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elimination of inessential points in the smallest enclosing ball problem

Introduction

Given a set of n points X n = {X 1 , . . . , X n } ⊂ R d , d ≥ 2, we consider the algorithmic construction of the minimum ball B * (X n ) enclosing X n . We are interested in particular in the situation where d is reasonably small but n can be large. For c ∈ R d and r ∈ R + , we denote by B d (c, r) the (closed) ball {X ∈ R d : X -c ≤ r}, with . the Euclidean norm. We shall write B * (X n ) = B d (c * n , r * n ), where c * n (the Chebyshev centre of X n ) minimises

f (c) = max i=1,...,n X i -c 2 (1) 
with respect to c ∈ R d and r * n = max i=1,...,n X i -c * n . A ball B d (c, r) is said to be a (1 + )-approximation to B * (X n ), > 0, when X n ⊂ B d (c, r) and r ≤ (1 + )r * n ; a subset X q ⊆ X n is said to be an -core set of X n if B * (X q ) = B d (c * q , r * q ) is such that r * q ≤ r * n ≤ (1 + )r * q . The construction of B * (X n ) is a classical optimisation problem, for which many algorithms have been proposed in the literature, see, e.g., the historical sketch in [START_REF] Elzinga | The minimum covering sphere problem[END_REF] and the references in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. A recent application concerns the construction of space-filling de-signs for compter experiments based on an extension of Lloyd's clustering algorithm [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]. Some methods are exact and rely on extensions of linear programming algorithms, see [START_REF] Botkin | An algorithm for finding the Chebyshev center of a convex polyhedron[END_REF][START_REF] Gärtner | Fast and robust smallest enclosing balls[END_REF][START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF]; some use the dual formulation of the problem and construct a sequence of (1 + k )-approximations of B * (X n ) with k tending to zero, see [START_REF] Bȃdoiu | Optimal core-sets for balls[END_REF][START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. The former are exponential in d and are thus restricted to problems with moderate dimension (d 20, say); the latter can also solve problems with large d and compute a (1+ )-approximation to B * (X n ) in O(nd/ ) arithmetic operations, returning an -core set of size O(1/ ), see [START_REF] Clarkson | Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm[END_REF][START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF].

Both types of methods can strongly benefit from a reduction of the size of X n , in the same way as algorithms for the construction of the minimum-volume ellipsoid containing X n can be accelerated when inessential points are eliminated by the inequality of [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF], see [START_REF] Todd | Minimum-Volume Ellipsoids. Theory and Algorithms[END_REF]Sect. 3.6]. The objective of removing inessential points presents some similarities with that of obtaining small -core sets, with one capital difference though: a point X i is called inessential when B * (X n \ {X i }) exactly coincides with B * (X n ), which happens in particular when X i lies in the interior of B * (X n ). By removing inessential points, we thus aim at constructing small 0-core sets. Although we know there always exists a 0-core set of size at most d + 1, its construction requires the knowledge of B * (X n ). The objective of the paper is to derive a simple inequality that any point X j on the boundary of B * (X n ) must satisfy, without knowing B * (X n ). More precisely, we show that for any probability measure ξ on X n , with c(ξ) and V (ξ) the corresponding mean and covariance matrix respectively, any point X j on the boundary of B * (X n ) satisfies

X j -c(ξ) 2 ≥ trace[V (ξ)] + γ(ξ) -γ(ξ){2trace[V (ξ)] + γ(ξ)} , (2) 
where γ(ξ) = max i=1,...,n X i -c(ξ) 2 -trace[V (ξ)]. We also prove that this bound on X j -c(ξ) 2 is, in some sense, the best possible, and a comparison with the bound previously proposed in [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF] is provided. Since algorithms based on the dual formulation of the smallest enclosing ball problem generate a sequence of measures ξ k , they provide for free a sequence of inequalities that can be used as sieves to eliminate inessential points from X n , and thereby generate a sequence of 0-core sets of decreasing size. When imbedded in the algorithm, these sieves yield an increasing simplification of iterations, and thus an acceleration of the algorithm, see [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF]. Moreover, the 0-core set obtained after a few iterations may be small enough to allow the efficient use of an exact quadratic programming (QP) algorithm for the construction of B * (X n )

The paper is organised as follows. Section 2 introduces the notation and presents the QP and dual formulations of the minimum enclosing ball problem. The inequality [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF] is proved in Section 3, where we also explain why it cannot be improved. Two iterative algorithms are presented in Section 4: a multiplicative algorithm inspired from experimental design theory and the vertex-direction algorithm of [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. Some computational results are presented in Section 5 that illustrate the benefit of the elimination of inessential points, when using an iterative algorithm to solve the dual problem or before using QP for the direct approach. In particular, they indicate that for moderate d the application of an exact QP algorithm to the resulting 0-core set yields the exact minimum ball B * (X n ) at reasonable computational cost. Section 6 briefly concludes.

Quadratic programming and dual formulations

For any X i ∈ X n and c and c 0 in R d , we can write

X i -c 2 = X i -c 0 2 -2(X i - c 0 ) (c -c 0 ) + c -c 0 2
. Therefore, f (c) defined in (1) can be written as

f (c) = max i=1,...,n X i -c 0 2 -2(X i -c 0 ) (c -c 0 ) + c -c 0 2 , (3) 
and its minimisation is equivalent to the minimisation of c -c 0 2 + t with respect to (c, t) ∈ R d+1 , subject to the n linear constraints

X i -c 0 2 -2(X i -c 0 ) (c -c 0 ) ≤ t , i = 1, . . . , n . (4) 
When d is small enough, simplex-type or projection methods can thus be used to obtain the exact solution in finite time (assuming calculations with infinite precision); see in particular the introduction of [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF] and the references therein. In case the QP solver requires a strictly convex problem, one may add a regularisation term, quadratic in t, to the objective function and minimise c -c 0 2 + t + δt 2 with δ arbitrarily small (the solution obtained being however not exact in this case).

On the other hand, the dual formulation of the problem yields iterative methods that construct a sequence of (1+ k )-approximations of B * (X n ) with k tending to zero, which are of particular interest when d is large. Direct calculation, using Lagrangian duality, shows that the construction of B * (X n ) is equivalent to the determination of Lagrange coefficients that define weights w = (w 1 , . . . , w n ) in the probability simplex

P n = {w ∈ R n : n i=1 w i = 1 and w i ≥ 0, i = 1, . . . , n} (5) 
and maximise

φ(w) = trace[V (w)] = n i=1 w i X i -c(w) 2 , (6) 
where

c(w) = n i=1 w i X i and V (w) = n i=1 w i [X i -c(w)][X i -c(w)]
; see, e.g., [START_REF] Elzinga | The minimum covering sphere problem[END_REF][START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. The centre c * n of B * (X n ) corresponds to c(w * ) for the optimal weights w * maximising φ(w), and its radius r * n equals φ(w * ). The weights w define a probability measure ξ on the X i , and c(w) and V (w) respectively correspond to the mean and variance matrix for ξ (which, with a slight abuse of notation, we shall also denote by c(ξ) and V (ξ)).

There exist other geometrical problems for which the dual is known to correspond to an optimal design problem, i.e., to the construction of an optimal probability measure on X n . In particular, the determination of the minimum-volume ellipsoid, with fixed centre c, containing X n , is equivalent to the D-optimal design problem corresponding to the maximisation of det[M (w)] with respect to w = (w 1 , . . . , w n ) ∈ P n , with M (w) the information matrix

M (w) = n i=1 w i (X i -c)(X i -c)
for the estimation of the d unknown parameters θ in the linear regression model y i = (X ic) θ + ε i , where the ε i are i.i.d. observation errors; see [START_REF] Sibson | Discussion on a paper by H.P. Wynn[END_REF]. The optimal ellipsoid is given by {x ∈ R d : (x -c) M (w * )(x -c) ≤ 1/d}, with w * an optimal vector of weights. When the centre of the ellipsoid is free, the determination of the minimum-volume enclosing ellipsoid forms a D-optimal design problem in R d+1 [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF]: the optimal ellipsoid is given by the intersection between the minimum enclosing ellipsoid, centred at the origin, for the n points (X i , 1) ∈ R d+1 , and the hyperplane {z ∈ R d+1 : z d+1 = 1}; see also [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF]Sects. 5.6 & 9.1] and the references therein. The connection between the construction of the thinnest covering cylinder and a D s -optimal design problem is established in [START_REF] Silvey | A geometric approach to optimal design theory[END_REF] for cylinders with fixed centre and in [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF] when the centre is free.

On the other hand, the maximisation of trace[V (w)] in [START_REF] Clarkson | Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm[END_REF] is not equivalent to an A-optimal design problem, for which one minimises trace[M -1 (w)] for some information matrix M (w). As shown in the next section, the connection with an optimal design problem can nevertheless be used to derive the inequality (2), using an approach resembling that in [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF].

An inequality to eliminate inessential points

Consider the more general situation where X denotes a compact subset of R d , with Ξ the set of probability measures on X . For any ξ ∈ Ξ, denote

c(ξ) = E ξ (x) = X x ξ(dx) and φ(ξ) = trace[Var(ξ)] = X x -c(ξ) 2 ξ(dx) , (7) 
so that c(ξ) = c(w) and φ(ξ) = φ(w) in the finite case where X = X n with w i = ξ(X i ), i = 1, . . . , n. The dual problem to the determination of B * (X ) corresponds to the maximisation of φ(ξ) with respect to ξ ∈ Ξ: the centre c * and radius r * of B * (X ) satisfy c * = c(ξ * ) and r * = φ(ξ * ), where ξ * maximises φ(ξ) with respect to ξ ∈ Ξ.

A necessary and sufficient condition for optimality

First note that Ξ is convex: for any ξ, ν ∈ Ξ and α

∈ [0, 1], (1 -α)ξ + αν ∈ Ξ. Denote g(α) = φ[(1 -α)ξ + αν],
which is a quadratic function of α. The directional derivative of φ(ξ) at ξ in the direction ν ∈ Ξ is given by

F φ (ξ; ν) = dg(α) dα α=0 = x -c(ξ) 2 ν(dx) -φ(ξ) . ( 8 
) Note that d 2 g(α)/dα 2 = -2 c(ν) -c(ξ) 2 ≤ 0, showing that φ(•) is concave. It is not strictly concave 1 , but any pair ξ * a and ξ * b of optimal measures necessarily satisfy c(ξ * a ) = c(ξ * b )
, implying that the optimal ball is unique. Concavity implies that ξ * ∈ Ξ is optimal if and only if F φ (ξ * ; ν) ≤ 0 for all ν ∈ Ξ. This is equivalent to F φ (ξ * ; δ x ) ≤ 0 for all x ∈ X , with δ x the delta measure at x. Moreover, F φ (ξ * ; ξ * ) = 0 implies that F φ (ξ * ; δ x ) = 0 for any x in the support of ξ; that is, ξ * {x ∈ R d : F φ (ξ * ; δ x ) = 0} = 1. We thus obtain the following property, usually called Equivalence Theorem in experimental design theory (see, e.g., [START_REF] Fedorov | Theory of Optimal Experiments[END_REF][START_REF] Kiefer | The equivalence of two extremum problems[END_REF][START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF][START_REF] Pukelsheim | Optimal Experimental Design[END_REF]). When X is finite, the conditions are equivalent to the Karush-Kuhn-Tucker optimality conditions in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]; see also [START_REF] Elzinga | The minimum covering sphere problem[END_REF].

Theorem 3.1 The centre of B * (X ) is given by c(ξ * ), where ξ * ∈ Ξ satisfies any of the three following equivalent conditions: (i) ξ * maximises φ(ξ) with respect to ξ ∈ Ξ, (ii) ξ * minimises max x∈X x -c(ξ) 2 with respect to ξ ∈ Ξ, (iii)

x -c(ξ * ) 2 ≤ φ(ξ * ) for all x ∈ X . (9) 
Moreover, x -c(ξ * ) 2 = φ(ξ * ) for any x in the support of ξ * .

(1 + )-approximations and -core sets

For any ξ ∈ Ξ, define

γ(ξ) = max x∈X x -c(ξ) 2 -φ(ξ) . (10) 
Since γ(ξ) = max x∈X F φ (ξ; δ x ), Theorem 3.1 indicates that γ(ξ) ≥ 0 for all ξ ∈ X , with γ(ξ * ) = 0. In some sense, γ(ξ) quantifies the (absolute) suboptimality of the measure ξ.

In this section we show how it is related to the (relative) notions of (1 + )-approximation and -core set introduced in Section 1.

Consider the ball B(ξ) = B d (c(ξ), γ(ξ) + φ(ξ)). It contains X by construction, and Theorem 3.1 indicates that the radius of B * (X ) equals φ(ξ * ) ≥ φ(ξ). Therefore, B(ξ) forms a (1 + )-approximation of B * (X ) for

= (ξ) = [1 + γ(ξ)/φ(ξ)] 1/2 -1. (11) 
Let S (ξ) denote any compact subset of X such that ξ[S (ξ)] = 1 (the support of ξ, say). From Theorem 3.1, the radius r * (ξ) of the smallest ball enclosing S (ξ) is not smaller than φ(ξ), so that

φ(ξ) ≤ r * (ξ) ≤ φ(ξ * ) , (12) 
where the second inequality follows from S (ξ) ⊂ X . On the other hand,

φ(ξ * ) = min c∈R d max x∈X x -c 2 ≤ max x∈X x -c(ξ) 2 = γ(ξ) + φ(ξ) (13) 
(which is also a direct consequence of the concavity of φ(•), which implies that, for any

ξ ∈ Ξ, φ(ξ * ) ≤ φ(ξ) + F φ (ξ; ξ * ) ≤ φ(ξ) + max x∈X F φ (ξ; δ x ) = γ(ξ) + φ(ξ)).
Therefore, the combination of ( 12) and ( 13) gives

r * (ξ) ≤ φ(ξ * ) ≤ [1 + γ(ξ)/φ(ξ)] 1/2 r * (ξ) ,
indicating that S (ξ) is an -core set for given by [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF]. These connections are used in particular in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] to give a thorough characterisation of the convergence properties of two algorithms that generate sequences of measures ξ k , in terms of their associated (1 + k )-approximations and k -core sets. See also Section 4.
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The inequality

Following an approach similar to [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF][START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φp-class of criteria[END_REF], we now prove the main result of the paper.

Theorem 3.2 For any compact subset X ⊂ R d and any probability measure ξ on X , any y ∈ X such that

y -c(ξ) 2 < b[φ(ξ), γ(ξ)] = φ(ξ) + γ(ξ) -γ(ξ)[2φ(ξ) + γ(ξ)] , (14) 
where φ(ξ) and γ(ξ) are respectively defined by [START_REF] Elzinga | The minimum covering sphere problem[END_REF] and [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF], is in the interior of the smallest ball B * (X ) enclosing X .

Proof. Take any ξ in Ξ and consider γ(ξ) defined by [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF]. Then, x-c(ξ) 2 ≤ φ(ξ)+γ(ξ) for all x ∈ X , which implies that

X x -c(ξ) 2 ξ * (dx) = φ(ξ * ) + c(ξ * ) -c(ξ) 2 ≤ φ(ξ) + γ(ξ) (15) 
for an optimal measure ξ * . Also, (9) implies

X x -c(ξ * ) 2 ξ(dx) = φ(ξ) + c(ξ * ) -c(ξ) 2 ≤ φ(ξ * ) . (16) 
Consider now any y on the boundary of B * (X ). From Theorem 3.1 and the triangular inequality, it satisfies y -c(ξ

* ) = φ(ξ * ) ≤ y -c(ξ) + c(ξ * ) -c(ξ) , that is, y -c(ξ) ≥ φ(ξ * ) -c(ξ * ) -c(ξ) . (17) 
We do not know the values of φ(ξ * ) and c(ξ * ), but we can compute a lower bound on the right-hand side of (17), using [START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φp-class of criteria[END_REF] and [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]. Note that b(φ, γ) = φ + γ -γ[2φ + γ] is decreasing in γ, with b(φ, 0) = φ and lim γ→∞ b(φ, γ) = 0. The right-hand side of [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] gives the tightest lower bound on yc(ξ) 2 for a y on the boundary of B * (X ), in the sense of the following theorem. Theorem 3.3 For any integer d ≥ 2 any γ > 0 and δ > 0, there exist a compact subset X of R d , a probability measure ξ on X , and a point y on the boundary of B * (X ) such that γ = max x∈X x -c(ξ) 2 -φ(ξ) and y -c(ξ) 2 < b[φ(ξ), γ] + δ, with b(φ, γ) as in Theorem 3.2.

Proof. The proof relies on the construction of an example. The dimension d is irrelevant, and we only need to consider a finite set X 3 with three points X 1 , X 2 and X 3 whose first two coordinates are respectively (0, -1), (0, 1) and (1 + a, 0), a > 0, with ξ the measure that allocates weights α, α, and 1 -2α to X 1 , X 2 and X 3 , α ∈ (0, 1/2). Then, the first two coordinates of c(ξ) are ((1 -2α)(1 + a), 0), and φ(ξ

) = 2α[1 + (1 + a) 2 (1 -2α)]. Also, X 1 -c(ξ) 2 -φ(ξ) = X 2 -c(ξ) 2 -φ(ξ) = (1 -2α)[(1 + a) 2 (1 -4α) + 1] and X 3 -c(ξ) 2 -φ(ξ) = -2α[(1 + a) 2 (1 -4α) + 1], so that γ = X 1 -c(ξ) 2 -φ(ξ) = X 2 - c(ξ) 2 -φ(ξ)
for any a ≥ 0 when α < 1/4. For any α < 1/4 and δ > 0, we can then choose a smaller than some h(α, δ) to obtain

X 3 -c(ξ) 2 < φ(ξ) + γ -γ[2φ(ξ) + γ] + δ. For instance, when α = 1/6, we can take a < h(1/6, δ) = 9 δ -1 + 2 √ 27 δ 2 + 9 δ + 1 -1. On the other hand, the smallest ball containing {X 1 , X 2 } is B d (0, 1), which shows that X 3 is on the boundary of B * (X 3 ) since X 3 > 1.
It is instructive to compare the bound b[φ(ξ), γ(ξ)] in [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] with that derived in [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF]. One may first note that ( 15) and ( 16) imply that

for any ξ ∈ Ξ , c(ξ * ) -c(ξ) 2 ≤ γ(ξ) 2 = φ(ξ) (2 + 2 ) 2 , (18) 
with given by [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF], whereas the simple geometric arguments used in [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF] only give c(ξ * ) -c(ξ) 2 ≤ φ(ξ) (2 + 2 ). In the same paper, the authors combine this inequality with [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF] and obtain that any point y on the boundary of B * (X ) satisfies

y -c(ξ) ≥ φ(ξ) [1 -(2 + 2 ) 1/2 ] = φ(ξ) [1 -γ(ξ)/ φ(ξ)] .
Note that γ(ξ) must be smaller than φ(ξ) (i.e., < √ 2 -1) in order to get a positive bound able to eliminate points. To compare this result with Theorem 3.2, denote

b AY [φ(ξ), γ(ξ)] = φ(ξ)[max{1 -γ(ξ)/ φ(ξ), 0}] 2 ; (19) b AY (φ, γ) is decreasing in γ, with b AY (φ, 0) = φ and b AY (φ, γ) = 0 for γ ≥ φ, and b AY (φ, γ) < b(φ, γ)
given by ( 14) for any φ > 0 and γ > 0. We can also write b is also significant for small , so that when approaching the optimum with an iterative algorithm, the elimination of inessential points is likely to be more efficient with [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] than when using the bound in [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF]. Note that the computational costs of the two bounds are roughly equivalent. Miniball˙OMS-REV1 

AY (φ, γ) = φ(ξ)[max{1-(2 + 2 ) 1/2 , 0}] 2 and b(φ, γ) = φ[(1+ ) 2 -{ (2+ )[1+(1+ ) 2 ]} 1/2 ], with the approximation level = (1 + γ/φ) 1/2 -1, see (11).

Effectiveness of the elimination

Take any probability measure ξ on X and consider a point y eliminated by [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF], that is, such that y -c(ξ

) 2 < b[φ(ξ), γ(ξ)]
. By construction of the bound ( 14), it satisfies y -c(ξ * ) ≤ φ(ξ * ) (this can be directly checked, using the triangular inequality y -c(ξ * ) ≤ y -c(ξ) + c(ξ * ) -c(ξ) and the inequalities ( 16) and ( 18)). Therefore, y belongs to B * (X ) = B d (c(ξ * ), φ(ξ * )). Let I (ξ) denote the set of inessential points eliminated by ( 14) and µ denote the Lebesgue measure on X . We thus have

ω(ξ) = µ[I (ξ) ∩ B * (X )] µ[B * (X )] = µ[I (ξ)] µ[B * (X )] ≤ b[φ(ξ), γ(ξ)] φ(ξ * ) d/2
.

Denote δ(ξ) = γ(ξ)/φ(ξ), and suppose that δ(ξ

) = δ > 0. Then, b[φ(ξ), γ(ξ)] = φ(ξ)(1 + δ -δ(2 + δ)) and Lemma 3.2 of [28] implies that φ(ξ * ) > φ(ξ)(1 + δ 2 /[4(1 + δ)]). Therefore, ω(ξ) < h d/2 (δ) , (20) 
with

h(δ) = 4(1 + δ)(1 + δ -δ(2 + δ))/[4(1 + δ) + δ 2 ] < 1, implying that µ[I (ξ)]/µ[B * (X )] → 0 as d → ∞.
We can thus expect that in general, for points X i approximately uniformly distributed in a compact set, the effectiveness of the sieve formed by [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] will decrease as the dimension d increases. This can be investigated more precisely in some simple situations. Define

α(ξ) = µ[I (ξ)] µ(X ) ,
the proportion of points eliminated by [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF], and let ξ u denote the uniform probability measure on X .

X is the d-dimensional ball B d (0, 1). In that case, X = B * (X ) and α(ξ) = ω(ξ) for any ξ. When x ∼ ξ u , then x has the density ϕ

(r) = dr d-1 , r ∈ [0, 1], and φ(ξ u ) = d/(d + 2), γ(ξ u ) = 1 -φ(ξ u ) = 2/(d + 2). This gives b[φ(ξ u ), γ(ξ u )] = 1 -2 √ d + 1/(d + 2)
and therefore Although [START_REF] Silvey | A geometric approach to optimal design theory[END_REF] indicates that the effectiveness of the elimination of inessential points decreases with d for a fixed δ (that is, for a fixed level of approximation 1 + = √ 1 + δ, see Section 3.2), the proportion α(ξ) can be significant when ξ approaches optimality (so that δ = δ(ξ) is small enough in ( 20)). In particular, algorithms for the solution of the dual formulation of the smallest enclosing ball problem generate sequences of measures ξ k that can be used as sieves to progressively eliminate points. Two such methods are presented in the next section.

α(ξ u ) = b d/2 [φ(ξ u ), γ(ξ u )] = 1 - 2 √ d + 1 d + 2 d/2

Algorithms for the dual 4.1 A multiplicative algorithm

We return to the case of a finite set X n , with w i = ξ(X i ) the weight allocated by the measure ξ to the point X i ∈ X n . Starting with weights w 0 i > 0 for all i, for instance Miniball˙OMS-REV1

w 0 i = 1/n, consider the application of successive iterations of the form

w k+1 i = w k+1 i = w k i X i -c(w k ) 2 n j=1 w k j X j -c(w k ) 2 , i = 1, . . . , n . (21) 
This type of algorithm is called multiplicative in the literature on optimal experimental design: the weights w k i of the measure ξ k at iteration k are simply multiplied by positive factors f i (w k )/ k j=1 w k j f j (w k ), with here f i (w k ) = X i -c(w k ) 2 = dφ(w)/dw i w=w k . In the case of D-optimal design, similar iterations ensure monotonic convergence to the minimum-volume ellipsoid containing X n , see [START_REF] Titterington | Algorithms for computing D-optimal designs on a finite design space[END_REF][START_REF] Titterington | Estimation of correlation coefficients by ellipsoidal trimming[END_REF][START_REF] Yu | Monotonic convergence of a general algorithm for computing optimal designs[END_REF]. Here the iteration [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF] does not guarantee that φ(w k+1 ) > φ(w k ) for all non-optimal w k , and, following [START_REF] Wu | Some algorithmic aspects of the theory of optimal designs[END_REF], we consider iterations of the (more general) form

w k+1 i = w k+1 i (β k ) = w k i [1 + β k F φ (ξ k ; δ Xi )] = w k i {1 + β k [ X i -c(w k ) 2 -φ(w k )]} , (22) 
where β k ≥ 0, F φ (ξ; ν) is the directional derivative defined in [START_REF] Fedorov | Theory of Optimal Experiments[END_REF], and where ξ k allocates weight

w k i to X i , i = 1, . . . , n. Note that n i=1 w k+1 i (β k ) = 1 and that all w k+1 i (β k ) remain non-negative if β k is small enough. Also note that w k+1 i [1/φ(w k )] = w k+1 i
given by [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF]. The iteration [START_REF] Titterington | Algorithms for computing D-optimal designs on a finite design space[END_REF] corresponds to a projected second-order method for the maximisation of φ(w), see [START_REF] Wu | Some algorithmic aspects of the theory of optimal designs[END_REF] and [17, Sect. 9.1], and there always exists a step-size β k > 0 such that φ(w k+1 ) > φ(w k ) when w * is not optimal. Since here φ[ w k+1 i (β k )] is quadratic in β k , the maximising value β * k can be calculated explicitly and is given by

β * k = k i=1 w k+1 i [ X i -c(w k ) 2 -φ(w k )] 2φ(w k ) c( w k+1 ) -c(w k ) 2 , (23) 
where the components of w k+1 are given by [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF]. Since the iteration ( 21) is simpler than ( 22)- [START_REF] Titterington | Estimation of correlation coefficients by ellipsoidal trimming[END_REF], it is advisable to always try the former first, and switch to the latter only if [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF] does not yield an increase of φ(•) (numerical experimentation indicates that this is rather exceptional). To ensure that all components of w k+1 i (β k ) remain non-negative, we should normally take [START_REF] Titterington | Algorithms for computing D-optimal designs on a finite design space[END_REF]. However, from the quadratic dependence of φ[ w k+1 i

β k = min{β * k , β k,max }, where β k,max = [φ(w k ) -min j=1,...,n X j - c(w k ) 2 ] -1 ≥ 1/φ(w k ), see
(β k )] in β k , φ( w k+1 i ) ≤ φ(w k ) is equivalent to 1/φ(w k ) ≥ 2 β * k and thus implies β k,max ≥ 2β * k . The construction is summarised in Algorithm 1. Algorithm 1 stops when a (1 + k )-approximation of B * (X n ) is obtained, with k = 1 + γ(w k )/φ(w k ) -1 < .
The sequence {φ(w k )} is monotonically increasing, but the investigation of its convergence properties as k → ∞ is out of the scope of this paper and will be considered elsewhere. The complexity of each iteration is roughly proportional to n, and the algorithm may benefit from the elimination of inessential points using the results of Section 3.3. This is considered in the next section.

Elimination of inessential points by the multiplicative algorithm

The uniform measure, with w 0 i = 1/n for all i, used to initialise Algorithm 1 can be used to eliminate inessential points from X n . For a given n, the proportion α(w 0 ) of points that can be eliminated depends on the precise location of the X i , but we can consider the limiting situation where n tends to infinity and the X i are uniformly distributed in a Algorithm 1 Multiplicative algorithm for the smallest enclosing ball problem Require: X n a set of n points in R d and > 0.

Set w 0 i = 1/n for i = 1, . . . , n; k ← 0; compute c(w 0 ), φ(w 0 ) and γ(w 0 ). while γ(w k )/φ(w k ) > (1 + ) 2 -1 do compute w k+1 i given by ( 21), compute c( w k+1 ) and φ( w k+1 );

if φ( w k+1 i ) > φ(w k ) then set w k+1 = w k+1 ; else compute w k+1 i = w k+1 i (β * k )
given by ( 22)-( 23), compute c(w k+1 ) and φ(w k+1 );

end if compute γ(w k+1 ), k ← k + 1; end while return w k , c(w k ), k = 1 + γ(w k )/φ(w k ) -1 compact set X ⊂ R d with
strictly positive d-dimensional Lebesgue measure µ and equal to the closure of its interior. The X i may be independently identically distributed in X with the probability measure ξ u = µ/vol(X ), with vol(X ) the volume of X , or they may correspond to the first n points of a low-discrepancy sequence on X , see, e.g., [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]Chap. 3]. In both situations,

lim n→∞ α(w 0 ) = α(ξ u ) = ξ u B d c(ξ u ), b 1/2 [φ(ξ u ), γ(ξ u )] ∩ X ,
where b(φ, γ) is given by ( 14) and the convergence is almost sure when the X i are i.i.d.

The values of α(ξ u ) obtained in Section 3.4 for the case where X is a d-dimensional ball or hypercube suggest that the elimination of inessential points via (14) will be generally not very effective when using ξ u only. Below we investigate how the situation improves when applying several iterations [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF].

In terms of probability measure, the iteration (21) can be written as

ξ k+1 (dx) = x -c(ξ k ) 2 ξ k (dx) y∈X y -c(ξ k ) 2 ξ k (dy) , x ∈ X .
When initialised at the uniform measure ξ u on X , it corresponds to the limiting behaviour of [START_REF] Titterington | Optimal design: some geometrical espects of D-optimality[END_REF] as n → ∞ for points X i uniformly distributed in X . When 0 is a centre of symmetry for X , φ(ξ k+1 ) > φ(ξ k ), c(ξ k ) = 0 and max x∈X x -c(ξ k ) 2 = M for all k, with M = 1 when X = B d (0, 1) and

M = d/4 when X = [-1/2, 1/2] d . Di- rect calculation gives b[φ, M -φ] = M -M 2 -φ 2 , which is increasing in φ, so that α(ξ k+1 ) > α(ξ k ). Consider the case X = B d (0, 1). After k iterations, φ(ξ k ) = 1 0 r 2 ϕ k (r)dr, with ϕ k (r) = (d + 2k) r d-1+2k , which gives φ(ξ k ) = (d + 2k)/(d + 2k + 2)
. The proportion of points eliminated by [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] 

after those k iterations is α(ξ k ) = 1 -[1 -φ 2 (ξ k )] 1/2 d/2 = 1 -2 √ d + 1 + 2k d + 2 + 2k d/2 , ( 24 
)
which is decreasing in d for fixed k, but increases in k for fixed d, with lim k→∞ α(ξ k ) = 1.

The value of α k slightly improves when inessential points are removed after each iteration, provided the mass of eliminated points is suitably distributed on the remain-ing ones. Suppose for instance that we simply renormalise the total mass of remaining points. Then, at iteration k

≥ 1, φ(ξ k ) = 1 A 1/2 (ξ k-1 ) r 2 ϕ k (r)dr, where ϕ k (r) = (d + 2k) [1 -A (d+2k)/2 (ξ k-1 )] -1 r d-1+2k , r ∈ [A 1/2 (ξ k-1 ), 1], with A(ξ) = 1 -1 -φ 2 (ξ). This gives φ(ξ k ) = d + 2k d + 2(k + 1) 1 -A d/2+k+1 (ξ k-1 ) 1 -A d/2+k (ξ k-1 ) and α(ξ k ) = A d/2 (ξ k ) , k ≥ 1 . (25) 
Numerical evaluations for different d and k indicate that α(ξ k ) is only marginally larger than the value in [START_REF] Todd | Minimum-Volume Ellipsoids. Theory and Algorithms[END_REF], with the consequence that trying to remove inessential points at each iteration of Algorithm 1 is generally not very efficient.

A vertex-direction algorithm

Algorithm 4.1 of [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] is similar to the algorithm of [START_REF] Todd | On Khachiyan's algorithm for the computation of minimum volume enclosing ellipsoids[END_REF] for the construction of the minimum ellipsoid containing X n and to the algorithm proposed in [START_REF] Atwood | Sequences converging to D-optimal designs of experiments[END_REF] for the construction of a D-optimal design measure. The detailed analysis in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] indicates in particular that the algorithm asymptotically presents linear convergence; see also [START_REF] Ahipaşaoglu | Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids[END_REF]. An initialisation at a two-point measure is proposed,

ξ 2 = (1/2)(δ Xi 1 + δ Xi 2 ) , with i 1 = arg max i=1,...,n X i -X 1 and i 2 = arg max i=1,...,n X i -X i1 , (26) 
so that w i1 = w i2 = 1/2 and w i = 0 for all i = i 1 , i 2 (when the order of indices is randomised, X 1 can be considered as randomly drawn among the X i ). This construction ensures that X i1 and X i2 will be far apart, without requiring the computation of all n(n-1)/2 pair distances. It is a key argument in the complexity analysis of the algorithm. Direct calculation gives φ(ξ 2 ) = X i1 -X i2 2 /4. The method is summarised in Algorithm 2 below, with two small modifications compared with the original version in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]: (i) the choice between a plus-iteration (displacement in the direction of the furthest point X i + to the current center c(w k )) or a minusiteration (reduction of the weight allocated to the closest point X i -to c(w k ) among the current support J (w k )) is based on the comparison between the values of φ(w k+1 ) corresponding to these two options, whereas [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] simply compares γ(w k ) with γ -(w k ); (ii) the algorithm is stopped when γ(w k )/φ(w k ) ≤ (1 + ) 2 -1, whereas the condition is max{γ(w k ), γ -(w k )}/φ(w k ) ≤ (1 + ) 2 -1 in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. These minor differences do not modify the complexity analysis in the same paper, and the algorithm returns a (1 + )approximation in 18 + 50/ iterations at most.

The two-point measure ξ 2 defined by ( 26) can also be used to eliminate inessential points. Let X i * denote the furthest point in

X n from c(ξ 2 ) = (X i1 + X i2 )/2. Then, X i * -c(ξ 2 ) ≤ σ X i2 -X i1 for some σ > 0 implies that γ(ξ 2 )/φ(ξ 2 ) ≤ 4σ 2 -1 and thus b[φ(ξ 2 ), γ(ξ 2 )] φ(ξ 2 ) ≥ τ 2 = 4σ 2 -16σ 4 -1 . Any point X i such that X i -c(ξ 2 ) < (τ /2) X i2 -X i1 is thus in the interior of B * (X n ).
On the other hand, note that the bound b AY [φ(ξ 2 ), γ(ξ 2 )] given by ( 19) is informative only when σ < √ 2/2 (to ensure that γ(ξ 2 ) < φ(ξ 2 )). Since τ is decreasing in σ, the smaller σ is, the more efficient the elimination of inessential points. For instance, when Algorithm 2 Vertex-direction algorithm for the smallest enclosing ball problem Require: X n a set of n points in R d and > 0.

Set w 0 i1 = w 0 i2 = 1/2 and w 0 i = 0 for all i = i 1 , i 2 , where i 1 and i 2 are given by ( 26);

k ← 0; Set c(w 0 ) = (X i1 + X i2 )/2, φ(w 0 ) = X i1 -X i2 2 /4, J (w 0 ) = {i 1 , i 2 }, γ -(w 0 ) = 0, i -= 1, compute γ(w 0 ) and i + = arg max i=1,...,n X i -c(w 0 ) . while γ(w k )/φ(w k ) > (1 + ) 2 -1 do if γ(w k ) > γ -(w k )/[1 -γ -(w k )/φ(w k )] then compute α k = γ(w k )/{2[φ(w k ) + γ(w k )]}, set w k+1 i + = (1 -α k )w k i + + α k and w k+1 i = (1 -α k )w k i for all i = i + , compute c(w k+1 ) = (1 -α k )c(w k ) + α k X i + ; else compute α k = min γ -(w k )/{2[φ(w k ) -γ -(w k )]}, w k i -/(1 -w k i -) , set w k+1 i -= (1 + α k )w k i --α k and w k+1 i = (1 + α k )w k i for all i = i -, compute c(w k+1 ) = (1 + α k )c(w k ) -α k X i -; if α k = w k i -/(1 -w k i -) then J (w k+1 ) = J (w k ) \ {i -} else J (w k+1 ) = J (w k ) end if end if compute φ(w k+1 ), γ(w k+1 ) and i + = arg max i=1,...,n X i -c(w k+1 ) , i -= arg min i=1∈J (w k+1 ) X i -c(w k+1 ) and γ -(w k+1 ) = φ(w k+1 ) -X i -- c(w k+1 ) ; k ← k + 1; end while return w k , c(w k ), k = 1 + γ(w k )/φ(w k ) -1 X = B d (0, 1) or X = [-1/2, 1/2] d
we can take σ = 1/2, which gives τ = 1: all points in the interior of B d (c(ξ 2 ), X i2 -X i1 /2) are eliminated (and ξ 2 is optimal whatever the choice of X 1 in X ). More generally, Lemma 3.1 in [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] gives σ = 3/2 for any X n , since

X i * -c(ξ 2 ) ≤ X i * -X i1 + X i1 -c(ξ 2 ) ≤ X i2 -X i1 + 1 2 X i1 -X i2 = 3 2 X i1 -X i2 .
This bound is not tight, however: equality can only be achieved when X i * , X i1 and X i2 are aligned, with X i1 between X i * and X i2 , which contradicts the fact that X i1 is the furthest point in X n from some X 1 . A more precise analysis, see Appendix A, yields σ = √ 7/2, and the corresponding bound is tight. This indicates that, for any set X n and for any point X 1 ∈ X n used for the construction of ξ 2 , any X i such that

X i -c(ξ 2 ) < 0.133974 X i2 -X i1 < 7 -4 √ 3 X i2 -X i1 /2 (27) 
can always be eliminated2 . In practice, X i * -c(ξ 2 ) is often much smaller than √ 7 X i1 -X i2 /2, and ξ 2 proves generally more efficient than the uniform measure ξ u for eliminating inessential points. This is illustrated in the next section.

Computational results

Methods to be compared. In this section, we report the results of computational experiments comparing different methods for the construction of B * (X n ). The first one (henceforth QP) corresponds to the direct application of the QP solver of Matlab (the function qp.m) to the minimisation of (3), see Section 1. In the method QP 0 , we first eliminate inessential points using the sieve ( 14) for ξ 2 given by ( 26) and then apply the same QP solver.

The choice of c 0 in (3) is arbitrary, and c 0 = c(ξ u ) = (1/n) n i=1 X i seems natural. However, we found that c 0 has a significant influence on the computational time, and that taking c 0 out of the convex hull Conv(X n ) of X n generally yields a faster computation of the optimal solution. Note that, when c 0 / ∈ Conv(X n ), for any t ∈ R there exists a c ∈ R d satisfying the constraints (4) (and the set of such feasible c is unbounded). On the other hand, no feasible c exists for small enough t when c 0 ∈ Conv(X n ). In our computations we take c 0 = 2 X ia -X ib , where i a = arg max i=1,...,n u X i and i b = arg min i=1,...,n u X i , with u = (1, 0, . . . , 0) (the choice of u does not seem important). The QP solver is initialised at (c(ξ u ), 0) (which is not necessarily feasible for ( 4)).

We also consider the iterative construction of an (1 + )-approximation of B * (X n ), using Algorithms 1 and 2 (henceforth A1 and A2), both with = 10 -3 . A1 and A2 do not eliminate any point. As noticed in Section 4.2, it is not very efficient to try to eliminate inessential points at each iteration of A1. Our experiments indicate that a suitable compromise between the computational cost of the elimination test and the benefit of reducing the dimension of w is obtained when the sieve ( 14) is used about every 5 iterations of A1 or A2; the corresponding methods are denoted by A1 5 and A2 5 , respectively. For each of them, inessential points are also eliminated at the initialisation, using ( 14) with ξ 2 . A1 5 and A2 5 differ from A1 5 and A2 5 by the stopping rule only: they are stopped when an (1+ )-approximation is obtained or earlier if n-2d inessential points have already been eliminated. In case of early stopping, QP applied to the resulting 0-core set will thus have to deal with 2d constraints only (the value 2d is somewhat arbitrary, but seems reasonable for most situations since B * (X n ) has d + 1 points at most on its boundary when the n points in X n are in general position). In A1 5 -QP and A2 5 -QP we apply QP to the 0-core sets returned by A1 5 and A2 5 , respectively. Finally, A2 * 5 is similar to A2 5 but uses = 10 -6 , and thus returns an (1 + )-approximation very close to the exact B * (X n ) given by QP, QP 0 , A1 5 -QP and A2 5 -QP. We shall call these methods (including A2 * 5 ) exact in what follows. When using A1 or A2, points that are eliminated by [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] for the current measure ξ k may carry a positive weight w k i , and the weights of remaining points then need to be renormalised. Denote by I k the set of indices of those remaining points; following [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF], we replace w k i by z k i /( n j=1 z k j ), where

z k i = 0 for i / ∈ I k , z k i = 1.1 w k i if X i -c(w k ) 2 ≥ φ(w k ) and z k i = w k i otherwise (i ∈ I k and X i -c(w k ) 2 < φ(w k )).

Measures of performance.

The experiments were carried out on a PC with a clock speed of 2.50 GHz and 32 Go RAM.

We first compare (Tables 1, 4 and7) the effectiveness of the sieve ( 14) for the uniform measure ξ u used to initialise A1 and for ξ 2 given by ( 26): π(ξ) = 1 -α(ξ) gives the proportion of points that are not eliminated by ξ. To compare the efficiency of [START_REF] Pázman | Foundations of Optimum Experimental Design[END_REF] with that of the bound [START_REF] Sibson | Discussion on a paper by H.P. Wynn[END_REF] proposed in [START_REF] Ahipaşaoglu | Identification and elimination of interior points for the minimum enclosing ball problem[END_REF], we also give the value

π AY (ξ 2 ) obtained when b AY [φ(ξ 2 ), γ(ξ 2 )] is used instead of b[φ(ξ 2 ), γ(ξ 2 )].
We also indicate the number κ of remaining points after using A1 5 , A2 5 or A2 * 5 that incorporate an elimination of inessential points. In Tables 2, 5 and 8, N gives the number of iterations performed to reach the required precision for A1, A1 5 , A2, A2 5 ( = 10 -3 ) and A2 * 5 ( = 10 -6 ), or to eliminate at least n -2d points for A1 5 and A2 5 .

Finally, in Tables 3, 6 and 9 we compare the computational times of the different methods considered, with t(QP), the computational time of QP, taken as a reference: for each method M other than QP, with computational time t(M), we indicate the ratio ρ(M)=t(M)/t(QP). n consecutive points of Sobol' low-discrepancy sequence in [0, 1] d . Table 1 indicates that ξ 2 is much more effective than the uniform measure ξ u for eliminating points with (14) when d is not too large, d 10 say; one may note the good agreement between π(ξ u ) and the theoretical value

π * = 1 -[π d(1/4 - √ 2/6)] d/2 /Γ(d/2 + 1) (d ≤ 17
) derived in Section 3.4. For d between 3 and 10, π AY (ξ 2 ) is most often significatively larger than π(ξ 2 ), which illustrates the superiority of the bound ( 14) over [START_REF] Sibson | Discussion on a paper by H.P. Wynn[END_REF]. The number of remaining points after running A1 5 or A2 5 are very close in most cases. Exceptions, like n = 10 3 and n = 10 4 for d = 3 and n = 10 5 for d = 4, correspond to situations where A2 5 is used for less than 5 iterations, so that inessential points are only eliminated once (at the initialisation) whereas A1 5 makes much more iterations, see Table 2 (when less than 5 iterations are done, then κ = n π(ξ 2 )). As expected, κ(A2 * 5 ) is smaller than κ(A2 5 ) in all cases, and Table 1 indicates that A2 * 5 is able to provide small 0-core sets for the sets X n considered.

Table 2 shows that the elimination of inessential points does not directly influence the number of iterations required to reach a given precision: N (A1 5 ) is often smaller than N (A1), but not always; the effect on A2 is limited. A1 5 requires systematically more (sometimes much more) iterations than A2 5 to reach the required precision , which can be related to the general observation that multiplicative algorithms tend to be slow close to the optimum. This is consistent with the observations that sometimes A1 5 requires significantly less iterations than A1 5 , whereas N (A2 5 ) is close to N (A2 5 ) in all circumstances: A1 5 may have reached an (1 + )-approximation, > , close enough to the optimum to be able to eliminate many points, but may still require many iterations to reach an (1+ )-approximation. The number of iterations of A2 * 5 ( = 10 -6 ) shows a great variability among the cases considered, and the large values obtained for d = 2, n = 10 3 and n = 10 4 may look surprising. However, they do not contradict the complexity bound N (A2) < 18 + 50/ of [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF] and can be explained by the potential slow convergence of first-order methods close to the optimum. A simple example with d = 2 and n = 4 gives an illustration.

Take [START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF]. The initial w 0 of A2 is thus (1/2, 1/2, 0, 0), and A2 may require many iterations to reach precision depending on the value of a. For instance, for = 10 -5 , N (A2)=6252 when a = 10 -3 and N (A2)=62502 when a = 10 -4 (whereas N (A1)=7361 and N (A1)=1 for a = 10 -3 and a = 10 -4 , respectively).

X n = {X 1 , X 2 , X 3 , X 4 } with X 1 = (1 -a, a) , X 2 = (a, 1 -a) , X 3 = (0, 0) and X 4 = (1, 1) , a < 1/2. When a < 1/2 - √ 3/6, then X 1 -X 2 > X 1 -X 3 , so that i 1 = 2 and i 2 = 1 in
A noticeable observation from Table 3 is that a standard QP solver gives the solution in reasonable time if n is not too big, even for rather large d. A1 5 (respectively, A2 5 ) is slightly faster than A1 5 (respectively, A2 5 ) since it is stopped earlier; the comparison with A1 (respectively, A2) shows that the elimination of points significantly accelerates convergence 3 . Since A1 5 and A2 5 only provide (1 + )-approximations with = 10 -3 , Table 1. Sobol' sequence in [0, 1] d : proportion π (in %) of points not eliminated and number κ(M) of remaining points after applying method M. comparing their computational time with that of QP is unfair. A1 5 -QP is sometimes faster than QP, but is always slower than A2 5 -QP, which is often faster than QP and sometimes the fastest among the exact methods considered. A2 * 5 is seldom the fastest among exact methods and is often much slower than QP. In this example, QP 0 is faster than QP for n ≤ 10 and slightly slower when n ≥ 20 (i.e., when few points are eliminated by ξ 2 ); it is frequently the fastest exact method when n ≤ 5. n points i.i.d. N (0, I d ). Table 4 indicates that the elimination of inessential points is more efficient with A1 5 than A2 5 , and that both methods are able to provide small 0-core sets. For d 10, π AY (ξ 2 ) is significatively larger than π(ξ 2 ), confirming the superiority of the bound ( 14) over [START_REF] Sibson | Discussion on a paper by H.P. Wynn[END_REF]. Table 5 gives the same indications as Table 2: sometimes A1 5 requires significantly less iterations than A1 5 , an indication of the slow convergence of the multiplicative algorithm near the optimum. Also, N (A1 5 )>N (A2 5 ) and N (A1 5 )>N (A2 5 ) in all cases. One may notice the large values of N (A2 * 5 ). Table 6 shows that QP 0 and A2 5 -QP are often the fastest among exact methods, which is never the case for A2 * 5 . QP 0 shows remarkably stable performance and is significantly faster than QP when n ≤ 5 (i.e., when the elimination of inessential points by ξ 2 is effective, see Table 4) and is only slightly slower than QP for n ≥ 10. QP is the fastest exact method for n small enough (n ≤ 10 3 ) when d ≥ 10 and for all n ≥ 10 3 when d is large (d ≥ 40). n points i.i.d. uniformly in B d (0, 1). This corresponds to a difficult situation for algorithms 1 and 2, and due to the larger computational times required compared to previous examples we only consider d ≤ 40 (and n ≤ 10 4 for d = 40). Table 7 shows that the proportion of points eliminated by ξ u or ξ 2 is very small already for d = 10. Now π AY (ξ 2 ) is significatively larger than π(ξ 2 ) for d 5 only. As in Table 4, κ(A1 5 )< κ(A2 5 ), but the figures are now much larger, indicating that the algorithms have difficulties with providing small 0-core sets. As a consequence, here A1 5 (respectively, A2 5 ) does not stop earlier than A1 5 (respectively, A2 5 ), and the results for A1 5 and A2 5 are omitted in Tables 8 and9 since they are identical to those for A1 5 and A2 5 . The number of iterations for given d and n in Table 8 is significantly larger than in Tables 2 and5, with N (A1 5 )>N (A2 5 ) for d ≤ 10 and N (A2 5 ) slightly larger than N (A1 5 ) for d ≥ 30. The number of iterations of A2 * 5 is now very large. Table 9 shows that QP 0 is generally the fastest among exact methods for d ≤ 5 and is only slightly slower than QP for larger d. On the other hand, A2 5 -QP is much slower than QP for d ≥ 10 and A2 * 5 is by far the slowest exact method is all cases considered.

d n π * π(ξu) π(ξ 2 ) π AY (ξ 2 ) κ(A1 5 ) κ(A2 5 ) κ(A2 *
Finally, one may notice that, for given d and n, the computational times for QP (and thus of QP 0 ) are quasi identical in Tables 3 and6 and are only increased by a small factor in Table 9, enhancing the interest of using QP with elimination of inessential points to solve smallest enclosing ball problems with moderate d.

Conclusions

An inequality has been derived that permits to remove inessential (interior) points during the computation of the smallest enclosing ball of a set of points. The inequality is, in some sense, the best possible, and is given by a simple expression depending on the mean and the (trace of the) variance matrix of a probability measure placed on the set of points. Any probability measure gives such an an inequality. Algorithms for the solution of the dual problem construct sequences of probability measures (defined by the Lagrange coefficients), which can thus straightforwardly be used to progressively eliminate inessential points. A two-point measure ξ 2 , already proposed in the literature to efficiently initialise such dual algorithms [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF], has been shown to efficiently directly remove a significant proportion of points in various situations with reasonably small dimension d. Several numerical experiments have indicated that this simple pre-filtering of the input set is clearly beneficial to a QP solver when enough inessential points are removed (d is small enough) and that the extra cost (slow-down factor) due to prefiltering is marginal otherwise (for large d). Other methods, like those in [START_REF] Gärtner | Fast and robust smallest enclosing balls[END_REF][START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF] 4 might also benefit from the input-size reduction offered by this pre-filtering. Notice, finally, that these methods rely on the computation of a sequence of smallest enclosing balls for sets of d + 1 points, from which a sequence of probability measures, and thus of eliminating inequalities, could easily be deduced; see [START_REF] Gärtner | Fast and robust smallest enclosing balls[END_REF]Sect. 3]. 

  Denote u = φ(ξ * ) and v = c(ξ * ) -c(ξ) . The set {(u, v) ∈ R 2 : u 2 + v 2 ≤ φ(ξ) + γ(ξ) and u 2 -v 2 ≥ φ(ξ)} is convex, and the minimum of u -v is obtained for u = φ(ξ) + γ(ξ)/2 and v = γ(ξ)/2; Figure 1 gives an illustration. Therefore, (17) implies that y -c(ξ) 2 ≥ b[φ(ξ), γ(ξ)].
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 1 Figure 1. Determination of the lower bound (14) in the proof of Theorem 3.2: admissible set for (u, v) (coloured) and optimum point minimising u -v (dot).

Figure 2 -

 2 left presents b(φ, γ)/φ (solid line) and b AY (φ, γ)/φ (dashed line) as functions of ∈ [0, 1]; the difference between the two curves is shown on the right part. The superiority of b(φ, γ) compared to b AY (φ, γ)

Figure 2 .

 2 Figure 2. b(φ, γ)/φ (solid line, left), b AY (φ, γ)/φ (dashed line, left) and [b(φ, γ)-b AY (φ, γ)]/φ (right) as functions of = (1 + γ/φ) 1/2 -1.

,

  which is a decreasing function of d, the values of α(ξ u ) being already moderate for small d, with α(ξ u |d = 2) = 1 -√ 3/2 0.1340 and α(ξ u |d = 3) = √ 5/25 0.0894. Similarly, for the bound (19) of [2] we obtain b AY [φ(ξ u ), γ(ξ u )] = d/(d + 2) (1 -2/d) 2 for d > 2 (and 0 for d = 1, 2). The values of b[φ(ξ u ), γ(ξ u )] and b AY [φ(ξ u ), γ(ξ u )] are plotted against d in Figure 3-left; the corresponding proportions α(ξ u ) are presented in Figure 3-right.

Figure 3 .

 3 Figure 3. b[φ(ξu), γ(ξu)] (stars, left), b AY [φ(ξu), γ(ξu)] (triangles, left) and corresponding proportions α(ξu) of eliminated points (right, log-scale) as functions of d.

Table 2 .

 2 Sobol' sequence in [0, 1] d : number N of iterations performed to reach precision = 10 -3 ( = 10 -6 for A2 * 5 ).

	d	n	A1	A1 5	A1 5	A2 A2 5	A2 5	A2 * 5
	2	10 3	44	1	0	0	0	0	32263
		10 4	173 1	0	0	0	0	32263
		10 5	266 0	0	0	0	0	0
	3	10 3	80	270	70	3	3	3	12
		10 4	253 169	169	3	3	3	34
		10 5	242 219	219	1	1	1	7
	4	10 3	91	84	75	5	6	5	14
		10 4	94	0	0	0	0	0	0
		10 5	229 123	123	4	4	4	818
	5	10 3	93	92	75	29	22	20	76
		10 4	212 88	88	63	81	81	178
		10 5	179 107	107	50	55	55	465
	10 10 3	89	139	40	62	56	35	457
		10 4	175 97	97	69	79	79	446
		10 5	200 137	137	66	74	74	930
	20 10 3	241 139	115	89	89	85	714
		10 4	166 152	152	44	37	37	348
		10 5	244 142	142	61	36	35	301
	30 10 3	286 204	50	37	28	25	373
		10 4	336 237	210	87	63	55	1007
		10 5	342 222	222	76	66	66	959
	40 10 3	206 117	80	28	26	15	132
		10 4	115 99	90	60	56	50	311
		10 5	359 188	188	76	45	45	744
	50 10 3	153 103	60	56	44	30	336
		10 4	191 154	125	56	54	54	617
		10 5	266 143	143	93	79	79	1726

Table 3 .

 3 Sobol' sequence in [0, 1] d : computational time t(QP) (in s) and ratios ρ(M)=t(M)/t(QP)averaged over 10 repetitions. Italicized figures correspond to the fastest exact method.

	d	n	t(QP) QP 0	A1	A1 5	A1 5	A2	A2 5	A2 5	A1 5 -QP A2 5 -QP A2 * 5
	2	10 3	0.006	0.40	2.13	0.27	0.22 0.16 0.14 0.14 0.37	0.29	864.1
		10 4	0.030	0.08	3.27	0.08	0.07 0.04 0.05 0.05 0.10	0.08	164.1
		10 5	0.27	0.06	4.69	0.07	0.07 0.04 0.06 0.06 0.08	0.06	0.06
	3	10 3	0.004	0.49	4.11	11.05 3.20 0.32 0.30 0.30 3.43	0.59	0.70
		10 4	0.029	0.10	5.19	1.08	1.07 0.10 0.08 0.08 1.10	0.12	0.27
		10 5	0.28	0.06	4.43	0.20	0.20 0.06 0.07 0.07 0.20	0.07	0.07
	4	10 3	0.004	0.56	4.75	4.23	3.99 0.44 0.49 0.45 4.25	0.68	0.83
		10 4	0.029	0.08	1.96	0.09	0.08 0.05 0.06 0.06 0.11	0.09	0.06
		10 5	0.32	0.10	4.32	0.17	0.17 0.11 0.07 0.07 0.18	0.10	0.45
	5	10 3	0.005	0.92	4.06	3.80	3.20 1.30 1.03 0.97 3.48	1.25	2.81
		10 4	0.031	0.28	4.22	0.67	0.66 1.20 0.52 0.53 0.70	0.57	1.04
		10 5	0.32	0.14	4.08	0.20	0.20 1.05 0.12 0.12 0.21	0.13	0.31
	10 10 3	0.007	0.97	3.18	4.12	1.64 2.28 1.79 1.24 2.05	1.63	11.6
		10 4	0.040	0.95	3.61	0.93	0.93 1.36 0.49 0.49 1.01	0.57	1.94
		10 5	0.40	0.57	7.03	0.64	0.64 2.16 0.26 0.26 0.65	0.27	0.58
	20 10 3	0.011	1.06	6.18	3.02	2.62 2.21 1.73 1.65 3.21	2.20	10.9
		10 4	0.059	1.14	6.17	1.76	1.77 1.70 0.47 0.48 1.88	0.58	1.33
		10 5	0.55	1.15	12.71 1.99	2.01 3.00 0.50 0.50 2.02	0.51	0.58
	30 10 3	0.015	1.08	5.66	2.78	1.05 0.76 0.52 0.49 1.65	1.06	3.96
		10 4	0.075	1.18	15.65 2.30	2.26 4.02 0.73 0.72 2.38	0.84	2.70
		10 5	0.74	1.22	23.86 2.80	2.80 5.05 0.93 0.93 2.82	0.94	1.12
	40 10 3	0.021	1.05	3.38	1.56	1.23 0.52 0.42 0.31 1.93	0.94	1.19
		10 4	0.092	1.16	6.52	2.58	2.58 3.28 0.99 0.98 2.78	1.16	1.46
		10 5	0.92	1.28	27.89 4.06	4.05 5.68 1.04 1.03 4.07	1.06	1.14
	50 10 3	0.030	1.04	2.02	1.04	0.77 0.71 0.45 0.36 1.49	1.06	1.98
		10 4	0.12	1.19	11.88 3.21	3.18 3.44 1.13 1.14 3.42	1.36	1.93
		10 5	1.19	1.24	21.67 4.24	4.23 7.31 1.14 1.14 4.26	1.17	1.36

Table 4 .

 4 X i i.i.d. N (0, I d ): proportion π (in %) of points not eliminated and number κ(M) of remaining points after applying method M -averaged values over 100 repetitions, rounded to the nearest integer.

	d	n	π(ξu)	π(ξ 2 )	π AY (ξ 2 ) κ(A1 5 ) κ(A2 5 )	κ(A2 * 5 )
	2	10 3	93.40	12.81	40.23	4	29	10
		10 4	94.86	9.00	37.00	5	240	65
		10 5	95.92	3.61	25.69	6	495	21
	3	10 3	96.70	32.94	75.37	5	52	9
		10 4	97.68	18.59	66.15	6	112	17
		10 5	98.25	9.19	50.79	8	129	4
	4	10 3	98.21	46.39	84.81	7	20	5
		10 4	98.77	34.30	82.96	8	127	5
		10 5	99.16	24.00	78.00	10	507	320
	5	10 3	98.89	62.18	92.52	8	22	5
		10 4	99.31	47.69	94.04	10	81	5
		10 5	99.54	33.27	84.58	12	17	5
	10 10 3	99.78	93.52	99.93	13	15	8
		10 4	99.91	89.03	99.99	17	26	8
		10 5	99.96	81.00	99.92	22	25	9
	20 10 3	99.99	99.94	100.00	22	24	12
		10 4	100.00 99.79	100.00	32	33	13
		10 5	100.00 99.39	100.00	42	45	14
	30 10 3	100.00 100.00 100.00	30	31	16
		10 4	100.00 100.00 100.00	45	46	18
		10 5	100.00 100.00 100.00	64	67	20
	40 10 3	100.00 100.00 100.00	39	40	18
		10 4	100.00 100.00 100.00	59	63	21
		10 5	100.00 100.00 100.00	86	92	24
	50 10 3	100.00 100.00 100.00	48	49	21
		10 4	100.00 100.00 100.00	74	77	24
		10 5	100.00 100.00 100.00	107	112	28

Table 5 .

 5 X i i.i.d. N (0, I d ): number N of iterations performed to reach precision = 10 -3 ( = 10 -6 for A2 * 5 ) -averaged values over 100 repetitions, rounded to the nearest integer.

	d	n	A1	A1 5	A1 5	A2	A2 5	A2 5	A2 * 5
	2	10 3	80	126	95	27	23	22	91
		10 4	84	288	187	38	36	36	291
		10 5	114 132	123	40	35	35	74
	3	10 3	84	98	55	36	33	26	86
		10 4	99	83	68	48	40	37	92
		10 5	112 107	100	51	46	45	170
	4	10 3	107 87	59	46	40	34	385
		10 4	110 86	66	47	40	37	142
		10 5	127 90	82	74	63	61	288
	5	10 3	104 82	54	50	46	37	191
		10 4	122 93	74	64	52	47	199
		10 5	136 100	91	88	74	71	333
	10 10 3	125 93	52	59	49	36	320
		10 4	163 112	91	78	62	56	349
		10 5	175 124	116	86	67	64	465
	20 10 3	162 121	57	64	56	35	334
		10 4	194 136	94	87	71	58	602
		10 5	222 156	144	99	82	78	754
	30 10 3	169 124	53	72	62	37	465
		10 4	228 153	110	92	81	65	813
		10 5	249 168	155	117 94	89	1200
	40 10 3	168 119	61	68	64	35	532
		10 4	229 159	105	93	81	65	1054
		10 5	280 182	170	114 96	93	1472
	50 10 3	176 123	63	80	73	40	723
		10 4	234 151	116	106 89	70	1171
		10 5	284 177	169	117 100	95	1856

Table 6 .

 6 X i i.i.d. N (0, I d ): computational time t(QP) (in s) and ratios ρ(M)=t(M)/t(QP) -averaged over 100 repetitions. Italicized figures correspond to the fastest exact method.

	d	n	t(QP) QP 0	A1	A1 5	A1 5	A2	A2 5	A2 5	A1 5 -QP A2 5 -QP A2 * 5
	2	10 3	0.005	0.52	4.01	5.98 4.66 1.43 1.24 1.16 4.87	1.39	4.15
		10 4	0.030	0.18	1.61	1.60 1.15 0.71 0.27 0.27 1.18	0.32	1.71
		10 5	0.27	0.09	1.79	0.16 0.15 0.58 0.08 0.08 0.16	0.09	0.10
	3	10 3	0.004	0.73	4.16	4.61 2.72 1.87 1.65 1.37 2.95	1.66	3.69
		10 4	0.029	0.28	2.03	0.61 0.53 0.92 0.31 0.30 0.56	0.34	0.59
		10 5	0.29	0.16	2.18	0.17 0.17 0.85 0.10 0.10 0.17	0.11	0.17
	4	10 3	0.005	0.83	4.89	3.74 2.69 2.14 1.80 1.60 2.95	1.88	14.28
		10 4	0.030	0.43	2.18	0.65 0.54 0.88 0.32 0.31 0.58	0.36	0.84
		10 5	0.30	0.31	2.54	0.20 0.20 1.33 0.13 0.13 0.20	0.14	0.24
	5	10 3	0.004	0.95	4.83	3.70 2.62 2.37 2.04 1.74 2.93	2.08	7.14
		10 4	0.032	0.56	2.43	0.70 0.61 1.20 0.40 0.37 0.66	0.42	1.06
		10 5	0.32	0.42	3.06	0.25 0.25 1.79 0.16 0.16 0.26	0.16	0.28
	10 10 3	0.006	1.10	4.58	3.11 1.99 2.16 1.66 1.40 2.43	1.84	8.18
		10 4	0.039	0.96	3.41	0.85 0.76 1.57 0.45 0.42 0.83	0.49	1.55
		10 5	0.40	0.92	6.19	0.63 0.63 2.77 0.30 0.30 0.64	0.31	0.46
	20 10 3	0.010	1.08	4.23	2.51 1.44 1.70 1.23 0.88 2.00	1.43	5.35
		10 4	0.061	1.12	6.87	1.12 1.01 3.01 0.58 0.54 1.12	0.65	1.89
		10 5	0.58	1.16	10.94 1.21 1.21 4.45 0.51 0.52 1.22	0.53	0.69
	30 10 3	0.019	1.06	2.78	1.51 0.83 1.17 0.82 0.56 1.40	1.11	4.06
		10 4	0.081	1.12	9.63	1.36 1.27 3.83 0.75 0.72 1.42	0.87	2.15
		10 5	0.77	1.19	16.42 1.75 1.75 7.18 0.80 0.79 1.77	0.81	1.02
	40 10 3	0.028	1.04	2.09	1.09 0.69 0.83 0.61 0.42 1.37	1.09	3.24
		10 4	0.10	1.14	11.30 1.63 1.54 4.33 0.90 0.88 1.77	1.09	2.38
		10 5	0.97	1.20	20.39 2.15 2.15 7.83 1.05 1.04 2.18	1.06	1.27
	50 10 3	0.038	1.04	1.79	0.89 0.60 0.77 0.55 0.38 1.34	1.10	3.21
		10 4	0.13	1.16	12.71 1.84 1.78 5.54 1.11 1.10 2.05	1.36	2.46
		10 5	1.20	1.22	22.43 2.48 2.49 8.74 1.33 1.33 2.52	1.36	1.56

Table 7 .

 7 X i uniform in B d (0, 1): proportion π (in %) of points not eliminated and number κ(M) of remaining points after applying method M -averaged values over 100 repetitions, rounded to the nearest integer.

	d	n	π *	π(ξu)	π(ξ 2 )	π AY (ξ 2 )	κ(A1 5 ) κ(A2 5 ) κ(A2 * 5 )
	2	10 3	86.60 87.04	36.00	52.84	67	87	9
		10 4	86.60 86.78	24.82	36.35	644	978	35
		10 5	86.60 86.66	17.45	25.34	6384	16627	235
	3	10 3	91.06 91.61	63.29	83.69	100	112	9
		10 4	91.06 91.26	49.12	67.89	948	1061	44
		10 5	91.06 91.13	40.78	57.17	9399	17555	339
	4	10 3	93.52 94.21	80.24	95.49	127	140	10
		10 4	93.52 93.74	70.89	89.16	1229	1375	54
		10 5	93.52 93.60	62.08	81.02	12245	15449	445
	5	10 3	95.06 95.64	89.42	98.78	157	164	11
		10 4	95.06 95.29	85.33	97.54	1522	1667	64
		10 5	95.06 95.15	77.66	93.34	15173	17407	553
	10 10 3	98.21 98.70	99.79	100.00	287	297	19
		10 4	98.21 98.39	99.61	100.00	2795	2920	113
		10 5	98.21 98.28	99.19	100.00	27925	29054	1080
	20 10 3	99.54 99.74	100.00 100.00	488	499	39
		10 4	99.54 99.64	100.00 100.00	4799	4859	221
		10 5	99.54 99.58	100.00 100.00	47892	48562	2084
	30 10 3	99.84 99.93	100.00 100.00	632	638	56
		10 4	99.84 99.89	100.00 100.00	6237	6276	329
		10 5	99.84 99.86	100.00 100.00	62624	62577	3053
	40 10 3	99.93 99.98	100.00 100.00	738	740	72
		10 4	99.93 99.96	100.00 100.00	7286	7284	433

Table 8 .

 8 X i uniform in B d (0, 1): number N of iterations performed to reach precision = 10 -3 ( = 10 -6 for A2 * 5 ) -averaged values over 100 repetitions, rounded to the nearest integer.

	d	n	A1	A1 5	A2	A2 5	A2 * 5
	2	10 3	336 172	216 146	1764
		10 4	505 220	223 87	14658
		10 5	522 238	17	4	41055
	3	10 3	363 182	189 144	5624
		10 4	530 219	270 167	18211
		10 5	522 216	231 69	50772
	4	10 3	403 198	220 172	5222
		10 4	527 227	232 163	27298
		10 5	528 219	285 130	58736
	5	10 3	405 207	240 191	5823
		10 4	546 240	228 178	23909
		10 5	528 219	257 144	60436
	10 10 3	454 242	297 228	9757
		10 4	570 274	278 216	37559
		10 5	535 234	255 193	78289
	20 10 3	474 262	364 273	26375
		10 4	589 292	363 276	80345
		10 5	539 237	310 235	133569
	30 10 3	496 275	414 303	48385
		10 4	591 290	412 301	131301
		10 5	539 217	364 267	199827
	40 10 3	508 284	437 316	64644
		10 4	595 278	426 315	174531

Table 9 .

 9 X i uniform in B d (0, 1): computational time t(QP) (in s) and ratios ρ(M)=t(M)/t(QP) -averaged over 100 repetitions. Italicized figures correspond to the fastest exact method.

	d	n	t(QP) QP 0	A1	A1 5	A2	A2 5	A1 5 -QP A2 5 -QP A2 * 5
	2	10 3	0.004	0.74	16.20 9.06 10.15 6.83 9.64	7.14	73.0
		10 4	0.028	0.34	8.69	1.96 3.75	0.72 2.10	0.88	81.2
		10 5	0.28	0.24	9.37	0.61 0.25	0.07 0.68	0.24	24.1
	3	10 3	0.006	0.88	12.40 6.55 6.05	4.47 6.63	4.78	146.2
		10 4	0.031	0.59	9.09	2.18 4.44	1.34 2.38	1.51	92.2
		10 5	0.31	0.51	9.77	0.93 3.43	0.25 1.04	0.44	29.1
	4	10 3	0.007	0.99	12.75 6.73 6.53	4.89 6.89	5.28	144.9
		10 4	0.035	0.85	8.03	2.27 3.43	1.37 2.48	1.58	120.2
		10 5	0.34	0.77	10.47 1.35 4.57	0.47 1.50	0.65	33.4
	5	10 3	0.008	1.02	11.68 6.37 6.63	4.93 6.66	5.53	126.2
		10 4	0.039	0.99	8.36	2.44 3.27	1.55 2.67	1.80	98.8
		10 5	0.37	0.91	11.54 1.82 4.48	0.74 1.99	0.93	34.5
	10 10 3	0.012	1.05	9.10	5.04 6.07	4.31 6.04	5.17	134.5
		10 4	0.059	1.06	7.62	3.02 3.54	2.08 3.46	2.58	110.7
		10 5	0.54	1.10	15.55 4.04 6.09	2.34 4.36	2.66	49.9
	20 10 3	0.025	1.08	5.29	3.15 4.02	2.88 4.06	3.91	173.4
		10 4	0.11	1.05	11.52 4.22 6.85	3.45 4.90	4.16	148.5
		10 5	0.96	1.08	16.96 6.74 8.44	5.10 7.24	5.59	112.9
	30 10 3	0.049	1.03	3.17	1.94 2.59	1.97 3.06	3.00	165.9
		10 4	0.17	1.06	11.72 5.62 7.78	5.14 6.45	5.97	191.2
		10 5	1.65	1.09	17.83 7.39 10.77 7.01 7.97	7.61	232.3
	40 10 3	0.087	1.02	2.03	1.29 1.68	1.27 2.34	2.33	132.2
		10 4	0.27	1.05	11.50 5.53 7.58	5.32 6.42	6.19	204.7

There may exist ξ = ν such that φ(ξ) = φ(ν) and c(ξ) = c(ν), and then g(α) is constant for all α ∈ [0, 1] (think for example of Xn given by the vertices of several regular simplices in R d all having the same centre).

Although the value σ = √ 7/2 gives a tight bound, one may notice that the inequality (27) is suboptimal since the worst-case situations in Theorem

3.3 and Lemma A.1 correspond to different measures.

The same observation can be made on Tables6 and 9.

See also the implementation in http://doc.cgal.org/latest/Bounding_volumes/classCGAL_1_1Min_sphere__d. html
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Appendix A.

Lemma A.1 For any set X n ⊂ R d and any X 1 ∈ X n , the measure ξ 2 defined by [START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF] is such that max i=1,...,n

and the bound is tight.

Proof. Let X i * denote the furthest point in X n from c(ξ 2 ). Without any loss of generality we can take X i1 as the origin, X i2 -X i1 proportional to the first basis vector e 1 , X 1 in the plane formed by e 1 and e 2 , and X i * in the three dimensional space generated by e 1 , e 2 and e 3 . With a suitable rescaling, we can also assume that X i1 -X i2 = 1. Therefore, we can write, in polar coordinates,