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Abstract—In this paper, we present a pseudolinear estimate 

for bearings and frequencies target motion analysis. We propose 

two ways to reduce its inherent bias and evaluate its performance 

with Monte Carlo simulations, with reference to the Cramér-Rao 

lower bound. 
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I.  INTRODUCTION  

Target motion analysis (TMA) is now an old problem well-
known by our community. The most common variants are 
probably bearings-only TMA (BOTMA) [1], and bearings and 
frequency (or Doppler) TMA (BFTMA) [2]. The first needs the 
platform to maneuver properly, whereas the second has no 
specific requirement to make the task feasible (observability 
condition). The solutions proposed in the literature can be 
classified into two main groups: the batch methods devoted to 
the scenarios during which the source does not maneuver, and 
those devoted to possibly maneuvering sources. For the first 
situation, the maximum likelihood estimate is most often 
proposed, computed via a numerical routine [1]. For the second 
situation, a recursive (compatible with real-time) filter is most 
appropriate: extended and unscented Kalman filters (with 
convenient coordinate systems) can be run, but with a risk of 
divergence of the filter [3] [4], particle filters with low risk of 
divergence but demanding a strong computational resource [5].  
All these methods are iterative (or time-recursive, which is a 
kind of iteration). In this paper, we give the proof of 
observability in BFTMA in discrete time, the analysis of 
observability having been made in continuous time in the past 
[6]. Then, we propose two ways to compute directly two 
almost unbiased estimates in BFTMA by a straightforward 
computation. This is based upon the so-called modified 
instrumental method, initially introduced in [7].  

The paper is organized as follows: 
In section II, the problem formulation and our notations are 
presented. Section III is devoted to observability analysis in 
discrete time. We present in section IV a pseudolinear estimate, 
which is biased. Section V offers two ways to reduce the bias, 
and presents some simulations, illustrated with typical 
scenarios. A conclusion and an appendix, containing some 
computational details, follow.  

II. PROBLEM FORMULATION AND NOTATIONS 

We consider the common situation where a motionless 

observer acquires sequentially a couple of measurements 
composed of an azimuth (or bearing) and a frequency of a 
single tone emitted by a source moving at constant velocity. 
Due to the source’s motion, the detected frequency is Doppler-
shifted. The plane in which the two actors play is given a 
Cartesian coordinate system. In this system, the position 
vector at time t  and the velocity vector of the source are 

      T

SSS tytxtP   and  T

SSS yxV  , respectively. The 

vectors  tPS
 and 

SV  are also described by their polar 

coordinates:         T

S tttrtP  cossin  and 

 T

S hhvV cossin . The source is assumed to be emitting a 

pure single tone at the unknown frequency 
0 . The observer is 

located at  T

OP 00 . At time , the noiseless azimuth and 

frequency are respectively       kSkSkk tytxt ,Atan  and 
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r
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d . Note that in these two expressions the propagation 

delay is neglected. The letter c denotes the speed of sound in 
the medium (c=1500 m/s in water). At this time, the observer 
acquires the pair of measurements  kmkm f ,, ,  defined by 

kkkm  ,
 and 

kkkm ff ,
. The terms 

k and 
k  are 

respectively the measurement noises corrupting the bearing 
and the frequency acquired at time 

kt . The noise vector 
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KK

T

kk

T
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is assumed to 

be a zero-mean Gaussian vector whose covariance matrix is 
diagonal. With no loss of generality, we will assume that 

 kVar  and  kVar  are constant, i.e.   2Var  k
 and  

  2Var fk   .  

The purpose of BFTMA is to estimate the trajectory of the 
source from a set of collected measurements 

  Kkf kmkm ...,,1,, ,,  . Because 
0  is unknown, it must 

be estimated, as well. 

The “natural” state vector that characterizes the source (i.e.  
its motion and its “ music”, that is 

0 ) should be 

    T

SSSS yxtytx 011  .  However, we make another 

choice: the state vector defined as 

    T

SSSS yxtytxX 0001010   is more convenient to 



establish the observability of the trajectory from the set of 
noiseless measurements   Kkfkk ...,,1,,   whose proof is 

given in the next section, and to construct a pseudolinear 
estimate. This state vector was proposed first in [1], then later 
used in [2]. 

III. OBSERVABILITY ANALYSIS IN DISCRETE TIME 

The analysis of the observability is conducted in discrete 
time. This is thus the counterpart of the proof in continuous 
time given in [6]. Before giving the main result, we recall the 
following property (the proof is omitted): 

Lemma 
The three statements are equivalent: 
(i) The source’s trajectory is aligned with the observer’s 

position, 
(ii) Two bearings are equal, 
(iii) All the bearings are equal. 
 
The conclusion about observability is summarized by the: 

Proposition 
If the source’s trajectory is not aligned with the observer’s 

position, then its trajectory is observable from three pairs of 
measurements   3,2,1,, kfkk . 

Proof: 

At time 
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which is equivalent to  
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We are going to prove that X  is unique, i.e. if another 

vector 'X  satisfies the equation ZX B  then XX '  or 

equivalently, the kernel of B  is the null vector of 5R . 
First step: 

Let us consider the submatrix 
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So  one of the last three conditions is verified: 

 
 
 

 
The conclusion of this first step is that the matrix C  is 

nonsingular since all the bearings are different; that is, the 
source’s trajectory is not aligned with the observer’s location. 

 
Second step: 
Let us identify the kernel of B . We have to solve the 

equation  T
X 000000B . 

The ith component of X being denoted 
ix , the last three 

rows of the above equation can be written as 

   TT
xxx 000543 C . Since C  is nonsingular, this 

yields    TT
xxx 000543  . 

Now reporting this result in the first two rows, we get the 
system 
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The conclusion of step 2 is that the kernel of B  is the null 

vector of 5R . As a consequence, the equation ZX B  has a 

unique solution if and only if the source’s trajectory is not 
aligned with the observer’s position. 
QED. 

In the sequel, we will assume that  and 

1


K

T
t , T  being the duration of the scenario. 

IV. THE PSEUDOLINEAR ESTIMATE 

The basic idea of the so-called “pseudolinear” estimate comes 

from the possibility of transforming a nonlinear measurement 



equation into a linear form, the price being that the noise is no 

longer additive. From our knowledge, the first paper invoking 

this transformation is [7], for BOTMA. Since then, this 

technique has been widely re-used for BFTMA as well [2, 9, 

10]. 

A. Construction of the estimate 

Suppose now that K  pairs of measurements are available. Let 

us apply the linear transformation that allowed us to get (1) to 

the data: 
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where 
kr  stands for  ktr . 

Proof: 

• The bearings: 

We compute the expression 
kmkkmk yx ,, sincos    (similar to 

0sincos  kkkk yx  ): 
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We end up with the following pseudolinear measurement 

equation: 
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QED. 

 

Now, we construct the following pseudolinear estimate 
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We deduce that 
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bias of X̂ , denoted b . We propose to approximate 
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Note that the multiplicative term 
2

1

f
 does not intervene in 

the weighting. Three elements of 1

kR  are unknown. 

Fortunately, their orders of magnitude can be easily given: for a 
vessel or a submarine, the speed is about 10 m/s, and 
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10
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 f ; the range is  between 5 and 20 km and 
  is close 

to 1° (
180

  rad). These values allow us to approximate (even 

very roughly) 1

kR  by 











110

1010
6

611

. The elements of   

are denoted 
ji . 

B. The problem of the bias 

Computing the bias analytically is hopeless: indeed, if such 
a computation was tractable, we would end up with an 
unbiased estimator; based on a fundamental theorem of 
mathematical statistics, this estimator would be the MLE and 
the model would be linear, which is not the case. The only 
achievable aim is to approximate or to estimate the bias b . 

In the open literature, two major ways to reduce this bias 
are proposed: 

-The so-called modified instrumental variable estimate 
which consists in iterating the formula up to convergence 
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where 
1,

ˆ
pkM  is the matrix 

kM  constructed with the estimated 

bearings computed from 
1

ˆ
pX . The reduction of the bias is 

justified by invoking Slutski’s theorem [11]. 

- The estimation of the bias: once b̂  is obtained, we 

compute b̂ˆ X . This is our choice and we present two 

estimates in the next section. 
 

V. BIAS REDUCTION 

A. Bias estimation: first solution 

To estimate the bias, we will employ the following trick: 
we artificially introduce the factor K up and down in the 
expression of b :  
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So, the two terms appear as an average of two quantities. 
As a consequence, b  is approximated by 
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 provided K  is 

large enough. The justification of this technique, pioneered by 
Dogancay [8], requires that the random matrix 
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 and  
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. Its mathematical expectation is 
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 since  

k  and 
k are independent (see the lemma given in the 

Appendix). 
In practice, its value is estimated according to the method 

of moments [12] by  
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get an estimate b̂  of b and we replace X̂  by b̂ˆ X . We call 

this an unbiased pseudolinear estimate (UPSLE). 
 

B. Bias estimation: second solution 

Another way to estimate the bias is to compute the value 

b  for which the least squares criterion is the least: 
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In this expression,  Xk  and  Xfk
 are the mathematical 

bearing and frequency corresponding to a trajectory defined 
by X . We recognize the inverse of the Fisher information 

matrix (i.e. the CRLB) evaluated at X̂ . Again, we replace X̂  

by b̂ˆ X . Note that b̂ˆ X  is the approximate maximum 

likelihood estimate (AMLE). 
We give in the next subsection some examples to evaluate 

the respective performance of each method for some scenarios. 

C. Examples 

In the two following examples, the observer is located at 

 T
00 , the source is moving with a constant speed of 6 m/s 

and a heading equal to 90°. Its initial position is  T90000 (m) 

in the first example and  T9000 3576- (m) in the second 

one. The number of measurements is 150, with a sampling 
period t  equal to 4 s; the standard deviations are  5.0  

and 5.0f Hz, while 5000   Hz.  

The performance of the three estimates is evaluated by 
their respective bias and their respective standard deviation of 
each component. The minimum reachable standard deviation 
given by the CRLB is also computed. All these quantities are 
presented in Table I for scenario 1 and in Table II for scenario 
2.  

For each case, three figures have been plotted: the first one 
depicts the set of PSLE; in the second figure, the set of the 
UPSLE is plotted; the third one shows the AMLE. 

  

Scenario 1 

TABLE I 

X  
Bias Standard deviation 

PSLE UPSLE AMLE  PSLE UPSLE AMLE  CRLB 

0 (m) 14.8 4.1 6.4 20.6 23.9 20.6 19.2 

9000 (m) -2396.1 -471.4 177.4 1265.1 1616.9 1689.1 1707.7 

6 (m/s) -1.65 -0.33 0.09 0.85 1.09 1.12 1.14 

0 (m/s) -0.02 -0.01 -0.01 0.47 0.54 0.42 0.38 

500 (Hz) -0.111 -0.023 0.006 0.176 0.201 0.166 0.153 

 

Fig. 1. Pseudolinear estimate in Scenario 1. 



 

Fig. 2. Unbiased pseudolinear estimate for Scenario 1. 

 

Fig. 3. Approximate maximum likelihood estimate for Scenario 1. 

 

Scenario 2 

TABLE II 

X  
Bias Standard deviation 

PSLE UPSLE  AMLE PSLE UPSLE  AMLE CRLB 

-3576 (m) 1065.5 311.9 52.0 537.4 691.6 722.8 678.0 

9000 (m) -2646.2 -774.3 -115.2 1357.7 1741.3 1825.8 1710.4 

6 (m/s) -1.81 -0.53 -0.10 0.90 1.16 1.21 1.14 

0 (m/s) 0.01 -0.00 0.01 0.47 0.53 0.42 0.38 

500 (Hz) 0.119 0.034 0.009 0.166 0.191 0.163 0.153 

 

 

 

Fig. 4.  Pseudolinear estimate in Scenario 2. 

 

 

Fig. 5. Unbiased pseudolinear estimate for Scenario 2. 

 

Fig. 6. Approximate maximum likelihood estimate for Scenario 2. 

 

We can conclude that the two approaches to reduce the bias 
work properly and the obtained estimates (AMLE and UPSLE) 
are practically efficient. 



VI. CONCLUSION 

In this paper, we presented a proof of observability of a 
source (emitting a single tone) moving at constant velocity in 
a plane from a motionless observer which acquired 
simultaneously a measured bearing and a measured frequency. 

We proposed to estimate the state vector by using a linear 
representation of the measurement, yielding to the so-called 
pseudolinear estimate. Based on the statistical assumptions 
commonly used, we proposed to estimate the bias of this 
estimate (which is by essence biased because of the presence 
of the bearing noise in the state matrix and in the 
measurements). Two ways were explored: one yielding the 
maximum likelihood estimate and the second based upon the 
method of moments. The estimated bias is removed. The two 
final estimates are practically efficient. This technique could 
be adapted to the case of multi-frequency and bearings TMA 
[13]. 

APPENDIX  

COMPUTATION OF THE COVARIANCE MATRIX OF THE NOISE 

If the random variable Z  has a normal (or Gaussian) 
distribution with parameter   (mean) and   (standard 

deviation), then     
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Computation of the first two moments of 
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The statistical independence between k  and k  allows 

us to simplify the expression of its covariance matrix: 
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QED. 
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