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[1] This article reports on a multiobjective approach which is carried out on the
physically based Soil-Vegetation-Atmosphere Transfer (SVAT) model. This approach is
designed for (1) analyzing the model sensitivity to its input parameters under various
environmental conditions and (2) assessing input parameters through the combined
assimilation of the surface water content and the thermal infrared brightness temperature.
To reach these goals, a multiobjective calibration iterative procedure (MCIP) is applied on
the Simple Soil Plant Atmosphere Transfer–Remote Sensing (SiSPAT-RS) model. This
new multiobjective approach consists of performing successive contractions of the feasible
parameter space with the multiobjective generalized sensitivity analysis algorithm. Results
show that the MCIP is an original and pertinent approach both for improving model
calibration (i.e., reducing the a posteriori preferential ranges) and for driving a detailed
SVAT model using various calibration data. The usefulness of the water content of the
upper 5 cm and the thermal infrared brightness temperature for retrieving quantitative
information about the main input surface parameters is also underlined. This study opens
perspectives in the combined assimilation of various multispectral remotely sensed
observations, such as passive microwaves and thermal infrared signals.

Citation: Demarty, J., C. Ottlé, I. Braud, A. Olioso, J. P. Frangi, H. V. Gupta, and L. A. Bastidas (2005), Constraining a physically

based Soil-Vegetation-Atmosphere Transfer model with surface water content and thermal infrared brightness temperature

measurements using a multiobjective approach, Water Resour. Res., 41, W01011, doi:10.1029/2004WR003695.

1. Introduction

[2] Monitoring energy and water exchanges between the
soil, the vegetation and the atmosphere is important for
meteorological, agronomical and hydrological purposes.
Models designed for simulating these exchanges are the
so-called Soil-Vegetation-Atmosphere Transfer (SVAT)
models. They require a large set of input parameters and
initial conditions describing surface properties that must be

correctly specified for providing accurate assessment of the
energy and water fluxes. Most of these properties vary in
time and space and are often assessed through in situ
experiments. For example, SVAT models based on Darcian
flow require information about the soil hydraulic character-
istics that define the relationships between hydraulic con-
ductivity, soil matric potential, and soil water content. The
experimental techniques to assess soil hydraulic properties
are time consuming, expensive and generally limited by the
large spatial variability of these properties. Pedo-transfer
functions, relating the soil hydraulic properties to soil data
available from soil surveys, were alternatively developed to
estimate empirically soil water retention and conductivity.
However, these functions were developed from a very
limited number of soils and the correlations are often weak
and location specific [Burke et al., 1997]. Same difficulties
occurred for most of the other surface properties (vegetation
surface conductance, thermal properties of soil, aerodynamic
roughness), all of them being difficult to assess in situ.
Alternative approaches based on remote sensing techniques
may be able to provide indirect large-scale information about
surface properties. In particular, it is now well established
that L-band (1.4 GHz) passive microwave remotely sensed
measurements are highly related to the surface soil moisture
[Jackson and Schmugge, 1991; Jackson et al., 1995, 1999]
and canopy water amount [Wigneron et al., 1996, 2002]. The
potential of passive microwave data to assess quantitative
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information about surface properties used in a SVAT models
was investigated in recent studies [Burke et al., 1997, 1998;
Margulis et al., 2002; Wigneron et al., 2002]. For instance,
Burke et al. [1997, 1998] retrieved information about soil
hydraulic properties used in a soil water and energy budget
model, coupled with a microwave emission model from
L-band brightness temperature measurements.More recently,
Wigneron et al. [2002] assimilated L-band brightness tem-
perature in the ISBA-Ags model [Calvet et al., 1998],
coupled with the Tau-Omega microwave radiative transfer
model [Wigneron et al., 1995], in order to retrieve initial soil
moisture and a parameter controlling vegetation growth.
Thermal infrared may also provide significant information
about parameters controlling canopy processes, such as
evapotranspiration. Since SVAT models are based on the
resolution of the energy balance equation, the use of TIR
was investigated in detail by many authors [Soer, 1980;
Carlson et al., 1990; Camillo, 1991; Ottlé and Vidal-
Madjar, 1994; Taconet et al., 1995; Olioso et al., 1999a;
Margulis and Entekhabi, 2003]. Although all the above
cited studies demonstrated the potential of remotely sensed
data for retrieving surface properties used in SVAT model,
only few of them analyzed the synergy between various
spectral domains [Camillo, 1991; Ottlé and Vidal-Madjar,
1994; Clevers and van Leeuwen, 1996; Olioso et
al., 1999b, 2001; Cayrol et al., 2000; Droogers and
Bastiaanssen, 2002].
[3] Generally, calibration in land surface modeling is

considered as the determination of a single optimum
parameter set, allowing the ‘‘best’’ simulation of several
output variables. Owing to errors in model structure and
parameter uncertainties, the determination of this set
remains difficult, if not impossible. As a consequence,
multiobjective approaches were developed in hydrology in
order to isolate parameter sets that cannot be distinguished
in terms of model performance [Yapo et al., 1996, 1998;
Gupta et al., 1998]. The multiobjective approaches have
already been applied in different modeling contexts, such as
the multiobjective calibration of rainfall-runoff models
[Madsen, 2000; Boyle et al., 2000, 2001; Vrugt et al.,
2003a, 2003b], land surface models [Gupta et al., 1999;
Houser et al., 2001; Xia et al., 2002; Leplastrier et al.,
2002; Vrugt et al., 2003a, 2003b] and an hydrochemical
model [Meixner et al., 2002]. A popular approach is the
multiobjective complex evolution (MOCOM-UA) global
optimization method, which solves the multiobjective cali-
bration problem by combining the strengths of the complex
shuffling strategy and downhill Simplex evolution with the
concept of Pareto dominance [Yapo et al., 1998]. It aims to
isolate parameter sets having the property that moving from
one solution to another results in the improvement of one
objective while causing deterioration in one or more others
one (also called the Pareto set, see section 2). Results
obtained in the above mentioned studies showed that
MOCOM-UA can provide an estimate of the Pareto set.
However, Gupta et al. [2003] discussed recently on the
tendency of the MOCOM-UA algorithm both to cluster the
solutions into a central compromise region of the Pareto set
and to converge prematurely for case studies involving
larger numbers of parameters and strongly correlated per-
formance criteria. A similar behavior was found when the
MOCOM-UA algorithm was tested on a simplified crop

growth model by Demarty et al. [2004a], also showing that
the part of the Pareto set in which the algorithm was
converging was highly sensitive to the presence or not of
some particular solutions. This problem even occurred in
the case of a simple mathematical test done by Vrugt et al.
[2003a]. Another limitation of the MOCOM-UA algorithm
is induced by the very high number of model runs required
by its implementation, typically greater than 100 000
[Gupta et al., 1999], even in good situations such as using
a previous sensitivity analysis allowing the reduction of the
dimension of the optimization procedure [Bastidas et al.,
1999]. In the case of complex and non linear models,
requiring the prescription of many surface properties and
consuming significant computer time the efficiency of the
MOCOM-UA algorithm could be highly impacted. In a
recent study, Demarty et al. [2004b] proposed an alternative
multiobjective approach for retrieving quantitative informa-
tion used in a detailed SVAT model using the multiobjective
generalized sensitivity analysis (MOGSA [Bastidas et al.,
1999]). MOGSA was originally developed to determine the
main influential input parameters through a sensitivity
analysis based on the concept of Pareto dominance.
Demarty et al. [2004b] showed that MOGSA was also
useful for retrieving quantitative information about these
parameters and for assessing their a posteriori distributions
(calibration). Nevertheless, these authors also showed that
MOGSA could provide relatively large a posteriori param-
eter distributions in which the choice of a particular cali-
brated value was finally subjective. Moreover, the
calibration was carried out on the a priori knowledge of
five surface variables: soil heat flux {G}, sensible heat flux
{H}, latent heat flux {LE}, water content of the upper 5 cm
of soil {W05} and local thermal infrared brightness temper-
ature {Tb}. Accounting for G, H and LE fluxes in the
objective functions of the calibration procedure provided
substantial information for constraining the SVAT model.
This information is not available in a context where only
remotely sensed observations were used to constrain the
SVAT model. More generally and in spite of its ability to
investigate synergy between various types of data, only few
multiobjective approaches were applied in such a context of
using remotely sensed data [Crow and Wood, 2003].
[4] In this study, we investigated the potential of remote

sensing observations for assessing surface properties used in
a detailed SVAT model. The study was carried out on the
physically based Simple Soil Plant Atmosphere Transfer–
Remote Sensing (SiSPAT-RS [Braud et al., 1995; Braud,
2000; Demarty et al., 2002, 2004b] (see http://
www.lthe.hmg.inpg.fr)) model through the knowledge of
the soil water content of the upper 5 cm (related to L-band
microwave brightness temperature) and of the thermal
infrared brightness temperature. These two variables were
simultaneously used to calibrate the model using a new
multiobjective parameter estimation procedure, called
the multiobjective calibration iterative procedure (MCIP)
and built upon the multiobjective calibration procedure
proposed by Demarty et al. [2004b]. MCIP was developed
both for complex model consuming significant computer
time and for improving prediction of the a posteriori
parameters distributions using various types of calibration
data. It was based on a Monte Carlo iterative procedure
allowing successive narrowing of the a posteriori parameter
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ranges provided by the MOGSA algorithm. Compared to
MOCOM-UA, this iterative procedure makes it possible to
considerably reduce the number of model runs required for
deriving the solution of the multiobjective calibration prob-
lem. The results were analyzed both in terms of input
parameter retrieval and of impact on the simulated energy
and water fluxes. The database acquired over a winter wheat
field during the Alpilles-ReSeDA (Remote Sensing Data
Assimilation [Olioso et al., 2002a]) experiment was used in
this study.
[5] The article is organized as follows. Section 2

describes the multiobjective approach which was performed
on the SiSPAT-RS model. Section 3 provides an overview
of the data set, the SiSPAT-RS model and the modeling
strategy. Section 4 presents the results in terms of model
sensitivity analysis, parameter retrievals and consequences
on the simulated surface fluxes. Finally, the last section
opens the article for discussion and conclusion.

2. Multiobjective Approach

2.1. Multiobjective Formulation and Pareto Set

[6] Generally speaking, the multiobjective problem can
be stated as the following minimizing formulation [Yapo et
al., 1998]:

Min F1 q j
� �

; F2 q j
� �

; . . . ; Fm q j
� �� �

; ð1Þ

where Fi symbolizes a single objective function with i =
1, . . ., m and qj = {q1

j, q2
j, . . ., qp

j} a particular set of p
parameters included in the feasible parameter space. In
practice, the solution of the multiobjective formulation
given in equation (1) does not lead to a unique solution

minimizing all criteria simultaneously [Gupta et al., 1999].
Instead, a set of solution is commonly found, which is
currently named Pareto set or ‘‘behavioral’’ set. Each
solution in the Pareto set improves one or several criterion
while causing deterioration of another, so it is not possible
to isolate objectively the best solution among the ‘‘beha-
vioral’’ solutions. Therefore within the Pareto set, none of
the solutions is better than the other in terms of all objective
functions. Examples of Pareto set were presented in several
recent articles [e.g., Gupta et al., 1999; Houser et al., 2001;
Demarty et al., 2004a, 2004b].

2.2. MOGSA Algorithm

[7] The multiobjective generalized sensitivity analysis
methodology (MOGSA [Bastidas et al., 1999]) is a robust
and efficient method for accounting for the joint multipa-
rameter and multiresponse interactions. It is based on a
Monte Carlo search of the feasible space (j = 1, . . ., N in
equation (1)) and on the notions of Pareto set and Pareto
ranking [Goldberg, 1989]. The Pareto ranking determines
first the Pareto set of the whole sample and assigns a rank 1
to its members. Setting aside these solutions, a new Pareto
set is then determined for the remaining members of
the sample, and a rank 2 is assigned to its members. The
same procedure is applied until all the points of the
sample have been processed. Lower ranks provide better
results in a multiobjective sense. The choice of a rank
as threshold allows the partition of the sample into the so-
called ‘‘acceptable’’ and ‘‘nonacceptable’’ regions. On the
other hand, Leplastrier et al. [2002] proposed to remove
the extreme solutions of the ‘‘acceptable’’ regions
which assured accurate results for only one criterion, by
adding threshold values for each single objective function.
Figure 1 shows an example of Pareto ranking, combined

Figure 1. Pareto ranking with threshold in a case of two objectives functions {F1, F2}. Each point
represents results of a particular simulation. A maximal rank of 10 was found. Partition into ‘‘acceptable’’
solutions (points linked by dark lines) and ‘‘nonacceptable’’ solutions (remaining points linked by
dash lines) was realized considering a Pareto rank 3 and thresholds for each single objective function
(t1 and t2).

W01011 DEMARTY ET AL.: CONSTRAINING A PHYSICALLY BASED SVAT MODEL

3 of 15

W01011



to a threshold on each single objective function, in a
simple case where only two objectives functions were
considered. Points within the criterion space show model
performance in terms of single objective functions {F1, F2}.
The ranking procedure isolates 10 successive Pareto sets.
The partition into the ‘‘acceptable’’ (points joins by the
bold solid line) and the ‘‘nonacceptable’’ regions (remain-
ing points) is finally done considering a Pareto rank 3 and
two individuals thresholds (t1 and t2) for each single
criteria.
[8] The statistical analysis of each parameter distributions

between the ‘‘acceptable’’ and ‘‘nonacceptable’’ regions
allows an assessment of model sensitivity to the parameter.
In this context, the computation of the Kolmogorov-
Smirnov (KS) two samples test is used to estimate whether
the Cumulative Marginal Distribution Functions (CMDF) of
the two regions are different. Significance levels for
probability value can be chosen to define ‘‘high,’’
‘‘medium,’’ and ‘‘low’’ parameter sensitivities [Bastidas et
al., 1999]. Figure 2a shows an example of CMDF obtained
for a high sensitive parameter named X. The feasible space
of X is [0.9; 1.5]. The dark and dotted lines indicate the
CMDF obtained for acceptable solutions and nonacceptable
solutions, respectively. The vertical dark line represents the
maximum distance between the two distributions which is
used in the KS two samples test.

2.3. Multiobjective Calibration Iterative Procedure
(MCIP)

[9] In addition to the determination of the main influen-
tial parameters on the simulated variables, the MOGSA
algorithm is potentially useful for retrieving quantitative
information on these parameters [Demarty et al., 2004a,
2004b]. This can be done through the analysis of the CMDF
of the acceptable solutions. In particular, if the CMDF of the
acceptable solutions increases uniformly, then the model is

insensitive to this parameter (see section 2.2) and it is finally
not possible to isolate preferential values in the a priori
uncertainty range. Conversely, if the CMDF is concave
(respectively convex), then it indicates more probability
mass at higher (lower) values of the parameter. In such a
case, it is possible to determine a new lower (upper) limit of
the uncertainty range for the considered parameter. Such a
limit coincides with the maximum distance between the two
distributions which is used in the KS two samples test. Let
us consider the previous example, Figure 2 shows that the
CDFM is concave, and the 1.2 value of X appears to be
statistically the lower limit for the acceptable solutions. As a
consequence, X can be calibrated choosing a specific value
in the a posteriori and preferential range [1.2; 1.5]. Such a
simple approach was used by Demarty et al. [2004a, 2004b]
for prescribing soil thermal and hydraulic properties. How-
ever, it can be relatively subjective, notably in the case of
large preferential ranges. In order to avoid these types of
problems, we proposed in the present study to apply an
iterative procedure (Figure 3), based on the successive
narrowing of the feasible parameter space. Each iteration
was based on chaining the three following steps: (1)
generation of a set of simulations from initial distributions
of the input parameters, (2) analysis of the model sensitivity
with the MOGSA algorithm and (3) determination of the
preferential ranges of the most influential parameters, which
were used to narrow the feasible space and to generate a
new set of simulations in the next iteration. It is important to
note that parameters, for which no model sensitivity is
observed, are let free to vary in their initial uncertainty
ranges for the next iteration. The implementation of this
procedure, called multiobjective calibration iterative proce-
dure (MCIP), is very simple. It allows the regular contrac-
tion of the feasible parameter space between iteration. The
initial parameter distributions used in iteration 1 corre-
sponded to the a priori parameter distributions. The proce-
dure is ended when the new simulation set does not
significantly contribute to the improvement of the mini-
mized criteria. The final preferential uncertainty ranges
allowed the assessment of the a posteriori parameter dis-
tributions. Furthermore, the use of threshold values for each
single objective function in MOGSA (see section 2.2) can
be useful to account for errors in observations and model in
the calibration procedure.
[10] Although MCIP and the MOCOM-UA algorithm are

based on similar bases and concept, the philosophy of the
two multiobjective approaches is quite different. MCIP has
not for vocation to determine the whole Pareto set. Instead,
the iterative process makes the parameter space to evolve
the parameter optimization in the direction of the feasible
parameter space which provides the best model calibration,
as in a classical optimization procedure (such as the
Simplex). Nevertheless, MCIP still remains a real multi-
objective approach, merging the strength of the Pareto
dominance with computation efficiency. Moreover, it
includes an internal sensitivity analysis which is very useful
for a better investigation of the model structure, especially
by analyzing the changes in model sensitivity with the
successive contractions of the parameter feasible space.
For all these reasons, MCIP seems particularly adapted to
complex models, requiring the prescription of many input
parameters and for which a calibration strategy requiring a

Figure 2. Comparison of cumulative marginal distribution
functions of parameter X obtained for ‘‘acceptable’’
solutions (solid line) and ‘‘nonacceptable’’ solutions
(dashed line). Vertical bar represents the maximum distance
between the two cumulative distribution functions on which
the Kolmogorov-Smirnov test is then applied.
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high number of simulations will be computationally less
efficient.

3. Case Studies

[11] Using the MCIP, a multiobjective approach was
performed on the SiSPAT-RS model. It was applied in a
context of microwave and thermal infrared data assimilation
through the combined assimilation of the two following
variables: (1) the water content of the upper 5 cm of soil
(W05), which is highly correlated with the passive micro-
wave brightness temperature at low frequencies (L-band),
and (2) the thermal infrared brightness temperature (Tb).
Objective functions associated to each of these variables
were defined as the Root Mean Square Error (RMSE)
between observed and simulated variables. In order to
focus on canopy processes which occur during the day,
observations acquired between 7 a.m. and 4 p.m., were
accounted in the computation of the two objective
functions.
[12] In this study, two main objectives were pursued

through the multiobjective approach. First, we investigated
how the model sensitivity varied along the year in relation
with the climatic conditions and vegetative stage. Thus the
MOGSA algorithm was first applied on two separate
periods among the crop cycle. The first period (days of
experiment (DOE) 440–460, 15 March to 4 April 1997)
corresponded to a regular soil drying during the wheat-
growing period. A very dry soil and a well-developed
canopy characterized the second period (DOE 505–517;
19–31 May). According to the available measurements, it
was unfortunately not possible to isolate more contrasted
temporal windows in terms of environmental conditions
(see section 3.3).
[13] Second, we investigated the best way to constrain the

SVAT model using MCIP and the potential to retrieve
quantitative information on the surface properties, notably

on the soil hydraulic and thermal properties. MCIP
was applied on the first period DOE 440–460 for which
several Alpilles-ReSeDA observations were available for its
validation.

3.1. Soil-Vegetation-Atmosphere Transfer (SVAT)
Model

[14] The Simple Soil Plant Atmosphere Transfer model
(SiSPAT [Braud et al., 1995; Braud, 2000]), coupled with a
Remote Sensing module (SiSPAT-RS [Demarty et al., 2002,
2004a, 2004b]), was used in this study. This model
describes vertical heat and water exchanges within the
soil-plant-atmosphere continuum. It is a two-layer (soil
and vegetation) SVAT model (Figure 4). The soil column
is described as a juxtaposition of horizontal horizons,
characterized by different thermal and hydraulic properties.
Soil heat and mass transfers are coupled following the
formalism proposed by Milly [1982]. The specification of
retention curve and hydraulic conductivity parameteriza-
tions for each horizon in terms of volumetric water content
is required. Water extraction from the soil by roots is
parameterized using a resistance model developed by
Federer [1979], considering that plant transpiration equals
root extraction. The sensible and latent heat fluxes (H and
LE) are expressed using an electrical analogy. The bulk
stomatal resistance (rs) is computed following Jarvis [1976]
in terms of environmental factors (incoming solar radiation,
vapor pressure deficit and leaf water potential). The three
aerodynamic resistances (ras, rb, ra) are calculated using the
wind profile parameterizations inside and above the canopy
proposed by Shuttleworth and Gurney [1990]. For a com-
plete description of the SiSPAT model, see Braud et al.
[1995] or Braud [2000].
[15] The SiSPAT-RS version was developed to improve

the prediction of the modeled prognostic variables by
assimilation of remote sensing data. For this purpose, the
SVAT model was coupled with two Radiative Transfer

Figure 3. Schematic of the multiobjective calibration iterative procedure (MCIP) based on the
multiobjective generalized sensitivity analysis (MOGSA) algorithm.
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Models (RTM) in the visible–near infrared and thermal
infrared spectral domains. In the visible–near infrared
spectral domain (0.3–3 mm), the 2M version (multilayer
and multielement [Weiss et al., 2001]) of the scattering by
arbitrary inclined leaves (SAIL [Verhoef, 1984, 1985])
model was implemented in the SVAT model in order to
simulate the bidirectional reflectances in the spectral and
geometrical measurement conditions and the radiative
exchanges between the soil, the vegetation and the atmo-
sphere. The canopy was described as several horizontal
layers of vegetation in specific phenological phases (green,
yellow or senescent vegetation layer). Moreover, different
vegetative organs, such as leaf, stem or ear, composed each
layer of vegetation. Such a representation of the canopy
required to account for the different vegetative layers into
the SiSPAT structure. That was simply done by the speci-
fication of an organ area index to each vegetative organ,
instead of using only the green Leaf Area Index (LAI) as in
the original version. However, we assumed that each
vegetative layer had a different contribution to the surface
processes according to their associated phenological states.
We considered that only green vegetation layers contributed
to plant transpiration (through the bulk stomatal resistance)
and that total vegetation, including green layers and yellow/
senescent layers, contributed to radiative (through the
shielding factor) and aerodynamic (through the aerodynamic
resistances) processes.
[16] In the thermal infrared domain, a directional param-

eterization [François et al., 1997] was coupled with the
SiSPAT model. This parameterization simulated the spectral
brightness temperature between 8–14 mm in a specific
viewing configuration. It required the temperature of the

soil surface and the temperature of the vegetation which
were both simulated by the SiSPAT model.

3.2. Data Set

[17] The data set collected on a winter wheat field
(numbered 101) of the Alpilles-ReSeDA experiment
[Olioso et al., 2002a] was used in this study. The aim of
this experiment was to provide a consistent data set for
assessing crop and soil processes using remote sensing data.
It focused on agricultural land and practices. Therefore a
small agricultural area, characterized by a large diversity of
crops (wheat, sunflower, alfalfa), was instrumented and
monitored during one year to document the whole crop
cycle. The site was located near Avignon, France, (N43�470,
E4�450) and the experiment lasted from October 1996 to
November 1997. A very flat area, with fields of size 200 m
by 200 m characterized the site. Atmospheric forcing was
measured in the middle of the experimental area, over a bare
soil surface with a 15 s time step and an averaging period of
20 min. The soil characterization of the field numbered 101,
including particle size data, infiltration and dry bulk density
measurements, were done at several depths along the soil
profile. Canopy height, green Leaf Area Index (LAI) and
Organ Area Index (OAI) for leaves, stems and ears in green
vegetative phase and yellow/senescent vegetative phase
were acquired regularly during the crop cycle and interpo-
lated to daily values. Several initial and modeled output
variables were observed, such as soil moisture down to a
depth of 140 cm, energy and mass fluxes and local thermal
infrared brightness temperatures (Table 1). Eddy correlation
(EC) and Bowen ratio (BR) methods were implemented to
assess latent and sensible heat fluxes over short periods and

Figure 4. Schematic of the energy processes in the Simple Soil Plant Atmosphere Transfer (SiSPAT)
model: net radiation (Rn), soil heat conduction (G), sensible and latent heat fluxes (H and LE), bulk
stomatal resistance (rs) and aerodynamic resistances (rb, ras, ra), temperatures (T), and specific humidity
(q). Subscripts, v, and t refer to the soil, vegetation, and total contributions, respectively; subscript a refers
to the reference height measurements above the canopy, and subscript av refers to the fictive level inside
the canopy.
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over the whole crop cycle, respectively. Unfortunately,
failures in the Bowen ratio instrumentation, generating error
in the system for measuring vapor and temperature gra-
dients, did not allow the estimation of turbulent fluxes as
accurately as expected. So, in this study, we only used latent
and sensible heat fluxes acquired by Eddy Correlation (EC)
instrumentation.

3.3. Modeling Strategy

[18] For all the SiSPAT-RS simulations, a soil column of
200 cm was layered in three horizons, corresponding to the
0–10 cm soil depth (denoted H1 hereafter), 10–30 cm (H2)
and 30–200 cm (H3) soil layers. This soil description

appeared relatively realistic as a first approximation for
crops, according to agricultural practices (Chanzy, INRA
Avignon, personal communication). The retention and hy-
draulic conductivity curves were parameterized using the
Van Genuchten [1980] model and the Brooks and Corey
[1964] model, respectively. The vegetation was modeled
with two layers: a green vegetation layer and a yellow
senescent vegetation layer.
[19] The multiobjective approach was performed on

35 parameters of the SiSPAT-RS model (23 for soil and
12 for vegetation). The description of these parameters is
listed in Table 1. They described the thermal and hydraulic
properties of the soil, the canopy stomatal regulation, the

Table 1. Uncertainty Ranges Associated With Each of the 35 Input Parameters of the Simple Soil Plant Atmosphere Transfer–Remote

Sensing (SiSPAT-RS) Modela

Parameter

Uncertainty Boundary Range

Initial Intermediate (MOGSA) Final (MCIP) Observed

Van Genuchten Retention Curve
Wsa1 saturated water content for H1, m

3 m�3 0.37–0.53 0.37–0.45 0.40–0.43 0.43
Wsa2 saturated water content for H2, m

3 m�3 0.37–0.43 0.39–0.43 0.39–0.42 0.41
Wsa3 saturated water content for H3, m

3 m�3 0.37–0.40 � � � 0.37–0.39 0.38

hg1 scale factor in the VG retention curve model for H1, m �2.0 to �0.02 �0.8 to �0.3 �0.6 to �0.3 �0.4
hg2 scale factor in the VG retention curve model for H2, m �3.5 to �0.6 � � � �1.8 to �1.2 �0.8

hg3 scale factor in the VG retention curve model for H3, m �5.0 to �2.5 �3.5 to �2.5 �3.5 to �2.5 �3.0
n1 shape parameter in the VG retention model for H1 2.116–2.151 2.13–2.151 2.13–2.145 2.129
n2 shape parameter in the VG retention model for H2 2.115–2.145 � � � 2.125–2.145 2.133

n3 shape parameter in the VG retention model for H3 2.110–2.145 2.125–2.145 2.125–2.145 2.136

Hydraulic and Thermal Soil Properties
Ks1 saturated liquid hydraulic conductivity for H1, m s�1 5 � 10�10–5.10�6 1 � 10�7–5 � 10�6 5 � 10�7–2 � 10�6 5.0 � 10�7

Ks2 saturated liquid hydraulic conductivity for H2, m s�1 2 � 10�10–2 � 10�6 � � � 1 � 10�7–2 � 10�6 2.0 � 10�7

Ks3 saturated liquid hydraulic conductivity for H3, m s�1 2 � 10�10–2 � 10�6 1 � 10�8–5 � 10�7 1 � 10�8–6.5 � 10�8 5.0 � 10�8

La1 multiplicative coef. of thermal conductivity for H1 0.4–4.0 0.4–0.8 0.4–0.55 0.5
La2 multiplicative coef. of thermal conductivity for H2 0.5–4.0 0.5–1.5 0.5–0.8 1.0
La3 multiplicative coef. of thermal conductivity for H3 0.5–4.0 0.9–4.0 0.9–1.5 1.0
Cd1 heat capacity of minerals for H1, 10

6 J m�3 K�1 0.75–1.25 � � � 0.75–1.25 0.98

Cd2 heat capacity of minerals for H2, 10
6 J m�3 K�1 0.75–1.25 � � � 0.75–1.25 1.02

Cd3 heat capacity of minerals for H3, 10
6 J m�3 K�1 0.90–1.50 � � � 0.90–1.50 1.21

Stomatal Conductance
Rsm minimal stomatal resistance, s m�1 25–160 25–80 60–80 70
RsM maximal stomatal resistance, s m�1 3500–7000 � � � 3500–7000 5000

Rp total plant resistance, 1012 s m�1 0.5–5.0 0.5–2.0 1.5–2.0 1.0
PFC critical leaf water potential, m �170 to �110 �170 to �140 �150 to �140 �140
PST VDP stress function parameter, 10�4 Pa�1 1.0–5.0 1.0–2.0 1.0–2.0 2.5

Optical Properties
Decv shifting of green leaves spectrum �0.05–0.05 �0.02–0.05 �0.02–0.0 0.0
Decj shifting of yellow leaves spectrum �0.05–0.05 � � � �0.05–0.05 0.0

Emif leaf emissivity 0.96–0.99 0.98–0.99 0.98–0.99 0.985
Ass shifting for dry soil albedo spectrum �0.04–0.04 � � � 0.0–0.04 0.0

Ash shifting of wet dry soil albedo spectrum �0.04–0.04 � � � �0.04–0.04 0.0

Wd max 0–5 cm water content for dry soil albedo, m3 m�3 0.15–0.24 0.17–0.24 0.17–0.24 0.20
Ww min 0–5 cm water content for wet soil albedo, m3 m�3 0.25–0.33 � � � 0.28–0.33 0.29

Emis soil emissivity 0.94–0.98 0.96–0.98 0.96–0.98 0.96
Gv visible-infrared parameter of the shielding factor 0.40–0.60 � � � 0.40–0.60 0.50

Gth thermal infrared parameter of the shielding factor 0.70–0.90 0.70–0.85 0.75–0.85 0.85

Root Profile
Afdr amplitude coef. of maximum root length density, m m�3 5666–8500 � � � 5666–7800 7000

Lfdr spreading coef. of maximum root length density 1 � 10�4–2 � 10�4 1 � 10�4–1.8 � 10�4 1 � 10�4–1.8 � 10�4 1.25 � 10�5

a‘‘Initial,’’ ‘‘Intermediate,’’ and ‘‘Final’’ columns indicate the initial a priori uncertainty ranges, the preferential uncertainty ranges deduced from the
multiobjective generalized sensitivity analysis (MOGSA) algorithm, and the final uncertainty ranges after the multiobjective calibration iterative procedure
(MCIP), respectively. Observed or calibrated (in italics) values during the Alpilles-ReSeDA experiment are indicated in the last column.
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soil and vegetation optical properties and the root length
density. Time-dependent input variables were not consid-
ered in this study, such as the canopy height, the green and
yellow OAI. They were prescribed from ground observa-
tion, such as initial conditions. Moreover, a typical root
profile was considered. An a priori uncertainty range was
attributed to each of the 35 free parameters. They accounted
for experimental errors and for the spatial variability
observed during the Alpilles ReSeDA experiment. A
uniform distribution was associated to each parameter,
except for the saturated hydraulic conductivity, for which
a uniform distribution was associated to the logarithm of
the uncertainty range.
[20] Samples of 2500 simulations were realized. Tests

were performed to verify that the size of the samples was
large enough to obtain robust results [Demarty, 2001].
Similarly to Leplastrier et al. [2002], a threshold procedure
on each single objective function was considered after the
Pareto ranking. Threshold values for the upper 5 cm of soil
and for the thermal infrared brightness temperature were
simply chosen in order to assure a reasonable compromise
between the numbers of ‘‘acceptable’’ and ‘‘non accept-
able’’ solutions. Moreover, to well emphasize the synergy
between the two assimilated variables, single-objective
analyses were also performed on the SiSPAT-RS model.

For consistency, the single-objective thresholds were chosen
to partition the 2500 simulations into similar fraction to
those achieved by the joint multiobjective sensitivity anal-
ysis [Bastidas et al., 1999].

4. Results

4.1. Sensitivity Analysis

[21] Figures 5 and 6 present model sensitivity results
obtained on each of the two periods with MOGSA. Each
figure is composed of two subplots showing the joint
multiobjective analysis (top) and the two single-objective
analyses (bottom). A vertical bar indicates the model sen-
sitivity in terms of probability result of the KS test for each
of the 35 parameters. The horizontal dashed lines indicate
the transition levels between ‘‘high,’’ ‘‘medium,’’ and
‘‘low’’ model sensitivity [Bastidas et al., 1999]. If the
vertical bar crosses the level 0.01, the model is highly
sensitive to the considered parameter. Conversely, under
the level 0.05, the model is insensitive to the parameter.
Medium model sensitivity is considered between the levels
0.01 and 0.05.
[22] On the period DOE 440–460, multiobjective sensi-

tivity analysis results (top part of the Figure 5) show that
nine parameters had at least a medium impact on simula-

Figure 5. Multiobjective SiSPAT–Remote Sensing (RS) model sensitivity on period DOE 440–460 to
the 35 input parameters. Vertical bars indicate relative sensitivity of parameters in terms of probability
result of the KS test. Horizontal dashed lines indicate transition levels between ‘‘high’’ (above 0.01),
‘‘medium’’ (between 0.01 and 0.05), and ‘‘low’’ (under 0.05) sensitivities.
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tions: five parameters were related to the soil (Wsa1, Ks3,
La1, La2, Emis) and four to the vegetation (Rsm, Rp, PFC,
Emif). As might be expected from the knowledge of the
crop development and the drying of the soil, a significant
impact of the parameters controlling the stomatal regulation
were found (Rsm, Rp, PFC). The Rsm parameter repre-
sented the minimal stomatal resistance when no stress
occurred. The plant resistance Rp and the critical leaf water
potential PFC controlled the water extraction in the soil.
These three parameters were generally considered as key
parameters for calibrating the SiSPAT model [Braud et al.,
1995; Olioso et al., 2002b]. They played an important role
on the simulated thermal infrared brightness temperature
(bottom part of Figure 5). Similar analysis was established
for the parameters controlling the thermal conductivity in
soil layers between 0 and 30 cm (La1, La2), and for the
emissivities of the soil and the vegetation (Emis, Emif).
Conversely, it is important to note that the model was not
really sensitive to soil hydraulic properties, since only two
parameters (Ks3, Wsa1) were identified on the joint multi-
objective sensitivity analysis. Owing to its large impact on
the water exchanges in the deep soil layers, the saturated
hydraulic conductivity of H3 (Ks3) played an important role
on simulations. The saturated water content of the surface
horizon (Wsa1) was the only retention curve parameter
having a significant impact on the joint multiobjective
sensitivity analysis. However, single-objective sensitivity
analysis on the surface water content revealed that the

model was also highly sensitive to the soil hydraulic
properties of the surface horizon (Wsa1, hg1, Ks1). More
generally, we found that the joint multiobjective sensitivity
analysis was close to the single-objective sensitivity analy-
sis performed on the thermal infrared brightness tempera-
ture. This could be explained by a large internal weight
giving to the threshold of the brightness temperature; this
last being more discriminating for the acceptable solutions.
[23] On the period DOE 505–517, multiobjective sensi-

tivity analysis results (Figure 6) show that 10 parameters
had at least a medium impact on simulations: eight param-
eters were related to the soil (Wsa1, hg1, n1, Ks1, La1, La2,
La3, Emis) and only two to the vegetation (Rsm, Emif).
These results were consistent with the studied environmen-
tal conditions. High model sensitivity was observed for all
the soil parameters describing horizon 1 (Wsa1, hg1, n1,
Ks1). As expected for a very dry soil, the parameter n had a
significant impact. Similar results were found by Demarty et
al. [2004a, 2004b]. For stomatal regulation, only the min-
imum stomatal resistance Rsm had a high impact on the
simulation of the brightness temperature. Moreover, the
parameters controlling the thermal conductivity in H1 and
H2 (La1, La2) and soil and vegetation emissivities (Emis,
Emif) had a large impact on Tb. For this period, a good
agreement between the multiobjective and the two single-
objective sensitivity analysis was observed.
[24] In spite of the quite similar environmental conditions

in the two temporal windows, the results obtained above

Figure 6. Same as Figure 5, but for period DOE 505–517.
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revealed model sensitivity to different parameters. Thus the
first period was useful to identify the main vegetation
parameters during the growing period, while the second
period allowed a more efficient identification of the soil
properties in relation with the soil moisture level. However,
some parameters (Wsa1, La1, La2, Rsm) had a significant
impact on both periods. A high model response was also
observed for the parameters controlling simultaneously
surface soil moisture and thermal infrared brightness tem-
perature. In particular, it was established that the parameters
describing the stomatal regulation and the soil water
exchanges near the surface as well as in deeper soil layers
were sensitive. More generally, the six above sensitivity
analyses (1 multiobjective and two single-objective for each
of the two temporal windows) allowed the identification of
21 main influential parameters. These results underlined the
potential of Tb and W05 to retrieve information on many
input parameters used in a physically SVAT model. Next
section focuses on the way to assimilate these variables in
the model.

4.2. Assimilation of the W05 and Tb Variables

[25] Using the six previous sensitivity analyses, we
determined the preferential uncertainty ranges of the 21
main influential parameters (Table 1, ‘‘Intermediate’’ col-
umn). In general, a more efficient narrowing of the a priori
uncertainty range was associated to high model sensitivity.
A typical example was the minimal stomatal resistance
(Rsm), which had a large influence in multiobjective and
single-objective analyses on Tb for the two temporal win-
dows. Rsm originally ranged between 25–160 s m�1; it was
constrained to its lowest values, between 25 and 80 s m�1,
according to the multiobjective sensitivity analysis on
period 440–460 which provided the more efficient contrac-
tion of the initial feasible space. Other main example
concerned the scale factor of the VG retention model of
H1 (h1) that was constrained to intermediate values of its
initial range. In fact, these values appeared the most
appropriate to improve the surface soil moisture critter,
since the single-objective sensitivity analyses on W05 that
was carried out on period 440–460 and period 505–517,
narrowed initial range to the lowest values and the highest
values, respectively. Nevertheless, this case was atypical,
since no contradiction in uncertainty ranges was observed
between the various sensitivity studies for all the others
parameters.
[26] This analysis of preferential uncertainty ranges pro-

vided quantitative information for calibrating the SVAT
model. However, the preferential ranges of the 21 parame-
ters were still relatively large. Moreover, no sensitivity was
observed for 14 of the 35 parameters. In order to progress
toward the optimization of the 35 input parameters, the
multiobjective calibration iterative procedure (MCIP, see
section 2.3) was applied on the SiSPAT-RS model. As
MOGSA results showed that the two separate periods
provided quite close results in terms of model sensitivity,
we decided to test MCIP on the period DOE 440–460 only,
using the preferential uncertainty ranges observed for the 21
‘‘influential’’ parameters. The 14 parameters for which no
sensitivity was observed were let free to vary in their a
priori ranges. Two new iterations (see Figure 3) were
performed with MCIP. Results are described as follows.

[27] Figure 7 shows the MCIP performance in terms of
the RMSE of W05 and Tb. Each subfigure represents a
specific iteration. The partition into ‘‘acceptable’’ and ‘‘non
acceptable’’ solutions and the threshold values are indicated.
Results showed that the performance of the MCIP increased
with the successive iterations. At the third iteration, the
whole set of the 2500 simulations provided relatively
similar RMSE, revealing that the number of iterations was
sufficient. For each iteration, RMSE around 0.9 K were
systematically obtained on Tb. Conversely, many sets of
parameters allowed the assessment of very low RMSE on
W05.
[28] Figure 8 presents the impact of the assimilation

procedure on the simulated sensible (H) and latent (LE)
heat fluxes. Both H and LE were improved with the
successive iteration. The scattering of the RMSE regularly
decreased from 50–70 Wm�2 to 10–20 Wm�2. The RMSE
on H and LE were finally around 25–40 Wm�2. They were
relatively close to the measurement errors around of
30 Wm�2 which were estimated on the turbulent fluxes
during the Alpilles-ReSeDA experiment [Olioso et al.,
2002a]. It was observed that the improvement of the
simulation of the turbulent fluxes was mainly due to the
use of the brightness temperature (not shown in this study).
Such a high correlation between the surface fluxes and the
brightness temperature was in good agreement with the
environmental conditions at the time of the analysis, which
were characterized by a growing vegetation during an event
of soil drying, for which water stress occurred. In the cases
of uncompleted canopy or senescence, the account of W05

in the multiobjective procedure could have a higher impact
in the simulation of the surface turbulent fluxes, and might
be also a good mean to assess and control the partition of
evapotranspiration into evaporation and transpiration. Fur-
thermore, the sensitivity analyses were shown that the W05

variable allowed the retrieval of the hydraulic properties.
These properties had a high impact on the control of
infiltration toward deeper soil layers, and as a consequence
on the available water content for transpiration. So, espe-
cially during or after a rain event, the account of W05 could
have a higher influence on the assessment of the turbulent
fluxes.
[29] The final ranges of the SiSPAT-RS parameters are

shown in Table 1 (‘‘Final’’ column). On one hand, it was not
possible to reduce the initial a priori uncertainty ranges of
only eight parameters, such as the soil heat capacity of the
three horizons (Cd1, Cd2, Cd3) or the maximal stomatal
resistance (RsM). These parameters had a very low impact
on the simulations of the two variables used for the
calibration process (Tb and W05). On the other hand,
27 parameters were highly optimized, revealing two main
key findings. First, it was possible to improve the optimi-
zation of the 21 influential parameters that were obtained
using MOGSA in section 4.1. For some of the parameters,
narrow final ranges were particularly found, as for example
for the minimal stomatal resistance Rsm (60–80 s m�1) and
for the critical leaf water potential PFC (�150 to �140 m).
Second, six additional parameters were optimized, such as
the parameters describing the retention curve of H2 (hg2, n2).
This showed that the model sensitivity was affected by the
successive contractions of the feasible parameter space.
Figure 9 shows an example of model sensitivity obtained
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for iteration 2. It can be compared to Figure 5 in order to
emphasize relative changes in model sensitivity. Moreover,
the comparison between the optimized parameters and the
values derived from Alpilles-ReSeDA experiment by
Olioso et al. [2002a, 2002b] (‘‘Observed’’ column in
Table 1) showed a very good agreement. The main differ-
ences concerned the soil hydraulic properties of H2 (hg2, n2,
Ksa2) for which large final ranges were found. These
results, revealing the potential of the two Tb and W05 for
constraining a physically based SVAT model, opened per-
spectives on the combined assimilation of the passive
microwave and thermal infrared observations.
[30] Figure 10 shows the impact of the parameter cali-

bration on the simulated energy fluxes and soil water
content. For the turbulent fluxes, as expected from
Figure 8, a good agreement was found between simulated
and observed values. More differences were observed on the
water content of the soil layers between 30 and 50 cm. This
was partially explained by the large ranges of hydraulic soil
properties of H2 (10–30 cm). Conversely, water content of
the deep layers was well simulated, in agreement with the
high model sensitivity to the parameters controlling water
exchanges in deep soil layers and stomatal regulation.

5. Conclusions and Discussion

[31] This study presents a multiobjective approach to
retrieve surface information of a physically based SVAT
model through the knowledge of surface water content
(W05) and thermal infrared brightness temperature (Tb)
measurements as calibration variables. The approach used
a new multiobjective procedure, called the multiobjective
calibration iterative procedure (MCIP). This procedure is
based on the ability of the multiobjective generalized
sensitivity analysis (MOGSA [Bastidas et al., 1999]) to

identify and quantify the main influential parameters on the
simulations of W05 and Tb. The Simple Soil Plant
Atmosphere Transfer–Remote Sensing (SiSPAT-RS [Braud
et al., 1995; Demarty et al., 2004b]) model and the
database acquired on a winter wheat field during the
Alpilles ReSeDA experiment [Olioso et al., 2002a] are used
in this study.
[32] The analysis of model sensitivity being a key issue

both for investigating the model structure and for isolating
the main influential parameters, a sensitivity analysis of the
SiSPAT-RS model to 35 input parameters was first carried
out with MOGSA on two separate temporal windows
among the wheat crop cycle (see Figures 5 and 6). Although
these two temporal windows are not really contrasted in
terms of environmental conditions, results showed slightly
differing behavior in model sensitivity. The model was very
sensitive to the parameters controlling both W05 and Tb.
More specifically; it was shown that W05 and Tb were
useful to identify the hydraulic and thermal properties of the
surface soil horizon and the main vegetation parameters,
respectively. Such an association of these two variables was
very interesting for constraining the main surface processes,
such as stomatal regulation and soil water exchanges near
the surface as well as in deeper soil layers. Furthermore, the
MOGSA algorithm was also useful to provide quantitative
information on these main parameters in terms of preferen-
tial ranges. As by Demarty et al. [2004a, 2004b], it was
particularly that these a posteriori preferential ranges could
be still relatively large, implying difficulties for choosing
calibrated values.
[33] In order to progress toward the optimization of

model parameters, a new multiobjective procedure MCIP
was applied in a second step to SiSPAT-RS. Results showed
that MCIP is an original and pertinent approach for
improving calibration (i.e., reducing the a posteriori prefer-

Figure 7. Performance of the MCIP in terms of RMSE of the surface water content (W05) and the local
brightness temperature (Tb). Each subfigure shows ‘‘acceptable’’ (black asterisk) and ‘‘nonacceptable’’
(gray square) simulations for a specific iteration. Thresholds of 1.2 K and 0.025 m3 m�3 were considered
for Tb and W05.

Figure 8. Impact of the MCIP on the simulated sensible (H) and latent (LE) heat fluxes.
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ential ranges) in the case of this complex model. The new
multiobjective approach seems well suited for complex
models, which require the prescription of many input
parameters, are time consuming and for which another
multiobjective approach can not be reasonable in terms of
amount of simulations required by the optimization proce-
dure. Thus in regard with the 100 000 simulations generally
required by a multiobjective calibration with the MOCOM-
UA algorithm [Yapo et al., 1998; Gupta et al., 1999], MCIP
only required the generation of 7500 simulations in our
studied case. Such a number of simulations is compatible
with a good computational efficiency of the SiSPAT-RS
model. Moreover, it was particularly shown that the param-
eter retrieval with MCIP was in good agreement with the
observed values during the Alpilles-ReSeDA experiment
and had a positive impact on the simulation of the main
surface processes, such as the sensible (H) and latent (LE)
heat fluxes and the soil water content.
[34] In this study, we expected that W05 and Tb would be

two useful and complementary variables for retrieving
quantitative information on surface properties. In terms of
parameter retrieval, results clearly showed that these two
variables were complementary. More specifically, it was
shown that the model sensitivity was affected by the
successive contractions of the feasible parameter space.
However, in terms of impact on the turbulent heat fluxes,

it was observed that the thermal infrared brightness temper-
ature was the main variable providing significant informa-
tion (see Figure 8). This was a direct consequence of the
environmental conditions, characterized by growing vege-
tation during an event of soil drying, for which water stress
occurred (see Figure 10). Indeed, in these conditions,
brightness temperature is highly correlated to evapotranspi-
ration flux. Concerning water transfers in the soil, it was
shown that both W05 and Tb provided information on the
soil hydrodynamic properties which drive these transfers.
This was true at the first iteration (see above the discussion
on the sensitivity analysis with MOGSA, Figures 5 and 6),
but also at the following iterations (as presented for iteration
2 in Figure 9). If these properties were not retrieved
accurately, it would be not possible to obtain right simula-
tion of latent heat flux on the long term [Olioso et al.,
2002b; Demarty et al., 2004b]. It may also be possible that
in other environmental situations, such as for less developed
canopies, senescence or rain events (not studied here),
the impact of W05 on the calibration of the model for the
simulation of turbulent heat fluxes was higher than in the
present study. This is to be investigated in the future. New
studies have already been initiated applying MCIP to the
ISBA-Ags model [Calvet et al., 1998], showing that the
combined use of 1.4 GHz and thermal infrared brightness
temperatures made it possible to retrieve most of the

Figure 9. Multiobjective SiSPAT-RS model sensitivity for iteration 2 and on period DOE 440–460 to
the 35 parameters. Comparison with Figure 5 shows relative changes in model sensitivity after
contraction of the feasible parameter space. See legend of Figure 5.
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model input parameters [Demarty et al., 2004a], Using
only one of these remote sensed variables resulted in
wrong determination of the parameters and erroneous
simulation of evapotranspiration.

[35] MCIP was used here in a context of remotely sensed
data. This study opens perspectives for the combined use of
various multispectral remotely sensed observations, such as
passive microwaves and thermal infrared signals, in a SVAT

Figure 10. Performance of the final ‘‘acceptable’’ solutions (gray), according to the available Alpilles
ReSeDA observations (black square), on the turbulent surface fluxes (for only 8 days) and on various soil
water contents (for the whole studied period of 20 days).
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model. We did not account for the issue of the spatiotem-
poral resolution of satellite sensors. The main advantage of
data assimilation is its ability to merge spatially distributed
information obtained from many sources with different
resolutions, coverage and uncertainties [Margulis et al.,
2002]. Further investigations need to be performed toward
this objective. In particular, on the temporal aspect, an
analysis must be performed, as by Calvet and Noilhan
[2000] for example, in order to determine the required
frequency of the assimilated observations and its impact
on the driving of the SVAT model. The issue of the spatial
resolution of the satellite sensors might be approached using
disaggregated remotely sensed data (or products, such as
soil moisture) at the scale of the various entities constituting
the mixed pixel [Pellenq et al., 2003; Kustas et al., 2003].
Another way might be the direct assimilation of the satellite
observations at the level of the mixed pixel. In this case, the
multiobjective procedure must be able to constrain the
model on each of the entities constituting the mixed pixel.
Few recent studies have been focused on the potential of
approaches allowing the retrieval of many input parameters,
as in the case of the distributed land surface properties of
heterogeneous pixels [Burke et al., 2002; Crow and Wood,
2003]. Nevertheless, the Monte Carlo nature of the multi-
objective approaches requiring multiple simulations could
make them less practical than another technique. This
emphasizes the development of alternative approach, such
as MCIP, that allows the assessment of many input param-
eters through a relative low number of simulations.
[36] The last main assumption considered in this study

concerned the time-dependent input variables (LAI and
canopy height) which were prescribed from in situ
observations. Although Demarty et al. [2004b] showed
that these variables had an impact on model sensitivity;
this was not trivial to simply take them into account in
the multiobjective approach. Moreover, SVAT model
were not initially designed to simulate such variables.
This emphasizes the usefulness to couple a vegetation
growth model with a SVAT model [Cayrol et al., 2000;
Olioso et al., 2005]. Thus further works must concern the
assimilation of satellite observations in a coupled SVAT–
vegetation growth model, according to their time and
spatial resolutions.
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dedicate this paper to Paul.

References
Bastidas, L. A., H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L.
Yang (1999), Sensitivity analysis of a land surface scheme using multi-
criteria methods, J. Geophys. Res., 104, 19,481–19,490.

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward improved
calibration of hydrologic models: Combining the strengths of manual and
automatic methods, Water Resour. Res., 36, 3663–3674.

Boyle, D. P., H. V. Gupta, S. Sorooshian, V. Koren, Z. Zhang, and M. Smith
(2001), Toward improved streamflow forecasts: Value of semidistributed
modeling, Water Resour. Res., 37, 2749–2759.

Braud, I. (2000), SiSPAT: A Numerical Model of Water and Energy Fluxes
in the Soil-Plant-Atmosphere Continuum, Version 3.0, SiSPAT User’s
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presented at Atelier de Modélisation de l’Atmosphère, Toulouse, France,
28–29 Nov.
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