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In this paper, we present a pseudolinear estimate for bearings and frequencies target motion analysis. We propose two ways to reduce its inherent bias and evaluate its performance with Monte Carlo simulations, with reference to the Cramér-Rao lower bound.

I. INTRODUCTION

Target motion analysis (TMA) is now an old problem wellknown by our community. The most common variants are probably bearings-only TMA (BOTMA) [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF], and bearings and frequency (or Doppler) TMA (BFTMA) [START_REF] Passerieux | Target Motion Analysis with Bearings and Frequency Measurements via Instrumental Variable Estimator[END_REF]. The first needs the platform to maneuver properly, whereas the second has no specific requirement to make the task feasible (observability condition). The solutions proposed in the literature can be classified into two main groups: the batch methods devoted to the scenarios during which the source does not maneuver, and those devoted to possibly maneuvering sources. For the first situation, the maximum likelihood estimate is most often proposed, computed via a numerical routine [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF]. For the second situation, a recursive (compatible with real-time) filter is most appropriate: extended and unscented Kalman filters (with convenient coordinate systems) can be run, but with a risk of divergence of the filter [START_REF] Aidala | Utilization of Modified Polar Coordinates for Bearings-Only Tracking[END_REF] [4], particle filters with low risk of divergence but demanding a strong computational resource [START_REF] Arulampalam | Bearings-only Tracking of Manoeuvering Targets using Particle Filters[END_REF]. All these methods are iterative (or time-recursive, which is a kind of iteration). In this paper, we give the proof of observability in BFTMA in discrete time, the analysis of observability having been made in continuous time in the past [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF]. Then, we propose two ways to compute directly two almost unbiased estimates in BFTMA by a straightforward computation. This is based upon the so-called modified instrumental method, initially introduced in [START_REF] Whitcombe | Pseudo-state Measurements Applied to Recursive Nonlinear Filtering[END_REF].

The paper is organized as follows: In section II, the problem formulation and our notations are presented. Section III is devoted to observability analysis in discrete time. We present in section IV a pseudolinear estimate, which is biased. Section V offers two ways to reduce the bias, and presents some simulations, illustrated with typical scenarios. A conclusion and an appendix, containing some computational details, follow.

II. PROBLEM FORMULATION AND NOTATIONS

We consider the common situation where a motionless observer acquires sequentially a couple of measurements composed of an azimuth (or bearing) and a frequency of a single tone emitted by a source moving at constant velocity. Due to the source's motion, the detected frequency is Dopplershifted. The plane in which the two actors play is given a Cartesian coordinate system. In this system, the position vector at time t and the velocity vector of the source are

        T S S S t y t x t P  and   T S S S y x V   
, respectively. The vectors   t P S and S V are also described by their polar coordinates:

          T S t t t r t P   cos sin  and   T S h h v V cos sin 
. The source is assumed to be emitting a pure single tone at the unknown frequency 0  . The observer is located at

  T O P 0 0 
. At time , the noiseless azimuth and frequency are respectively

        k S k S k k t y t x t , Atan     and                  c y x c r f k S k S k k     cos sin 1 1 0 0   
, where 

        T T K K T k k T         1 1
is assumed to be a zero-mean Gaussian vector whose covariance matrix is diagonal. With no loss of generality, we will assume that

  k  Var and   k  Var are constant, i.e.   2 Var     k and   2 Var f k    .
The purpose of BFTMA is to estimate the trajectory of the source from a set of collected measurements

    K k f k m k m ..., , 1 , , , ,   
. Because 0  is unknown, it must be estimated, as well.

The "natural" state vector that characterizes the source (i.e. its motion and its " music", that is 0

 ) should be       T S S S S y x t y t x 0 1 1   
. However, we make another choice: the state vector defined as

      T S S S S y x t y t x X 0 0 0 1 0 1 0        
is more convenient to establish the observability of the trajectory from the set of

noiseless measurements     K k f k k ..., , 1 , ,  
 whose proof is given in the next section, and to construct a pseudolinear estimate. This state vector was proposed first in [START_REF] Nardone | Fundamental Properties and Performance of Conventional Bearings-Only Target Motion Analysis[END_REF], then later used in [START_REF] Passerieux | Target Motion Analysis with Bearings and Frequency Measurements via Instrumental Variable Estimator[END_REF].

III. OBSERVABILITY ANALYSIS IN DISCRETE TIME

The analysis of the observability is conducted in discrete time. This is thus the counterpart of the proof in continuous time given in [START_REF] Jauffret | Observability in Passive Target Motion Analysis[END_REF]. Before giving the main result, we recall the following property (the proof is omitted):

Lemma

The three statements are equivalent: (i) The source's trajectory is aligned with the observer's position, (ii) Two bearings are equal, (iii) All the bearings are equal.

The conclusion about observability is summarized by the:

Proposition

If the source's trajectory is not aligned with the observer's position, then its trajectory is observable from three pairs of

measurements     3 , 2 , 1 , ,  k f k k  . Proof: At time k t , the noiseless measurements   k k f ,



and the state vector satisfy the following linear system:

                   k k k k k k k k k f X c c t t 0 1 cos sin 0 0 0 sin cos sin cos       . (1) 
With three pairs of measurements 

   3 , 2 , 1 , ,  k f k k 
, the state vector X must satisfy the linear system (we implicitly assume that 0 1  t ) 

Y f f f X c c t t c c t t c c                                                                           A                 which is equivalent to  Z f f f X c c c c c c t t t t                                                          3 2 1 3 3 2 2 1 1 3 3 3 3 3 3 2 2 2 2 2 2
                   B                
We are going to prove that X is unique, i.e. if another vector ' X satisfies the equation

Z X   B then X X 
' or equivalently, the kernel of B is the null vector of 5 R .

First step:

Let us consider the submatrix

                      1 cos sin 1 cos sin 1 cos sin 3 3 2 2 1 1 c c c c c c       . Obviously, its determinant is proportional to the determinant of                  1 cos sin 1 cos sin 1 cos sin 3 3 2 2 1 1       C which is equal to         1 3 3 2 2 1 sin sin sin det             C . We thus have         3 1 3 2 2 1 sin sin sin 0 det              C .
So one of the last three conditions is verified:

The conclusion of this first step is that the matrix C is nonsingular since all the bearings are different; that is, the source's trajectory is not aligned with the observer's location. 

    T T x x x 0 0 0 5 4 3  C . Since C is nonsingular, this yields     T T x x x 0 0 0 5 4 3



. Now reporting this result in the first two rows, we get the system

                              0 0 0 sin cos sin cos sin cos 2 1 3 3 2 2 1 1 x x       , whose solution is              0 0 2 1 x x .
The conclusion of step 2 is that the kernel of B is the null vector of 5 R . As a consequence, the equation

Z X   B
has a unique solution if and only if the source's trajectory is not aligned with the observer's position. QED.

In the sequel, we will assume that and

1    K T t ,
T being the duration of the scenario.

IV. THE PSEUDOLINEAR ESTIMATE

The basic idea of the so-called "pseudolinear" estimate comes from the possibility of transforming a nonlinear measurement equation into a linear form, the price being that the noise is no longer additive. From our knowledge, the first paper invoking this transformation is [START_REF] Whitcombe | Pseudo-state Measurements Applied to Recursive Nonlinear Filtering[END_REF], for BOTMA. Since then, this technique has been widely re-used for BFTMA as well [START_REF] Passerieux | Target Motion Analysis with Bearings and Frequency Measurements via Instrumental Variable Estimator[END_REF][START_REF] Chan | Bearings-Only and Doppler Bearings Tracking Using Instrumental Variable[END_REF][START_REF] Ho | An Asymptotically Unbiased Estimator for Bearings-Only and Doppler-Bearing Target Motion Analysis[END_REF].

A. Construction of the estimate

Suppose now that K pairs of measurements are available. Let us apply the linear transformation that allowed us to get (1) to the data:

Proposition k k k m X f          M , 0 with                              k k k k k k k k h h c v r         0 sin sin cos 1 cos sin 0 and              1 cos sin 0 0 0 sin cos sin cos , , , , , , c c t t k m k m k m k k m k k m k m k       M where k r stands for   k t r
.

Proof:

• The bearings:

We compute the expression

k m k k m k y x , , sin cos    (similar to 0 sin cos   k k k k y x   ):           . sin sin sin cos cos sin sin cos sin cos , , k k k k k k k k k k k k k k k k k k k k k m k k m k r r r r y x y x                               That is, . sin sin cos , , k k k m k k m k r y x       (2) 
By using the state vector X , Eq. ( 2) becomes:

  . sin 0 sin cos sin cos 0 , , , , k k k m k k m k k m k m r X t t          
• The frequency Now, we compute : 

      k k k k k m k m k m k m k m h v h v h v h v h v y x         
           As a consequence,                   k k k k k m k k k k k k k k k k k m k m h h c v f h h c v f h c v h c v c y c x                                                   
                                 k k k k k k k k k k y k m h h c v r X f                                       0 sin sin cos 1 cos sin 0 0 , M for K , , k  1  .
QED. Now, we construct the following pseudolinear estimate

                          K k k T k K k k T k y X 1 1 1

ˆM M M

, designated by PSLE.

Due to the poor conditioning of

  K k k T k 1 M M
, it is convenient 1 to weight the pseudo measurements vector K y with the inverse of the covariance matrix k R of the pseudo noise k  :

                                                         K k k k T k K k k k T k K k k k T k K k k k T k X y X 1 1 1 1 1 1 1 1 1 1 ˆ R M M R M R M M R M We deduce that                                          K k k k T k K k k k T k X X 1 1 1 1 1 ˆ R M M R M E E . Because of the presence of the noise in k M , 1   K k k T k 1 M M is nonsingular, but a standard numerical procedure of inversion can fail.                                      K k k k T k K k k k T k 1 1 1 1 1  R M M R M E
is non zero. This is the bias of X ˆ, denoted b . We propose to approximate k R as follows:

When 1    , then                      k k k k k h c v r     
0 sin sin 0 and its covariance matrix can be readily computed:

                         2 2 2 2 2 2 0 2 2 0 2 2 0 2 2 2 0 sin sin sin f k k k k k k k h c v h c v r h c v r r                 R                          1 sin sin 1 sin 1 2 2 2 2 0 2 2 2 2 2 1 h r c v h r c v r h r c v k k k k f k k k f k         R .
Note that the multiplicative term 

B. The problem of the bias

Computing the bias analytically is hopeless: indeed, if such a computation was tractable, we would end up with an unbiased estimator; based on a fundamental theorem of mathematical statistics, this estimator would be the MLE and the model would be linear, which is not the case. The only achievable aim is to approximate or to estimate the bias b . In the open literature, two major ways to reduce this bias are proposed:

-The so-called modified instrumental variable estimate which consists in iterating the formula up to convergence ˆ p X . The reduction of the bias is justified by invoking Slutski's theorem [START_REF] Ferguson | A course in large sample theory[END_REF].

                              K k k k T p k K k k k T p k p y X 1 1 1 , 1 1 1 1 , ˆR M M R M ,
-The estimation of the bias: once b ˆ is obtained, we compute b  X . This is our choice and we present two estimates in the next section.

V. BIAS REDUCTION

A. Bias estimation: first solution

To estimate the bias, we will employ the following trick: we artificially introduce the factor K up and down in the expression of b :

                                      K k k k T k K k k k T k K K 1 1 1 1 1 1 1  R M M R M E b .
So, the two terms appear as an average of two quantities. As a consequence, b is approximated by

                               K k k T k K k k T k K K 1 1 1 1 1  Ω M E M Ω M E provided K is large enough.
The justification of this technique, pioneered by Dogancay [START_REF] Doğançay | 3D Pseudolinear target Motion Analysis from Angle Measurements[END_REF], requires that the random matrix

  K k k T k K 1 1 M Ω M
converges in distribution to a deterministic nonsingular matrix and that the random vector 

  K k k T k K 1 1  Ω M converges in distribution to a deterministic
                       k m k m k k m k m k k m k m k K k k k m k k m k k k m k k m k k k m k k m k k K k k T k c t c t b b c a t b c a t a a Ω M where   h c v r a k k k        sin 12 11 and   h c v r b k k k        sin 22 12
. Its mathematical expectation is

                                                       0 sin 1 cos cos 1 sin cos sin 1 1 1 1 0 2 1 K k k k k k k K k k k k k k K k k k K k k k K k k T k b c a t b c a t a a           Ω M E since k  and k
 are independent (see the lemma given in the Appendix).

In practice, its value is estimated according to the method of moments [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] by

                        K k k m k k m k k k m k k m k k k m k k m k b c a t b c a t a a 1 , , , , , , 0 2 0 sin 
1 cos ˆcos 1 sin ˆcos ˆsin ˆ         , with   h c v r a k m k k ŝin ˆ, 12 11        and   h c v r b k m k k ŝin ˆ, 22 12        . The computation of 1 1 1            K k k T k K M Ω M E being impossible, it is estimated by 1 1 1             K k k T k K M M
. Finally we get an estimate b ˆ of b and we replace X ˆ by b  X . We call this an unbiased pseudolinear estimate (UPSLE).

B. Bias estimation: second solution

Another way to estimate the bias is to compute the value b for which the least squares criterion is the least:

                  K k k k m f k k m X f f X C 1 2 , 2 2 , 2 1 1 b b b      , approximated by             2 , 2 1 2 , 2 1 1 1 b b X f X f f X X k T X k k m f K k k T X k k m                 .
We end up with

                   . 1 1 1 1 ˆ1 , 2 , 2 1 1 2 2                          K k k k m k X f k k m k X k T X k X K k f k T X k X X f f X f X X X f X f X X            b In this expression,   X k  and   X f k are the mathematical
bearing and frequency corresponding to a trajectory defined by X . We recognize the inverse of the Fisher information matrix (i.e. the CRLB) evaluated at X ˆ. Again, we replace X ˆ by b  X . Note that b  X is the approximate maximum likelihood estimate (AMLE).

We give in the next subsection some examples to evaluate the respective performance of each method for some scenarios.

C. Examples

In the two following examples, the observer is located at   T 0 0 , the source is moving with a constant speed of 6 m/s The performance of the three estimates is evaluated by their respective bias and their respective standard deviation of each component. The minimum reachable standard deviation given by the CRLB is also computed. All these quantities are presented in Table I for scenario 1 and in Table II for scenario 2.

For each case, three figures have been plotted: the first one depicts the set of PSLE; in the second figure, the set of the UPSLE is plotted; the third one shows the AMLE. Scenario 1 We can conclude that the two approaches to reduce the bias work properly and the obtained estimates (AMLE and UPSLE) are practically efficient.

VI. CONCLUSION

In this paper, we presented a proof of observability of a source (emitting a single tone) moving at constant velocity in a plane from a motionless observer which acquired simultaneously a measured bearing and a measured frequency.

We proposed to estimate the state vector by using a linear representation of the measurement, yielding to the so-called pseudolinear estimate. Based on the statistical assumptions commonly used, we proposed to estimate the bias of this estimate (which is by essence biased because of the presence of the bearing noise in the state matrix and in the measurements). Two ways were explored: one yielding the maximum likelihood estimate and the second based upon the method of moments. The estimated bias is removed. The two final estimates are practically efficient. This technique could be adapted to the case of multi-frequency and bearings TMA [START_REF] Jauffret | Multi Frequencies And Bearing TMA: Properties and Sonar Applications[END_REF].

APPENDIX COMPUTATION OF THE COVARIANCE MATRIX OF THE NOISE

If the random variable Z has a normal (or Gaussian) distribution with parameter  (mean) and  (standard 

deviation), then               2 exp cos cos 2 2   a a aZ E . If 0   , then             2 exp cos 2  Z E and      

Lemma

Let us consider a deterministic quantity  and a Gaussian 0-mean noise  of variance 2  , then 

  0 sin cos    E           cos 2 exp cos cos 1 2              E           sin 2 exp sin sin 1 2              E             2 1 2 2 cos 2 2 exp 2 cos 1 cos       E                   2 1

  in these two expressions the propagation delay is neglected. The letter c denotes the speed of sound in the medium (c=1500 m/s in water). At this time, the observer acquires the pair of measurements   noises corrupting the bearing and the frequency acquired at time k t . The noise vector



  

  Second step:Let us identify the kernel of B . We have to solve the equation last three rows of the above equation can be written as

  We end up with the following pseudolinear measurement equation:

  orders of magnitude can be easily given: for a vessel or a submarine, the speed is about 10 m/s

  and a heading equal to 90°. Its initial position is   T in the second one. The number of measurements is 150, with a sampling period t  equal to 4 s; the standard deviations are

Fig. 5 .

 5 Fig. 5. Unbiased pseudolinear estimate for Scenario 2.

Fig. 6 .

 6 Fig. 6. Approximate maximum likelihood estimate for Scenario 2.

TABLE I X

 I 

	Fig. 2. Unbiased pseudolinear estimate for Scenario 1.	
	Fig. 3. Approximate maximum likelihood estimate for Scenario 1. Scenario 2	Bias PSLE UPSLE AMLE PSLE UPSLE AMLE 14.8 4.1 6.4 20.6 23.9 20.6 9000 (m) -2396.1 -471.4 177.4 1265.1 0 (m) 1616.9 1689.1 1707.7 CRLB 19.2 6 (m/s) -1.65 -0.33 0.09 0.85 1.09 1.12 1.14 0 (m/s) -0.02 -0.01 -0.01 0.47 0.54 0.42 0.38 500 (Hz) -0.111 -0.023 0.006 0.176 0.201 0.166 0.153 Fig. 1. Pseudolinear estimate in Scenario 1. Standard deviation

TABLE II X Bias Standard deviation PSLE UPSLE AMLE PSLE UPSLE AMLE CRLB

 II 

								Fig. 4. Pseudolinear estimate in Scenario 2.
	-3576 (m) 1065.5	311.9	52.0	537.4	691.6	722.8 678.0
	9000 (m) -2646.2 -774.3 -115.2 1357.7 1741.3 1825.8 1710.4
	6 (m/s)	-1.81	-0.53	-0.10	0.90	1.16	1.21	1.14
	0 (m/s)	0.01	-0.00	0.01	0.47	0.53	0.42	0.38
	500 (Hz)	0.119	0.034	0.009	0.166	0.191	0.163	0.153