as fol-
lows.

Lemma 1. [21] The sum of the orders at infinity of T (s)
is given by :

i∑
j=1

tj = − δi = −βi + d , for i = 1, ..., p (3)

With:

• δi is the highest degree of all (i× i) minors of T (s).

• d is the dimension of the dynamical part of the sin-
gular system, i.e. d = deg det(sE −A).
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• βi is the highest degree of all (n+ i)× (n+ i) minors
of the Rosenbrock matrix [16], also named system

matrix, defined by P (s) =

(
sE −A B
−C D

)
.

Additional definitions and properties on the be-
haviour at infinity of rational matrix are now introduced.

Definition 2. [2] Denote gi(s) the i-th column of G(s).
The order of the zero/pole at infinity of the i-th column
is defined by the integer ki ∈ Z as:

ki = min
k∈Z
{ lim
s→+∞

skgi(s) = gi 6= 0} , for i = 1, ...,m

(4)
If ki ≥ 0 (resp. ki < 0), ki is an order of a zero at
infinity (resp. −ki is an order of pole at infinity) of the
i-th column gi(s).

Definition 2 can be trivially generalized for the rows
of G(s).

Property 3. Let two matrices M1(s) and M2(s) linked
by a left multiplication with a biproper matrix, M1(s) =
B(s)M2(s) where B(s) is a biproper rational matrix. The
order of the zero/pole at infinity of the i-th column of
M1(s) is equal to the order of the zero/pole at infinity of
the i-th column of M2(s) and is uniquely defined.

We can use Property 3 to extend the definition of
some known structural invariants on rational matrices,
initially formulated on a rational proper case, and demon-
strate their unicity.

Proposition 2. Let T (s) ∈ Rp×m(s) be a full-row rank
rational (not necessarily proper) matrix with p ≤ m. Con-
sider a factorization of T (s) as:

T (s) =
[
R(s) 0

]
B(s) , (5)

where R(s) ∈ Rp×p(s) is invertible and B(s) ∈ Rm×m(s)
is a rational biproper matrix. The orders of the ze-
ros/poles at infinity of the columns of R−1(s) are uniquely
defined.

Proof : The proof follows step by step the proof
given in [2], applicable in the rational case. �

3 Generalized Essential Order
(GEO)

3.1 Definition and algebraic determina-
tion

Using the definitions and demonstrations of the previous
section, we now define the Generalized Essential Order
(GEO) of (potentially non proper) rational matrices and
we propose its algebraic determination.

Definition 4. Let T (s) ∈ Rp×m(s) be a full-row rank ra-
tional (not necessarily proper) matrix, with p ≤ m. We
consider a factorization of T (s) as T (s) =

[
R(s) 0

]
B(s)

where R(s) ∈ Rp×p(s) is invertible and B(s) ∈ Rm×m(s)
is a rational biproper matrix. The Generalized Essen-
tial Orders (GEO) of the rational matrix T (s), denoted
{nieg}i=1,...,p, are defined as the orders of zeros/poles at
infinity of the columns of R−1(s).

Using Proposition 2, it can be proved that GEO are
uniquely defined.

The algebraic determination of GEO is based on
([2], Proposition 5) and generalizes it to the rational
case (not necessarily proper). The procedure uses the
structure at infinity of the rational matrix T (s) to
determine the structure at infinity of the column of
T−1(s).

Proposition 3. Let T (s) ∈ Rp×m(s) be a full-row rank
rational matrix with p ≤ m. The Generalized Essential
Order (GEO), {nieg}i=1,...,p, can be determined as fol-
lows:

nieg =

p∑
j=1

tj −
p−1∑
j=1

t̄ij , for i = 1, ..., p (6)

where

• p = rankT (s), i.e. number of pole/zero at infinity of
T (s).

• tj is the order of the j-th pole/zero at infinity of T (s).

• t̄ij is the order of the j-th pole/zero at infinity of the
rational matrix Ti(s) ∈ R(p−1)×m(s), obtained from
T (s) by removing its i-th row.

Proof1: The proof is done for i = 1 and the
procedure can be generalized by row permutations. We
first consider a factorization of T (s) as in (5), T (s) =[
R(s) 0

]
B(s), where R(s) ∈ Rp×p(s) is invertible

and B(s) ∈ Rm×m(s) is biproper. We write R(s) =[
r1(s)
R̄1(s)

]
where r1(s) is the first row of R(s) and R̄1(s) ∈

R(p−1)×p(s), of rank (p − 1). The Smith-McMillan fac-
torization at infinity of R̄1(s) can be written as:

R̄1(s) = B̄1(s)∆̄(s)B̄2(s) (7)

where B̄1(s) ∈ R(p−1)×(p−1)(s) and B̄2(s) ∈ Rp×p(s)

are biproper and ∆̄(s) =

 s−t̄11 0
. . .

...
s−t̄1(p−1) 0

.
1The proof follows the steps of ([2], Proposition 5) and check the

validity of each step in the rational case (not necessarily proper).
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Then, R(s) can be factorized as:

R(s) =


r1(s)

B̄1(s)∆̄(s)B̄2(s)



=


1 0 · · · 0
0
... B̄1(s)
0


︸ ︷︷ ︸

¯̄B1(s)

×


r1(s)B̄2

−1
(s)

∆̄(s)


︸ ︷︷ ︸

R̄(s)︸ ︷︷ ︸
T̄ (s)

×B̄2(s),

(8)
where ¯̄B1(s) ∈ Rp×p(s) is biproper, and R̄(s), T̄ (s) are
invertible. Using Property 3, we see from (8) that R−1(s)
and T̄−1(s) have the same orders of zero/pole at infinity
by columns. The particular structure of biproper matrix
¯̄B1(s) (and then ¯̄B−1

1 (s)) implies that the first column of
T̄−1(s) equals the first column of R̄−1(s), then have the
same structure at infinity i.e. the same order of pole/zero
at infinity by column. We also have (where com(·) de-
notes the comatrix of (·)):

R̄−1(s) =
1

det
(
R̄(s)

) com
(
R̄(s)

)T (9)

The first column of com
(
R̄(s)

)T can then be written

as
[

0 · · · 0 (−1)(p+1)
∏p−1
j=1 s

−t̄1j
]T

. In order to

compute det
(
R̄(s)

)
, we can rewrite R̄(s) from (8) as

R̄(s) = ¯̄B−1
1 (s)R(s)B̄−1

2 (s); additionally, the Smith -
McMillan factorization at infinity can be applied to the
the full-rank square matrix R(s) :

R(s) = B3(s)∆(s)B4(s) (10)

where B3(s) ∈ Rp×p(s) and B4(s) ∈ Rp×p(s) are biproper
matrices and ∆(s) = diag(s−t1 , ..., s−tp). Using (10),
we have R̄(s) = ¯̄B−1

1 (s)B3(s)∆(s)B4(s)B̄−1
2 (s) and then

det R̄(s) = b(s)
∏p
j=1 s

−tj , where b(s) is a biproper func-
tion. We can eventually rewrite the first column of

R̄−1(s) as

[
0 · · · 0

(−1)(p+1)
∏p−1
j=1 s

−t̄1j

b(s)
∏p
j=1 s

−tj

]T
. The

order of the zero/pole at infinity of the first column
of R̄−1(s) is then equal to

∑p−1
j=1 −t̄ij −

∑p
j=1−tj =∑p

j=1 tj −
∑p−1
j=1 t̄ij and also stands for the order of the

zero/pole at infinity of the first column of T̄−1(s). By
using (8) and reminding that B̄2(s) is biproper, we can
conclude that the structure at infinity of the columns of
R−1(s) is equal to the one of T̄−1(s). We can then deduce
that the GEO {nieg}i=1,...,p of T (s) can be determined as

nieg =
∑p
j=1 tj −

∑p−1
j=1 t̄ij , i = 1, ..., p, that ends the

proof. �

3.2 Interpretation for LTI descriptor sys-
tems and their inverses

Using Definition 4 and Proposition 3, an interpretation of
time-differentiation order that could occur in the inverse
model of the descriptor system (1) can be given:

Lemma 4. We consider the LTI descriptor system (1),
with its full-row rank rational transfer matrix T (s) ∈
Rp×m(s) with p ≤ m. The Generalized Essential Order
(GEO), {nieg}i=1,...,p, of the i-th output of the system can
be determined as nieg =

∑p
j=1 tj −

∑p−1
j=1 t̄ij , i = 1, ..., p,

where:

• p = rankT (s), i.e. number of pole/zero at infinity of
the system Σ.

• tj is the order of the j-th pole/zero at infinity of the
system Σ.

• t̄ij is the order of the j-th pole/zero at infinity of the
subsystem which has the (p−1)×m transfer function
Ti(s), obtained from T (s) by removing its i-th row
(i.e. by removing the i-th output).

In the case of LTI regular system (i.e. non-singular
E in (1)) and with D = 0, leading to strictly proper ratio-
nal transfer matrix, one can check that Proposition 3 is
equivalent to the original definition in [2]. For the sake of
simplicity, we consider in the following reasoning a square
system (i.e. T (s) ∈ Rp×p(s)); two different cases can oc-
cur for the structure at infinity by column of the transfer
matrix T−1(s) of the inverse system (see Definitions 2
and 1):

• If the structure at infinity of the i-th column of
T−1(s) is a pole, the order of this pole corresponds to
the highest time-differentiation order of the output
yi occurring in the inverse model.

• If the structure at infinity of the i-th column of
T−1(s) is a zero, the order of this zero corresponds
to the lowest time-integration order of the output yi
occurring in the inverse model.

3.3 Digraph determination of the system
matrix determinant

The GEO determination uses the sum of the orders of
zero/pole at infinity of the system (Proposition 3), that
can be determined with the (highest) degrees of the mi-
nors of the system matrix (Lemma 1). We first propose
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a digraph extension of the graph-theoretical determina-
tion of the system matrix determinant to the class of LTI
descriptor systems with p = m (that, to the best of our
knowledge, does not exist so far for this class of system,
while noticing that almost all of the background elements
are established in [20])2.

Proposition 5. Let G(Σ) be the directed graph related to
the descriptor system (1). The determinant of the system
matrix can be interpreted graph-theoretically as :

det

(
sE −A B
−C D

)
=

n∑
k=0

ρ
{p}
k sn−k (11)

where (denoting E-edges the edges between vertices of ma-
trix E):

• G(Σ′) is the supplemented digraph obtained from
G(Σ) by adding feedback edges with weight −1 from
each output to each input.

• ρ{p}k is determined on G(Σ′) as the sum of the weights
of the spanning families (of disjoint cycles) of dimen-
sion n + p + p (i.e. containing the n state vertices
and exactly p feedback edges) and containing exactly
(n − k) E-edges. Each family’s weight must be mul-
tiplied by

– a sign factor (−1)(n−k)−d, where (n− k) is the
number of E-edges and d is the number of dis-
joint cycles.

– a sign factor (−1)σ, where σ is the number
of permutations to sequence the outputs in the
same order as the initial output vector when the
cycles of the family are ordered in the initial or-
der of the input vertices.

Proof : The proof is based on several graph-
theoretical procedures on digraph [4, 20]:

• The computation of determinant of a square matrix
of dimension n+ p necessarily implies spanning fam-
ilies of disjoint cycles of dimension n+ p [4].

• As in the regular case, input and output vertices are
considered "separately" (i.e. p input vertices and
p output vertices) with mandatory feedback edges
to eventually consider p + p inputs/outputs vertices
while keeping the computation rule for the determi-
nant of a n + p matrix [4]. This explains why we
consider n+p+p spanning families of disjoint cycles
here.

2The definitions of the several directed graph (digraph) notions
used in this section can be found in [20].

• The only difference in the computation of the de-
terminant of a system matrix between the regular
and the descriptor case concerns the characteristic
polynomial part. The graph-theoretical determina-
tion of det(sE − A) is proposed in [20]: on the di-
graph G(sE − A) corresponding to the matrix pencil
(sE − A), the characteristic polynomial can be de-
termined as det(sE − A) =

∑n
k=0 ρks

n−k, where ρk
is the sum of the weights of the spanning families of
disjoint cycles involving exactly (n−k) E-edges. The
remaining part of the computation of system matrix
determinant is unchanged with respect to [4], intro-
ducing the input/output vertices and leading to the
computation of the ρ{p}k summand.

• The permutation factor (−1)(n−k)−d is unchanged
with respect to the computation of the numerator
polynomial of the transfer function of a descrip-
tor system given in [20] and the permutation factor
(−1)σ is unchanged with respect to the regular case
of system matrix determinant given in [4]. This ends
the proof. �

It is important to note that Proposition 5 is applicable
to any (n + i) × (n + i) minors of the system matrix by
selecting the appropriate set of i input / i output ver-
tices. The highest degree of the minor of order n + i of
system matrix is therefore the spanning family of n+ i+ i
vertices that contains the highest number of E-edges on
the supplemented digraph.

3.4 Bond graph determination of the sys-
tem matrix determinant

The determination of the system matrix determinant of
a LTI descriptor system on its bond graph representa-
tion is based on Proposition 5 and the existing correspon-
dence between disjoint cycles on a supplemented digraph
(i.e. containing feedback edges) and input/output dif-
ferent causal paths on the corresponding bond graph [9],
still valid for descriptor systems. This allows to directly
conclude the following result (with p = m):3

Proposition 6. On the bond graph model representation
of system (1), the determinant of the system matrix can
be computed as :

det

(
sE −A B
−C D

)
=

nI∑
k=−nD

ρ
{p}
k snI−k (12)

where:
3The definitions of the several bond graph notions used in this

section can be found in [9] and the state space form of system (1)
from its bond graph representation is given in [22].
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• nI (resp. nD) is the number of storage elements in
integral causality (resp. in derivative causality).

• p is the number of outputs (and inputs).

• ρ{p}k is the sum of the static gains of the families of p
input/output different causal paths, of order k. Each
family’s static gain must be multiplied by

– a sign factor (−1)d, where d is the number of
cycles contained in the family.

– a sign factor (−1)σ, where σ is the number
of permutations to sequence the outputs in the
same order as the initial output vector when the
p input/output different causal paths of the fam-
ily are ordered in the initial order of the inputs.

Several remarks can be done :

• The Proposition 6 is consistent with the one formu-
lated for the case of bicausal bond graph in [13] and
demonstrated by introducing the Laplace directed
graph, consistent with the digraph representation of
linear descriptor systems (leading to the generalized
form of descriptor systems [17, 10]).

• The Proposition 6 is applicable to any (n+i)×(n+i)
minors of the system matrix by selecting the appro-
priate set of i inputs/i outputs. Thus, the highest
degree of the (n + i) × (n + i) minor (βi in (3)) is
determined on the bond graph by the minimal order
ωi that a family of i inputs/outputs different causal
paths can have, then βi = nI − ωi.

3.5 Bond graph determination of GEO
The Proposition 6 allows to determine the structure at
infinity of a descriptor system on its bond graph represen-
tation by using the lemma 1; together with proposition
3, the GEO can be determined on the bond graph:

Proposition 7. On the bond graph model representation
of system (1), the Generalized Essential Orders (GEO)
can be determined as follows:

nieg = ωp − ω(i)
p−1 , for i = 1, ..., p (13)

where:

• ωp is the minimal order that a family of p in-
puts/outputs different causal paths can have on the
bond graph.

• ω(i)
p−1 is the minimal order that a family of p− 1 in-

puts/outputs different causal paths can have on the
bond graph without considering the i-th output (i.e.
without consideration of the i-th detector (De) or the
i-th DeDf on bicausal bond graph).

Proof : Using Proposition 6, Lemma 1 and Propo-
sition 3 leads to :

nieg =
∑p
j=1 tj −

∑p−1
j=1 t̄ij

= − (nI − ωp) + d−
(
−
(
nI − ω(i)

p

)
+ d
)

= ωp − ω(i)
p−1

(14)
In the initial system as well as the one without consider-
ation of a given output, the number of storage in integral
causality nI is unchanged, so as the characteristic
polynomial (thus d is unchanged). That completes the
proof. �

Proposition 7 can be seen as a "natural" exten-
sion of the works in [12], where a determination of the
essential order has been proposed on the bond graph for
LTI regular systems.

4 Example

We consider a direct model described by the LTI descrip-
tor system (15) and its bicausal bond graph representa-
tion (Figure 1). For the sake of simplicity, we take a very
usual case where the number of storage in integral causal-
ity is equal to the degree of the characteristic polynomial
(i.e. nI = d).

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

][ ṗI2
q̇C
ṗI1
ṗ3

]
=

− R
I2

1
C 0 0

− 1
I2

0 0 0

0 0 0 1
0 0 −1 0

[ pI2qCpI1
p3

]
+

[
R 1
1 0
0 0
I1 0

]
[ u1
u2

];

[ y1y2 ] =

[
− R

I2

1
C 0 1

1
I2

0 0 0

][ pI2
qC
pI1
p3

]
+ [R 0

0 0 ][ u1
u2

]

(15)
The system (15) is a descriptor system with regular pen-

Figure 1: Bicausal bond graph representation of system
(15)
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cil; its non-proper transfer function T (s) is given in (16).

T (s) =[
s(CI1I2s2+CI1Rs+CI2Rs+I1+I2)

CI2s2+CRs+1 − CRs+1
CI2s2+CRs+1

CRs+1
CI2s2+CRs+1

sC
CI2s2+CRs+1

]
(16)

Using Proposition 7, the GEO determination on the bond
graph 1 can be done with the following steps:

1. Determination of the structure at infinity of T (s)
from families of input/output different causal paths:

Determination of t1 of T (s): The order of the
first zero/pole at infinity of T (s) can be determined
as the highest degree of 1 × 1 minor of T (s), or
equivalently as the highest degree of (n+1)× (n+1)
minor of P (s). On the bond graph, according to
Proposition 7, we analyze the families of p = 1
causal path Input → Output of order k. The bond
graph 1 gathers 8 causal paths Input → Output
(Figure 2). The minimal order of a family of
p = 1 input/output causal path is reached with
the path ao−1, with k = −1. In other words,
mini,j {ω(ui → yi)} = ωao−1

= −1 = ω1. We thus
find t1 = ωao−1

= −1. We can also underline that
the causal path ao−1 is an input/output causal path
from u1 to y1 and then corresponds to the fact that
the transmittance (that represents here a 1×1 minor
of T (s)) of highest degree of (16) is t11(s). We could
also check that for the three other transmittances,
the minimal orders of the input/output causal path
are of order 1, accordingly to (16) (i.e. co1 for t21(s),
fo1 for t12(s) and eo1 for t22(s)).

Determination of t2 of T (s): The order of the
second zero/pole at infinity of T (s) can be deter-
mined with the highest degree of 2 × 2 minor of
T (s), or equivalently with the highest degree of
(n+ 2)× (n+ 2) minor of P (s). On the bond graph,
we look at families of p = 2 different causal paths
Input → Output of order k (this family necessarily
exists as the system is invertible, thus at least one
family of p = 2 input/output disjoint causal paths
exists [10]). In this example, only one family of 2
Input→ Output different causal path exists, formed
by causal paths ao−1 and eo1 (the uniqueness of
a set of 2 inputs/outputs different causal path
leads to the fact that these paths are disjoint, and
insures in this case the inversibility of the system
through these paths [10, 12]). We can deduce that∑2
j=1 tj = ωao−1

+ ωeo1 = (−1) + (1) = 0 and then
t2 = 1.

2. Determination of the structure at infinity of sub-
matrix Ti(s):

Structure at infinity of T1(s): Without the
consideration of the double detector DeDf

′1, we
only analyze the set of causal path u1 → y2 and
u2 → y2 (i.e. causal path co1, eo1, go2). The
minimal order that (a set of one) causal path can
have is 1 (path co1 or path eo1). Thus,

∑2−1
j=1 t̄1j = 1.

Structure at infinity of T2(s): Without consid-
ering the detector Df

′2, we only analyze the set of
causal paths u1 → y1 and u2 → y1 (i.e. causal path
ao−1, bo0, do1, fo1, ho2). The minimal order that (a
set of one) causal path can have is −1 (path ao−1).
Therefore, we have

∑2−1
j=1 t̄2j = −1.

3. Determination of Generalized Essential Orders
(GEO) : Concerning output y1, n1eg =

∑2
j=1 tj −∑2−1

j=1 t̄1j = (0) − (1) = −1, and for output y2,
n2eg =

∑2
j=1 tj −

∑2−1
j=1 t̄2j = (0)− (−1) = +1.

We can check the previous bond graphic steps with the
algebraic determination of GEO on T (s) by examination
of the structure at infinity of T (s) and its submatrices
Ti(s) (Proposition 3):

1. Determination of the structure at infinity of T (s)
from the degrees of its minors (Lemma 1):

Computation of t1 of T (s) from its (1 × 1) mi-
nors: from (16), the highest degree of (1× 1) minor
of T (s) is δD 1 = +1. Therefore − δD 1 = t1 = −1.

Computation of t2 of T (s) from its (2 × 2) mi-
nor : Noticing that (2 × 2) minor of T (s) is
detT (s), its (highest) degree is δD 2 = 0. Then
− δD 2 =

∑2
j=1 tj = 0 and t2 = 1.

2. Determination of the structure at infinity of sub-
matrices Ti(s):

Structure at infinity of T1(s): T1(s) is obtained
from T (s) by removing its first row. Its structure
at infinity is then its structure at infinity by row
(Definition 2), i.e. a zero at infinity of order 1.
Then, we have

∑2−1
j=1 t̄1j = t̄11 = 1.

Structure at infinity of T2(s): T2(s) is obtained from
T (s) by removing its second row. Its structure at
infinity is then a pole at infinity of order 1. We then
have

∑2−1
j=1 t̄2j = t̄21 = −1.
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(a) Causal path
u1 → y1 of order -1

(ao−1)

(b) Causal path
u1 → y1 of order 0

(bo0)

(c) Causal path
u1 → y2 of order 1

(co1)

(d) Causal path
u1 → y1 of order 1

(do1)

(e) Causal path
u2 → y2 of order 1

(eo1)

(f) Causal path
u2 → y1 of order 1

(fo1)

(g) Causal path
u1 → y2 of order 2

(go2)

(h) Causal path
u2 → y1 of order 2

(ho2)

Figure 2: Causal paths Input→ Output on bond graph 1

3. Determination of the GEO : Concerning output
y1, n1eg =

∑2
j=1 tj −

∑2−1
j=1 t̄1j = (0) − (1) = −1,

and for output y2, n2eg =
∑2
j=1 tj −

∑2−1
j=1 t̄2j =

(0)− (−1) = +1.

The algebraic determination of the structure at infinity
of the system as well as the GEO are consistent with
the bond graphic determination. We can also directly
check the previous results with the algebraic definition
on T−1(s) (i.e. Definition 4 applied on T−1(s) given in
(17), symbolically computed from (16)), then requiring
the development of the inverse model.

T−1(s) =[ sC
CI1s2+CRs+1

CRs+1
CI1s2+CRs+1

− CRs+1
CI1s2+CRs+1

s(CI1I2s2+CI1Rs+CI2Rs+I1+I2)
CI1s2+CRs+1

]
(17)

The Definition 2 of the orders of zero/pole at infinity by
column applied to T−1(s) leads to the following determi-
nation of the GEO (Definition 4) of T (s) :

• n1eg = −1 (i.e. the structure at infinity of the first
column of T−1(s) is a zero at infinity of order 1), and

• n2eg = 1 (i.e. the structure at infinity of the second
column of T−1(s) is a pole at infinity of order 1).

As a consequence for our application, the inverse model
exhibits no time-differentiation of the first output, y1(t),
in the expression of its inputs u1(t) and u2(t) (y1(t) will
be integrated at least one time) and a maximal order
of time-differentiation of 1 for the second output y2(t).
Building the inverse model (figure 3)4, the GEO could
also be retrieved afterwards in the equation set (18).

Figure 3: Bicausal bond graph representation of the in-
verse model of system (15)

4The direct model 1 contains bicausality assignments; thus the
inverse model 3 explicitly details the source-sensor [14, 10] on the
1 junction related to storage element I1, noticing that the effort is
zero on the source-sensor DfS

′
e1 on figure 3.
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ṗ1(t) = −R
I1
p1(t)− 1

C
qC(t) + y1(t) +Ry2(t)

q̇C(t) =
1

I1
p1(t)− y2(t)

u1(t) =
1

I1
p1(t)

u2(t) = −R
I1
p1(t)− 1

C
qC(t) +Ry2(t) + I2 ẏ2(t)

(18)

5 Conclusion
We have proposed in this paper a generalization of the
notion of essential order to the class of LTI descriptor
system (1), introducing the Generalized Essential Orders
(GEO) for non-proper rational matrices and proposing
an algebraic determination based on their structure at
infinity. In the context of descriptor system inversion,
we have shown that this invariant characterizes the
highest time-differentiation of the output like in the
regular case. One of the interest of the approach lies in
the fact that the determination is done on the transfer
matrix of the system, even though the definition is on its
inverse. Declined on bond graph, the procedure allows
to give criteria on the time-differentiation order of the
outputs of the model without building explicitly its
inverse. In our opinion, the future interesting directions
to our works could be a formalization of inversion of
a bicausal bond graph, an extension of the digraph
construction procedure from bicausal bond graph or
structural determination of impulsive modes on bicausal
bond graphs (directly linked to the determination of
GEO).
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