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Captivity of the solution to the granular media equation

Introduction

Our goal is to deal in a probabilistic way with the following nonlinear equation

∂ ∂t u σ (t, x) = σ 2 2 ∆ x u σ (t, x) + div x {u σ (t, x) (∇V (x) + ∇F * u σ (t, x))} , (1) 
where u σ (t, .) is a probability measure, * denotes the standard convolution operator and V and F are two potentials on R d . Also, σ > 0. This equation can be obtained as a simplification -proposed by Kac in 1959, see [START_REF] Kac | Probability and related topics in physical sciences[END_REF] -of the kinetic equation of Vlasov on the plasmas. This model corresponds to a mean-field system of interacting particles with an infinite number of such particles. By considering any particle and any positive time, we know that its law of probability is absolutely continuous with respect to the Lebesgue measure. Moreover, the density of the law satisfies the so-called granular media equation [START_REF] Benedetto | A non-Maxwellian steady distribution for one-dimensional granular media[END_REF], see [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF][START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF].

We will not discuss the existence and the uniqueness of a solution to the equation. We refer to [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF] for this question.

One major problem is the behaviour as the time goes to infinity: existence and uniqueness of the steady state then convergence to this unique stable state. The question of the rate of convergence also arises as a very important one. However, we will not address it here.

The existence of a stable state has been obtained by Benachour, Roynette, Talay and Vallois (see [START_REF] Benachour | Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos[END_REF]) in the one-dimensional case by assuming that the friction term V is equal to 0 and that F is a convex potential. Let us point out that in this particular setting, the center of mass is fixed. So despite there is an infinite number of stationary measures with total mass equal to 1, the identification of the limiting probability is obvious. In a subsequent article, see [START_REF] Benachour | Nonlinear self-stabilizing processes. II. Convergence to invariant probability[END_REF], the authors obtain the convergence towards the invariant probability measure. For the case in which V is not identically equal to 0, let us mention the work [START_REF] Benedetto | A non-Maxwellian steady distribution for one-dimensional granular media[END_REF]. The authors consider two uniformly strictly convex potentials and they obtain the convergence with an explicit exponential rate of convergence. In [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF], Carrillo, McCann and Villani proceed with a more general type of equation and with a potential V nonconvex. The assumptions are the synchronization (roughly speaking: the convexity of F is stronger than the nonconvexity of V ) and the center of mass is fixed (that means

R d xu σ (x, t)dx = R d xu σ (x, 0
)dx for any t ≥ 0). Same assumptions are used later in [START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF] for an algebraic decay rate in quadratic Wasserstein distance. Up to our knowledge, there is no assumption on the initial condition which ensures this hypothesis of fixed center of mass, except if V and F are symmetrical (then the condition is to assume that the initial law is also symmetrical). The used techniques are analytical. About probabilistic approach, we refer to Malrieu ([12,[START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]) and Cattiaux, Guillin and Malrieu ([4]), still in the case where both potentials are convex.

In the nonconvex case, the existence of stationary measures has been investigated in [START_REF] Herrmann | Non-uniqueness of stationary measures for selfstabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit[END_REF][START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF]. The main result is the nonuniqueness of the stationary measures. More precisely, under simple assumptions that are easy to satisfy, there are exactly three such invariant probability measures.

Thus, a question arises: What is the limiting probability ? However, one should first prove the convergence. In the nonconvex case, the convergence has been obtained in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF]. More precisely, we assume that V is nonconvex (but convex at infinity) and that the interacting potential F is convex (albeit the case in which F is also nonconvex could be solved by the same method). However, let us point out that we use some compactness arguments in these two papers. Consequently, very few is obtained regarding to the limiting probability. The present work is dedicated to finding the limiting probability for the granular media equation in a setting in which there are several stable states.

To present the idea in the introduction, we choose to consider a simple case in dimension one:

V (x) = x 4 4 -x 2
2 is the symmetrical double-well potential and

F (x) = α 2 x 2 with α > 0.
Let us now present the probabilistic approach of this problem. The idea is to consider a stochastic process X σ , which law at time t is u σ (t, .). It is the solution to the nonlinear stochastic differential equation

X σ t = X 0 + σB t - t 0 ∇V (X σ s ) ds -α t 0 (X σ s -E (X σ s )) ds , (2) 
B being a Brownian motion. This kind of processes were introduced by McKean, see [START_REF] Mckean | Propagation of chaos for a class of nonlinear parabolic equations[END_REF][START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF]. Up to our knowledge, the only results about the limiting probability are the ones in [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF] and in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF]. In [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF], it is stated that if the initial random variable is symmetrical, then the limiting probability is the unique symmetrical invariant probability. Furthermore, if the free-energy at time 0 is less than some quantity, then the limiting probability is either the one with positive expectation (if the initial random variable has a positive expectation) or the one with negative expectation (if the initial random variable has a negative expectation). In [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF], the author proved that if the initial law is close to an invariant probability which second derivative of the free-energy is positive then u σ (t, .) converges (exponentially fast) towards this invariant probability. Except these two settings, none is known -up to our knowledge -about the limiting probability.

In the current work, we assume the synchronization that is

α > 1 (in the setting V (x) := x 4 4 -x 2 2 -indeed sup R -V = 1)
. This means that the convexity of F will compensate the nonconvexity of V . If σ is small enough, there are three invariant probability measures for the dynamics (2): u σ 0 (with a center of mass equal to 0), u σ + (with a positive center of mass) and u σ -(with a negative center of mass). We remind a result in [START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit[END_REF] that is the weak convergence of u σ 0 (resp. u σ + and u σ -) towards δ 0 (resp. δ 1 and δ -1 ) as σ goes to 0. The paper is organized as follows. Next section gives the general assumptions of the paper. In Section three, the main result (Theorem 3.6) is stated. It concerns the probability measure u σ a (which converges towards δ a as σ goes to 0, a being a local minimum of the confining potential). Some immediate corollaries are given: Corollary 3.7, Corollary 3.8 and Corollary 3.9. We also give Proposition 3.10 which shows that the result can not be extended for a probability measure which is centered around a local maximum of V . Finally, in a section four, we give the proof of Theorem 3.6.

Assumptions of the paper

In this work, the Euclidean norm on R d is denoted as || .|| and the associated scalar product is ., . . For any x 0 ∈ R d and r > 0, B(x 0 ; r) is the open ball with center x 0 and radius r. W 2 stands for the quadratic Wasserstein distance. For any set E ⊂ R d , E c is its complementary. Also, ∇ 2 V corresponds to the Hessian of the potential V .

In the current work, we assume the following hypotheses on V , F and u 0 .

Assumption 2.1.

• The function V is twice continuously differentiable.

• The coefficient ∇V is locally Lipschitz, that is, for each R > 0 there exists K R > 0 such that

||∇V (x) -∇V (y)|| ≤ K R ||x -y|| , for x, y ∈ z ∈ R d : ||z|| < R .
• The potential V is convex at infinity:

lim ||x||→+∞ ∇ 2 V (x) = +∞.
• There exist m ∈ N with m ≥ 2 and C > 0 such that for all

x ∈ R d , ||∇V (x)|| ≤ C 1 + ||x|| 2m-1 and m ≥ 2.
• There exists α > 0 such that for all

x ∈ R d , F (x) = α 2 ||x|| 2 .
• The 8m 2 th moment of u 0 is finite:

R d ||x|| 8m 2 u 0 (dx) < ∞. From now on, a is a local minimum of V such that ∇ 2 V (a) is strictly positive. For any x ∈ R d , we put W a (x) := V (x) + α 2 ||x -a|| 2 .
The key assumption of the article (see proof of Lemma 4.7) is the following: Assumption 2.2. There exists ρ 0 > 0 such that for any x ∈ R d , we have x -a; ∇W a (x) ≥ ρ 0 ||x -a|| 2 . Moreover, for any x ∈ R d , we have

||∇W a (x)|| ≤ C ||x -a|| 1 + ||x|| 2m .
We point out that the potential W a is not necessarily convex.

For some corollaries, we will also consider the following assumption (which ensures the convergence as t goes to infinity of u σ t towards an invariant probability measure, see [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF]).

Assumption 2.3. The measure u 0 is absolutely continuous with respect to the Lebesgue measure with a density of probability that we denote by u 0 . Moreover, the entropy R d u 0 (x) log (u 0 (x)) dx is finite. Thanks to Assumption 2.1, there exists a unique strong solution X σ to the McKean-Vlasov equation

X σ t = X 0 + σB t - t 0 ∇V (X σ s ) ds -α t 0 (X σ s -E (X σ s )) ds , (3) 
see [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF]Theorem 2.13] for a proof. Moreover, for any p ∈ [[1; 4m 2 ]], we have:

sup t∈R+ E ||X σ t || 2p < ∞ .

Main results

Let us give a last assumption.

Assumption 3.1. There exists κ 0 > 0 and σ 0 > 0 such that for any σ ∈ (0; σ 0 ) there exists a unique invariant probability measure u σ a for the process (X σ t ) t≥0 defined in Equation (3) satisfying

W 2 (u σ a ; δ a ) 2 = R d ||x -a|| 2 u σ a (dx) ≤ κ 2 0 .
One could object to this assumption that it is not easy to verify. However, thanks to [START_REF] Herrmann | Non-uniqueness of stationary measures for selfstabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit[END_REF][START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF], we know some cases in which the local uniqueness of the invariant probability measure around a is satisfied.

We now define some set of interest.

Definition 3.2. For any ρ > 0, set

S ρ (a) := x ∈ R d : ∇V (x); x -a ≥ ρ ||x -a|| 2 .
Definition 3.3. For any ρ > 0, by S ρ (a), we denote the path-connected subset of S ρ (a) which contains a.

Remark 3.4. Let us notice that S ρ (a) is nonempty and is a neighborhood of a if ρ is sufficiently small thanks to the hypothesis ∇ 2 V (a) > 0.

The quantity of interest is the following: Definition 3.5. For any t ≥ 0, we put

ξ σ (t) := E ||X σ t -a|| 2 = W 2 2 (u σ t ; δ a ) .
We now present the main result.

Theorem 3.6. Assume 2.1, 2.2 and that a is a local minimum of V such that u 0 has a compact support included into S ρ (a) for some ρ > 0. Then, for any κ > 0, there exists a time T κ ≥ 0 and a positive real number σ 0 such that sup

0<σ<σ0 sup t≥Tκ ξ σ (t) ≤ κ 2 .
The proof is postponed in Section 4. We give some immediate corollaries.

Corollary 3.7. We here assume Assumption 2.1, Assumption 2.3 and Assumption 3.1. Then u σ (t, .) converges weakly towards u σ a as t goes to infinity providing that σ is smaller than σ 0 (defined in Theorem 3.6).

The proof of Corollary 3.7 is immediate thanks to [17, Theorem 2.1.]. Let us point out that the diffusion coefficient σ 0 does depend on S ρ (a). However, σ 0 does not depend on the measure u 0 in the present work. However, in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF]Theorem 3.4.] (about the basins of attraction), the diffusion coefficient σ 0 was depending on the initial probability measure u 0 . This improvement allows us to consider a sequence of initial distributions with a free-energy going to infinity.

Let us point out that the convergence towards u σ a is only possible thanks to the uniqueness of this probability measure near a, see Assumption 3.1.

The proof is already in [START_REF] Tugaut | Exit-problem of McKean-Vlasov diffusions in double-well landscape[END_REF] but we give it for consistency.

Proof. By Itô formula, we have:

||X σ t -a|| 2 = ||X 0 -a|| 2 + 2σ t 0 X σ s -a; dB s -2 t 0 X σ s -a; ∇V (X σ s ) ds -2α t 0 X σ s -a; X σ s -E (X σ s ) ds + σ 2 t .
However, we know, that

E ( X σ t -a; X σ t -E [X σ t ] ) = Var (X σ t -a) ≥ 0 .
We take the expectation then we take the derivative. We thus obtain:

d dt ξ σ (t) ≤ -2E ( X σ t -a; ∇V (X σ t ) ) + σ 2 .
We use the following trick:

X σ t -a; ∇V (X σ t ) = X σ t -a; ∇V (X σ t ) 1 X σ t ∈Sρ(a) + X σ t -a; ∇V (X σ t ) 1 X σ t / ∈Sρ(a)
.

Consequently, we have:

d dt ξ σ (t) ≤ -2ρξ σ (t) + σ 2 + 2E ρ ||X σ t -a|| 2 -X σ t -a; ∇V (X σ t ) 1 X σ t / ∈Sρ(a) .
According to Assumption 2.1, we have

||∇V (X σ t )|| ≤ C 1 + ||X σ t || 2m-1 so that ρ ||X σ t -a|| 2 -X σ t -a; ∇V (X σ t ) ≤ C 1 + ||X t || 2m ,
C being a positive constant. Cauchy-Schwarz inequality yields

d dt ξ σ (t) ≤ -2ρξ σ (t) + σ 2 + C 1 + E ||X σ t || 4m P (X σ t / ∈ S ρ (a)) ,
C being a positive constant. The uniform boundedness of the moments (see [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF]) implies the existence of a positive constant K such that (4) holds, which achieves the proof.

Let us point out that we have P (X σ t / ∈ S ρ (a)) ≤ P (τ ρ (σ) ≤ t) for any t ≥ 0 where τ ρ (σ) is the first exit-time from S ρ (a) of the diffusion X σ . It is the control that has been done in [START_REF] Tugaut | Exit-problem of McKean-Vlasov diffusions in double-well landscape[END_REF]. However, it was a bad idea since, as t goes to infinity, the right hand side converges to 1 as the one in the left may be small.

The key of the present paper is to deal in another way with the term P (X σ t / ∈ S ρ (a)).

Lemma 4.2. For any κ > 0, there exist σ 0 > 0 and T κ ≥ 0 such that for any σ < σ 0 , we have ξ σ (T κ ) ≤ κ 32 .

Proof. It is a straightforward consequence of previous lemma. Indeed, we have the majoration P (X t / ∈ S ρ (a)) ≤ P (τ ρ (σ) ≤ t) where τ ρ (σ) is the first exittime of the diffusion X σ from S ρ (a). Then, thanks to classical result in large deviations theory, we know that this exit-time does converge in probability to infinity as σ goes to 0.

The parameter κ > 0 will be taken small enough independently of σ > 0 in the sequel.

We remark that if κ is small enough, κ 32 < κ 2 .

Definition 4.3. We put ζ κ (σ) := inf t ≥ T κ : ξ σ (t) ≥ κ 2 with the conven- tion inf ∅ = +∞.
We remark that ζ κ (σ) > T κ as soon as κ < 1. From now on, we always assume that κ < 1. Let us proceed a reducto ad absurdum by assuming that there exists a decreasing sequence (σ l ) l with lim l→+∞ σ l = 0 + such that ζ κ (σ l ) < ∞ for any l ∈ N. Definition 4.4. We consider the diffusion Y σ l := (Y σ l t ) t≥Tκ defined by

Y σ l Tκ+t = X σ l Tκ + σ l (B Tκ+t -B Tκ ) - Tκ+t Tκ ∇V (Y σ l s ) ds -α Tκ+t Tκ (Y σ l s -a) ds .
Before studying the coupling between X and Y , we give a result about the diffusion Y : Definition 4.5. For κ > 0 and t ≥ T κ , we put τ (t) := E ||Y σ l t -a|| 2 . We control τ (t) for any t ≥ T κ : Lemma 4.6. For any κ < 1 and any t ≥ T κ , we have τ (t) ≤ κ 16 .

Proof. Itô formula implies

τ (t) ≤ σ 2 -2E ( Y σ l t -a; ∇W a (Y σ l t ) ) ≤ σ 2 -2ρ 0 τ (t) .
We immeditaley deduce τ (t) ≤ max τ (T κ ); σ 2 2ρ . As τ (T κ ) = ξ σ (T κ ) ≤ κ 32 , we immediately obtain τ (t) ≤ κ 16 if σ l is small enough. Indeed, since κ < 1, κ 32 < κ 16 .

We now prove the result of coupling. Lemma 4.7. For any ∆ > 0, and for any l large enough, we have:

sup t∈[Tκ;ζκ(σ l )] P (||X σ l t -Y σ l t || ≥ ∆) ≤ κ 16 ,
as soon as κ < ρ 0 ∆ 8α .

Proof. Differential calculus provides

d ||X σ l t -Y σ l t || 2 = -2 X σ l t -Y σ l t ; ∇W u σ l t (X σ t ) -∇W a (Y σ l t ) dt ,
where W u (x) := V (x) + F * u(x) and u σ l t := L (X σ l t ). For any T κ ≤ t ≤ ζ κ (σ l ), we have:

d ||X σ l t -Y σ l t || 2 = -2 X σ l t -Y σ l t ; ∇W u σ l t (X σ l t ) -∇W a (X σ l t ) dt -2 X σ l t -Y σ l t ; ∇W a (X σ l t ) -∇W a (Y σ l t ) dt
The first term can be bounded like so:

-2 X σ l t -Y σ l t ; ∇W u σ l t (X σ l t ) -∇W a (X σ l t ) ≤ 2α ||X σ l t -Y σ l t || × ||E (X σ l t ) -a|| ≤ 2ακ ||X σ l t -Y σ l t || , since, for any t ∈ [T κ ; ζ κ (σ l )], ξ σ (t) ≤ κ 2 .
We now bound the second term:

-2 X σ l t -Y σ l t ; ∇W a (X σ l t ) -∇W a (Y σ l t ) ≤ -2 X σ l t -a; ∇W a (X σ l t ) + 2 Y σ l t -a; ∇W a (X σ l t ) -∇W a (Y σ l t ) + 2 X σ l t -a; ∇W a (Y σ l t ) ≤ -2ρ 0 ||X σ l t -a|| 2 + 2C ||Y σ l t -a|| 1 + ||X σ l t || 2m + ||Y σ l t || 2m + 2C ||X σ l t -a|| ||Y σ l t -a|| 1 + ||Y σ l t || 2m ≤ -2ρ 0 ||X σ l t -a|| 2 + 2C ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m ,
where C > 0. Here, we have used Assumption 2.2 Now, we use the inequality (a -b) 2 ≥ a 2 -2|ab|:

-2 X σ l t -Y σ l t ; ∇W a (X σ l t ) -∇W a (Y σ l t ) ≤ -2ρ 0 ||X σ l t -Y σ l t || 2 + 4ρ ||X σ l t -Y σ l t || ||Y σ l t -a|| + 2C ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m 
We deduce the inequality

d dt ||X σ l t -Y σ l t || 2 ≤ -2ρ 0 ||X σ l t -Y σ l t || 2 + 4ρ 0 ||X σ l t -Y σ l t || ||Y σ l t -a|| + 2C ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m + 2ακ ||X σ l t -Y σ l t || ≤ -2ρ 0 ||X σ l t -Y σ l t || 2 -2 ||X σ l t -Y σ l t || ακ 2ρ 0 + 2 ||Y σ l t -a|| -C 3 ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m ,
where C 3 > 0. However, X σ l Tκ = Y σ l Tκ . Hence, for any t ∈ [T κ ; ζ κ (σ l )], we have:

||X σ l t -Y σ l t || ≤ ακ 2ρ 0 + 2 ||Y σ l t -a|| + ακ 2ρ 0 + 2 ||Y σ l t -a|| 2 + C 3 ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m .
Taking κ < ρ0 8α ∆ yields Since τ (t) ≤ κ 16 for any t ≥ T κ (as σ l is small enough) and since the moments of order 4m of Y σ l t and X σ l t are uniformly bounded, we deduce the claimed limit.

P (||X
We now take γ > 0 sufficiently small such that the ball of center a and radius γ is included intro S ρ (a) and satisfies d (B (a; γ) ; S ρ (a) c ) > 0. Then, we remark: by taking σ l sufficiently small. This is absurd since by definition of ζ κ (σ l ), it holds ξ σ (ζ κ (σ l )) ≥ κ 2 for all l ≥ 0 and κ > 0 small enough. So, we deduce that ζ κ (σ) = +∞ as σ is small enough. This provides the existence of a value T κ > 0 such that for any σ small enough, we have ξ σ (t) ≤ κ 2 for any t ≥ T κ , which concludes the proof of Theorem 3.6.

P (X

  σ l t -Y σ l t || ≥ ∆)

	≤ P ||Y σ l t -a|| >	∆ 8	+ P ||Y σ l t -a|| >	∆ 32
	+ P ||Y σ l t -a|| 1 + ||X σ l t || 2 + ||X σ l t || 2m + ||Y σ l t || 2m >	∆ 2 64C

  σ l t / ∈ S ρ (a)) ≤ P Y σ l By using Markov inequality, Lemma 4.6 and Lemma 4.7, we deduce that for any t ∈ [T κ ; ζ κ (σ l )], we have P (X σ l t / ∈ S ρ (a)) ≤ κ 8 if κ is small enough. We remind the main result of Lemma 4.1 that is Inequality (4):ξ σ (t) ≤ -2ρξ σ (t) + σ 2 l + K P (X σ l t / ∈ S ρ (a)) ≤ -2ρξ σ (t) + σ 2 l + Kκ 4 , if t ∈ [T κ ; ζ κ (σ l )]where we remind the reader that ζ κ (σ l ) > T κ for κ < 1. We immediately obtain that ξ σ (ζ κ (σ l )) ≤ κ 3

	t	/ ∈ B a;	γ 2	+ P ||X σ l t -Y σ l t || ≥	γ 2	.

Let us give some corollary implied by Corollary 3.7. Thanks to [19, Theorem 2.1.], there are exactly three invariant probabilities if V is the symmetrical double-well potential V (x) := x 4 4 -x 2 2 and if F (x) = α 2 x 2 . One of this probability measure is symmetrical (u σ 0 ). The invariant probability measure u σ + has a positive expectation and u σ -has a negative one.

Corollary 3.8. We here assume Assumption 2.3,

and F (x) = α 2 x 2 with α > 1 4 . Then, if u 0 has compact support in ]0; +∞[ (respectively in ] -∞; 0[), there exists σ 0 > 0 such that for any σ < σ 0 , u σ (t, .) converges weakly towards u σ + (respectively u σ -) as t goes to infinity. The proof is immediate thanks to the results in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF] about the thirdness of the invariant probabilities (Theorem 2.1.) if σ is small enough. Indeed, if we consider

We point out that S ρ (a) does not depend on α. However, ρ 0 being defined by W a does depend on α.

We now give some results in the case where u 0 is a Dirac measure (which of course violates Assumption 2.3). Corollary 3.9. We assume d = 1, V (x) = x 4 4 -x 2 2 and F (x) = α 2 x 2 with α > 1 4 . We put u 0 := δ x0 with x 0 > 0. Then, for any κ > 0, there exists a time T κ ≥ 0 which does not depend on σ such that

) is less than κ 2 for any t ≥ T κ providing that σ is sufficiently small.

Let us point out that we have the same result with a finite sum of Dirac measures. Now, we can wonder if Corollary 3.7 can be extended to a local maximum. We answer negatively to the question. Proposition 3.10. We assume d = 1, V (x) = x 4 4 -x 2 2 and F (x) = α 2 x 2 with α > 1 4 . Then for any κ > 0, there exists a probability measure u 0 satisfying W 2 (u 0 ; δ 0 ) ≤ κ and such that u σ (t, .) converges weakly towards u σ + as σ is small enough.

Proof. It is sufficient to consider u 0 with compact support included in [ κ 4 ; κ 2 ] (which is a subset of ]0; +∞[) for κ sufficiently small then to apply Theorem 3.6.

Proof of Theorem 3.6

We first give the following lemma (which is in fact [START_REF] Tugaut | Exit-problem of McKean-Vlasov diffusions in double-well landscape[END_REF]Lemma 4.1]). Lemma 4.1. For any t ≥ 0, we have:

K being a positive constant which does not depend on σ.