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We consider the construction of the smallest ball B∗ enclosing a set Xn formed by n points
in Rd. We show that any probability measure on Xn, with mean c and variance matrix
V , provides a lower bound b on the distance to c of any point on the boundary of B∗,
with b having a simple expression in terms of c and V . This inequality permits to remove
inessential points from Xn, which do not participate to the definition of B∗, and can be used
to accelerate algorithms for the construction of B∗. We show that this inequality is, in some
sense, the best possible. A series of numerical examples indicates that, when d is reasonably
small (d ≤ 10, say) and n is large (up to 105), the elimination of inessential points by a
suitable two-point measure, followed by a direct (exact) solution by quadratic programming,
outperforms iterative methods that compute an approximate solution by solving the dual
problem.
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1. Introduction

Given a set of n points Xn = {X1, . . . , Xn} ⊂ Rd, d ≥ 2, we consider the algorithmic
construction of the minimum ball B∗(Xn) enclosing Xn. We are interested in particular
in the situation where d is reasonably small but n can be large. For c ∈ Rd and r ∈ R+,
we denote by Bd(c, r) the (closed) ball {X ∈ Rd : ‖X − c‖ ≤ r}, with ‖.‖ the Euclidean
norm. We shall write B∗(Xn) = Bd(c

∗
n, r
∗
n), where c∗n (the Chebyshev centre of Xn)

minimises

f(c) = max
i=1,...,n

‖Xi − c‖2 (1)

with respect to c ∈ Rd and r∗n = maxi=1,...,n ‖Xi − c∗n‖. A ball Bd(c, r) is said to be
a (1 + ε)-approximation to B∗(Xn), ε > 0, when Xn ⊂ Bd(c, r) and r ≤ (1 + ε)r∗n; a
subset Xq ⊆ Xn is said to be an ε-core set of Xn if B∗(Xq) = Bd(c

∗
q , r
∗
q) is such that

r∗q ≤ r∗n ≤ (1 + ε)r∗q .
The construction of B∗(Xn) is a classical optimisation problem, for which many al-

gorithms have been proposed in the literature, see, e.g., the historical sketch in [7] and
the references in [28]. A recent application concerns the construction of space-filling de-
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signs for compter experiments based on an extension of Lloyd’s clustering algorithm [16].
Some methods are exact and rely on extensions of linear programming algorithms, see
[5, 9, 26]; some use the dual formulation of the problem and construct a sequence of
(1 + εk)-approximations of B∗(Xn) with εk tending to zero, see [4, 28]. The former are
exponential in d and are thus restricted to problems with moderate dimension (d . 20,
say); the latter can also solve problems with large d and compute a (1+ε)-approximation
to B∗(Xn) in O(nd/ε) arithmetic operations, returning an ε-core set of size O(1/ε), see
[6, 28].

Both types of methods can strongly benefit from a reduction of the size of Xn, in the
same way as algorithms for the construction of the minimum-volume ellipsoid containing
Xn can be accelerated when inessential points are eliminated by the inequality of [11],
see [24, Sect. 3.6]. The objective of removing inessential points presents some similarities
with that of obtaining small ε-core sets, with one capital difference though: a point Xi is
called inessential when B∗(Xn \ {Xi}) exactly coincides with B∗(Xn), which happens
in particular when Xi lies in the interior of B∗(Xn). By removing inessential points,
we thus aim at constructing small 0-core sets. Although we know there always exists a
0-core set of size at most d+ 1, its construction requires the knowledge of B∗(Xn). The
objective of the paper is to derive a simple inequality that any point Xj on the boundary
of B∗(Xn) must satisfy, without knowing B∗(Xn). More precisely, we show that for any
probability measure ξ on Xn, with c(ξ) and V (ξ) the corresponding mean and covariance
matrix respectively, any point Xj on the boundary of B∗(Xn) satisfies

‖Xj − c(ξ)‖2 ≥ trace[V (ξ)] + γ(ξ)−
√
γ(ξ){2trace[V (ξ)] + γ(ξ)} , (2)

where γ(ξ) = maxi=1,...,n ‖Xi − c(ξ)‖2 − trace[V (ξ)]. We also prove that this bound on
‖Xj − c(ξ)‖2 is, in some sense, the best possible, and a comparison with the bound
previously proposed in [2] is provided. Since algorithms based on the dual formulation
of the smallest enclosing ball problem generate a sequence of measures ξk, they provide
for free a sequence of inequalities that can be used as sieves to eliminate inessential
points from Xn, and thereby generate a sequence of 0-core sets of decreasing size. When
imbedded in the algorithm, these sieves yield an increasing simplification of iterations,
and thus an acceleration of the algorithm, see [2]. Moreover, the 0-core set obtained after
a few iterations may be small enough to allow the efficient use of an exact quadratic
programming (QP) algorithm for the construction of B∗(Xn)

The paper is organised as follows. Section 2 introduces the notation and presents the
QP and dual formulations of the minimum enclosing ball problem. The inequality (2) is
proved in Section 3, where we also explain why it cannot be improved. Two iterative algo-
rithms are presented in Section 4: a multiplicative algorithm inspired from experimental
design theory and the vertex-direction algorithm of [28]. Some computational results are
presented in Section 5 that illustrate the benefit of the elimination of inessential points,
when using an iterative algorithm to solve the dual problem or before using QP for the
direct approach. In particular, they indicate that for moderate d the application of an
exact QP algorithm to the resulting 0-core set yields the exact minimum ball B∗(Xn)
at reasonable computational cost. Section 6 briefly concludes.
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2. Quadratic programming and dual formulations

For any Xi ∈ Xn and c and c0 in Rd, we can write ‖Xi − c‖2 = ‖Xi − c0‖2 − 2(Xi −
c0)>(c− c0) + ‖c− c0‖2. Therefore, f(c) defined in (1) can be written as

f(c) = max
i=1,...,n

{
‖Xi − c0‖2 − 2(Xi − c0)>(c− c0)

}
+ ‖c− c0‖2 , (3)

and its minimisation is equivalent to the minimisation of ‖c − c0‖2 + t with respect to
(c, t) ∈ Rd+1, subject to the n linear constraints

‖Xi − c0‖2 − 2(Xi − c0)>(c− c0) ≤ t , i = 1, . . . , n . (4)

When d is small enough, simplex-type or projection methods can thus be used to obtain
the exact solution in finite time (assuming calculations with infinite precision); see in
particular the introduction of [10] and the references therein. In case the QP solver
requires a strictly convex problem, one may add a regularisation term, quadratic in t,
to the objective function and minimise ‖c − c0‖2 + t + δt2 with δ arbitrarily small (the
solution obtained being however not exact in this case).

On the other hand, the dual formulation of the problem yields iterative methods that
construct a sequence of (1+εk)-approximations of B∗(Xn) with εk tending to zero, which
are of particular interest when d is large. Direct calculation, using Lagrangian duality,
shows that the construction of B∗(Xn) is equivalent to the determination of Lagrange
coefficients that define weights w = (w1, . . . , wn) in the probability simplex

Pn = {w ∈ Rn :

n∑
i=1

wi = 1 and wi ≥ 0, i = 1, . . . , n} (5)

and maximise

φ(w) = trace[V (w)] =

n∑
i=1

wi‖Xi − c(w)‖2 , (6)

where c(w) =
∑n

i=1wiXi and V (w) =
∑n

i=1wi[Xi − c(w)][Xi − c(w)]>; see, e.g., [7, 28].
The centre c∗n of B∗(Xn) corresponds to c(w∗) for the optimal weights w∗ maximising
φ(w), and its radius r∗n equals

√
φ(w∗). The weights w define a probability measure ξ on

the Xi, and c(w) and V (w) respectively correspond to the mean and variance matrix for
ξ (which, with a slight abuse of notation, we shall also denote by c(ξ) and V (ξ)).

There exist other geometrical problems for which the dual is known to correspond to
an optimal design problem, i.e., to the construction of an optimal probability measure
on Xn. In particular, the determination of the minimum-volume ellipsoid, with fixed
centre c, containing Xn, is equivalent to the D-optimal design problem corresponding to
the maximisation of det[M(w)] with respect to w = (w1, . . . , wn) ∈Pn, with M(w) the
information matrix

M(w) =
n∑
i=1

wi(Xi − c)(Xi − c)>

3
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for the estimation of the d unknown parameters θ in the linear regression model yi = (Xi−
c)>θ+εi, where the εi are i.i.d. observation errors; see [19]. The optimal ellipsoid is given
by {x ∈ Rd : (x− c)>M(w∗)(x− c) ≤ 1/d}, with w∗ an optimal vector of weights. When
the centre of the ellipsoid is free, the determination of the minimum-volume enclosing
ellipsoid forms a D-optimal design problem in Rd+1 [21]: the optimal ellipsoid is given
by the intersection between the minimum enclosing ellipsoid, centred at the origin, for
the n points (Xi, 1) ∈ Rd+1, and the hyperplane {z ∈ Rd+1 : zd+1 = 1}; see also [17,
Sects. 5.6 & 9.1] and the references therein. The connection between the construction of
the thinnest covering cylinder and a Ds-optimal design problem is established in [20] for
cylinders with fixed centre and in [21] when the centre is free.

On the other hand, the maximisation of trace[V (w)] in (6) is not equivalent to an
A-optimal design problem, for which one minimises trace[M−1(w)] for some information
matrix M(w). As shown in the next section, the connection with an optimal design prob-
lem can nevertheless be used to derive the inequality (2), using an approach resembling
that in [11].

3. An inequality to eliminate inessential points

Consider the more general situation where X denotes a compact subset of Rd, with Ξ
the set of probability measures on X . For any ξ ∈ Ξ, denote

c(ξ) = Eξ(x) =

∫
X
x ξ(dx) and φ(ξ) = trace[Var(ξ)] =

∫
X
‖x− c(ξ)‖2 ξ(dx) , (7)

so that c(ξ) = c(w) and φ(ξ) = φ(w) in the finite case where X = Xn with wi = ξ(Xi),
i = 1, . . . , n. The dual problem to the determination of B∗(X ) corresponds to the
maximisation of φ(ξ) with respect to ξ ∈ Ξ: the centre c∗ and radius r∗ of B∗(X ) satisfy
c∗ = c(ξ∗) and r∗ =

√
φ(ξ∗), where ξ∗ maximises φ(ξ) with respect to ξ ∈ Ξ.

3.1 A necessary and sufficient condition for optimality

First note that Ξ is convex: for any ξ, ν ∈ Ξ and α ∈ [0, 1], (1 − α)ξ + αν ∈ Ξ. Denote
g(α) = φ[(1 − α)ξ + αν], which is a quadratic function of α. The directional derivative
of φ(ξ) at ξ in the direction ν ∈ Ξ is given by

Fφ(ξ; ν) =
dg(α)

dα

∣∣∣∣
α=0

=

∫
‖x− c(ξ)‖2 ν(dx)− φ(ξ) . (8)

Note that d2g(α)/dα2 = −2‖c(ν) − c(ξ)‖2 ≤ 0, showing that φ(·) is concave. It is not
strictly concave1, but any pair ξ∗a and ξ∗b of optimal measures necessarily satisfy c(ξ∗a) =
c(ξ∗b ), implying that the optimal ball is unique. Concavity implies that ξ∗ ∈ Ξ is optimal if
and only if Fφ(ξ∗; ν) ≤ 0 for all ν ∈ Ξ. This is equivalent to Fφ(ξ∗; δx) ≤ 0 for all x ∈X ,
with δx the delta measure at x. Moreover, Fφ(ξ∗; ξ∗) = 0 implies that Fφ(ξ∗; δx) = 0 for
any x in the support of ξ; that is, ξ∗{x ∈ Rd : Fφ(ξ∗; δx) = 0} = 1. We thus obtain the
following property, usually called Equivalence Theorem in experimental design theory
(see, e.g., [8, 12, 14, 18]). When X is finite, the conditions are equivalent to the Karush-
Kuhn-Tucker optimality conditions in [28]; see also [7].

1There may exist ξ 6= ν such that φ(ξ) = φ(ν) and c(ξ) = c(ν), and then g(α) is constant for all α ∈ [0, 1] (think

for example of Xn given by the vertices of several regular simplices in Rd all having the same centre).

4
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Theorem 3.1 The centre of B∗(X ) is given by c(ξ∗), where ξ∗ ∈ Ξ satisfies any of the
three following equivalent conditions:
(i) ξ∗ maximises φ(ξ) with respect to ξ ∈ Ξ,
(ii) ξ∗ minimises maxx∈X ‖x− c(ξ)‖2 with respect to ξ ∈ Ξ,
(iii)

‖x− c(ξ∗)‖2 ≤ φ(ξ∗) for all x ∈X . (9)

Moreover, ‖x− c(ξ∗)‖2 = φ(ξ∗) for any x in the support of ξ∗.

3.2 (1 + ε)-approximations and ε-core sets

For any ξ ∈ Ξ, define

γ(ξ) = max
x∈X

‖x− c(ξ)‖2 − φ(ξ) . (10)

Since γ(ξ) = maxx∈X Fφ(ξ; δx), Theorem 3.1 indicates that γ(ξ) ≥ 0 for all ξ ∈X , with
γ(ξ∗) = 0. In some sense, γ(ξ) quantifies the (absolute) suboptimality of the measure ξ.
In this section we show how it is related to the (relative) notions of (1+ε)-approximation
and ε-core set introduced in Section 1.

Consider the ball B(ξ) = Bd(c(ξ),
√
γ(ξ) + φ(ξ)). It contains X by construction, and

Theorem 3.1 indicates that the radius of B∗(X ) equals
√
φ(ξ∗) ≥

√
φ(ξ). Therefore,

B(ξ) forms a (1 + ε)-approximation of B∗(X ) for

ε = ε(ξ) = [1 + γ(ξ)/φ(ξ)]1/2 − 1. (11)

Let S (ξ) denote any compact subset of X such that ξ[S (ξ)] = 1 (the support of ξ, say).
From Theorem 3.1, the radius r∗(ξ) of the smallest ball enclosing S (ξ) is not smaller
than

√
φ(ξ), so that √

φ(ξ) ≤ r∗(ξ) ≤
√
φ(ξ∗) , (12)

where the second inequality follows from S (ξ) ⊂X . On the other hand,

φ(ξ∗) = min
c∈Rd

max
x∈X

‖x− c‖2 ≤ max
x∈X

‖x− c(ξ)‖2 = γ(ξ) + φ(ξ) (13)

(which is also a direct consequence of the concavity of φ(·), which implies that, for any
ξ ∈ Ξ, φ(ξ∗) ≤ φ(ξ) + Fφ(ξ; ξ∗) ≤ φ(ξ) + maxx∈X Fφ(ξ; δx) = γ(ξ) + φ(ξ)). Therefore,
the combination of (12) and (13) gives

r∗(ξ) ≤
√
φ(ξ∗) ≤ [1 + γ(ξ)/φ(ξ)]1/2r∗(ξ) ,

indicating that S (ξ) is an ε-core set for ε given by (11).
These connections are used in particular in [28] to give a thorough characterisation of

the convergence properties of two algorithms that generate sequences of measures ξk, in
terms of their associated (1 + εk)-approximations and εk-core sets. See also Section 4.

5
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3.3 The inequality

Following an approach similar to [11, 15], we now prove the main result of the paper.

Theorem 3.2 For any compact subset X ⊂ Rd and any probability measure ξ on X ,
any y ∈X such that

‖y − c(ξ)‖2 < b[φ(ξ), γ(ξ)] = φ(ξ) + γ(ξ)−
√
γ(ξ)[2φ(ξ) + γ(ξ)] , (14)

where φ(ξ) and γ(ξ) are respectively defined by (7) and (10), is in the interior of the
smallest ball B∗(X ) enclosing X .

Proof. Take any ξ in Ξ and consider γ(ξ) defined by (10). Then, ‖x−c(ξ)‖2 ≤ φ(ξ)+γ(ξ)
for all x ∈X , which implies that∫

X
‖x− c(ξ)‖2 ξ∗(dx) = φ(ξ∗) + ‖c(ξ∗)− c(ξ)‖2 ≤ φ(ξ) + γ(ξ) (15)

for an optimal measure ξ∗. Also, (9) implies∫
X
‖x− c(ξ∗)‖2 ξ(dx) = φ(ξ) + ‖c(ξ∗)− c(ξ)‖2 ≤ φ(ξ∗) . (16)

Consider now any y on the boundary of B∗(X ). From Theorem 3.1 and the triangular
inequality, it satisfies ‖y − c(ξ∗)‖ =

√
φ(ξ∗) ≤ ‖y − c(ξ)‖+ ‖c(ξ∗)− c(ξ)‖, that is,

‖y − c(ξ)‖ ≥
√
φ(ξ∗)− ‖c(ξ∗)− c(ξ)‖ . (17)

We do not know the values of φ(ξ∗) and c(ξ∗), but we can compute a lower bound on the
right-hand side of (17), using (15) and (16). Denote u =

√
φ(ξ∗) and v = ‖c(ξ∗)− c(ξ)‖.

The set {(u, v) ∈ R2 : u2 + v2 ≤ φ(ξ) + γ(ξ) and u2 − v2 ≥ φ(ξ)} is convex, and the
minimum of u− v is obtained for u =

√
φ(ξ) + γ(ξ)/2 and v =

√
γ(ξ)/2; Figure 1 gives

an illustration. Therefore, (17) implies that ‖y − c(ξ)‖2 ≥ b[φ(ξ), γ(ξ)]. �

Figure 1. Determination of the lower bound (14) in the proof of Theorem 3.2: admissible set for (u, v) (coloured)
and optimum point minimising u− v (dot).

6
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Note that b(φ, γ) = φ + γ −
√
γ[2φ+ γ] is decreasing in γ, with b(φ, 0) = φ and

limγ→∞ b(φ, γ) = 0. The right-hand side of (14) gives the tightest lower bound on ‖y −
c(ξ)‖2 for a y on the boundary of B∗(X ), in the sense of the following theorem.

Theorem 3.3 For any integer d ≥ 2 any γ > 0 and δ > 0, there exist a compact subset
X of Rd, a probability measure ξ on X , and a point y on the boundary of B∗(X ) such
that γ = maxx∈X ‖x− c(ξ)‖2 − φ(ξ) and ‖y − c(ξ)‖2 < b[φ(ξ), γ] + δ, with b(φ, γ) as in
Theorem 3.2.

Proof. The proof relies on the construction of an example. The dimension d is irrelevant,
and we only need to consider a finite set X3 with three points X1, X2 and X3 whose first
two coordinates are respectively (0,−1), (0, 1) and (1 + a, 0), a > 0, with ξ the measure
that allocates weights α, α, and 1 − 2α to X1, X2 and X3, α ∈ (0, 1/2). Then, the first
two coordinates of c(ξ) are ((1 − 2α)(1 + a), 0), and φ(ξ) = 2α[1 + (1 + a)2(1 − 2α)].
Also, ‖X1 − c(ξ)‖2 − φ(ξ) = ‖X2 − c(ξ)‖2 − φ(ξ) = (1 − 2α)[(1 + a)2(1 − 4α) + 1] and
‖X3−c(ξ)‖2−φ(ξ) = −2α[(1+a)2(1−4α)+1], so that γ = ‖X1−c(ξ)‖2−φ(ξ) = ‖X2−
c(ξ)‖2−φ(ξ) for any a ≥ 0 when α < 1/4. For any α < 1/4 and δ > 0, we can then choose
a smaller than some h(α, δ) to obtain ‖X3 − c(ξ)‖2 < φ(ξ) + γ −

√
γ[2φ(ξ) + γ] + δ. For

instance, when α = 1/6, we can take a < h(1/6, δ) =
√

9 δ − 1 + 2
√

27 δ2 + 9 δ + 1− 1.
On the other hand, the smallest ball containing {X1, X2} is Bd(0, 1), which shows that
X3 is on the boundary of B∗(X3) since ‖X3‖ > 1. �

It is instructive to compare the bound b[φ(ξ), γ(ξ)] in (14) with that derived in [2].
One may first note that (15) and (16) imply that

for any ξ ∈ Ξ , ‖c(ξ∗)− c(ξ)‖2 ≤ γ(ξ)

2
= φ(ξ)

(2ε+ ε2)

2
, (18)

with ε given by (11), whereas the simple geometric arguments used in [2] only give
‖c(ξ∗)− c(ξ)‖2 ≤ φ(ξ) (2ε+ ε2). In the same paper, the authors combine this inequality
with (17) and obtain that any point y on the boundary of B∗(X ) satisfies

‖y − c(ξ)‖ ≥
√
φ(ξ) [1− (2ε+ ε2)1/2] =

√
φ(ξ) [1−

√
γ(ξ)/

√
φ(ξ)] .

Note that γ(ξ) must be smaller than φ(ξ) (i.e., ε <
√

2 − 1) in order to get a positive
bound able to eliminate points. To compare this result with Theorem 3.2, denote

bAY [φ(ξ), γ(ξ)] = φ(ξ)[max{1−
√
γ(ξ)/

√
φ(ξ), 0}]2 ; (19)

bAY (φ, γ) is decreasing in γ, with bAY (φ, 0) = φ and bAY (φ, γ) = 0 for γ ≥ φ, and
bAY (φ, γ) < b(φ, γ) given by (14) for any φ > 0 and γ > 0. We can also write bAY (φ, γ) =
φ(ξ)[max{1−(2ε+ε2)1/2, 0}]2 and b(φ, γ) = φ[(1+ε)2−{ε(2+ε)[1+(1+ε)2]}1/2], with ε the
approximation level ε = (1 + γ/φ)1/2− 1, see (11). Figure 2-left presents b(φ, γ)/φ (solid
line) and bAY (φ, γ)/φ (dashed line) as functions of ε ∈ [0, 1]; the difference between the
two curves is shown on the right part. The superiority of b(φ, γ) compared to bAY (φ, γ)
is also significant for small ε, so that when approaching the optimum with an iterative
algorithm, the elimination of inessential points is likely to be more efficient with (14)
than when using the bound in [2]. Note that the computational costs of the two bounds
are roughly equivalent.

7
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Figure 2. b(φ, γ)/φ (solid line, left), bAY (φ, γ)/φ (dashed line, left) and [b(φ, γ)−bAY (φ, γ)]/φ (right) as functions
of ε = (1 + γ/φ)1/2 − 1.

3.4 Effectiveness of the elimination

Take any probability measure ξ on X and consider a point y eliminated by (14), that
is, such that ‖y − c(ξ)‖2 < b[φ(ξ), γ(ξ)]. By construction of the bound (14), it satisfies
‖y − c(ξ∗)‖ ≤

√
φ(ξ∗) (this can be directly checked, using the triangular inequality

‖y − c(ξ∗)‖ ≤ ‖y − c(ξ)‖+ ‖c(ξ∗)− c(ξ)‖ and the inequalities (16) and (18)). Therefore,
y belongs to B∗(X ) = Bd(c(ξ

∗),
√
φ(ξ∗)). Let I (ξ) denote the set of inessential points

eliminated by (14) and µ denote the Lebesgue measure on X . We thus have

ω(ξ) =
µ[I (ξ) ∩B∗(X )]

µ[B∗(X )]
=

µ[I (ξ)]

µ[B∗(X )]
≤
(
b[φ(ξ), γ(ξ)]

φ(ξ∗)

)d/2
.

Denote δ(ξ) = γ(ξ)/φ(ξ), and suppose that δ(ξ) = δ > 0. Then, b[φ(ξ), γ(ξ)] = φ(ξ)(1 +
δ −

√
δ(2 + δ)) and Lemma 3.2 of [28] implies that φ(ξ∗) > φ(ξ)(1 + δ2/[4(1 + δ)]).

Therefore,

ω(ξ) < hd/2(δ) , (20)

with h(δ) = 4(1 + δ)(1 + δ −
√
δ(2 + δ))/[4(1 + δ) + δ2] < 1, implying that

µ[I (ξ)]/µ[B∗(X )] → 0 as d → ∞. We can thus expect that in general, for points
Xi approximately uniformly distributed in a compact set, the effectiveness of the sieve
formed by (14) will decrease as the dimension d increases. This can be investigated more
precisely in some simple situations. Define

α(ξ) =
µ[I (ξ)]

µ(X )
,

the proportion of points eliminated by (14), and let ξu denote the uniform probability
measure on X .

X is the d-dimensional ball Bd(0, 1). In that case, X = B∗(X ) and α(ξ) = ω(ξ)
for any ξ. When x ∼ ξu, then ‖x‖ has the density ϕ(r) = drd−1, r ∈ [0, 1], and φ(ξu) =
d/(d+ 2), γ(ξu) = 1−φ(ξu) = 2/(d+ 2). This gives b[φ(ξu), γ(ξu)] = 1− 2

√
d+ 1/(d+ 2)

8
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and therefore

α(ξu) = bd/2[φ(ξu), γ(ξu)] =

(
1− 2

√
d+ 1

d+ 2

)d/2
,

which is a decreasing function of d, the values of α(ξu) being already moderate for small
d, with α(ξu|d = 2) = 1−

√
3/2 ' 0.1340 and α(ξu|d = 3) =

√
5/25 ' 0.0894. Similarly,

for the bound (19) of [2] we obtain bAY [φ(ξu), γ(ξu)] = d/(d + 2) (1−
√

2/d)2 for d > 2
(and 0 for d = 1, 2). The values of b[φ(ξu), γ(ξu)] and bAY [φ(ξu), γ(ξu)] are plotted against
d in Figure 3-left; the corresponding proportions α(ξu) are presented in Figure 3-right.

Figure 3. b[φ(ξu), γ(ξu)] (stars, left), bAY [φ(ξu), γ(ξu)] (triangles, left) and corresponding proportions α(ξu) of
eliminated points (right, log-scale) as functions of d.

X is the hypercube [−1/2, 1/2]d. Direct calculation gives φ(ξu) = d/12 and
γ(ξu) = d/4 − φ(ξu) = d/6, so that b[φ(ξu), γ(ξu)] = d(1/4 −

√
2/6). For d ≤

17, Bd(c(ξu), b1/2[φ(ξu), γ(ξu)]) ⊂ X , and α(ξu) = bd/2[φ(ξu), γ(ξu)]Vd, with Vd =
vol[Bd(0, 1)] = πd/2/Γ(d/2 + 1) the volume of the d-dimensional unit ball Bd(0, 1).
Again α(ξu) is a decreasing function of d, with α(ξu|d = 2) = (3 − 2

√
2)π/6 ' 0.0898

and α(ξu|d = 3) = (
√

2− 1)3 π/6 ' 0.0372. Note that (19) does not permit to eliminate
any point since γ(ξu) > φ(ξu).

Although (20) indicates that the effectiveness of the elimination of inessential points
decreases with d for a fixed δ (that is, for a fixed level of approximation 1 + ε =

√
1 + δ,

see Section 3.2), the proportion α(ξ) can be significant when ξ approaches optimality (so
that δ = δ(ξ) is small enough in (20)). In particular, algorithms for the solution of the
dual formulation of the smallest enclosing ball problem generate sequences of measures
ξk that can be used as sieves to progressively eliminate points. Two such methods are
presented in the next section.

4. Algorithms for the dual

4.1 A multiplicative algorithm

We return to the case of a finite set Xn, with wi = ξ(Xi) the weight allocated by the
measure ξ to the point Xi ∈ Xn. Starting with weights w0

i > 0 for all i, for instance

9
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w0
i = 1/n, consider the application of successive iterations of the form

wk+1
i = ŵk+1

i = wki
‖Xi − c(wk)‖2∑n

j=1w
k
j ‖Xj − c(wk)‖2

, i = 1, . . . , n . (21)

This type of algorithm is called multiplicative in the literature on optimal experimental
design: the weights wki of the measure ξk at iteration k are simply multiplied by positive

factors fi(w
k)/
∑k

j=1w
k
j fj(w

k), with here fi(w
k) = ‖Xi − c(wk)‖2 = dφ(w)/dwi

∣∣
w=wk .

In the case of D-optimal design, similar iterations ensure monotonic convergence to the
minimum-volume ellipsoid containing Xn, see [22, 23, 29]. Here the iteration (21) does
not guarantee that φ(wk+1) > φ(wk) for all non-optimal wk, and, following [27], we
consider iterations of the (more general) form

wk+1
i = w̃k+1

i (βk) = wki [1 + βk Fφ(ξk; δXi
)]

= wki {1 + βk [‖Xi − c(wk)‖2 − φ(wk)]} , (22)

where βk ≥ 0, Fφ(ξ; ν) is the directional derivative defined in (8), and where ξk allocates

weight wki to Xi, i = 1, . . . , n. Note that
∑n

i=1 w̃
k+1
i (βk) = 1 and that all w̃k+1

i (βk) remain

non-negative if βk is small enough. Also note that w̃k+1
i [1/φ(wk)] = ŵk+1

i given by (21).
The iteration (22) corresponds to a projected second-order method for the maximisation
of φ(w), see [27] and [17, Sect. 9.1], and there always exists a step-size βk > 0 such that
φ(wk+1) > φ(wk) when w∗ is not optimal. Since here φ[w̃k+1

i (βk)] is quadratic in βk, the
maximising value β∗k can be calculated explicitly and is given by

β∗k =

∑k
i=1 ŵ

k+1
i [‖Xi − c(wk)‖2 − φ(wk)]

2φ(wk) ‖c(ŵk+1)− c(wk)‖2
, (23)

where the components of ŵk+1 are given by (21). Since the iteration (21) is simpler than
(22)-(23), it is advisable to always try the former first, and switch to the latter only if
(21) does not yield an increase of φ(·) (numerical experimentation indicates that this is
rather exceptional). To ensure that all components of w̃k+1

i (βk) remain non-negative, we
should normally take βk = min{β∗k, βk,max}, where βk,max = [φ(wk) −minj=1,...,n ‖Xj −
c(wk)‖2]−1 ≥ 1/φ(wk), see (22). However, from the quadratic dependence of φ[w̃k+1

i (βk)]

in βk, φ(ŵk+1
i ) ≤ φ(wk) is equivalent to 1/φ(wk) ≥ 2 β̃∗k and thus implies βk,max ≥ 2β∗k.

The construction is summarised in Algorithm 1.
Algorithm 1 stops when a (1 + εk)-approximation of B∗(Xn) is obtained, with εk =√
1 + γ(wk)/φ(wk)− 1 < ε. The sequence {φ(wk)} is monotonically increasing, but the

investigation of its convergence properties as k →∞ is out of the scope of this paper and
will be considered elsewhere. The complexity of each iteration is roughly proportional
to n, and the algorithm may benefit from the elimination of inessential points using the
results of Section 3.3. This is considered in the next section.

4.2 Elimination of inessential points by the multiplicative algorithm

The uniform measure, with w0
i = 1/n for all i, used to initialise Algorithm 1 can be used

to eliminate inessential points from Xn. For a given n, the proportion α(w0) of points
that can be eliminated depends on the precise location of the Xi, but we can consider
the limiting situation where n tends to infinity and the Xi are uniformly distributed in a

10
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Algorithm 1 Multiplicative algorithm for the smallest enclosing ball problem

Require: Xn a set of n points in Rd and ε > 0.
Set w0

i = 1/n for i = 1, . . . , n; k ← 0;
compute c(w0), φ(w0) and γ(w0).
while γ(wk)/φ(wk) > (1 + ε)2 − 1 do

compute ŵk+1
i given by (21), compute c(ŵk+1) and φ(ŵk+1);

if φ(ŵk+1
i ) > φ(wk) then set wk+1 = ŵk+1;

else compute wk+1
i = w̃k+1

i (β∗k) given by (22)-(23), compute c(wk+1) and φ(wk+1);
end if
compute γ(wk+1), k ← k + 1;

end while
return wk, c(wk), εk =

√
1 + γ(wk)/φ(wk)− 1

compact set X ⊂ Rd with strictly positive d-dimensional Lebesgue measure µ and equal
to the closure of its interior. The Xi may be independently identically distributed in X
with the probability measure ξu = µ/vol(X ), with vol(X ) the volume of X , or they
may correspond to the first n points of a low-discrepancy sequence on X , see, e.g., [13,
Chap. 3]. In both situations,

lim
n→∞

α(w0) = α(ξu) = ξu

{
Bd

(
c(ξu), b1/2[φ(ξu), γ(ξu)]

)
∩X

}
,

where b(φ, γ) is given by (14) and the convergence is almost sure when the Xi are i.i.d.
The values of α(ξu) obtained in Section 3.4 for the case where X is a d-dimensional ball

or hypercube suggest that the elimination of inessential points via (14) will be generally
not very effective when using ξu only. Below we investigate how the situation improves
when applying several iterations (21).

In terms of probability measure, the iteration (21) can be written as

ξk+1(dx) =
‖x− c(ξk)‖2 ξk(dx)∫

y∈X ‖y − c(ξk)‖2 ξk(dy)
, x ∈X .

When initialised at the uniform measure ξu on X , it corresponds to the limiting be-
haviour of (21) as n→∞ for points Xi uniformly distributed in X . When 0 is a centre
of symmetry for X , φ(ξk+1) > φ(ξk), c(ξk) = 0 and maxx∈X ‖x − c(ξk)‖2 = M for
all k, with M = 1 when X = Bd(0, 1) and M = d/4 when X = [−1/2, 1/2]d. Di-

rect calculation gives b[φ,M − φ] = M −
√
M2 − φ2, which is increasing in φ, so that

α(ξk+1) > α(ξk).

Consider the case X = Bd(0, 1). After k iterations, φ(ξk) =
∫ 1

0 r
2 ϕk(r)dr, with

ϕk(r) = (d+ 2k) rd−1+2k, which gives φ(ξk) = (d+ 2k)/(d+ 2k + 2). The proportion of
points eliminated by (14) after those k iterations is

α(ξk) =
{

1− [1− φ2(ξk)]1/2
}d/2

=

(
1− 2

√
d+ 1 + 2k

d+ 2 + 2k

)d/2
, (24)

which is decreasing in d for fixed k, but increases in k for fixed d, with limk→∞ α(ξk) = 1.
The value of αk slightly improves when inessential points are removed after each it-

eration, provided the mass of eliminated points is suitably distributed on the remain-

11
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ing ones. Suppose for instance that we simply renormalise the total mass of remain-
ing points. Then, at iteration k ≥ 1, φ(ξk) =

∫ 1
A1/2(ξk−1) r

2 ϕk(r)dr, where ϕk(r) =

(d+2k) [1−A(d+2k)/2(ξk−1)]−1 rd−1+2k, r ∈ [A1/2(ξk−1), 1], with A(ξ) = 1−
√

1− φ2(ξ).
This gives

φ(ξk) =
d+ 2k

d+ 2(k + 1)

1−Ad/2+k+1(ξk−1)

1−Ad/2+k(ξk−1)
and α(ξk) = Ad/2(ξk) , k ≥ 1 . (25)

Numerical evaluations for different d and k indicate that α(ξk) is only marginally larger
than the value in (24), with the consequence that trying to remove inessential points at
each iteration of Algorithm 1 is generally not very efficient.

4.3 A vertex-direction algorithm

Algorithm 4.1 of [28] is similar to the algorithm of [25] for the construction of the mini-
mum ellipsoid containing Xn and to the algorithm proposed in [3] for the construction
of a D-optimal design measure. The detailed analysis in [28] indicates in particular that
the algorithm asymptotically presents linear convergence; see also [1]. An initialisation
at a two-point measure is proposed,

ξ2 = (1/2)(δXi1
+ δXi2

) , with i1 = arg max
i=1,...,n

‖Xi−X1‖ and i2 = arg max
i=1,...,n

‖Xi−Xi1‖ ,

(26)
so that wi1 = wi2 = 1/2 and wi = 0 for all i 6= i1, i2 (when the order of indices is
randomised, X1 can be considered as randomly drawn among the Xi). This construction
ensures that Xi1 and Xi2 will be far apart, without requiring the computation of all
n(n−1)/2 pair distances. It is a key argument in the complexity analysis of the algorithm.
Direct calculation gives φ(ξ2) = ‖Xi1 −Xi2‖2/4.

The method is summarised in Algorithm 2 below, with two small modifications com-
pared with the original version in [28]: (i) the choice between a plus-iteration (displace-
ment in the direction of the furthest point Xi+ to the current center c(wk)) or a minus-
iteration (reduction of the weight allocated to the closest point Xi− to c(wk) among
the current support J (wk)) is based on the comparison between the values of φ(wk+1)
corresponding to these two options, whereas [28] simply compares γ(wk) with γ−(wk);
(ii) the algorithm is stopped when γ(wk)/φ(wk) ≤ (1 + ε)2 − 1, whereas the condition
is max{γ(wk), γ−(wk)}/φ(wk) ≤ (1 + ε)2 − 1 in [28]. These minor differences do not
modify the complexity analysis in the same paper, and the algorithm returns a (1 + ε)-
approximation in 18 + 50/ε iterations at most.

The two-point measure ξ2 defined by (26) can also be used to eliminate inessential
points. Let Xi∗ denote the furthest point in Xn from c(ξ2) = (Xi1 + Xi2)/2. Then,
‖Xi∗ − c(ξ2)‖ ≤ σ ‖Xi2 − Xi1‖ for some σ > 0 implies that γ(ξ2)/φ(ξ2) ≤ 4σ2 − 1 and
thus

b[φ(ξ2), γ(ξ2)]

φ(ξ2)
≥ τ2 = 4σ2 −

√
16σ4 − 1 .

Any point Xi such that ‖Xi−c(ξ2)‖ < (τ/2) ‖Xi2−Xi1‖ is thus in the interior of B∗(Xn).
On the other hand, note that the bound bAY [φ(ξ2), γ(ξ2)] given by (19) is informative
only when σ <

√
2/2 (to ensure that γ(ξ2) < φ(ξ2)). Since τ is decreasing in σ, the

smaller σ is, the more efficient the elimination of inessential points. For instance, when

12
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Algorithm 2 Vertex-direction algorithm for the smallest enclosing ball problem

Require: Xn a set of n points in Rd and ε > 0.
Set w0

i1
= w0

i2
= 1/2 and w0

i = 0 for all i 6= i1, i2, where i1 and i2 are given by (26);
k ← 0;
Set c(w0) = (Xi1 + Xi2)/2, φ(w0) = ‖Xi1 −Xi2‖2/4, J (w0) = {i1, i2}, γ−(w0) = 0,
i− = 1, compute γ(w0) and i+ = arg maxi=1,...,n ‖Xi − c(w0)‖.
while γ(wk)/φ(wk) > (1 + ε)2 − 1 do

if γ(wk) > γ−(wk)/[1− γ−(wk)/φ(wk)] then
compute αk = γ(wk)/{2[φ(wk) + γ(wk)]},
set wk+1

i+ = (1− αk)wki+ + αk and wk+1
i = (1− αk)wki for all i 6= i+,

compute c(wk+1) = (1− αk)c(wk) + αkXi+ ;
else

compute αk = min
{
γ−(wk)/{2[φ(wk)− γ−(wk)]}, wki−/(1− wki−)

}
,

set wk+1
i− = (1 + αk)w

k
i− − αk and wk+1

i = (1 + αk)w
k
i for all i 6= i−,

compute c(wk+1) = (1 + αk)c(w
k)− αkXi− ;

if αk = wki−/(1− wki−) then
J (wk+1) = J (wk) \ {i−}

else
J (wk+1) = J (wk)

end if
end if
compute φ(wk+1), γ(wk+1) and i+ = arg maxi=1,...,n ‖Xi − c(wk+1)‖,
i− = arg mini=1∈J (wk+1) ‖Xi − c(wk+1)‖ and γ−(wk+1) = φ(wk+1) − ‖Xi− −

c(wk+1)‖;
k ← k + 1;

end while
return wk, c(wk), εk =

√
1 + γ(wk)/φ(wk)− 1

X = Bd(0, 1) or X = [−1/2, 1/2]d we can take σ = 1/2, which gives τ = 1: all points in
the interior of Bd(c(ξ2), ‖Xi2 −Xi1‖/2) are eliminated (and ξ2 is optimal whatever the
choice of X1 in X ). More generally, Lemma 3.1 in [28] gives σ = 3/2 for any Xn, since

‖Xi∗−c(ξ2)‖ ≤ ‖Xi∗−Xi1‖+‖Xi1−c(ξ2)‖ ≤ ‖Xi2−Xi1‖+
1

2
‖Xi1−Xi2‖ =

3

2
‖Xi1−Xi2‖ .

This bound is not tight, however: equality can only be achieved when Xi∗ , Xi1 and Xi2

are aligned, with Xi1 between Xi∗ and Xi2 , which contradicts the fact that Xi1 is the
furthest point in Xn from some X1. A more precise analysis, see Appendix A, yields
σ =
√

7/2, and the corresponding bound is tight. This indicates that, for any set Xn and
for any point X1 ∈Xn used for the construction of ξ2, any Xi such that

‖Xi − c(ξ2)‖ < 0.133974 ‖Xi2 −Xi1‖ <
√

7− 4
√

3 ‖Xi2 −Xi1‖/2 (27)

can always be eliminated2. In practice, ‖Xi∗−c(ξ2)‖ is often much smaller than
√

7 ‖Xi1−
Xi2‖/2, and ξ2 proves generally more efficient than the uniform measure ξu for eliminating
inessential points. This is illustrated in the next section.

2Although the value σ =
√

7/2 gives a tight bound, one may notice that the inequality (27) is suboptimal since

the worst-case situations in Theorem 3.3 and Lemma A.1 correspond to different measures.

13
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5. Computational results

Methods to be compared. In this section, we report the results of computational ex-
periments comparing different methods for the construction of B∗(Xn). The first one
(henceforth QP) corresponds to the direct application of the QP solver of Matlab (the
function qp.m) to the minimisation of (3), see Section 1. In the method QP0, we first
eliminate inessential points using the sieve (14) for ξ2 given by (26) and then apply the
same QP solver.

The choice of c0 in (3) is arbitrary, and c0 = c(ξu) = (1/n)
∑n

i=1Xi seems natural.
However, we found that c0 has a significant influence on the computational time, and that
taking c0 out of the convex hull Conv(Xn) of Xn generally yields a faster computation of
the optimal solution. Note that, when c0 /∈ Conv(Xn), for any t ∈ R there exists a c ∈ Rd
satisfying the constraints (4) (and the set of such feasible c is unbounded). On the other
hand, no feasible c exists for small enough t when c0 ∈ Conv(Xn). In our computations
we take c0 = 2Xia −Xib , where ia = arg maxi=1,...,n u

>Xi and ib = arg mini=1,...,n u
>Xi,

with u> = (1, 0, . . . , 0) (the choice of u does not seem important). The QP solver is
initialised at (c(ξu), 0) (which is not necessarily feasible for (4)).

We also consider the iterative construction of an (1 + ε)-approximation of B∗(Xn),
using Algorithms 1 and 2 (henceforth A1 and A2), both with ε = 10−3. A1 and A2
do not eliminate any point. As noticed in Section 4.2, it is not very efficient to try
to eliminate inessential points at each iteration of A1. Our experiments indicate that
a suitable compromise between the computational cost of the elimination test and the
benefit of reducing the dimension of w is obtained when the sieve (14) is used about
every 5 iterations of A1 or A2; the corresponding methods are denoted by A15 and A25,
respectively. For each of them, inessential points are also eliminated at the initialisation,
using (14) with ξ2. A1′5 and A2′5 differ from A15 and A25 by the stopping rule only: they
are stopped when an (1+ε)-approximation is obtained or earlier if n−2d inessential points
have already been eliminated. In case of early stopping, QP applied to the resulting 0-core
set will thus have to deal with 2d constraints only (the value 2d is somewhat arbitrary,
but seems reasonable for most situations since B∗(Xn) has d + 1 points at most on its
boundary when the n points in Xn are in general position). In A1′5-QP and A2′5-QP
we apply QP to the 0-core sets returned by A1′5 and A2′5, respectively. Finally, A2∗5 is
similar to A25 but uses ε = 10−6, and thus returns an (1+ε)-approximation very close to
the exact B∗(Xn) given by QP, QP0, A1′5-QP and A2′5-QP. We shall call these methods
(including A2∗5) exact in what follows.

When using A1 or A2, points that are eliminated by (14) for the current measure ξk

may carry a positive weight wki , and the weights of remaining points then need to be
renormalised. Denote by Ik the set of indices of those remaining points; following [11],
we replace wki by zki /(

∑n
j=1 z

k
j ), where zki = 0 for i /∈ Ik, z

k
i = 1.1wki if ‖Xi− c(wk)‖2 ≥

φ(wk) and zki = wki otherwise (i ∈ Ik and ‖Xi − c(wk)‖2 < φ(wk)).

Measures of performance. The experiments were carried out on a PC with a clock
speed of 2.50 GHz and 32 Go RAM.

We first compare (Tables 1, 4 and 7) the effectiveness of the sieve (14) for the uniform
measure ξu used to initialise A1 and for ξ2 given by (26): π(ξ) = 1 − α(ξ) gives the
proportion of points that are not eliminated by ξ. To compare the efficiency of (14)
with that of the bound (19) proposed in [2], we also give the value πAY (ξ2) obtained
when bAY [φ(ξ2), γ(ξ2)] is used instead of b[φ(ξ2), γ(ξ2)]. We also indicate the number
κ of remaining points after using A15, A25 or A2∗5 that incorporate an elimination of

14
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inessential points.
In Tables 2, 5 and 8, Nε gives the number of iterations performed to reach the required

precision ε for A1, A15, A2, A25 (ε = 10−3) and A2∗5 (ε = 10−6), or to eliminate at least
n− 2d points for A1′5 and A2′5.

Finally, in Tables 3, 6 and 9 we compare the computational times of the different
methods considered, with t(QP), the computational time of QP, taken as a reference:
for each method M other than QP, with computational time t(M), we indicate the ratio
ρ(M)=t(M)/t(QP).

n consecutive points of Sobol’ low-discrepancy sequence in [0, 1]d. Table 1 indicates
that ξ2 is much more effective than the uniform measure ξu for eliminating points with
(14) when d is not too large, d . 10 say; one may note the good agreement between π(ξu)
and the theoretical value π∗ = 1 − [π d(1/4 −

√
2/6)]d/2/Γ(d/2 + 1) (d ≤ 17) derived in

Section 3.4. For d between 3 and 10, πAY (ξ2) is most often significatively larger than
π(ξ2), which illustrates the superiority of the bound (14) over (19). The number of
remaining points after running A15 or A25 are very close in most cases. Exceptions, like
n = 103 and n = 104 for d = 3 and n = 105 for d = 4, correspond to situations where A25

is used for less than 5 iterations, so that inessential points are only eliminated once (at
the initialisation) whereas A15 makes much more iterations, see Table 2 (when less than
5 iterations are done, then κ = nπ(ξ2)). As expected, κ(A2∗5) is smaller than κ(A25) in
all cases, and Table 1 indicates that A2∗5 is able to provide small 0-core sets for the sets
Xn considered.

Table 2 shows that the elimination of inessential points does not directly influence
the number of iterations required to reach a given precision: Nε(A15) is often smaller
than Nε(A1), but not always; the effect on A2 is limited. A15 requires systematically
more (sometimes much more) iterations than A25 to reach the required precision ε,
which can be related to the general observation that multiplicative algorithms tend to be
slow close to the optimum. This is consistent with the observations that sometimes A1′5
requires significantly less iterations than A15, whereas Nε(A2′5) is close to Nε(A25) in all
circumstances: A15 may have reached an (1 + ε′)-approximation, ε′ > ε, close enough to
the optimum to be able to eliminate many points, but may still require many iterations to
reach an (1+ε)-approximation. The number of iterations of A2∗5 (ε = 10−6) shows a great
variability among the cases considered, and the large values obtained for d = 2, n = 103

and n = 104 may look surprising. However, they do not contradict the complexity bound
Nε(A2) < 18 + 50/ε of [28] and can be explained by the potential slow convergence of
first-order methods close to the optimum. A simple example with d = 2 and n = 4 gives
an illustration.

Take Xn = {X1, X2, X3, X4} with X1 = (1 − a, a)>, X2 = (a, 1 − a)>, X3 = (0, 0)>

and X4 = (1, 1)>, a < 1/2. When a < 1/2 −
√

3/6, then ‖X1 − X2‖ > ‖X1 − X3‖, so
that i1 = 2 and i2 = 1 in (26). The initial w0 of A2 is thus (1/2, 1/2, 0, 0), and A2 may
require many iterations to reach precision ε depending on the value of a. For instance,
for ε = 10−5, Nε(A2)=6252 when a = 10−3 and Nε(A2)=62502 when a = 10−4 (whereas
Nε(A1)=7361 and Nε(A1)=1 for a = 10−3 and a = 10−4, respectively).

A noticeable observation from Table 3 is that a standard QP solver gives the solution
in reasonable time if n is not too big, even for rather large d. A1′5 (respectively, A2′5)
is slightly faster than A15 (respectively, A25) since it is stopped earlier; the comparison
with A1 (respectively, A2) shows that the elimination of points significantly accelerates
convergence3. Since A15 and A25 only provide (1 + ε)-approximations with ε = 10−3,

3The same observation can be made on Tables 6 and 9.
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Table 1. Sobol’ sequence in [0, 1]d: proportion π (in %) of points not eliminated

and number κ(M) of remaining points after applying method M.

d n π∗ π(ξu) π(ξ2) πAY (ξ2) κ(A15) κ(A25) κ(A2∗5)

2 103 91.02 91.0 0.4 0.4 4 4 4
104 91.02 91.04 0.04 0.04 4 4 4
105 91.02 91.03 0.004 0.004 4 4 4

3 103 96.28 96.66 1.3 2.40 5 13 4
104 96.28 96.34 1.23 3.96 11 123 4
105 96.28 96.30 0.060 0.136 45 60 3

4 103 98.39 98.30 17.2 44.8 8 7 3
104 98.39 98.41 0.02 0.02 2 2 2
105 98.39 98.39 2.318 10.359 32 2318 5

5 103 99.28 99.30 34.1 70.5 10 8 5
104 99.28 99.28 19.16 63.45 20 16 6
105 99.28 99.28 5.976 29.445 27 16 5

10 103 99.98 99.8 75.8 99.4 13 13 8
104 99.98 99.95 85.34 99.96 28 30 10
105 99.98 99.98 45.128 95.730 40 48 11

20 103 99.9 99.7 100.00 34 34 13
104 99.99 98.56 100.00 52 57 14
105 99.999 95.217 99.999 53 40 11

30 103 99.9 99.9 100.00 28 28 12
104 99.99 99.98 100.00 42 48 14
105 99.999 98.897 100.00 98 108 16

40 103 99.9 100.00 100.00 46 33 13
104 99.99 100.00 100.00 60 71 14
104 99.999 99.989 100.00 162 121 19

50 103 99.9 100.00 100.00 43 51 15
104 99.99 100.00 100.00 77 113 17
105 99.999 100.00 100.00 185 155 27

comparing their computational time with that of QP is unfair. A1′5-QP is sometimes
faster than QP, but is always slower than A2′5-QP, which is often faster than QP and
sometimes the fastest among the exact methods considered. A2∗5 is seldom the fastest
among exact methods and is often much slower than QP. In this example, QP0 is faster
than QP for n ≤ 10 and slightly slower when n ≥ 20 (i.e., when few points are eliminated
by ξ2); it is frequently the fastest exact method when n ≤ 5.

n points i.i.d. N (0, Id). Table 4 indicates that the elimination of inessential points
is more efficient with A15 than A25, and that both methods are able to provide small
0-core sets. For d . 10, πAY (ξ2) is significatively larger than π(ξ2), confirming the su-
periority of the bound (14) over (19). Table 5 gives the same indications as Table 2:
sometimes A1′5 requires significantly less iterations than A15, an indication of the slow
convergence of the multiplicative algorithm near the optimum. Also, Nε(A15)>Nε(A25)
and Nε(A1′5)>Nε(A2′5) in all cases. One may notice the large values of Nε(A2∗5). Table 6
shows that QP0 and A25-QP are often the fastest among exact methods, which is never
the case for A2∗5. QP0 shows remarkably stable performance and is significantly faster
than QP when n ≤ 5 (i.e., when the elimination of inessential points by ξ2 is effective, see
Table 4) and is only slightly slower than QP for n ≥ 10. QP is the fastest exact method
for n small enough (n ≤ 103) when d ≥ 10 and for all n ≥ 103 when d is large (d ≥ 40).

n points i.i.d. uniformly in Bd(0, 1). This corresponds to a difficult situation for
algorithms 1 and 2, and due to the larger computational times required compared to
previous examples we only consider d ≤ 40 (and n ≤ 104 for d = 40). Table 7 shows that
the proportion of points eliminated by ξu or ξ2 is very small already for d = 10. Now
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Table 2. Sobol’ sequence in [0, 1]d: number Nε of iterations per-

formed to reach precision ε = 10−3 (ε = 10−6 for A2∗5).

d n A1 A15 A1′5 A2 A25 A2′5 A2∗5

2 103 44 1 0 0 0 0 32263
104 173 1 0 0 0 0 32263
105 266 0 0 0 0 0 0

3 103 80 270 70 3 3 3 12
104 253 169 169 3 3 3 34
105 242 219 219 1 1 1 7

4 103 91 84 75 5 6 5 14
104 94 0 0 0 0 0 0
105 229 123 123 4 4 4 818

5 103 93 92 75 29 22 20 76
104 212 88 88 63 81 81 178
105 179 107 107 50 55 55 465

10 103 89 139 40 62 56 35 457
104 175 97 97 69 79 79 446
105 200 137 137 66 74 74 930

20 103 241 139 115 89 89 85 714
104 166 152 152 44 37 37 348
105 244 142 142 61 36 35 301

30 103 286 204 50 37 28 25 373
104 336 237 210 87 63 55 1007
105 342 222 222 76 66 66 959

40 103 206 117 80 28 26 15 132
104 115 99 90 60 56 50 311
105 359 188 188 76 45 45 744

50 103 153 103 60 56 44 30 336
104 191 154 125 56 54 54 617
105 266 143 143 93 79 79 1726

Table 3. Sobol’ sequence in [0, 1]d: computational time t(QP) (in s) and ratios ρ(M)=t(M)/t(QP) —

averaged over 10 repetitions. Italicized figures correspond to the fastest exact method.

d n t(QP) QP0 A1 A15 A1′5 A2 A25 A2′5 A1′5-QP A2′5-QP A2∗5

2 103 0.006 0.40 2.13 0.27 0.22 0.16 0.14 0.14 0.37 0.29 864.1
104 0.030 0.08 3.27 0.08 0.07 0.04 0.05 0.05 0.10 0.08 164.1
105 0.27 0.06 4.69 0.07 0.07 0.04 0.06 0.06 0.08 0.06 0.06

3 103 0.004 0.49 4.11 11.05 3.20 0.32 0.30 0.30 3.43 0.59 0.70
104 0.029 0.10 5.19 1.08 1.07 0.10 0.08 0.08 1.10 0.12 0.27
105 0.28 0.06 4.43 0.20 0.20 0.06 0.07 0.07 0.20 0.07 0.07

4 103 0.004 0.56 4.75 4.23 3.99 0.44 0.49 0.45 4.25 0.68 0.83
104 0.029 0.08 1.96 0.09 0.08 0.05 0.06 0.06 0.11 0.09 0.06
105 0.32 0.10 4.32 0.17 0.17 0.11 0.07 0.07 0.18 0.10 0.45

5 103 0.005 0.92 4.06 3.80 3.20 1.30 1.03 0.97 3.48 1.25 2.81
104 0.031 0.28 4.22 0.67 0.66 1.20 0.52 0.53 0.70 0.57 1.04
105 0.32 0.14 4.08 0.20 0.20 1.05 0.12 0.12 0.21 0.13 0.31

10 103 0.007 0.97 3.18 4.12 1.64 2.28 1.79 1.24 2.05 1.63 11.6
104 0.040 0.95 3.61 0.93 0.93 1.36 0.49 0.49 1.01 0.57 1.94
105 0.40 0.57 7.03 0.64 0.64 2.16 0.26 0.26 0.65 0.27 0.58

20 103 0.011 1.06 6.18 3.02 2.62 2.21 1.73 1.65 3.21 2.20 10.9
104 0.059 1.14 6.17 1.76 1.77 1.70 0.47 0.48 1.88 0.58 1.33
105 0.55 1.15 12.71 1.99 2.01 3.00 0.50 0.50 2.02 0.51 0.58

30 103 0.015 1.08 5.66 2.78 1.05 0.76 0.52 0.49 1.65 1.06 3.96
104 0.075 1.18 15.65 2.30 2.26 4.02 0.73 0.72 2.38 0.84 2.70
105 0.74 1.22 23.86 2.80 2.80 5.05 0.93 0.93 2.82 0.94 1.12

40 103 0.021 1.05 3.38 1.56 1.23 0.52 0.42 0.31 1.93 0.94 1.19
104 0.092 1.16 6.52 2.58 2.58 3.28 0.99 0.98 2.78 1.16 1.46
105 0.92 1.28 27.89 4.06 4.05 5.68 1.04 1.03 4.07 1.06 1.14

50 103 0.030 1.04 2.02 1.04 0.77 0.71 0.45 0.36 1.49 1.06 1.98
104 0.12 1.19 11.88 3.21 3.18 3.44 1.13 1.14 3.42 1.36 1.93
105 1.19 1.24 21.67 4.24 4.23 7.31 1.14 1.14 4.26 1.17 1.36
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Table 4. Xi i.i.d. N (0, Id): proportion π (in %) of points not eliminated
and number κ(M) of remaining points after applying method M — averaged

values over 100 repetitions, rounded to the nearest integer.

d n π(ξu) π(ξ2) πAY (ξ2) κ(A15) κ(A25) κ(A2∗5)

2 103 93.40 12.81 40.23 4 29 10
104 94.86 9.00 37.00 5 240 65
105 95.92 3.61 25.69 6 495 21

3 103 96.70 32.94 75.37 5 52 9
104 97.68 18.59 66.15 6 112 17
105 98.25 9.19 50.79 8 129 4

4 103 98.21 46.39 84.81 7 20 5
104 98.77 34.30 82.96 8 127 5
105 99.16 24.00 78.00 10 507 320

5 103 98.89 62.18 92.52 8 22 5
104 99.31 47.69 94.04 10 81 5
105 99.54 33.27 84.58 12 17 5

10 103 99.78 93.52 99.93 13 15 8
104 99.91 89.03 99.99 17 26 8
105 99.96 81.00 99.92 22 25 9

20 103 99.99 99.94 100.00 22 24 12
104 100.00 99.79 100.00 32 33 13
105 100.00 99.39 100.00 42 45 14

30 103 100.00 100.00 100.00 30 31 16
104 100.00 100.00 100.00 45 46 18
105 100.00 100.00 100.00 64 67 20

40 103 100.00 100.00 100.00 39 40 18
104 100.00 100.00 100.00 59 63 21
105 100.00 100.00 100.00 86 92 24

50 103 100.00 100.00 100.00 48 49 21
104 100.00 100.00 100.00 74 77 24
105 100.00 100.00 100.00 107 112 28

Table 5. Xi i.i.d. N (0, Id): number Nε of iterations performed

to reach precision ε = 10−3 (ε = 10−6 for A2∗5) — averaged

values over 100 repetitions, rounded to the nearest integer.

d n A1 A15 A1′5 A2 A25 A2′5 A2∗5

2 103 80 126 95 27 23 22 91
104 84 288 187 38 36 36 291
105 114 132 123 40 35 35 74

3 103 84 98 55 36 33 26 86
104 99 83 68 48 40 37 92
105 112 107 100 51 46 45 170

4 103 107 87 59 46 40 34 385
104 110 86 66 47 40 37 142
105 127 90 82 74 63 61 288

5 103 104 82 54 50 46 37 191
104 122 93 74 64 52 47 199
105 136 100 91 88 74 71 333

10 103 125 93 52 59 49 36 320
104 163 112 91 78 62 56 349
105 175 124 116 86 67 64 465

20 103 162 121 57 64 56 35 334
104 194 136 94 87 71 58 602
105 222 156 144 99 82 78 754

30 103 169 124 53 72 62 37 465
104 228 153 110 92 81 65 813
105 249 168 155 117 94 89 1200

40 103 168 119 61 68 64 35 532
104 229 159 105 93 81 65 1054
105 280 182 170 114 96 93 1472

50 103 176 123 63 80 73 40 723
104 234 151 116 106 89 70 1171
105 284 177 169 117 100 95 1856
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Table 6. Xi i.i.d. N (0, Id): computational time t(QP) (in s) and ratios ρ(M)=t(M)/t(QP) — averaged
over 100 repetitions. Italicized figures correspond to the fastest exact method.

d n t(QP) QP0 A1 A15 A1′5 A2 A25 A2′5 A1′5-QP A2′5-QP A2∗5

2 103 0.005 0.52 4.01 5.98 4.66 1.43 1.24 1.16 4.87 1.39 4.15
104 0.030 0.18 1.61 1.60 1.15 0.71 0.27 0.27 1.18 0.32 1.71
105 0.27 0.09 1.79 0.16 0.15 0.58 0.08 0.08 0.16 0.09 0.10

3 103 0.004 0.73 4.16 4.61 2.72 1.87 1.65 1.37 2.95 1.66 3.69
104 0.029 0.28 2.03 0.61 0.53 0.92 0.31 0.30 0.56 0.34 0.59
105 0.29 0.16 2.18 0.17 0.17 0.85 0.10 0.10 0.17 0.11 0.17

4 103 0.005 0.83 4.89 3.74 2.69 2.14 1.80 1.60 2.95 1.88 14.28
104 0.030 0.43 2.18 0.65 0.54 0.88 0.32 0.31 0.58 0.36 0.84
105 0.30 0.31 2.54 0.20 0.20 1.33 0.13 0.13 0.20 0.14 0.24

5 103 0.004 0.95 4.83 3.70 2.62 2.37 2.04 1.74 2.93 2.08 7.14
104 0.032 0.56 2.43 0.70 0.61 1.20 0.40 0.37 0.66 0.42 1.06
105 0.32 0.42 3.06 0.25 0.25 1.79 0.16 0.16 0.26 0.16 0.28

10 103 0.006 1.10 4.58 3.11 1.99 2.16 1.66 1.40 2.43 1.84 8.18
104 0.039 0.96 3.41 0.85 0.76 1.57 0.45 0.42 0.83 0.49 1.55
105 0.40 0.92 6.19 0.63 0.63 2.77 0.30 0.30 0.64 0.31 0.46

20 103 0.010 1.08 4.23 2.51 1.44 1.70 1.23 0.88 2.00 1.43 5.35
104 0.061 1.12 6.87 1.12 1.01 3.01 0.58 0.54 1.12 0.65 1.89
105 0.58 1.16 10.94 1.21 1.21 4.45 0.51 0.52 1.22 0.53 0.69

30 103 0.019 1.06 2.78 1.51 0.83 1.17 0.82 0.56 1.40 1.11 4.06
104 0.081 1.12 9.63 1.36 1.27 3.83 0.75 0.72 1.42 0.87 2.15
105 0.77 1.19 16.42 1.75 1.75 7.18 0.80 0.79 1.77 0.81 1.02

40 103 0.028 1.04 2.09 1.09 0.69 0.83 0.61 0.42 1.37 1.09 3.24
104 0.10 1.14 11.30 1.63 1.54 4.33 0.90 0.88 1.77 1.09 2.38
105 0.97 1.20 20.39 2.15 2.15 7.83 1.05 1.04 2.18 1.06 1.27

50 103 0.038 1.04 1.79 0.89 0.60 0.77 0.55 0.38 1.34 1.10 3.21
104 0.13 1.16 12.71 1.84 1.78 5.54 1.11 1.10 2.05 1.36 2.46
105 1.20 1.22 22.43 2.48 2.49 8.74 1.33 1.33 2.52 1.36 1.56

πAY (ξ2) is significatively larger than π(ξ2) for d . 5 only. As in Table 4, κ(A15)< κ(A25),
but the figures are now much larger, indicating that the algorithms have difficulties with
providing small 0-core sets. As a consequence, here A1′5 (respectively, A2′5) does not
stop earlier than A15 (respectively, A25), and the results for A1′5 and A2′5 are omitted
in Tables 8 and 9 since they are identical to those for A15 and A25. The number of
iterations for given d and n in Table 8 is significantly larger than in Tables 2 and 5, with
Nε(A15)>Nε(A25) for d ≤ 10 and Nε(A25) slightly larger than Nε(A15) for d ≥ 30. The
number of iterations of A2∗5 is now very large. Table 9 shows that QP0 is generally the
fastest among exact methods for d ≤ 5 and is only slightly slower than QP for larger d.
On the other hand, A2′5-QP is much slower than QP for d ≥ 10 and A2∗5 is by far the
slowest exact method is all cases considered.

Finally, one may notice that, for given d and n, the computational times for QP (and
thus of QP0) are quasi identical in Tables 3 and 6 and are only increased by a small factor
in Table 9, enhancing the interest of using QP with elimination of inessential points to
solve smallest enclosing ball problems with moderate d.

6. Conclusions

An inequality has been derived that permits to remove inessential (interior) points during
the computation of the smallest enclosing ball of a set of points. The inequality is, in
some sense, the best possible, and is given by a simple expression depending on the
mean and the (trace of the) variance matrix of a probability measure placed on the
set of points. Any probability measure gives such an an inequality. Algorithms for the
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Table 7. Xi uniform in Bd(0, 1): proportion π (in %) of points not eliminated and
number κ(M) of remaining points after applying method M — averaged values over

100 repetitions, rounded to the nearest integer.

d n π∗ π(ξu) π(ξ2) πAY (ξ2) κ(A15) κ(A25) κ(A2∗5)

2 103 86.60 87.04 36.00 52.84 67 87 9
104 86.60 86.78 24.82 36.35 644 978 35
105 86.60 86.66 17.45 25.34 6384 16627 235

3 103 91.06 91.61 63.29 83.69 100 112 9
104 91.06 91.26 49.12 67.89 948 1061 44
105 91.06 91.13 40.78 57.17 9399 17555 339

4 103 93.52 94.21 80.24 95.49 127 140 10
104 93.52 93.74 70.89 89.16 1229 1375 54
105 93.52 93.60 62.08 81.02 12245 15449 445

5 103 95.06 95.64 89.42 98.78 157 164 11
104 95.06 95.29 85.33 97.54 1522 1667 64
105 95.06 95.15 77.66 93.34 15173 17407 553

10 103 98.21 98.70 99.79 100.00 287 297 19
104 98.21 98.39 99.61 100.00 2795 2920 113
105 98.21 98.28 99.19 100.00 27925 29054 1080

20 103 99.54 99.74 100.00 100.00 488 499 39
104 99.54 99.64 100.00 100.00 4799 4859 221
105 99.54 99.58 100.00 100.00 47892 48562 2084

30 103 99.84 99.93 100.00 100.00 632 638 56
104 99.84 99.89 100.00 100.00 6237 6276 329
105 99.84 99.86 100.00 100.00 62624 62577 3053

40 103 99.93 99.98 100.00 100.00 738 740 72
104 99.93 99.96 100.00 100.00 7286 7284 433

solution of the dual problem construct sequences of probability measures (defined by
the Lagrange coefficients), which can thus straightforwardly be used to progressively
eliminate inessential points. A two-point measure ξ2, already proposed in the literature
to efficiently initialise such dual algorithms [28], has been shown to efficiently directly
remove a significant proportion of points in various situations with reasonably small
dimension d. Several numerical experiments have indicated that this simple pre-filtering
of the input set is clearly beneficial to a QP solver when enough inessential points are
removed (d is small enough) and that the extra cost (slow-down factor) due to pre-
filtering is marginal otherwise (for large d). Other methods, like those in [9, 26]4 might
also benefit from the input-size reduction offered by this pre-filtering. Notice, finally, that
these methods rely on the computation of a sequence of smallest enclosing balls for sets
of d+ 1 points, from which a sequence of probability measures, and thus of eliminating
inequalities, could easily be deduced; see [9, Sect. 3].

Acknowledgments

The author thanks the two referees for their comments that helped to improve the presen-
tation of the paper. He also thanks the referee who pointed out the existence of reference
[2].

4See also the implementation in http://doc.cgal.org/latest/Bounding_volumes/classCGAL_1_1Min_sphere__d.

html

20



August 29, 2017 Optimization Methods & Software Miniball˙OMS-REV1

Table 8. Xi uniform in Bd(0, 1): number Nε of
iterations performed to reach precision ε = 10−3

(ε = 10−6 for A2∗5) — averaged values over 100

repetitions, rounded to the nearest integer.

d n A1 A15 A2 A25 A2∗5

2 103 336 172 216 146 1764
104 505 220 223 87 14658
105 522 238 17 4 41055

3 103 363 182 189 144 5624
104 530 219 270 167 18211
105 522 216 231 69 50772

4 103 403 198 220 172 5222
104 527 227 232 163 27298
105 528 219 285 130 58736

5 103 405 207 240 191 5823
104 546 240 228 178 23909
105 528 219 257 144 60436

10 103 454 242 297 228 9757
104 570 274 278 216 37559
105 535 234 255 193 78289

20 103 474 262 364 273 26375
104 589 292 363 276 80345
105 539 237 310 235 133569

30 103 496 275 414 303 48385
104 591 290 412 301 131301
105 539 217 364 267 199827

40 103 508 284 437 316 64644
104 595 278 426 315 174531
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Appendix A.

Lemma A.1 For any set Xn ⊂ Rd and any X1 ∈Xn, the measure ξ2 defined by (26) is
such that

max
i=1,...,n

‖Xi − c(ξ2)‖ ≤
√

7

2
‖Xi1 −Xi2‖ , (A1)

and the bound is tight.

Proof. Let Xi∗ denote the furthest point in Xn from c(ξ2). Without any loss of generality
we can take Xi1 as the origin, Xi2 −Xi1 proportional to the first basis vector e1, X1 in
the plane formed by e1 and e2, and Xi∗ in the three dimensional space generated by e1,
e2 and e3. With a suitable rescaling, we can also assume that ‖Xi1−Xi2‖ = 1. Therefore,
we can write, in polar coordinates,

Xi1 =



0
0
0
0
...
0


, Xi2 =



1
0
0
0
...
0


, X1 = r



cos(θ)
sin(θ)

0
0
...
0


and Xi∗ = ρ



cos(ϕ) cos(ω)
cos(ϕ) sin(ω)

sin(ϕ)
0
...
0


,

(A2)
for some r and ρ in R+, θ ∈ [0, π], ω ∈ [0, 2π] and ϕ ∈ [−π/2, π/2]. Then, since Xi2 is the
furthest point in Xn from Xi1 , Xn ⊂ Bd(0, 1) and r, ρ < 1. Also, Xn ⊂ Bd(X1, r) since
Xi1 is the furthest point in Xn from X1, and ‖X1 −Xi2‖ ≤ r gives 2r cos(θ) ≥ 1, which
implies θ ≤ π/3. Direct calculation shows that ‖X1 −Xi∗‖ ≤ r yields the constraint

ρ ≤ 2r cos(ϕ) cos(ω − θ) . (A3)

We also obtain ‖Xi∗ − c(ξ2)‖2 = ρ2 − ρ cos(ϕ) cos(ω) + 1/4, which we want to maximise
with respect to r, ρ, θ, ω and ϕ satisfying all the constraints above. The value of ‖Xi∗ −
c(ξ2)‖2 will be maximum when r = 1 in (A3). Simple calculation shows that one cannot
consider the two constraints (i) ρ ≤ 1 and (ii) ρ ≤ 2 cos(ϕ) cos(ω − θ) separately: when
using (i) only, ‖Xi∗ − c(ξ2)‖2 is maximum at ρ = 1, ϕ = 0 and ω = π, which violates
(ii) since cos(ω − θ) = − cos(θ) < 0; when using (ii) only, the maximum is when the
constraint is saturated, with ϕ = 0, θ = π/3 and ω = 5π/12, but then ρ = 2 cos(π/12) >
1. Enforcing (i) and (ii) simultaneously, we obtain the solution ϕ = 0, θ = π/3 and
ω = 2π/3, showing that ‖Xi∗ − c(ξ2)‖2 ≤ 7/4. The bound (A1) is tight since equality is
obtained when setting r = ρ = 1, ϕ = 0, θ = π/3 and ω = 2π/3 in (A2). �
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