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Simplicial variances, potentials and Mahalanobis distances

Luc Pronzato∗, Henry P. Wynn† and Anatoly A. Zhigljavsky‡

July 12, 2018

Abstract

The average squared volume of simplices formed by k independent copies from the same
probability measure µ on Rd defines an integral measure of dispersion ψk(µ), which is a
concave functional of µ after suitable normalisation. When k = 1 it corresponds to Tr(Σµ)
and when k = d we obtain the usual generalised variance det(Σµ), with Σµ the covariance
matrix of µ. The dispersion ψk(µ) generates a notion of simplicial potential at any x ∈ Rd,
dependent on µ. We show that this simplicial potential is a quadratic convex function
of x, with minimum value at the mean aµ for µ, and that the potential at aµ defines a
central measure of scatter similar to ψk(µ), thereby generalising results by Wilks (1960) and
van der Vaart (1965) for the generalised variance. Simplicial potentials define generalised
Mahalanobis distances, expressed as weighted sums of such distances in every k-margin,
and we show that the matrix involved in the generalised distance is a particular generalised
inverse of Σµ, constructed from its characteristic polynomial, when k = rank(Σµ). Finally,
we show how simplicial potentials can be used to define simplicial distances between two
distributions, depending on their means and covariances, with interesting features when the
distributions are close to singularity.

Keywords dispersion; generalised variance; potential; scatter, Mahalanobis distance; Bregman di-
vergence; characteristic polynomial

MSC 94A17, 62B10, 62K05

1 Introduction

A rather common problem in multivariate statistical data analysis involves measuring the scatter
of a data-set. Classical approaches rely on the empirical covariance matrix (or a robust version
of it). Most frequently, this matrix is close to being degenerate, with several small eigenvalues.
In such situations, many standard methods, including analysis via the generalised variance, may
not be applicable. Hence, the need of methods that concentrate their attention on subspaces of
appropriate dimensions. In (Pronzato et al., 2017), the authors introduced a class of extended
generalised k-variances for a probability measure µ on Rd with covariance matrix Σ = Σµ. These
measures of dispersion are indexed by an integer parameter k ∈ {1, 2, . . . , d}. When k = 1 the
generalised k-variance becomes Tr(Σ) and when k = d we obtain the usual generalised variance
det(Σ). For general 1 ≤ k ≤ d, the k-variance is the sum of the determinants of all the k × k
principal minors of Σ; that is, the sum of generalised variances for all k-dimensional minors.

The simplicial nature of the results stems from a theorem which, up to a circumstantial
multiplier, equates the extended generalised variance to the expected squared volume of simplices
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formed from independent copies of the random vector associated with µ; for the value k we take
k + 1 copies.

A main idea of this paper is that an integral measure of dispersion generates a notion of
potential at a general point x and dependent on µ. A main result relates the notion of simplicial
potential obtained here to a generalised Mahalanobis distance, expressed as a weighted sum of
such distances in every k-margin. We show also that the potential arises from the directional
derivative, towards x, of the simplicial variance, and that the matrix involved in the generalised
Mahalanobis distance is a particular generalised inverse of Σ, constructed from its characteristic
polynomial, when k = rank(Σ). Finally, simplicial potentials yield simplicial distances between
two distributions, depending on their means and covariances, which are particular Jeffreys-
Bregman divergences, with interesting features when the distributions are close to being singular.

The paper is organised as follows. Section 2 sets the notation and introduces the main no-
tions of simplicial variance and potential. The construction of empirical generalised k-variances
is provided and the choice of k is discussed. The generalised Mahalanobis distance and the
simplicial distance between two distributions are developed and studied in Section 3. Three ex-
amples are presented in Section 4, including a real-life example used to illustrate the importance
of the choice of an appropriate k.

2 Simplicial variances and potentials

2.1 Notation

• M is the set of non-degenerate probability measures on Borel sets of Rd with finite mean
aµ and finite non-zero covariance matrix Σµ.

• Λ(Σ) is the set of eigenvalues of a square matrix Σ.

• Λµ is the set of eigenvalues of Σµ.

• k is an integer, k ∈ {1, 2, . . . , d}.

• Vk(x0, x1, . . . , xk) is the volume of the k-dimensional simplex (its length when k = 1 and
area when k = 2) formed by the k + 1 vertices x0, x1, . . . , xk ∈ Rd.

• ek(L) is the elementary symmetric function of degree k of a set L = {`1, . . . , `d}, defined
as

ek(L) =
∑

1≤i1<i2<···<ik≤d
`i1 . . . `ik . (1)

• adj(C) is the adjoint of a k × k matrix C: if det(C) 6= 0 then adj(C) = det(C) · C−1,
otherwise adj(C) is the zero matrix of size k × k.

• bi1,...,ik = (bi1 , . . . , bik)T is the vector in Rk formed by extracting components from the
vector b = (b1, . . . , bd)

T ∈ Rd, with 1 ≤ i1 < . . . < ik ≤ d.

• Bi1,...,ik is the principal k × k submatrix of a matrix B of size d× d formed by picking up
rows and columns with indices i1, . . . , ik, with 1 ≤ i1 < . . . < ik ≤ d.

• adj (Σi1,...,ik) is the d × d matrix formed from the k × k matrix adj (Σi1,...,ik) by inserting
zeroes for all pairs of indices (u, v) ∈ {1, . . . , d} × {1, . . . , d} such that u or v is not in
{i1, . . . , ik}, with 1 ≤ i1 < . . . < ik ≤ d.
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2.2 Integral measure of dispersion, directional derivative and potential

Consider any general functional ψ(µ) defined on M . From Halmos (1946), ψ(µ) admits an
unbiased estimator if and only if it takes the form

ψ(µ) =

∫
. . .

∫
φ(x0, x1, . . . , xk)µ(dx0) . . . µ(dxk) (2)

for some function φ. Without loss of generality, we can assume that the kernel φ is symmetric.
From (Lee, 1990, Th. 2, p. 2), there exists a unique symmetric unbiased estimator of ψ(µ), which
is given by

ψ̂n(X1, . . . , Xn) =
(n− k − 1)!

n!

∑
φ(Xi0 , Xi1 , . . . , Xik) , (3)

where the sum extends ove all n!/(n−k−1)! permutations of the sample (X1, . . . , Xn). Moreover,
ψ̂n(X1, . . . , Xn) has minimum variance over all unbiased estimators of ψ(µ) (Lee, 1990, Th. 3,
p. 3).

This paper investigates properties of particular measures of dispersion, or scatter, having
the integral form (2) with φ non negative (and non identically zero). A fundamental property
here is that for any functional of this form we can derive a potential which naturally arises from
the notion of directional derivative.

The potential of µ at x for the functional ψ(·) in (2) is obtained by considering x0 = x as
fixed:

Pµ(x) =

∫
. . .

∫
φ(x, x1, . . . , xk)µ(dx1) . . . µ(dxk) .

Clearly, ψ(µ) =
∫
Pµ(x)µ(dx).

We show that the potential Pµ(x) is strongly related to the notion of directional derivative
of ψ(·) at µ in the direction of the delta-measure δx at x, defined as follows:

F (µ, x) =
∂ψ[(1− α)µ+ αδx]

∂α

∣∣
α=0+

.

Theorem 1 Potentials Pµ(x) are expressed through the directional derivatives F (µ, x) as

Pµ(x) =
1

k + 1
F (µ, x) + ψ(µ) . (4)

Proof. We have

F (µ, x) = lim
α→0+

1

α

{∫
. . .

∫
φ(x0, x1, . . . , xk)

[
k∏
i=0

(µ+ α(δx − µ))(dxi)

]
− ψ(µ)

}

= (k + 1)

∫
. . .

∫
φ(x0, x1, . . . , xk)(δx − µ)(dx0)

[
k∏
i=1

µ(dxi)

]
= (k + 1) [Pµ(x)− ψ(µ)] ,

which yields (4).

Of particular interest are situations where the potential Pµ(x) is a convex function of x for
any µ. In this case, the potential Pµ(·) can be considered as an outlyingness function (perhaps
with some normalisation), measuring how far a point is from the core of the distribution, and
Pµ(x) can also be considered as a measure of scatter of µ around x; see, e.g., Wilks (1960). Any
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point x̄µ minimizing Pµ(x) (unique if Pµ(·) is strictly convex) can be considered as a central
point for µ and defines a generalised median for µ associated with ψ. If Pµ(x̄µ) > 0, it can be
considered as a central measure of scatter (around x̄µ), alternative to ψ(µ). The two measures
of scatter Pµ(x̄µ) and ψ(µ) may coincide in some cases; see Wilks (1960); van der Vaart (1965)
and Section 2.6. Of course, all this is of special interest when µ is the empirical measure of some
sample.

2.3 Simplicial variances, directional derivatives and potentials

In the rest of the paper we consider the special case where φ(x0, x1, . . . , xk) = V 2
k (x0, x1, . . . , xk)

in (2), with Vk(x0, x1, . . . , xk) the volume of the k-dimensional simplex formed by the k + 1
vertices x0, x1, . . . , xk. We denote by ψk(µ) the corresponding functional, that is

ψk(µ) = Eµ{V 2
k (X0, . . . , Xk)} ,

which we call the simplicial k-variance of µ, extending the interpretation of the generalised
variance of Anderson (2003, Th. 7.5.2, p. 268) to simplices of dimension smaller than d. In
particular, for k = 1 we have

ψ1(µ) =

∫ ∫
‖x1 − x2‖2 µ(dx1)µ(dx2) = 2 Tr[Σµ] ,

twice the trace of the covariance matrix of µ. The potential of µ at x is then

Pk,µ(x) = Eµ{V 2
k (x,X1, . . . , Xk)} .

Geometrically, this is the expected squared volume of k-simplices formed by x and k random
vectors independently distributed with µ.

In (Pronzato et al., 2017), the authors have proved the following theorem and lemma.

Theorem 2 For any k ∈ {1, . . . , d} and µ ∈M , we have

ψk(µ) =
k + 1

k!
ek(Λµ) , (5)

with Λµ the set of eigenvalues of Σµ, the covariance matrix of µ, and ek(·) the elementary

symmetric function of degree k. Moreover, the functional ψ
1/k
k (·) is concave on M .

In the following, we shall denote

Ψk(Σ) =
k + 1

k!
ek[Λ(Σ)] ,

with Λ(Σ) the set of eigenvalues of the matrix Σ, so that ψk(µ) = Ψk(Σµ). In particular, when
k = d we get ψd(µ) = (d + 1)/d! det(Σµ), which is proportional to the generalised variance
widely used in multivariate statistics.

Lemma 1 The directional derivative of ψk(·) at µ in the direction δx is

Fk(µ, x) = (x− aµ)T∇k(µ)(x− aµ)− kψk(µ) ,

where aµ = Eµ{X} and ∇k(µ) is the d× d gradient matrix

∇k(µ) = ∂Ψk(A)/∂A
∣∣
A=Σµ

.
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Using Lemma 1 and (4), we obtain

Pk,µ(x) =
1

k + 1

[
(x− aµ)T∇k(µ)(x− aµ) + ψk(µ)

]
, (6)

where, using Lemma 2 in the Appendix, the gradient matrices∇k(µ) can be computed as follows:

∇k(µ) =
k + 1

k!

k−1∑
i=0

(−1)iek−i−1(Λµ)Σi
µ . (7)

We obtain in particular

∇1(µ) = 2 Id ,

∇2(µ) =
3

2
[Tr(Σµ) Id − Σµ] ,

∇3(µ) =
1

3
[Tr2(Σµ)− Tr(Σ2

µ)] Id −
2

3
Tr(Σµ) Σµ +

2

3
Σ2
µ ,

∇d(µ) =
d+ 1

d!
adj(Σµ) .

Note that Eµ{Pk,µ(X)} = ψk(µ) and (6) imply

Tr[Σµ∇k(µ)] = k ψk(µ) . (8)

Also, Lemma 3 in the Appendix indicates that the gradient matrix ∇k(µ) is positive definite
when rank(Σµ) ≥ k.

2.4 Empirical simplicial variances

Let x1, . . . , xn be a sample of n vectors of Rd, i.i.d. with the measure µ and denote the empirical
mean and variance-covariance matrix of x1 by

x̂n =
1

n

n∑
i=1

xi and Σ̂n =
1

n− 1

n∑
i=1

(xi − x̂n)(xi − x̂n)> .

For k ≥ 1, consider the empirical estimate

(ψ̂k)n =

(
n

k + 1

)−1 ∑
1≤j1<j2<···<jk+1≤n

V 2
k (xj1 , . . . , xjk+1

) ,

see (3). The following theorem is proved in (Pronzato et al., 2017).

Theorem 3 For x1, . . . , xn a sample of n vectors of Rd, i.i.d. with the measure µ, and for any
k ∈ {1, . . . , d}, we have

(ψ̂k)n =
(n− k − 1)!(n− 1)k

(n− 1)!
Ψk(Σ̂n) , (9)

and (ψ̂k)n forms an unbiased estimator of ψk(µ) with minimum variance among all unbiased
estimators.
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The value of (ψ̂k)n only depends on Σ̂n, with E{(ψ̂k)n} = ψk(Σµ). From (Serfling, 1980,

Lemma A, p. 183), if Eµ{V 4
k (X1, . . . , Xk+1)} <∞, then the variance of (ψ̂k)n satisfies

var[(ψ̂k)n] =
(k + 1)2

n
varµ[Pk,µ(X)] +O(n−2) .

Other properties of U-statistics apply to the estimator (ψ̂k)n, including almost-sure consistency
and the classical law of the iterated logarithm, see (Serfling, 1980, Section 5.4). In particular,

(ψ̂k)n is asymptotically normal,
√
n[(ψ̂k)n − ψk(µ)]

d→ N (0, (k + 1)2 varµ[Pk,µ(X)]). One may
refer for instance to Pillai (1977) for a comprehensive survey of results on the asymptotic distri-
bution of eigenvalues of empirical covariance matrices and the asymptotic moments of associated
elementary symmetric functions; see also Anderson (2003, Chap. 7) and Fujikoshi et al. (2010,
Chap. 10). The variance of (ψ̂k)n can also be estimated by jackknife or bootstrap methods, see
Lee (1990, Chap. 5).

2.5 Alternative representations of simplicial potentials

Refining the arguments used in (Pronzato et al., 2017) for proving Theorem 2, we establish the
following property.

Theorem 4 For any µ ∈M , any k ∈ {1, . . . , d} and any x ∈ Rd, we have

Pk,µ(x) =
1

k!
ek

[
Λ
(

Σµ + (x− aµ)(x− aµ)>
)]

. (10)

Proof. Consider the squared volume V 2
k (x, x1, . . . , xk). By the Binet-Cauchy formula, see, e.g.,

(Gantmacher, 1966, vol. 1, p. 9), we obtain

V 2
k (x, x1, . . . , xk) =

1

(k!)2
det




(x1 − x)>

(x2 − x)>

...
(xk − x)>


[(x1 − x) (x2 − x) · · · (xk − x)]


=

1

(k!)2

∑
1≤i1<i2<···<ik≤d

det2

 {x1 − x}i1 · · · {xk − x}i1
...

...
...

{x1 − x}ik · · · {xk − x}ik


=

1

(k!)2

∑
1≤i1<i2<···<ik≤d

det

[
k∑
i=1

(xi − x)i1,...,ik(xi − x)
>
i1,...,ik

]
.

From the definition of the potential Pk,µ(x), we obtain

Pk,µ(x) =

∫
. . .

∫
V 2
k (x, x1, . . . , xk)µ(dx1) . . . µ(dxk)

=
1

(k!)2

∑
1≤i1<i2<···<ik≤d

∫
. . .

∫
det

[
k∑
i=1

(xi − x)i1,...,ik(xi − x)
>
i1,...,ik

]
µ(dx1) . . . µ(dxk) .
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From Lemma 4 in the Appendix, with Zi = (xi − x)i1,...,ik , we get

Pk,µ(x) =
1

k!

∑
1≤i1<i2<···<ik≤d

det
[
Eµ{(X − x)i1,...,ik(X − x)>i1,...,ik}

]
=

1

k!

∑
1≤i1<i2<···<ik≤d

det
[
Eµ{(X − aµ)i1,...,ik(X − aµ)>i1,...,ik

+(aµ − x)i1,...,ik(aµ − x)>i1,...,ik}
]

=
1

k!

∑
1≤i1<i2<···<ik≤d

det

{[
Σµ + (x− aµ)(x− aµ)>

]
i1,...,ik

}
. (11)

Lemma 5 in the Appendix completes the proof.

When all k×k principal minors of Σµ have rank at least k, Theorem 4 provides an alternative
representation for Pk,µ(x).

Corollary 1 When rank(Σi1,...,ik) ≥ k for all 1 ≤ i1 < i2 < · · · < ik ≤ d, the gradient matrix
∇k(µ) in (6) can be expressed as

∇k(µ) =
k + 1

k!

∑
1≤i1<i2<···<ik≤d

adj (Σi1,...,ik) , (12)

where we have denoted Σ = Σµ.

Proof. Each determinant det
{[

Σ + (x− aµ)(x− aµ)>
]
i1,...,ik

}
in (11) can be represented as

det

{[
Σ + (x− aµ)(x− aµ)>

]
i1,...,ik

}
=
[
1 + (x− aµ)>i1,...,ikΣ−1

i1,...,ik
(x− aµ)i1,...,ik

]
det (Σi1,...,ik)

= det (Σi1,...,ik) + (x− a)>i1,...,ikadj (Σi1,...,ik) (x− a)i1,...,ik

By Lemma 5 in the Appendix and Theorem 2, we have

1

k!

∑
1≤i1<i2<···<ik≤d

det (Σi1,...,ik) =
1

k!
ek(Λµ) =

1

k + 1
ψk(µ) .

Therefore formula (11) yields

Pk,µ(x) =
1

k + 1
ψk(µ) +

1

k!

∑
1≤i1<i2<···<ik≤d

(x− a)>i1,...,ikadj (Σi1,...,ik) (x− a)i1,...,ik . (13)

The statement of the corollary follows from (13) and (6).

2.6 A generalisation of results of Wilks and van der Vaart

Equation (6) and Lemma 3 show that the potential Pk,µ(x) is a quadratic convex function of
x, with minimum value ψk(µ)/(k + 1) ≥ 0 attained at x = aµ. As mentioned in Section 2.2,
when Pk,µ(aµ) > 0, it can be considered as a central measure of scatter. The relations between
Pk,µ(aµ) and ψk(µ) have been investigated by Wilks (1960) and van der Vaart (1965) for the
case k = d where ψd(µ) = (d + 1)/d! det(Σµ). The following theorem extends their results to
general k ∈ {1, · · · , d}. Note that the case k = 1, with ψ1(µ) = 2 Tr[Σµ], is classical.
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Theorem 5 For any µ ∈M and any k ∈ {1, . . . , d}, we have

aµ = arg min
x
Pk,µ(x) . (14)

Moreover,

Pk,µ(x) > Pk,µ(aµ) =
1

k!
ek(Λµ) =

ψk(µ)

k + 1
> 0 (15)

for all x 6= aµ if and only if rank(Σµ) ≥ k.

Proof. Equation (14) is a direct consequence of (6) and of the fact that the gradient matrix
∇k(µ) is non-negative definite, see Lemma 3.

Assume first that rank(Σµ) ≥ k; then ek(Λµ) > 0 and ∇k(µ) is positive definite from
Lemma 3. Therefore Pk,µ(x) > Pk,µ(aµ) > 0 for x 6= aµ.

Assume now that rank(Σµ) < k, which implies Pk,µ(aµ) = 0. Choose any z 6= 0 in the
subspace spanned by the eigenvectors of Σµ corresponding to the non-zero eigenvalues of Σµ

and consider the form (10) for Pk,µ(x). Since the ranks of the matrices Σµ and Σµ + zzT

coincide, Pk,µ(x) = 0 for x = z + aµ.

2.7 Choosing k

Since the simplicial k-variance ψk(µ) is constructed from volumes of k-dimensional simplices, its

standardised version ψ
1/k
k (·) allows us to compare scatters of different dimensional distributions,

similarly to the standardised generalised variance used by SenGupta (1987) which corresponds
to the case k = d. Newton inequalities for symmetric functions indicate that(

ek(Λµ)(
d
k

) )1/k

>

(
ek+1(Λµ)(

d
k+1

) )1/(k+1)

for all k = 1, . . . , d − 1 unless all eigenvalues in Λµ coincide, see Niculescu and Persson (2006,

p. 213). Also, one can check that, for any d, (k!/[(k + 1)
(
d
k

)
])1/k increases with k, 1 ≤ k ≤ d.

This implies that ψ
1/k
k (µ) is strictly decreasing with k, also when all eigenvalues in Λµ coincide.

This remains true when considering the empirical version (9) with a large enough n, since the
correcting factor satisfies (n− k − 1)!(n− 1)k/(n− 1)! = 1 + k(k − 1)/(2n) +O(1/n2).

The consideration of ψ
1/k
k (·) does not allow us to make a recommendation concerning the

most appropriate k. We can simply notice that ψ
1/k
k (µ) = 0 when µ is concentrated in a

d′-dimensional subspace with d′ < k. However, numerical experimentation indicates that the
estimation of the approximate dimensionality of a data-set is easier by simple inspection of
the eigenvalues of the empirical covariance matrix Σ̂n than by setting a threshold on values of
Ψk(Σ̂n).

By extending the definition of ψ(·) in (2) to arbitrary positive measures, we may consider the
variation of ψk(µ) when µ is changed into µ+αδx for a small α. This corresponds to considering
the influence function

Gk(µ, x) =
∂ψk[µ+ αδx]

∂α

∣∣
α=0+

.

An appropriate k should then yield large values of Gk(µ, x) to achieve high sensitivity of the
measure of scatter of µ to deviations from µ. Similarly to Lemma 1, we obtain Gk(µ, x) =
(x− aµ)T∇k(µ)(x− aµ). Averaging Gk(µ,X) with X ∼ µ, we get from (8)

Eµ{Gk(µ,X)} = Tr[Σµ∇k(µ)] = k ψk(µ) .
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As a result, choosing k∗ that maximises k ψk(µ) (or k (ψ̂k)n given by (9) for empirical data)
appears most appropriate. The value of k∗ depends on the scale of the data. As an example,
assume that Σµ has d′ ≤ d eigenvalues equal to β and d− d′ equal to zero. Then,

k ψk(µ) =
k + 1

(k − 1)!

(
d′

k

)
βk , k ≤ d′ , (16)

and k ψk(µ) = 0 for k > d′. To determine the associated k∗, we compute the ratio ρ(k) =
k ψk(µ)/[(k+ 1)ψk+1(µ)] = k(k+ 1)2/[β(k+ 2)(d′ − k)]. If β < 4/[3(d′ − 1)], then ρ(1) > 1 and
k∗ = 1, if β > d′2(d′ − 1)/(d′ + 1) then ρ(d′ − 1) < 1 and therefore k∗ = d′. Otherwise, we find
t∗ as the solution of the cubic equation ρ(t) = 1, which gives k∗ = dt∗e.

Figure 1-left presents the evolution of k ψk(µ) (in log scale) as a function of k for β =
20, 2 and 0.5, from top to bottom, when d′ = 30; the corresponding values of k∗ are 17, 7
and 4, respectively. Figure 1-right shows k ψk(µ) (log scale) when Σµ has eigenvalues Λµ =
{β, β/2, β/3, . . . , β/30, 0, . . . , 0}, also for β = 20 (top), 2 and 0.5 (bottom), with associated
k∗ equal to 7, 3 and 2. Both figures indicate that a small k is preferable when Σµ has small
eigenvalues and illustrate the difficulty of estimating the true dimensionality of the data when
there are several eigenvalues smaller than one, due to the fast decrease of ψk(µ) as a function
of k. This point is further illustrated in the example of Section 4.3.

Figure 1: k ψk(µ) for k = 1, 2, . . . , d′ = 30, for β = 20 (top), 2 (middle) and 0.5 (bottom). Left:
Λµ = {β, β, . . . , β, 0, . . . , 0} and k ψk(µ) is given by (16); Right: Λµ = {β, β/2, β/3, . . . , β/30, 0, . . . , 0}.

3 Simplicial Mahalanobis distances

3.1 From simplicial potentials to Mahalanobis distances

Consider a measure µ ∈M such that Pk,µ(aµ) = ek(Λµ)/k! > 0. For this measure we define the
function

Ok,µ(x) =
Pk,µ(x)

Pk,µ(aµ)
− 1 = (x− aµ)TSk,µ(x− aµ) , (17)

with

Sk,µ =
∇k(µ)

ψk(µ)
, (18)
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where the second equality follows from (6). In the special case k = d, (12) gives ∇d(µ) =
(d+ 1)/d! det(Σµ) · Σ−1

µ and (5) gives ψd(µ) = (d+ 1)/d! det(Σµ), so that

Od,µ(x) = (x− aµ)TΣ−1
µ (x− aµ) ,

which is exactly the original Mahalanobis distance (Mahalanobis, 1936). We will call Ok,µ(·)
the k-simplicial outlyingness function, which can also be thought of as a simplicial Mahalanobis
distance between x and µ. Geometrically, it is a suitably normalised version of the expected
squared volume of k-simplices formed by x and k random vectors independently distributed
according to µ, and measures the distance from x to the central point aµ.

The definition (17) of Ok,µ(x) implies that Ok,µ(x) ≥ 0 for any µ ∈ M , any k ∈ {1, . . . , d}
and any x. Also, Eµ{Pk,µ(X)} = ψk(µ) implies that Eµ{Ok,µ(X)} = k, and therefore

max
x∈X

Ok,µ(x) ≥ k (19)

for any set X having full measure, i.e., such that µ(X ) = 1. On the other hand, Theorem 4.1
in Pronzato et al. (2017) gives a necessary and sufficient condition on µ to have equality in (19)
for a given set X : µ must maximise ψk(·) over the set of all measures supported on X .

In view of Theorem 5,
min
x
Ok,µ(x) = Ok,µ(aµ) = 0

and Ok,µ(x) > 0 for all x 6= aµ. The quadratic form in (17) defines a metric on Rd, and we define
the k-th order simplicial Mahalanobis distance relative to µ (or simply k-distance) between z1

and z2 in Rd as

δk,µ(z1, z2) = Ok,µ(z1 − z2 + aµ) = (z1 − z2)TSk,µ(z1 − z2) .

The geometric interpretation of δk,µ(z1, z2) when µ = µn is a centralised empirical measure of a
sample Xn is that 1 + δk,µ(z1, z2) is proportional to the sum of squared volumes of all simplices
formed by z1 − z2 and all k-tuples of the sample Xn.

As already mentioned, when k = d we get Od,µ(x) = (x − aµ)TΣ−1
µ (x − aµ). For k = 1, we

obtain
O1,µ(x) = ‖x− aµ‖2/Tr(Σµ) ,

which is the usual squared Euclidean distance between x and aµ normalised by the trace of Σµ.
For general k, when all k× k principal minors of Σµ have rank at least k, from (5) and (12)

we have

Ok,µ(x) =
1

ek(Λµ)

∑
1≤i1<i2<···<ik≤d

(x− aµ)>i1,...,ikadj (Σi1,...,ik) (x− aµ)i1,...,ik

=
1

ek(Λµ)

∑
1≤i1<i2<···<ik≤d

det(Σi1,...,ik) · (x− aµ)>i1,...,ikΣ−1
i1,...,ik

(x− aµ)i1,...,ik ,

where Σ = Σµ. Since ek(Λµ) =
∑

det(Σi1,...,ik), see Lemma 5, the simplicial Mahalanobis
distance of order k, δk,µ(z1, z2), is then the weighted sum of the usual Mahalanobis distances of
all k-th marginal vectors, with weights given by the corresponding determinants.
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3.2 Construction through characteristic polynomial and generalised inverse

The expression (7) of the gradient matrix ∇k(µ) allows us to express the matrix Sk,µ in (17) in
terms of the characteristic polynomial of Σµ, and to show that Sk,µ is a generalised inverse of
Σµ when Σµ has rank k.

Denote by pµ(·) the characteristic polynomial of the d× d matrix Σµ,

pµ(λ) =
d∑
i=0

(−1)iei(Λµ)λd−i .

For any k ∈ {1, . . . , d}, we introduce a truncated version pk,µ(λ) of pµ(λ) which only contains
terms of degree at least d− k,

pk,µ(λ) = λd−k
k∑
i=0

(−1)k−iek−i(Λµ)λi ,

which we rewrite as

pk,µ(λ) = λd−k(−1)k+1 [λqk,µ(λ)− ek(Λµ)] , (20)

where

qk,µ(λ) =

k−1∑
i=0

(−1)iek−i−1(Λµ)λi . (21)

Comparing (7) with (21), we obtain∇k(µ) = (k+1)/k! qk,µ(Σµ). Therefore, Sk,µ in (17) becomes

Sk,µ =
qk,µ(Σµ)

ek(Λµ)
.

Theorem 6 If rank(Σµ) = k ≤ d, then the matrix Sk,µ is a generalised inverse of Σµ (inverse
if k = d). When Σµ has eigenvalues λ1 ≥ · · ·λk > λk+1 = · · ·λd = 0, Sk,µ has eigenvalues

ζj = 1/λj for j = 1, . . . , k and ζj =
∑k

i=1 1/λi for j = k+ 1, . . . , d; moreover, Sk,µ and Σµ have
the same eigenspaces.

Proof. Assume rank(Σµ) = k ≤ d. We need to verify the generalised inverse condition
ΣµSk,µΣµ = Σµ. We have:

ΣµSk,µΣµ − Σµ = Σµ
qk,µ(Σµ)

ek(Λµ)
Σµ − Σµ =

1

ek(Λµ)
Σµ [Σµqk,µ(Σµ)− ek(Λµ)Id] . (22)

Since rank(Σµ) = k, the characteristic polynomial pµ(·) of the matrix Σµ is equal to pk,µ(·). The
matrix Σµ satisfies its own characteristic equation, and therefore pk,µ(Σµ) = 0. In view of (20),
this gives

Σd−k
µ [Σµqk,µ(Σµ)− ek(Λµ)Id] = 0 . (23)

If k = d or k = d− 1 this implies ΣµSk,µΣµ = Σµ, see (22).
Let us assume k < d− 1. From (23), all eigenvalues λi of the matrix Σµ satisfy

λd−ki [λiqk,µ(λi)− ek(Λµ)] = 0 . (24)

For each i = 1, . . . , d this implies that either λi = 0 or [λiqk,µ(λi)− ek(Λµ)] = 0. In either case
we obtain λi [λiqk(λi)− ek(Λµ)] = 0, which yields ΣµSk,µΣµ = Σµ.

The fact that Sk,µ is a polynomial in Σµ implies that they have the same eigenspaces. The
eigenvalues ζj of Sk,µ are qk,µ(λj)/ek(Λµ). If λj 6= 0, then (24) implies ζj = 1/λj . If λj = 0,

then (21) gives ζj = ek−1(Λµ)/ek(Λµ) =
∑k

i=1 1/λi.
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3.3 A simplicial distance between two distributions

Let µ1 and µ2 be two probability measures in M . The average squared volume of a k-simplex
with one vertex coming from measure µ1 and k vertices i.i.d. from µ2 equals Eµ1{Pk,µ2(X)}.
Symmetrising and normalising, we naturally arrive at the following expression

∆k(µ1, µ2) =
1

2
[Eµ1{Ok,µ2(X)}+ Eµ2{Ok,µ1(X)}]− k ,

whereOk,µ(·) is the outlyingness function defined in (17). We shall informally consider ∆k(µ1, µ2)
as a measure of distance between µ1 and µ2, although ∆k(µ1, µ2) does not in general satisfy
the triangular inequality and only depends on the means and covariance matrices of µ1 and µ2.
Expanding Eµ2{Ok,µ1(X)}, and denoting Σi = Σµi and ai = aµi for i = 1, 2, we get

Eµ2{Ok,µ1(X)} = Tr(Sk,µ1Σ2) + (a2 − a1)TSk,µ1(a2 − a1) ,

therefore,

∆k(µ1, µ2) =
1

2
[Tr(Sk,µ1Σ2) + Tr(Sk,µ2Σ1)] + (a2 − a1)T

Sk,µ1 + Sk,µ2
2

(a2 − a1)− k . (25)

Note that the substitution of the Moore-Penrose pseudo inverses Σ+
i for Sk,µi in (25) would lead

to negative distance values for some measures with singular Σi.
Direct calculation shows that ∆k(µ1, µ2) corresponds to the Jeffreys-Bregman divergence

between µ1 and µ2 (see Nielsen and Boltz (2011); Basseville (2013)) for logψk(·), that is,

∆k(µ1, µ2) =
1

2
[Flogψk(µ1, µ2) + Flogψk(µ2, µ1)] ,

with Flogψk(µ, ν) = Fk(µ, ν)/ψk(µ) the directional derivative of logψk(·) at µ in the direction ν.
In the particular case when k = d and both matrices Σ1 and Σ2 are invertible, we obtain

∆d(µ1, µ2) =
1

2

[
Tr(Σ−1

1 Σ2) + Tr(Σ−1
2 Σ1)

]
+ (a2 − a1)T

Σ−1
1 + Σ−1

2

2
(a2 − a1)− d ,

which is non negative since A + A−1 ≥ 2 Id for any d × d matrix A > 0, with equality if and
only if A = Id. Therefore, ∆d(µ1, µ2) = 0 implies a1 = a2 and Σ1 = Σ2. It resembles the
Bhattacharyya distance between two normal distributions,

∆B(µ1, µ2) =
1

2
log

[
det(Σ1 + Σ2)√
det(Σ1) det(Σ2)

]
+

1

4
(a2 − a1)T (Σ1 + Σ2)−1(a2 − a1)− d

2
log(2) ,

but is not equivalent to it. In particular, ∆B(µ1, µ2) cannot be used when at least one of the
distributions is singular, whereas ∆k(µ1, µ2) can, see (25). The example in Section 4.2 gives an
illustration with distributions close to singularity.

When k = 1, S1,µ = Id/Tr(Σµ), and therefore

∆1(µ1, µ2) =
1

2

[
Tr(Σ1)

Tr(Σ2)
+

Tr(Σ2)

Tr(Σ1)

]
+

1

2
‖a2 − a1‖2

[
1

Tr(Σ1)
+

1

Tr(Σ2)

]
− 1 ,

which is clearly non negative. However, ∆1(µ1, µ2) = 0 only implies a1 = a2 and Tr(Σ1) =
Tr(Σ2), showing that ∆1 is arguably a less interesting measure of discrepancy between distribu-
tions. On the other hand, when k > 1 we have the following property.
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Theorem 7 For any k ∈ {2, . . . , d}, ∆k(µ1, µ2) ≥ 0 for any two measures µ1 and µ2 in M such
that rank(Σ1) ≥ k and rank(Σ2) ≥ k; moreover ∆k(µ1, µ2) = 0 implies a1 = a2 and Σ1 = Σ2.

Proof. The proof relies on the strict concavity of Ψ
1/k
k (·), see Lemma 6 in the Appendix.

Concavity implies that

ψ
1/k
k (µ1) +

1

k

Tr {∇k(µ1)[Σ2 − Σ1]}
ψ

1−1/k
k (µ1)

≥ ψ1/k
k (µ2) , (26)

that is, Tr [Sk,µ1Σ2] ≥ k ψ
1/k
k (µ2)/ψ

1/k
k (µ1), see (8) and (18), with equality when Σ2 = γ2 Σ1

for some γ2 > 0 (γ2 6= 0 since µ2 ∈ M ). Similarly, Tr [Sk,µ2Σ1] ≥ k ψ
1/k
k (µ1)/ψ

1/k
k (µ2), with

equality implying Σ1 = γ1 Σ2 for some γ1 > 0. Therefore, (25) gives

∆k(µ1, µ2) ≥ k

2

{[
ψ

1/k
k (µ2)

ψ
1/k
k (µ1)

+
ψ

1/k
k (µ1)

ψ
1/k
k (µ2)

]
− 2

}
+ (a2 − a1)T

Sk,µ1 + Sk,µ2
2

(a2 − a1) .

Since, from Lemma 3, Sk,µ1 and Sk,µ2 are positive definite, ∆k(µ1, µ2) ≥ 0, and equality implies
that a1 = a2 and ψk(µ1) = ψk(µ2). When k ≥ 2, equality also implies that Σ2 = γ Σ1 for some
γ > 0, and γ = 1 since ψk(µ1) = ψk(µ2).

4 Examples

4.1 Clustering with the simplicial Mahalanobis distance

We consider a clustering problem for which we apply a k-means algorithm with Lloyd’s type
iterations (Lloyd, 1982), with three different intra-class distances: the Euclidean distance (lead-
ing to the usual k-means algorithm), Mahalanobis distance with Moore-Penrose pseudo-inverse
if needed, and the k-simplicial Mahalanobis distance with k = 3.

We consider two examples, each with two clusters of n/2 = 50 points, respectively with
d = 50 and d = 100. The 50 points of cluster i are normally distributed N (bi,Wi), with b1 = 0,
b2 = (1, 1, 0.5, 0.5, . . . , 0.5)T for d = 50, b2 = (1, 1, 0.1, 0.1, . . . , 0.1)T for d = 100, and

W1 =

 (
5 −4
−4 5

)
0

0 σ2
d Id−2

 , W2 =

 (
5 4
4 5

)
0

0 σ2
d Id−2

 .

We used σ50 = 10−2 and σ100 = 10−9 and performed 1,000 runs of each algorithm (initialised in
the same way for each of the 1,000 samples, with 100 iterations every time). The performances
of the algorithms are summarised in Figure 2. We plot the empirical cdf, over the 1,000 runs,
of the classification error rate introduced by Chipman and Tibshirani (2005), which gives the
proportion of misclassified pairs in one run of the algorithm.

The results illustrate the property that the substitution of the k-simplicial Mahalanobis
distance for the usual one may significantly improve performance of some classical algorithms
of multivariate statistics, in cases when the data are high-dimensional but lie very close to
a subspace of much lower dimension. Choosing k = k∗ as suggested in Section 2.7 at each
iteration makes the algorithm slightly more complicated than when k is fixed at 3 and does not
yield any visible improvement in performance. When d = 100, in addition to the presence of
a delta measure at zero (which also exists for clustering with the Mahalanobis distance), the
distribution of classification error rates also has a mode at low error rates for the 3-simplicial
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Figure 2: Empirical cdf, over the 1,000 runs, of the Classification Error Rates (CER) when clustering
n = 100 points with the Euclidean distance (dashed line), the Mahalanobis distance (dotted line) and
the 3-simplicial Mahalanobis distance (solid line); Left: d = 50; Right: d = 100.

Mahalanobis distance. For all three methods, the worst misclassification occurs when all points
are assigned to one cluster or when one cluster only contains two points that should belong to
different clusters (which gives here a CER value of n/[2(n − 1)] ' 0.505). The performance
of clustering with k-simplicial Mahalanobis distance significantly improves when increasing the
number of points in each cluster: for example, with 400 points in each cluster in the setting
above with d = 50, perfect classification is obtained in 1,000 repetitions for k = 3, 4, 5, 6. On the
other hand, for clustering with Euclidean and Mahalanobis distances, the CER remains similar
to the case with 50 points per cluster depicted in Figure 2-left.

4.2 Comparison between Bhattacharyya and simplicial distances

Consider two d-dimensional distributions µ1 and µ2 with means a1 and a2 and covariance ma-
trices

Σ1 =

 (
1 0
0 1

)
0

0 α2 Id−2

 , Σ2 =

 (
5 4
4 5

)
0

0 β2 Id−2

 .

First, we set a1 = a2 = 0, α = 0.01 and β = 0.001. Figure 3-left shows that Bhattacharyya
distance ∆B(µ1, µ2) between the two distributions increases linearly with d, although intuitively
the distributions look more similar as d increases. Figure 3-right shows that the behaviour
of simplicial distance ∆3(µ1, µ2) is consistent with this intuition. For illustration, we have
considered k = 3, but other values of k ≥ 2 yield similar behaviours.

Now take β = α, but a2(1) = a2(2) = 1, the other components of a2 being left equal to
zero, like all components of a1. Again, intuitively the distributions are getting more similar as
d increases, but ∆B(µ1, µ2) remains constant, whereas ∆k(µ1, µ2) decreases with d for k ≥ 2.

4.3 Comparing scatters of Wine Recognition Data

In this section we illustrate the use of simplicial k-variances ψk for comparing scatters of different
data-sets. We consider the wine data-set of the machine-learning repository, see www.mir.cs.
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Figure 3: Distance between µ1 and µ2 as a function of d ∈ {3, . . . , 50}. Left: Bhattacharyya distance
∆B(µ1, µ2); Right: simplicial distance ∆3(µ1, µ2).

umass.edu/ml/datasets/Wine, widely used in particular as a test-bed for comparing classifiers.
Here we use the class labels and consider the three classes f the data-set as three different data-
sets. The data have dimension d = 14 and the sample sizes are 59, 71 and 48. The eigenvalues
of the three empirical covariance matrices are plotted in Figure 4-left (in log scale). For each
data-set, the leading eigenvalue is very large and several of them are much smaller than one.

Figure 4-right shows the values of the standardised empirical simplicial k-variances (ψ̂k)
1/k
n

obtained using (9) and the corresponding 2σ-confidence intervals computed by jackknifing as

explained in (Lee, 1990, Chap. 5). As already mentioned in Section 2.7, ψ
1/k
k is a decreasing

function of k, and the decrease is very fast due to the presence of small eigenvalues. Non-
standardised values of (ψ̂k)n are shown in Figure 5-left, along with their 2σ-confidence intervals
(also computed with the jackknife). These two figures suggest that measuring scatter through

ψ
1/k
k (or ψk) with a large k is doubtful in the presence of small eigenvalues. This true in

particular for the generalised variance for which k = d. Figure 5-right presents the values of
(ψ̂k)n for k = 1, . . . , 5 together with their confidence intervals (in log scale). The figure suggests
that scatters of the three data-sets are slightly different.

Appendix

The Newton equations for symmetric functions and straightforward calculation yield the follow-
ing properties.

Lemma 2 Let Vi(A) = ei(Λ(A)), where Λ(A) is the set of eigenvalues of a square matrix A
(not necessarily symmetric). Then

Vk(A) =
1

k

k−1∑
i=0

(−1)i−1Vk−i(A)Tr(Ai) and
∂Vk(A)

∂A
=

k−1∑
i=0

(−1)iVk−i−1(A)(Ai)T .

The next lemma indicates that ∇k(µ) is non-negative definite for any µ ∈M and is positive
definite when Σµ has rank at least k.
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Figure 4: Left: eigenvalues (log scale) of the three empirical covariance matrices. Right: standardised

empirical simplicial k-variances (ψ̂k)
1/k
n and 2σ-confidence intervals.

Figure 5: Left: non-standardised empirical simplicial k-variances (ψ̂k)n and 2σ-confidence intervals.

Right: values of (ψ̂k)n for k = 1, . . . , 5 and 2σ-confidence intervals (log scale).

Lemma 3 For any probability measure µ in M and any k in {1, . . . , d}, the gradient matrix
∇k(µ) is non-negative definite. When the covariance matrix Σµ is such that rank(Σµ) ≥ k, then
∇k(µ) is positive definite.

Proof. The proof follows the same lines as in (Pukelsheim, 1993, Th. 7.5). The function Ψ
1/k
k (·)

is concave, see Marcus and Minc (1964, p. 116). Therefore, the function log Ψk(·) is concave
on the set of non-negative definite matrices, with gradient at Σ = Σµ given by ∇k(µ)/ψk(µ).
Concavity implies that

log Ψk(Σµ + zzT ) ≤ logψk(µ) + Tr

[
zzT∇k(µ)

ψk(µ)

]
.

By the monotonicity of the eigenvalues, for all 1 ≤ i ≤ d, the i-th largest eigenvalue of Σµ+zzT is
larger than or equal to the i-th largest eigenvalue of Σµ, the inequality being strict for at least one

16



pair of eigenvalues. Therefore, log Ψk(Σµ+zzT ) ≥ logψk(µ), and Tr[zzT∇k(µ)] = zT∇k(µ)z ≥ 0
for any z since ψk(µ) ≥ 0, showing that ∇k(µ) is non-negative definite.

Suppose now that rank(Σµ) ≥ k ∈ {1, . . . , d} and take z 6= 0. This implies log Ψk(Σµ+zzT ) >
logψk(µ), and therefore zT∇k(µ)z > 0 since ψk(µ) = (k + 1)/k! ek(Λµ) > 0, which completes
the proof.

Next lemma follows from (Pronzato, 1998, Th. 1).

Lemma 4 Let the k vectors Z1, . . . , Zk ∈ Rk be i.i.d. with some probability measure µ, k ≥ 2.
Then

Eµ

{
det

[
k∑
i=1

ZiZ
>
i

]}
= k! det

[
Eµ{Z1Z

>
1 }
]
.

The following property is proved in (Marcus and Minc, 1964, p. 22).

Lemma 5 Let B be a non-negative definite d×d matrix with eigenvalues ΛB = (λ1,B, . . . , λd,B).
Then ∑

1≤i1<i2<···<ik≤d
det[{B}(i1,...,ik)×(i1,...,ik)] =

∑
1≤i1<i2<···<ik≤d

λi1,B × · · · × λik,B = ek (ΛB) . (27)

Lemma 6 For any probability measure µ ∈ M , the function Ψ
1/k
k (·) is strictly concave at Σµ

for k ≥ 2 when rank(Σµ) ≥ k, that is,

Ψ
1/k
k [(1− α)Σµ + αΣ] > (1− α)Ψ

1/k
k (Σµ) + αΨ

1/k
k (Σ)

for any α ∈ (0, 1) and any symmetric non-negative definite matrix Σ 6= 0 not proportional to
Σµ.

Proof. The function Ψ
1/k
k (·) is concave, see Lemma 3. Suppose that

Ψ
1/k
k [(1− β)Σµ + βΣ] = (1− β)Ψ

1/k
k (Σµ) + βΨ

1/k
k (Σ) (28)

for some β > 0. We show that (28) implies that Σ = γ Σµ for some γ ≥ 0.

Due to the concavity of Ψ
1/k
k (·), (28) implies

Ψ
1/k
k [(1− α)Σµ + αΣ] = (1− α)Ψ

1/k
k (Σµ) + αΨ

1/k
k (Σ) , α ∈ (0, β) , (29)

that is

e
1/k
k {Λ[(1− α)Σµ + αΣ]} = (1− α) e

1/k
k [Λ(Σµ)] + α e

1/k
k [Λ(Σ)] , α ∈ (0, β) .

Now, Λ[(1−α)Σµ +αΣ] ≺ Λ[(1−α)Σµ] + Λ[αΣ], with ≺ denoting majorisation, see Fan (1949).
The strict Shur-concavity of ek(·) for k > 1 (Marshall et al., 1979, p. 115) then implies

ek{Λ[(1− α)Σµ + αΣ]} ≥ ek{Λ[(1− α)Σµ] + Λ[αΣ]} = ek[(1− α)Λ(Σµ) + αΛ(Σ)] ,

with equality when Λ[(1− α)Σµ + αΣ] = (1− α)Λ(Σµ) + αΛ(Σ). Therefore, (29) implies

e
1/k
k [(1− α)Λ(Σµ) + αΛ(Σ)] = (1− α) e

1/k
k [Λ(Σµ)] + α e

1/k
k [Λ(Σ)] , α ∈ (0, β) ,
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and the strict concavity of e
1/k
k (·) for k > 1 (Marshall et al., 1979, p. 116) implies that Λ(Σ) =

γ Λ(Σµ) for some γ ≥ 0.
We thus obtain Λ[(1−α)Σµ+αΣ] = (1−α+αγ)Λ(Σµ), α ∈ (0, β). Take any z with ‖z‖ = 1

in the eigenspace of the largest eigenvalue λ of (1 − α)Σµ + αΣ. We have λ = (1 − α + αγ)λ′,
with λ′ the largest eigenvalue of Σµ, and

λ = zT [(1− α)Σµ + αΣ]z = (1− α)zTΣµz + αzTΣz

≤ (1− α) sup
‖z‖=1

zTΣµz + α sup
‖z‖=1

zTΣz = (1− α+ αγ)λ′ ,

implying that z is in the eigenspace of the largest eigenvalues λ′ and γλ′ of Σµ and Σ. By
repeating the same argument, we obtain that Σµ and Σ have the same eigenspaces, and therefore
Σ = γ Σµ.
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