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We report in this paper an implementation of a 4-component relativistic Hamiltonian based Equation-
of-Motion Coupled-Cluster with singles and doubles (EOM-CCSD) theory for the calculation of
ionization potential, electron affinity, and excitation energy. In this work, we utilize the previously
developed double group symmetry-based generalized tensor contraction scheme and also extend it in
order to carry out tensor contractions involving non-totally symmetric and odd-ranked tensors. Several
approximated spin-free and two-component Hamiltonians can also be accessed in this implementation.
We have applied this method to the halogen monoxide (XO, X = Cl, Br, I, At, Ts) species, in order
to assess the quality of a few other recent EOM-CCSD implementations, where spin-orbit coupling
contribution has been approximated in different degrees. Besides, we have also studied various excited
states of CH2IBr, CH2I2, and I−3 (as well as single electron attachment and detachment electronic states
of the same species) where comparison has been made with a closely related multi-reference coupled-
cluster method, namely, Intermediate Hamiltonian Fock Space Coupled-Cluster singles and doubles
theory. Published by AIP Publishing. https://doi.org/10.1063/1.5053846

I. INTRODUCTION

Theoretical approaches based on molecular quantum
mechanics1–5 have grown into increasingly important tools to
help experimentalists understand species in their electronically
excited states in the gas-phase6 or in complex environments,7–9

in order to address speciation (oxidation states of specific
centers, structures)10–15 as well as the underlying factors driv-
ing photochemical processes (reactivity, photodissociation,
etc.).16–20

Computational models are particularly important for
species containing (a) first-row transition metals, since then
one often encounters dense electronic spectra due to many low-
lying quasi-degenerate states arising from the partially filled
d shells, which requires the treatment of both dynamical and
non-dynamical electron correlation21 and (b) heavy elements
(e.g., those with atomic number Z = 31 or higher) for which the
manifestations of relativistic effects22–28 significantly alter the
species’ electronic structure and, by extension, their excited

a)Electronic mail: ashee@umich.edu
b)Electronic mail: trond.saue@irsamc.ups-tlse.fr. Tel.: +33-5-6155-6031. Fax:

+33-5-6155-6065.
c)Electronic mail: l.visscher@vu.nl. Tel.: +31-20-598-7624.
d)Author to whom correspondence should be addressed: andre.gomes@univ-

lille.fr. Tel.: +33-3-2043-4163. Fax: +33-3-2033-7020.

states and other molecular properties.29–31 However, as elec-
tron correlation and relativistic effects are non-additive, in
order to achieve a balanced description of the electronic states
of heavy element species both have to be treated on the same
footing.

Among the available relativistic (multireference) meth-
ods,32 those based on the coupled-cluster ansatz4,33 and, in par-
ticular, the Fock-space coupled-cluster (FS-CC)34 method and
its intermediate Hamiltonian (IHFS-CC) formulations35–38

have shown to be among the most reliable and cost-effective
ones, and allowed the treatment of systems with complex,
open-shell ground-states39–49 as well as simpler, closed-shell
ones.50–55 The appeal of (IH)FS-CC resides in the fact that they
show a similar scaling to that of single-reference approaches,
e.g., O(N6) for (IH)FS-CC with coupled cluster singles dou-
bles (CCSD)-based wavefunctions, can be implemented in
a straightforward manner starting from a single-reference
coupled-cluster code34 and yield several excited states simul-
taneously. Furthermore, different oxidation states belonging
to different sectors of Fock space56 can be obtained from
a single calculation, a useful feature for actinide chemistry,
where often spectra of the same species in different oxidation
states are to be analyzed. There are, however, some impor-
tant drawbacks in the requirement to define suitable model
spaces57,58 and the problem of intruder states59,60 which may
prevent convergence for one or more sectors. The latter issue
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can be alleviated but not completely avoided by the use of the
intermediate Hamiltonian formalism,61 having as a conse-
quence that the IHFS-CC variants are the only ones that
have been widely used in molecular applications employing
relativistic Hamiltonians.

For the transition energies of closed-shell ground states
and for determining the wavefunctions and transition ener-
gies of open-shell cases (e.g., doublets), one often prefers
a simpler “black-box” type method in which the definition
of model spaces is not necessary and in which convergence
problems due to intruder states are avoided. In those sit-
uations, the equation-of-motion coupled-cluster (EOM-CC)
approach62 is an excellent alternative to IHFS-CC: the
FS-CC and EOM-CC methods are formally equivalent for sin-
gle electron attachment and detachment states starting from
a closed-shell reference,33,63 though EOM-CC is a compu-
tationally more robust approach as it replaces the iterative
solution of the coupled cluster equations by a diagonalization.
In what follows, we shall consider CCSD wavefunctions exclu-
sively and thus employ the shorthand CC instead of CCSD for
brevity.

This robustness is also found for the (1 hole, 1 particle)
sector that corresponds to singly excited states; there, how-
ever, differences in energies arising from the use of different
parametrizations for the wavefunctions—linear for EOM-CC
and nonlinear for IHFS-CC, with the latter having the virtue
of also ensuring valence extensivity (i.e., with respect to active
holes and particles used to define a model space)58,64—become
apparent and have been discussed for systems containing
light65–68 as well as heavy50 elements.

The appealing features of EOM-CC have made it an
extremely popular method for light element systems, and its
popularity is growing for heavier species as attested by the
number of recent reports in the literature of EOM-CC imple-
mentations that take into account relativistic effects. Though
some of the latter approaches are based on solving the four-
component (4C) Dirac equation for atomic and molecular sys-
tems69–73 and therefore account rigorously for scalar relativis-
tic (SR) effects and spin-orbit coupling (SOC), for reasons of
computational efficiency most of them74–82 have been devised
in a more approximate framework where SOC is treated to
within different degrees of approximation, e.g., starting from
the spin-free exact two-component (sfX2C) Hamiltonian and
including SOC via atomic mean-field (AMF) integrals83 or
perturbatively.

While in the aforementioned studies and elsewhere in the
literature,43,50–52 one can see that approximate treatments of
SOC such as in the AMF approximation can yield rather accu-
rate excitation energies even for heavier species up to and
including iodine, the situation is not as clear cut for heavier
elements,80 and therefore for 5d, 5f, 6p elements and beyond it
may be preferable to rely on approaches based on 4C Hamil-
tonians [that is, the Dirac–Coulomb (DC), Dirac–Coulomb–
Gaunt (DCG), or Dirac–Coulomb–Breit (DCB) Hamiltoni-
ans], or on X2C approaches but using a molecular mean-field84

(MMF) approach, which have been shown to yield results
largely indistinguishable from their 4C counterparts.55

Our primary goal in this work is to present the imple-
mentation in the DIRAC code85 of the EOM-CC approach,

for obtaining the energies for electron attachment (EOM-IP),
detachment (EOM-EA), and singly excited states (EOM-EE)
based on 4C and accurate 2C Hamiltonians (X2C-MMF),
though we note that the implementation can be used with single
reference wavefunctions obtained with any other Hamiltonian
available in DIRAC. Here we shall place particular emphasis
on the discussion of the exploitation of double point group
symmetry, in contrast to other implementations which do not
exploit or report the use of symmetry. Furthermore, we shall be
able to perform for the first time a thorough comparison of the
performance of the three EOM-CC approaches in comparison
to IHFS-CC ones in the appropriate sectors and with equivalent
relativistic Hamiltonians and basis sets. We recall that similar
comparisons have been made by Musial and Bartlett for light-
element systems using non-relativistic Hamiltonians.65–68 The
calculation of transition moments and of excited state expec-
tation values for the three EOM-CC variants considered here
will be addressed in a subsequent publication.

We demonstrate the use of our implementation in the
study of different halogenated species: the halogen monox-
ides (XO, X = Cl, Br, I, At, Ts), the triiodide species (I−3 ),
and the diiodo- (CH2I2) and iodobromo-methane (CH2IBr)
species. Our focus on halogenated species stems from the
fact that these (and, in particular, iodine-containing ones) are
of great importance to photochemical processes in the atmo-
sphere such as ozone depletion and aerosol formation in coastal
areas17,86–89—keeping in mind that aerosols are an impor-
tant vector of dispersion of radioactive species in the case of
nuclear accidents90,91—and have been extensively studied the-
oretically and experimentally in the gas-phase. Going beyond
iodine, we note that species containing astatine have received
considerable attention in recent years both theoretically and
experimentally44,92–97 due to their potential as radiotherapeu-
tic agents so that a black-box approach such as EOM-CC may
become a valuable tool to further elucidate their chemistry.
Finally, by completing the monoxide series with its heaviest
member, TsO, one can investigate the growing importance of
SOC on the description of the ground and excited-state wave-
functions as the charge on the halogen nucleus increases down
the series.

The paper is organized as follows: in Sec. II, we briefly
review the theoretical underpinnings of EOM-CC theory and
in Sec. III we discuss implementation details. This is fol-
lowed by Sec. IV outlining the computational details of the
EOM-CC and IHFS-CC calculations, the presentation and dis-
cussion of our results in Sec. V, and conclusions and perspec-
tives in Sec. VI. In Appendix A, we provide further information
on the use of double group symmetry in tensor contractions.
Finally, working equations for the determination of right and
left eigenvalues and eigenvectors are given in Appendix B.
The results not shown in the manuscript are available in the
supplementary material at the publisher’s website and via the
zenodo repository.98

II. EOM-CC THEORY: BASIC FORMULATION

We start from the coupled-cluster ansatz

|CC
〉
= exp(T̂ )|Φ0

〉
, T̂ =

∑
l=1

tl τ̂l, (1)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
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whereΦ0 is the reference (Hartree–Fock) determinant and the
operator T̂ in the present work is restricted to single and double
excitations

T̂ = T̂1 + T̂2, T̂1 =
∑

ia

ta
i a†aai, T̂2 =

1
4

∑
ijab

tab
ij a†aa†bajai,

(2)

thus defining the coupled-cluster singles-and-doubles (CCSD)
model. Here and in the following indices, {i, j, . . . , n, o},
{a, b, . . . , f , g}, and {p, q, r, s} refer to occupied (hole), vir-
tual (particle), and general orbitals, respectively. The energy
and the cluster amplitudes are found from the following
equations:

〈Φ0 |
ˆ̄H |Φ0〉 = E, (3)

〈Φl |
ˆ̄H |Φ0〉 = 0, |Φl

〉
= τ̂l |Φ0

〉
, (4)

conveniently given in terms of the similarity-transformed
Hamiltonian

ˆ̄H = exp(−T̂ )Ĥ exp(T̂ ). (5)

The equation-of-motion coupled-cluster (EOM-CC)
method is a robust theory for the calculation of multiple excited
states on an equal footing, obtained by diagonalization of
the similarity-transformed Hamiltonian ˆ̄H within a selected
excitation manifold. The similarity-transformed Hamiltonian
is non-Hermitian, so right-handed (R) and left-handed (L)
eigenvectors, determined by the solution of

ˆ̄H |Rµ
〉
= Eµ |Rµ

〉
, (6)

〈
Lµ | ˆ̄H = Eµ

〈
Lµ |, (7)

for a given excited state µ with energy Eµ, are therefore not
simple adjoints of each other but obey the biorthogonality
condition

〈Lµ |Rν〉 = δµν . (8)

One should note that the resolution of Eqs. (6) and (7) closely
resembles a CI-type diagonalization, where the matrix repre-
sentation of Ĥ has been replaced by that of ˆ̄H, and the right-
and left-hand wavefunctions are parametrized, respectively,
as

|Rµ〉 = exp(T̂ )R̂µ |Φ0
〉

(9)

and

〈Lµ | =
〈
Φ0 |L̂µ exp(−T̂ ), (10)

via R̂ or L̂ operators (see below), thus defining the excited
states on the basis of the coupled-cluster wavefunction |CC〉
for the reference state. To simplify notation, we will in the
following no longer explicitly mention the excited state label
µ, but one should keep in mind that R̂ or L̂ may target one or
more excited states.

Different choices for the R̂ and L̂ operators define dif-
ferent EOM-CC models. In the present work, we have used
three most popular choices of R̂ (of excitation kind) and L̂
(of de-excitation kind), defining the three lowest Fock space
sectors:

• excited states (1h-1p):

R̂EE = r0 +
∑

ia

ra
i {a
†
aai } +

∑
i>j,a>b

rab
ij {a

†
aa†baj ai }, (11)

L̂EE = l0 +
∑

ia

li
a{a
†

i aa} +
∑

i>j,a>b

lij
ab{a

†

i a†j abaa}, (12)

• ionized states (1h):

R̂IP =
∑

i

ri{ai } +
∑
i>j,a

ra
ij{a
†
aaj ai }, (13)

L̂IP =
∑

i

li{a†i } +
∑
i>j,a

lij
a {a
†

j a†i aa}, (14)

• electron-attached states (1p):

R̂EA =
∑

a

ra{a†a} +
∑
a>b,i

rab
i {a

†
aa†bai}, (15)

L̂EA =
∑

a

la{aa} +
∑
a>b,i

li
ab{a

†

i abaa}, (16)

where curly brackets refer to normal ordering with
respect to the Fermi vacuum defined by the refer-
ence Φ0, and the sets {r}, {l} to the amplitudes of the
corresponding operators.

We have here truncated our R̂ and L̂ operators at the
singles-doubles level since the same truncation is used for the T̂
operators. Equations (6) and (7) together with Eq. (8) express-
ing the biorthogonality of the left- and right-hand eigenvectors
define the EOM-CC models under consideration.

III. IMPLEMENTATION DETAILS

The present implementation has been carried out within a
development version of the DIRAC quantum chemistry pack-
age.85 As we in this paper focus only on the determination of
transition energies, we can summarize the calculation in three
steps:

1. Solve closed-shell ground state CCSD equations to
obtain T1 and T2 amplitudes.

2. Construct the one- and two-body intermediates based on
the T1 and T2 amplitudes necessary for the construction
of ˆ̄H .

3. Diagonalization of ˆ̄H in the full singles-doubles excita-
tion space to obtain excitation energies and eigenvectors.
An iterative matrix-free method is employed to avoid the
explicit construction of H̄ , due to its generally very large
size.

The first step is carried out within a Kramers-unrestricted
formalism,99 and the parallelization of the code is such that the
most numerous integrals involving three or four virtual indexes
are distributed over different compute nodes.100 As we shall
see below, this scheme can be generalized to the parallelization
of the EOM-EA and EOM-EE models.

The intermediates in the second step are those originally
defined by Bartlett, Gauss, Stanton, and co-workers101–105

in a spin-orbital basis, and for which the construction in a
four-component formalism has been discussed in detail in our
previous work106 on the calculation of ground-state properties.
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We have extensively made use of the previously developed
tensor contraction routines compatible with double group
symmetry.

What follows discusses the work necessary for the third
step, which required two main components: the first is a sig-
nificant extension in scope of the aforementioned contraction
routines so that they were also able to carry out tensor contrac-
tions with non-totally symmetric and odd-ranked tensors while
still exploiting double point group symmetry. These exten-
sions, which are not trivial due to the handling of complex
quantities, will be discussed in detail in Sec. III A. The second
component is a matrix diagonalizer that can handle both real
and complex general matrices. It will be discussed in more
detail in Sec. III B.

A. Extension to odd-ranked and non-totally
symmetric tensor contractions

In our previous work,106 we have developed general-
purpose tensor contraction routines to handle tensor con-
tractions related to relativistic coupled-cluster theory. These
routines handle relativistic symmetry as expressed by double
point groups, where the boson irreps of single point groups
are complemented by fermion irreps, spanned by functions
with half-integer spin. The routines, restricted to the highest
Abelian subgroup of the full symmetry group, exploit optimal
blocking and sparsity of a tensor for each contraction. They
assume that the product of all tensor indices belongs to boson
irreps, which is true for even-ranked tensors, but excludes odd-
ranked tensors in which this product belongs to a fermion
irrep.

In the present work, (L)R-vectors for IP and EA are
odd-ranked and hence span fermion irreps. In order to accom-
modate these tensors in our tensor contraction scheme, we
formally increase the rank by one by introducing, as a book-
keeping device, a label for each fermion irrep representing
each a continuum orbital so that electrons are considered to be
ionized (attached) to (from) this orbital. This follows in spirit
the well-known approach of adding a very diffuse gaussian
basis function to an EOM-EE code to simulate the ionization
to the continuum.107 The fundamental difference is that all
actions are done at the contraction level only (similar to the
EA-EOM-CCSD implementation of Nooijen and Bartlett108)
and do not require the definition of a basis function. Since
the EOM-EE machinery (N6 scaling) is not used, the proper
N5 scaling of EOM-IP is obtained.

The continuum orbital will always belong to the same
fermion irrep as the orbital from where/to which ioniza-
tion/electron attachment occurs. In this way, and due to our
restriction to Abelian double groups at the correlated level, the
(L)R-vectors become totally symmetric, and we block them
according to the same scheme as used for even-ranked ten-
sors. Since we only have one continuum orbital per irrep,
the size of arrays is not increased relative to the original
odd-ranked arrays. In the contraction step, we ensure that
continuum orbitals can only be contracted with themselves.
As an illustration, we consider the following contribution
to the R-sigma vector equation of EOM-IP [cf. Eq. (B2) of
Appendix B]:

(σ)a
ij ← −

∑
m

Wma
ij ∗ rm. (17)

By introducing the continuum orbital, this term is rewritten
as

(σ)c1,p2
o1,o2 ← −

∑
o3

Wo3,p2
o1,o2 ∗ rc1

o3, (18)

where c1 represents the continuum orbital and indices o and p
refer to holes and particles, respectively.

The corresponding subroutine call is
call contraction_424((/"o3","p2","o1","o2"/),&
& (/"c1","o3"/), (/"c1","p2","o1","o2"/),&
& sigma2,-1.0d0,1.0d0,nrep, &
& LeftTensor=B%W_iemn,RightTensor=r1)

where r1 contains the trial vector coefficients. As explained
above, c1 and o3 will belong to the same fermion irrep,
thereby r1 is blocked with respect to the symmetry of o3.
The σ-vector is blocked according to the symmetry of c1
as well. In this manner, the operation count of IP- and EA-
type contractions is reduced significantly, especially for linear
molecules and other molecules with high symmetry.

The second generalization of the original implementation
of tensor contractions is to allow contractions for which the
product of tensor indices is not totally symmetric. Such con-
tractions occur for EOM-EE target states that belong to non-
totally symmetric irreps. We have illustrated this extension
schematically in Appendix A.

B. Davidson diagonalization
for non-Hermitian matrices

Diagonalization of ˆ̄H in the full singles-doubles excita-
tion space to obtain excitation energies and eigenvectors is an
expensive task since the matrix dimension is in principle huge,
and we thus employ an iterative procedure of the Davidson
type.109 Since ˆ̄H is non-Hermitian, we have in this work imple-
mented a generalized eigensolver following the algorithm of
Hirao and Nakatsuji,110 which is capable of obtaining multiple
roots at a time as well as handling H̄ which can be either real or
complex depending on the double point group in use—though
operating with double precision variables instead of complex
ones.111

We solve the left and right eigenproblems separately,
using a modified Gram-Schmidt procedure112 for orthonor-
malizing the trial vectors during the iterative procedure
(cf. Refs. 113 and 114). This approach is often more cost-
effective for an EOM-CC implementation as excitation ener-
gies are usually the only quantity sought, requiring only the
solution for one side. If both left and right eigenvectors are
calculated, the left eigenvectors are rescaled to satisfy the
bi-orthogonality condition [Eq. (8)].

The first and costlier part of this algorithm is generally the
formation of the left (σL) or right (σR) sigma vectors

σR = ˆ̄Hb, (19)

σL = b† ˆ̄H, (20)

where b(b†) is the (complex conjugate) matrix of trial vectors,
involving the contractions outlined in Appendix B. Here we
carefully avoid the possibility of generating three-body inter-
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mediates by suitably rearranging the order of contractions,
which will again be reflected in the sigma vector expressions
in Appendix B.

Another particularity of our implementation has to do with
the parallelization of the most expensive and memory inten-
sive step of the sigma vector construction. The terms which
arise from the integrals involving four virtual orbitals are con-
structed with distributed-memory Message Passing Interface
(MPI) parallelization. As seen in Appendix B, such terms
appear in the EOM-EA and EOM-EE sigma vector equations
in addition to the ground-state CCSD amplitude equations.
We then synchronize final sigma vectors to the master and
proceed in serial mode for the rest of the Davidson iteration
steps.

The choice of the initial trial vectors is of paramount
importance for the final convergence of the method. We have
adopted the following routes to choose our guess vectors:

(a) We fully diagonalize the singles-singles block of the
transformed Hamiltonian. Eigenvectors of that diago-
nalization are considered as guess vectors.

(b) We approximate the singles-singles block of the trans-
formed Hamiltonian by its diagonal elements, that is

(F
a
a − F

i
i − W ia

ai ), −F
i
i, and F

a
a for EOM-EE, EOM-

IP, and EOM-EA, respectively, with intermediates F
and W defined in Appendix B. The corresponding
unit vectors are considered as guess vectors. Since
they are selected according to energy and the number
of roots requested, we refer to these as pivoted unit
vectors.

Further computational savings for IP and EA calculations
can be achieved by using the fact that for real and com-
plex double groups the states are doubly degenerate due to
time-reversal symmetry and each span a different irrep. This
means that we only need to consider one of the two degen-
erate Kramers pairs as our guess vectors for each irrep and
thus may calculate only half of the total number of σ-vectors
(for excitation energy calculations similar considerations are
unsuitable since symmetry-adaptation requires constructing
multideterminant reference states). However, for the quater-
nion double groups this scheme cannot be employed in a
straightforward manner, and we must request twice as many
roots as we want states, irrespective of the nature of the
calculations.

Finally, the implementation allows for the use of root fol-
lowing using the overlap between initial and generated trial
vectors115,116 during the procedure, in the case one wishes to
target states with dominant (1h1p), (1h0p), or (1p0h) charac-
ter, which may turn out to be higher in energy than states with
(2h2p), (2h1p), or (2p1h) character.

IV. COMPUTATIONAL DETAILS

All coupled-cluster calculations were carried out with
a developmental version of the DIRAC electronic struc-
ture code85 (revisions e25ea49 and 7c8174a), employ-
ing Dyall’s basis sets117–120 of triple-zeta quality (dyall.av3z)
for the halogens, and Dunning’s aug-cc-pVTZ sets121

for oxygen, all of which are left uncontracted. In these

calculations, we employed the molecular mean-field84 approx-
imations to the Dirac–Coulomb (2DCM ) and Dirac–Coulomb–
Gaunt (2DCGM ) Hamiltonians—where in the latter the Gaunt-
type integrals are explicitly taken into account only during
the SCF step—along with the usual approximation of the
energy contribution from (SS |SS)-type two-electron integrals
by a point-charge model.122 Apart from the EOM-CC method,
we have employed the Intermediate Hamiltonian Fock-Space
(IHFS-CC) method.34,37 Details of the main (Pm) and inter-
mediate (Pi) model and complement (Q) spaces used will be
given below for each system.

To further simplify the notation, in what follows we abbre-
viate EOM-CC and IHFS-CC to EOM and IHFS, respectively,
adding whenever appropriate the qualifiers EE/IP/EA for the
first and (1h1p)/(1h0p)/(0h1p) for the second to denote the
Fock-space sector under consideration. We also note that in
the cases of known doubly degenerate electronic states [e.g.,
theΩ = 1/2(g/u), . . . for electron attachment/detachment or the
Ω = ±1(g/u), . . . for excitation energies in linear symmetry], in
the EOM calculations only one has been explicitly calculated.
Furthermore, in EOM calculations, unless otherwise noted, we
have used pivoted unit vectors as initial trial vectors and new
solution vectors were generated: (a) using the root following
procedure for EOM-IP and (b) not using the root following
procedure for EOM-EE/EA.

A. Halogen monoxide radicals (XO, X = Cl–Ts)

The electronic states of halogen monoxide radicals have
been obtained starting from the anions (XO−) in order to pro-
vide a closed-shell reference determinant for electron detach-
ment calculations for both IHFS(1h0p) and EOM-IP calcula-
tions. In all calculations, C∞v symmetry was used. All spinors
with energies between −10.0 and 100.0 Eh have been corre-
lated, which corresponds to considering, respectively: (a) 20
electrons and 206 virtuals for the systems containing Cl; (b) 32
electrons and 246 virtuals for the systems containing Br; (c) 32
electrons and 248 virtuals for the systems containing I; (d) 46
electrons and 340 virtual spinors for the systems containing At;
and (e) 46 electrons and 306 virtuals for the systems contain-
ing Ts. In terms of the nature of the occupied atomic spinors
correlated, the spaces above correspond to including the 2s2p
oxygen and the (n)sp(n − 1)spd(n − 2)f halogen atomic shells
(n denoting the valence shell; f shells are obviously available
only for At and Ts).

In the IHFS(1h0p) case, the Pm space for all species but
TsO comprises the five highest occupied molecular spinors
of the anion which arise from the valence (p−p) manifold
(π(2)

1/2π
(2)
3/2σ

(2)
1/2π

∗(2)
1/2 π

∗(2)
3/2 ), thus placing the σ∗(0)

1/2 and all remain-
ing virtuals in the Q space, whereas the Pi space included all
other correlated occupied spinors. For TsO, we encountered
convergence problems due to intruder states with the afore-
mentioned Pm space and had to move the lowest-lying π(2)

1/2
into Pi. In the EOM-IP case, the number of roots requested
was 3 and 2 for Ω = 1/2, 3/2, respectively, which allows us
to obtain the ground and low-lying states, which correspond
to those obtained with IHFS(1,0) for the model space above.
Spectroscopic constants were obtained by constructing poten-
tial energy curves for each species and performing polynomial
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fits to energies calculated for X-O internuclear distances rang-
ing from (a) 1.46 Å to 1.98 Å for ClO; (b) 1.58 Å to 2.14 Å
for BrO; (c) 1.66 Å and 2.16 Å, for IO; (d) 1.84 and 2.40 Å,
for AtO; and (e) 1.86 and 2.44 Å, for TsO, respectively, with
spacings no smaller than 0.01 Å between points. For most
of the calculated points, the Hartree-Fock self-consistent field
(SCF) procedure converged to the correct state with the default
start potential. For TsO with an elongated bond length (beyond
2.32 Å), this procedure leads to a wrong SCF solution and we
needed to adjust the start potential to ensure the occupation of
the correct orbitals in the early stage of the SCF iterations.

B. Triiodide

We investigated the excitation energies, electron attach-
ment, and electron detachment for I−3 with EOM and IHFS
starting from the closed-shell ground state of I−3 in all cases.
The geometry used is R = 2.93 Å, which was used previously
to compare different electronic structure methods for excita-
tion energies.51 All spinors with energies between −3.0 and
12.0Eh have been correlated, which corresponds to consider-
ing 52 electrons and 332 virtual spinors. This choice is slightly
different from that of Ref. 51 since there we employed the aug-
mented core-valence triple-zeta basis and with that included
additional virtual spinors in the complement space Q. In all
calculations, the D∞h point group was used.

In the case of IHFS calculations, we considered the same
active spaces used in Ref. 51: for the IHFS(1h0p) calcula-
tions, the Pm space contained the 16 highest-lying occupied
spinors (4, 2, 6, 4 for ω = 1/2g, 3/2g, 1/2u, 3/2u, respec-
tively), with the remaining 6 occupied spinors (4, 0, 2, 0 for ω
= 1/2g, 3/2g, 1/2u, 3/2u, respectively) being included in Pi. For
the IHFS(0h1p) calculations, the Pm space contained the 20
lowest-lying virtual spinors (6, 2, 8, 4 for ω = 1/2g, 3/2g, 1/2u,
3/2u, respectively), with the subsequent 24 virtual spinors (6, 6,
4, 4, 2, 2 forω = 1/2g, 3/2g, 5/2g, 1/2u, 3/2u, 5/2u, respectively)
making up the Pi space. For the IHFS(1h1p) calculations, the
Pm and Pi spaces for both calculations are constructed as the
direct product of the respective spaces from the IHFS(0h1p)
and IHFS(1h0p). The number of roots requested in the EOM
calculations was 3, 1, 3, 2 in Ω = 1/2g, 3/2g, 1/2u, 3/2u sym-
metries for EOM-IP; 6, 4, 2, 6, 3, 1 in Ω = 1/2g, 3/2g, 5/2g,
1/2u, 3/2u, 5/2u symmetries for EOM-EA; and 10 in each of
the Ω = 0g, 1g, 2g, 1u, 2u symmetries for EOM-EE. In the
EOM-IP calculations, the root following procedure was not
used.

C. Dihalomethanes

We investigated the excitation energies, electron attach-
ment, and electron detachment for the CH2IBr and CH2I2 sys-
tems with EOM-EE and IHFS, starting from the closed-shell
ground state in both cases. For each species, all calculations
were performed on a single structure obtained by a geome-
try optimization performed with the ADF code,123–125 using
TZ2P basis sets and the scalar relativistic Zeroth-Order Reg-
ular Approximation (ZORA) Hamiltonian. The correspond-
ing Cartesian coordinates and structural parameters can be
found in the supplementary material. All calculations were
performed in C2v (CH2I2) and Cs (CH2IBr) symmetries. As

C2v is not an Abelian double group,126 the C2 subgroup was
employed in the coupled cluster calculation and defines the
symmetry labels for the states that were calculated.

All spinors with energies between −3.0 and 6.0Eh for
CH2I2 and −4.0 and 6.0Eh for CH2IBr have been correlated,
which corresponds to considering, respectively: (a) 40 elec-
trons and 364 virtual spinors for CH2IBr and (b) 40 electrons
and 374 virtual spinors for CH2I2. In terms of the nature of
the occupied atomic spinors correlated, the spaces above cor-
respond to including the 1s of hydrogen, the 2s2p of carbon,
and the (n)sp(n − 1)spd halogen atomic shells (n denoting the
valence shell). The number of roots requested for the EOM
calculations is as follows: 7 and 6 of 1E symmetry for EOM-
IP and EOM-EA, respectively, for each of the species; and for
EOM-EE, 12 of A, B symmetries, respectively, for each of the
species.

For the IHFS(1h0p) calculations, the Pm spaces for both
species contained the 12 highest-lying spinors (6 in each of
the 1e, 2e representations), with the remaining 28 spinors (14
in each of the 1e, 2e representations) being included in Pi. For
the IHFS(0h1p) calculations, the Pm space for CH2I2 contained
the 26 (13 in each of the 1e, 2e representations) lowest-lying
spinors, with 30 additional spinors (15 in each of the 1e, 2e rep-
resentations) making up the Pi space, whereas for CH2IBr 20
and 30 spinors make up the Pm and Pi spaces, respectively, and,
as was the case for the (1h0p) sector, these are evenly divided
between the 1e and 2e representations. For the IHFS(1h1p)
calculations on the CH2I2 and CH2IBr, the Pm and Pi spaces
for both calculations are constructed as the direct product of
the respective spaces from the IHFS(0h1p) and IHFS(1h0p).
Unfortunately, IHFS(1h1p) calculations with the correspond-
ing model space did not converge, and attempts with larger
model spaces were not practically feasible due to technical
constraints (the MPI implementation did not fully support the
64-bit integers needed to address a larger memory space) which
occur due to the increase in storage requirements caused by
the use of complex algebra in Cs symmetry.

V. RESULTS
A. Halogen monoxides

We begin the discussion by analyzing our results for the
halogen monoxide radicals. In Table I, we present the spin-
orbit splitting of the 2Π ground states,

Tso = E(X2
Π1/2) − E(X2

Π3/2), (21)

calculated at the ground-state (X2Π3/2) EOM-IP equilibrium
structure.

Comparing first the EOM-IP and IHFS(1h,0p) T so values
in Table I, we see for both 2DCGM and 2DCM the expected
close agreement between the two methods along the series: up
to IO differences are of the order of 0.001 eV or better for both
Hamiltonians, for AtO differences are slightly larger (about
0.01 eV and 0.005 eV for 2DCM and 2DCGM , respectively),
while for TsO discrepancies of around 0.023 eV and 0.025 eV
for the 2DCM and 2DCGM Hamiltonians, respectively, are
found. These differences between the two methods are due to
the use of the Intermediate Hamiltonian formalism: whereas

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
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TABLE I. Spin-orbit splittings (Tso, in eV) between the Ω = 3/2 and the
Ω = 1/2 components of the 2Π ground state for the halogen monoxides for
the EOM-IP and IHFS(1h0p) approaches employing augmented triple zeta
bases and the molecular mean-field Hamiltonians with (2DCGM ) and without
(2DCM ) the Gaunt interaction, calculated at the EOM-IP equilibrium struc-
tures for theΩ = 3/2 ground-state. For comparison, we present EOM-IP results
with the DC Hamiltonian, experimental values,128 and prior theoretical results:
the SO-icMRCI of Zhou et al.,130 the CCSD(T) with SOC corrections of
Peterson et al.,129 and the EOM-IP results of: (a) Akinaga et al.,81 using the
DKH3 Hamiltonian and screened nucleus SOC; (b) Epifanovsky et al.,77 using
the Breit-Pauli Hamiltonian and AMF-SOC integrals; (c) Cheng et al.,131

using the Breit-Pauli Hamiltonian with T-relaxed SOC; and (d) Cheng et al.,131

using the one-component X2C Hamiltonian with T-relaxed SOC.

ClO BrO IO AtO TsO

EOM DC 0.0422 0.1294 0.2776 0.7232 1.1953
EOM 2DCM 0.0423 0.1295 0.2777 0.7233 1.1954
IHFS 2DCM 0.0423 0.1294 0.2777 0.7238 1.2194
EOM 2DCGM 0.0396 0.1260 0.2737 0.7189 1.1915
IHFS 2DCGM 0.0396 0.1260 0.2737 0.7194 1.2165

IHFS DC44 0.28 0.72
MRCI130 0.1189
EOM(a)81 0.0422 0.1151
EOM(b)77 0.0382 0.1123
EOM(c)131 0.0394 0.1196 0.2533
EOM(d)131 0.0395 0.1220 0.2658
CCSD(T)129 0.0388 0.1061 0.2201

Expt.128 0.0397 0.1270 0.2593

EOM-IP and FS(1h0p) should yield exactly the same results
for singly ionized states this does not hold for EOM-IP and
IHFS(1h0p). The pronounced differences between EOM-IP
and IHFS(1h0p) for TsO can either be due to missing contri-
butions from higher sectors (in particular, 2h1p) or the division
into Pm and Pi spaces in IHFS calculations. The latter is a sen-
sitive point for our IHFS calculations since states belonging to
the Pi space are not dressed and therefore treated in a CI-like
way.37

To better understand the observed trends in spin-orbit
splittings, it is illustrative to look at the composition of the elec-
tronic states of XO in terms of the molecular spinors of XO− at
the EOM-IP equilibrium structures (listed in the supplemen-
tary material). In all cases, the X2Π3/2 and X2Π1/2 states are
dominated by ionizations from the π∗3/2 and π∗1/2 orbitals of the
anions, respectively. For the ClO molecule, these π∗ orbitals
have most weight on the less electronegative oxygen atom and
their energies are only slightly split by spin–orbit coupling.
As the electronegativity of the halogen atom decreases along
the series, the bonding π orbital overall becomes centered on
the oxygen, whereas the antibonding π∗ orbital moves to the
halogen. For IO, the spin–orbit splitting is considerable but
one may still interpret the highestω = 1/2 andω = 3/2 orbitals
as two π∗ orbitals, now with the dominant weight on iodine.
This simple picture starts to break down for AtO in which the
ω = 1/2 orbital also contain a significantσ contribution and has
an increased oxygen participation. For the TsO molecule, spin-
orbit coupling is so strong that the notion of σ and π orbitals
is better avoided. The lowest orbital in the p-orbital valence
space is the Ts 7p1/2 orbital which is relatively compact and
hardly participates in chemical bonding (cf. Ref. 127). The

ω = 3/2 orbitals are also virtually non-bonding and centered
either on the O or the Ts. The bonding is provided by the
ω = 1/2 component of the Ts 7p3/2 orbital which combines with
the O 2pσ . These changes induced by the increasing impor-
tance of spin-orbit coupling on the bonding orbitals can be
visualized by means of plotting the spinor magnetization den-
sities (the supplementary material). For TsO, the qualitatively
different orbital structure is also reflected in the composition
of the two lowest states. While the X2Π3/2 still shows contri-
butions from configurations where also the lower energy ω =
3/2 is unoccupied, the X2Π1/2 state is nearly completely dom-
inated by a configuration in which the π∗1/2 is singly occupied.
For the EOM-IP calculations, we also see a small contribution
from a configuration in the 2h1p sector in which this ionization
is accompanied by an excitation from the σ1/2 to a high-lying
σ∗1/2 spinor.

For the higher lying Ω = 1/2 and Ω = 3/2 states that arise
by excitation from the bonding π orbitals, we largely observe
the same patterns with respect to their composition (see the
supplementary material) as discussed for the spin-orbit split
ground state. Again there is one dominant singly ionized con-
figuration for both EOM-IP and IHFS(1h0p) and a small 2h1p
contribution for the former. The exception is again TsO, where
for the third Ω = 1/2 state of TsO we find the largest discrep-
ancy in energy (1.63 eV) between EOM-IP and IHFS(1h0p)
among all states considered. This is due to the fact that the
lowest π1/2 orbital had to be put in the Pi space, which leads
to a poor description of states that are dominated by ionization
from this orbital.

We note that while EOM-IP and IHFS(1h0p) perform
in very nearly the same way for states dominated by single
ionizations (and belonging to Pm) irrespective of the Hamil-
tonian used, the choice of Hamiltonian does have important
implications for the value of T so: the 2DCM are larger than
the 2DCGM ones, and this difference grows slowly along the
series (0.003 eV for ClO, 0.0035 eV for BrO, 0.0041 eV for
IO, and 0.0047 eV for AtO), culminating in the largest differ-
ence (0.0216 eV) for TsO. However, since T so itself increases
still faster as the halogen becomes heavier, in absolute terms
the importance of the Gaunt interaction diminishes along the
series. The effect of the Gaunt term corresponds to about 7%
of T so for ClO (and therefore must be taken into account),
whereas for AtO it corresponds to less than half percent (and
therefore can be safely ignored), only to become important
again for TsO, for which its contribution being just short
of 2%.

We see a rather good agreement between our results
and experimental ones128 based on photodetachment mea-
surements on the XO− species (and therefore similar to our
computational approach), with the 2DCGM results being in
general closer to experiment. Since our calculations do not take
into account corrections for zero-point vibrations, basis set
incompleteness and higher excitations, we are not in a position
to make definitive quantitative statements on the performance
of the different methods.

The only theoretical study that has accounted for vibra-
tional corrections is that of Peterson and co-workers,129 though
using single-reference CCSD(T) calculations. These, how-
ever, yield T so values which underestimate the experimental

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
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values, in particular, for IO. Other theoretical calculations
have corrected for the single-reference approach by using
multireference CI130 or EOM-IP but using different approx-
imate Hamiltonians that differ both in the treatment of
scalar relativistic effects and SOC: Akinaga and Nakajima81

used a two-component method combining the third-order
Douglas–Kroll–Hess Hamiltonian (DKH3) for scalar relativis-
tic effects and screened nuclear SOC integrals, Epifanovsky
and co-workers77 used the one- and two-electron Breit–Pauli
(BP) Hamiltonian with atomic mean-field SOC integrals, and
no scalar relativistic effects, whereas Cheng and co-workers131

have used the spin-free exact two-component Hamiltonian
(SFX2C-1e) for scalar relativity in conjunction with BP,
atomic and molecular mean-field SOC integrals (the Hamil-
tonian used is the SO part of modified Dirac Hamiltonian by
Dyall132) for the SO part. Even though in all of the above-
mentioned methods the EOM-CC framework have been used,
they differ in terms of their treatment of SOC—Akinaga and
Nakajima81 considers SOC from the start with their approxi-
mated Hamiltonian, Epifanovsky and co-workers77 and Cheng
and co-workers131 both treat SOC as a perturbation to their
choice of spin-free/scalar relativistic Hamiltonians. After-
wards an effective Hamiltonian is constructed with the SOC
integrals at the EOM level. However, the latter two approaches
differ from one another because Cheng and co-workers131

treat amplitude relaxation due to SOC perturbation while
Epifanovsky and co-workers77 do not.

As not all calculations use strictly the same basis sets
(some use triple-zeta bases with core-valence correlating func-
tions or quadruple-zeta bases, but in both without adding
diffuse functions as done here), the differences we observe
between the different EOM-IP results are not exclusively due
to the different Hamiltonians used. With some precaution
we, however, believe we can affirm that, first, all EOM-IP
approaches show more or less the same performance for ClO
and get quite close to experiment. Second, for BrO, apart from
the X2C-based approach of Cheng and co-workers,131 which
shows results comparable to our 2DCGM ones, all others seem
to underestimate the experimental T so. Finally, for IO, at a first
glance the BP-based approach of Cheng and co-workers131

yields the closest results to experiment, but the good agree-
ment between our results and their X2C-based ones indicates
that this may be somewhat fortuitous and due to cancellation
of errors in the Hamiltonian and the EOM-CC method. It is
quite likely, though, that approximate treatments of spin-orbit
interaction such as proposed by Cheng and co-workers131 are
sufficiently accurate to treat molecules containing up to iodine.
As Cheng and co-workers131 have not explicitly explored
their approach for heavier species, we can only speculate as
to their general applicability for species containing 6p ele-
ments and beyond, where strong second-order SOC effects are
expected.

We end the comparison of theoretical results for T so by
noting that our results for IO and AtO show 2DCM faithfully
reproduce the IHFS(1h0p) results of Gomes and co-workers44

using the 4-component DC Hamiltonian, in line with the find-
ings of Tecmer and co-workers55 for small actinide species.
We decided to extend this comparison here and show in
Table I T so values for the DC Hamiltonian, along with a more

detailed comparison in the supplementary material. We see
differences in energy between the DC and 2DCM Hamilto-
nians of less than a tenth of a milli-electron volt. A closer
inspection of the results in the supplementary material reveals
that, in absolute terms, the differences between Hamiltonians
are very systematic and of the order of milli-electron volts.
Thus, the differences between Hamiltonians for relative ener-
gies (whether between the anion and the radical, or between
the states of the radical) are in effect about two orders of
magnitude lower than the absolute ones so that the molecular
mean-field approach shows errors of less than a wavenumber
for all excitation energies considered, as well as ionization
energies.

We will now consider the characteristics of the potential
energy curves of the lowest electronic states of the halogen
monoxides presented in Fig. 1. Due to the similarities in results
between the 2DCGM and 2DCM Hamiltonians and between
EOM-IP and IHFS(1h0p), we have opted to only present
2DCGM EOM-IP results since they seem to better represent the
spin-orbit splitting. Additional data for these states (equilib-
rium structures, harmonic vibrational frequencies, and vertical
as well as adiabatic excitation energies) can be found in the
supplementary material.

In Fig. 1, the changing nature of the π and π∗ orbitals
that we discussed before is clearly visible in the curves. For
the lightest two halides (ClO, BrO), the splitting of the A2Π

is more pronounced than that of the X2Π curves as it is the
bonding orbital that contains the largest halogen fraction. For
iodine and for heavier halides, the splitting is more pronounced
for the X2Π than for the A2Π because for these molecules
the antibonding orbital contains the largest halogen fraction.
The SOC does not have a large influence on the difference in
equilibrium bond lengths between the X2Π and A2Π states,
which is relatively stable at about 0.15 Å.

Another trend we observe from Fig. 1 that is further
evinced by the data in the supplementary material is the
decrease of the ground-state harmonic frequencies along the
series for X2Π, from about 900 cm−1 for ClO to 573 and
457 cm−1 for the X3/2

2Π and X1/2
2Π of TsO. While this is

partly due to the increasing reduced mass, also the decrease in
force constants indicates a reduction of the bond strength by
almost a factor of two going from ClO to TsO. For the excited
A3/2

2Π and A1/2
2Π states, the trend is less clear. While hav-

ing significantly smaller force constants overall due to double
occupancy of the π∗ instead of π orbitals, the force constants
of the A states in IO are larger than those of the lighter ClO
and BrO, as well as those of the heavier AtO. TsO is again
special, with the two A states crossing each other and having
rather different force constants. This shows that for such heavy
atoms, the treatment of SOC as a minor perturbation cannot be
justified.

B. Triiodide

We discuss now our results for the triiodide molecule,
previously investigated by some of us51 with a large array of
relativistic correlated electronic structure methods (CASPT2,
TD-DFT, MRCI, and IHFS-CC), and more recently by
Wang and co-workers134 with EOM approaches which take

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
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FIG. 1. Potential energy curves of the spin-orbit split X2Π and A2Π states of the XO molecules, obtained with EOM-IP and the 2DCGM Hamiltonian.133

SOC into account in an approximate manner. As the exper-
imental interest on this species has to do with its com-
plex dissociation behavior upon electronic excitations, our
main interest here is in comparing our EOM-EE approach
to IHFS(1h1p), which we know accurately describes the two
absorbing 0+

u states in the ranges of 3.43–3.45 eV and 4.25–
4.28 eV, respectively (these excitation energies having been
determined by photofragment yield spectra135,136), as well as
how EOM-EE with molecular mean-field Hamiltonians com-
pares to the approximate schemes proposed by Wang and
co-workers.134

From our results, presented in Table II, we observe
that EOM excitation energies systematically overestimate the
IHFS(1h1p) ones; we find a mean absolute deviation (MAD)
of 0.17 eV for both the 2DCM and 2DCGM Hamiltonians, with
small standard deviations (σ) of 0.02 eV in both cases. In
other words, spectra obtained with EOM will show a shift
in the origin with respect to IHFS but will otherwise look
the same. This behavior has been discussed previously by
Musial and Bartlett for light-element systems66–68 and has to
do with the differences in parametrization for the excited-state
wavefunctions in the two approaches [linear for EOM-EE and
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TABLE II. Vertical excitation energies (Tv , in eV) for I−3 with the EOM-EE
and IHFS(1h1p) approaches employing the molecular mean-field Hamil-
tonians with (2DCGM ) and without (2DCM ) the Gaunt interaction at
R = 2.93 Å. We also present SO-CASPT2 results by Gomes and co-workers,51

approximate EOM-EE schemes by Wang and co-workers134 [(a) EOM-
SOC-CCSD; (b) SOC-EOM-CCSD; (c) cSOC-EOM-CCSD] and experi-
mental results,135,136 along with the mean absolute differences (MAD) and
its standard deviation (σ) between EOM-EE and IHFS(1h1p) calculations
and those between IHFS(1h1p)-2DCGM and the SO-CASPT2 and approxi-
mate EOMCC methods. Expt.: Photofragment yield spectra:135,136 3.43–3.45,
4.25–4.28.

2DCM 2DCGM EOM134
CAS

State Ω EOM IHFS EOM IHFS (a) (b) (c) PT251

1 2g 2.24 2.07 2.25 2.08 2.22 2.36 2.16 2.24
2 1g 2.37 2.20 2.38 2.21 2.35 2.50 2.29 2.32
3 0−u 2.37 2.22 2.38 2.23 2.34 2.49 2.29 2.47
4 1u 2.38 2.23 2.38 2.24 2.34 2.47 2.30 2.47
5 0−g 2.84 2.66 2.84 2.66 2.81 2.96 2.72 2.76
6 0+

g 2.89 2.71 2.89 2.71 2.86 2.99 2.75 2.82
7 1g 3.07 2.88 3.07 2.89 3.04 3.20 2.96 2.85
8 2u 3.32 3.19 3.33 3.20 3.30 3.47 3.25 3.10
9 1u 3.41 3.27 3.42 3.27 3.39 3.55 3.34 3.11
10 0+

u 3.66 3.51 3.67 3.52 3.65 3.79 3.56 3.52
11 2g 4.09 3.92 4.10 3.93 4.04 4.19 3.98 3.98
12 0−u 4.08 3.93 4.08 3.93 4.05 4.18 3.91 3.79
13 1u 4.18 4.02 4.18 4.02 4.15 4.29 4.01 3.80
14 1g 4.21 4.03 4.22 4.04 4.17 4.32 4.10 4.06
15 0+

u 4.49 4.33 4.49 4.33 4.50 4.67 4.42 4.51
16 0−g 4.69 4.51 4.69 4.51 4.65 4.76 4.51 4.51
17 0+

g 4.70 4.51 4.70 4.51 4.65 4.82 4.51 4.53
18 1g 4.90 4.71 4.90 4.71 4.86 4.99 4.73 4.60
MAD 0.17 0.17 0.13 0.28 0.05 0.11
σ 0.02 0.02 0.02 0.03 0.03 0.08

non-linear for IHFS(1h1p)]. In the IHFS(1h1p) sector, the non-
linear parametrization of the wave operator, apart from the
single excitation operators contains the product of the elec-
tron attachment and detachment operators whose presence
assures valence extensivity,64 in contrast to the linear operator
in EOM-EE which does not.

Some of us had already observed the same systematic
behavior of EOM in comparison to IHFS for another heavy
element species (UO2+

2 ), but since in that study a two-step SO-
LRCC (thus analogous to EOM-EE) calculation50 was used,
there could still be doubts as to whether the observed dif-
ferences arose solely from the difference in parametrization.
Here, as we have used exactly the same Hamiltonians for both
methods, we can affirm that the differences indeed come from
the parametrization. The SO-CASPT2 results of Ref. 51, repro-
duced here for the convenience of the readers, show by compar-
ison a slightly smaller MAD but at the same time much less sys-
tematic behavior than EOM, with some states being very close
to the IHFS ones and others quite far apart, as reflected by the
larger σ value of 0.08 eV. Our view is that this underscores the
lesser reliability of CASPT2 with respect to coupled-cluster
approaches since it can result, for instance, in spurious inver-
sions between states: for EOM we observe one such inversion
for states 11 (2g) and 12 (0−u ), which are very close in energy
in both EOM and IHFS calculations, whereas for CASPT2 we

see two such inversions between states 11, 12, and 13 (1u). Fur-
thermore, CASPT2 places states such as 8 (2u) and 9 (1u), or 15
(0+

u ) and 16 (0−g ) much close together than both coupled-cluster
approaches.

In line with what has been established in our prior inves-
tigation,51 the EOM-EE and IHFS(1h1p) wavefunctions for
the absorbing 0+

u states are predominantly made up of tran-
sitions from the σ1/2g to σ∗1/2u and π1/2g to σ∗1/2u spinors.
For IHFS(1h1p), the excited determinants making up the 0+

u
wavefunctions correspond to excitations within the main (Pm)
model space (essentially from σ1/2g and π1/2g to the LUMO
σ∗1/2u), with small contributions from excitations falling within
the intermediate (Pi) model space. For EOM, the picture is
very much the same as that of IHFS(1h1p), though we note
that there are also contributions from doubly excited (2h2p)
determinants, as well as singly excited (1h1p) determinants
containing high-lying virtuals, both of which fall outside of
what is the IHFS(1h1p) P space; individually these are all
negligible contributions, but taken as a whole they represent a
minor but non-negligible ('4%) contribution.

The excitation energies of triiodide have also been inves-
tigated with the three approximate EOM schemes introduced
by Wang and co-workers,134 which are based on the inclu-
sion of SOC at the post-SCF step using a one-electron SOC
operator (ĥSO) originating from the relativistic effective core
potential (RECP) operator. In the first scheme (EOM-SOC-
CCSD), ĥSO is introduced for the solution of the ground-state
coupled-cluster equations (so SOC is directly included in the
Fae, Fmi, Fme, Wmbij, and Wabej intermediates and indirectly in
the other intermediates through the cluster amplitudes), and the
excited states are obtained by diagonalizing the correspond-
ing similarity-transformed Hamiltonian (including ĥSO) in the
space of singly and doubly excited determinants. In the second
scheme (SOC-EOM-CCSD), hSO is included in the Hamilto-
nian for the EOM step only, and thus neither the Hartree-Fock
not the ground-state coupled-cluster wavefunctions incorpo-
rate any SOC effects. The SOC-EOM-CCSD scheme is com-
putationally less expensive since only the Fae, Fmi, Fme, Wmbij,
and Wabej intermediates can be complex, but at the cost of
having to determine the EOM excitation energies in the space
of the ground-state, singly and doubly excited determinants
while at the same time introducing unlinked terms involv-
ing matrix elements of the SOC Hamiltonian which make the
excited state energies not size-intensive and the ground-state
energy not size-extensive. Finally, the third scheme (cSOC-
EOM-CCSD) approximates SOC-EOM-CCSD by neglecting
the unlinked terms in SOC-EOM-CCSD. SOC effects on the
ground state are not taken into account with this approach,
and interactions between double-excitation determinants and
single-excitation determinants through SOC are not fully con-
sidered because of the neglect of the term where the SOC
operator coupled singly and doubly excited determinants in
the EOM equations. We note that these schemes exploit time-
reversal symmetry, and that due to the use of orbitals not
including SOC, it was possible to use single-point group
symmetry.

From Table II, we see that EOM-SOC-CCSD performs
rather consistently with the four-component-based approaches
presented here, with small deviations (from 0.02 to 0.05 eV)
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from our results which are likely due to difference in basis sets
and the truncation of the correlating space in our case. As a
consequence, EOM-SOC-CCSD is similarly very systematic
in its deviation from IHFS(1h1p), showing a slightly better
MAD value for EOM-SOC-CCSD than ours that is likely to
be a fortuitous result, as the corresponding σ value is the same
as ours. A comparison to SOC-EOM-CCSD, on the other hand,
shows that the latter is a rather poor approximate scheme, as not
only individual excitation energies are quite different from ours
(generally shifted upwards by over 0.1 eV, and with a MAD
value nearly twice as large as ours for EOM-SOC-CCSD),
though the systematic nature of the difference between EOM
and IHFS is still roughly intact, as there is only a small increase
of theσ value to 0.03 eV. Finally, the correction to SOC-EOM-
CCSD (cSOC-EOM-CCSD) does reduce the MAD value and
is therefore on average close to IHFS than the more rigorous
EOM schemes, but as was the case for SOC-EOM-CCSD, this
obscures the fact that the errors are less uniformly distributed
than for EOM-SOC-CCSD or the four-component-based EOM
since one also has aσ value of 0.03 eV. This makes the method
less reliable in practice.

In addition to the excitation energies, we present in
Table III some of the lowest ionization energies and electron
affinities of the triiodide (thus yielding the I3 and I2−

3 radi-
cals). Our ionization energies show a rather good agreement
with experiment for the states under consideration—and par-
ticularly for the first—which is not surprising, in the light of
the good performance shown by EOM-IP for the XO species,
and taking into account that the experimental results are for
vertical electron detachment and the chosen bond length is
quite close to the equilibrium structure of I−3 . As for IO, we
see that the Gaunt interaction plays a negligible role in the
ionization energies and also that the IHFS model space is suf-
ficiently flexible that the EOM and IHFS results are essentially
identical.

For the electron affinities, the same trends as for ionization
energies are observed with respect to the importance of the
Gaunt interactions and the similarity of EOM and IHFS results.

TABLE III. Vertical electron detachment (IPΩn , in eV) and attachment (EAΩn ,
in eV) energies for the I−3 species, calculated at R = 2.93 Å with the
EOM-IP/EA and IHFS(1h0p)/(0h1p) approaches, respectively, employing
the molecular mean-field Hamiltonians with (2DCGM ) and without (2DCM )
the Gaunt interaction, as well as experimental values for the ionization
energies.137

Method IP3/2u
1 IP1/2g

2 IP1/2u
3 IP3/2g

4

EOM 2DCM 4.28 4.47 4.92 4.99
IHFS 2DCM 4.28 4.47 4.92 4.99
EOM 2DCGM 4.28 4.47 4.91 5.00
IHFS 2DCGM 4.28 4.47 4.91 5.00
Expt.137 4.25 4.53 4.87 4.93

EA1/2u
1 EA1/2u

2 EA1/2g
3 EA1/2u

4

EOM 2DCM 2.51 3.64 3.88 4.39
IHFS 2DCM 2.51 3.66 3.89 4.39
EOM 2DCGM 2.51 3.65 3.88 4.39
IHFS 2DCGM 2.52 3.67 3.89 4.39

Unfortunately, we are unable to compare the calculated values
to experiment since, to the best of our knowledge, such results
are not available in the literature.

C. Dihalomethanes

We now turn our attention to the diiodo- (CH2I2) and
iodobromo-methane (CH2IBr) species which, apart from their
experimental interest, are examples of species with lower sym-
metry than those discussed before and therefore more costly to
treat from a computational standpoint (CH2IBr requiring the
use of complex algebra).

We begin with their ionisation energies shown in Table IV.
We see that there is hardly any difference between 2DCGM and
2DCM results (at most differences of 0.01 eV) for both CH2I2

and CH2IBr. In all cases, the ionizations are determined to be
single-particle processes, with the absence of important (2h1p)
amplitudes in the EOM-IP case. The ionization energies are in
good agreement with experiment,18,138–145 with typical differ-
ences being of the order of 0.1 eV. Such differences are quite
far from what are the best experimental error bars available,142

which are well under 0.05 eV for both species, but given that
our calculations have not been performed at the experimental
structures146 but rather on PBE-optimized ones, and still lack
corrections due to basis set completeness—and probably more
importantly, of higher-order electron correlation effects—we
consider this accuracy to be sufficient for the purposes of this
paper.

There have not been many other theoretical studies of
ionization energies in the literature: we are aware of the
TD-B3LYP140 study of Satta and co-workers for CH2I2 and
the SO-MRCI studies of Weinacht and co-workers148–150 for
CH2IBr. With respect to TD-B3LYP, we observe that our

TABLE IV. Electron detachment energies (IPn, in eV) for the CH2I2 and
CH2IBr species with the EOM-IP and IHFS(1h0p) approaches employ-
ing the molecular mean-field Hamiltonians with (2DCGM ) and without
(2DCM ) the Gaunt interaction and augmented triple zeta bases at the
ZORA-SO/PBE/TZ2P geometry. Experimental results and prior theoretical
calculations are shown when available.

Method IP1 IP2 IP3 IP4 IP5 IP6

CH2I2

EOM 2DCM 9.37 9.69 10.12 10.46 12.75 13.52
IHFS 2DCM 9.37 9.69 10.12 10.46 12.75 13.53
EOM 2DCGM 9.36 9.68 10.12 10.45 12.74 13.52
IHFS 2DCGM 9.36 9.68 10.12 10.45 12.74 13.52

TD-B3LYP140 9.46 9.57 9.74 10.29 12.65 13.32
Expt.138 9.46 9.76 10.21 10.56 12.75 13.67
Expt.147 9.46 9.76 10.2 10.6 12.8 13.7
Expt.142 9.42

CH2IBr

EOM 2DCM 9.65 10.17 10.79 10.98 13.33 14.24
IHFS 2DCM 9.65 10.16 10.76 10.95 13.32 14.25
EOM 2DCGM 9.65 10.16 10.79 10.98 13.33 14.24
IHFS 2DCGM 9.65 10.16 10.76 10.95 13.32 14.25

SO-MRCI148 9.69 10.26 10.91 11.12 13.62
Expt.142 9.69
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results are of similar quality for the first ionization energy, with
B3LYP overestimating the experimental value by slightly less
(0.04 eV) than we underestimate it (0.06 eV). However, for
the higher ionizations we see a consistent underestimation of
the experimental results by TD-B3LYP, while EOM-IP results
are often 0.1 eV closer to experiment.

In the case of CH2IBr, EOM-IP again underestimates
the experimental result (by 0.04 eV), whereas the SO-MRCI
results more closely match experiment, something that may
reflect additional orbital relaxation in the SO-MRCI calcula-
tions since state-averaged (spin-free) orbitals were used. For
the other ionizations, the two methods yield results which
are apart by more than 0.1 eV, with a notable difference of
0.29 eV for IP5. Given that for CH2I2 the higher ionizations
by EOM-IP have followed the experimental ones rather well,
we wonder the extent to which the SO-MRCI results are biased
toward the description of the low-lying states. Unfortunately,
to our knowledge there are no experimental results for these
ionizations to shed further light on the performance of the
methods.

Our results for electron affinities are summarized in
Table V. From these we see that for CH2I2 we have both
EOM-EA and IHFS(0h1p) predicting a bound electron attach-
ment state (corresponding to the CH2I−2 species), in line with
the experimental results for Modelli and co-workers,151 who
measured a bound first electron attachment state, and a sec-
ond attachment energy. In passing we note that Modelli and
co-workers found bound states for CHI−3 and CI−4 as well.
Our calculations have placed the first electron attachment state
(EA1) at 0.32 eV below the ground state for the neutral species,
and the second state (EA2) at 0.50 eV, which agrees well
with the value obtained via the dissociative attachment spectra
(0.46 eV). We agree less in the interpretation of the process:
with the help of MS-Xα calculations, Modelli and co-workers

TABLE V. Electron attachment energies (EAn, in eV) for the CH2I2 and
CH2IBr species with the EOM-EA and IHFS(0h1p) approaches employ-
ing the molecular mean-field Hamiltonians with (2DCGM ) and without
(2DCM ) the Gaunt interaction and augmented triple zeta bases at the ZORA-
SO/PBE/TZ2P geometry. Experimental EAs151 obtained by electron transmis-
sion spectroscopy (ET) or dissociative attachment spectra (DA) are available
for CH2I2 only.

Method EA1 EA2 EA3 EA4 EA5 EA6

CH2I2

EOM 2DCM
�0.32 0.50 0.76 1.01 1.51 1.71

IHFS 2DCM
�0.32 0.52 0.77 1.03 1.54 1.74

EOM 2DCGM
�0.32 0.50 0.76 1.01 1.51 1.71

IHFS 2DCGM
�0.32 0.52 0.77 1.03 1.52 1.74

Expt., ET151 <0 0.68
Expt., DA151 <0 0.46

CH2IBr

EOM 2DCM
�0.02 0.54 0.99 1.02 1.64 1.93

IHFS 2DCM 0.01 0.59 1.04 1.11 1.66 2.02
EOM 2DCGM

�0.02 0.54 0.99 1.02 1.64 1.93
IHFS 2DCGM 0.01 0.59 1.04 1.12 1.66 2.02

have modelled it as the addition of an electron to a single vir-
tual orbital. In our calculations, all electronic states but EA4

correspond to multideterminantal wavefunctions—for the first
two states, which are the most relevant ones for the comparison
to the experimental results, we have found that a determinant
with an electron attached to the LUMO and another with an
electron attached to the LUMO+1 contribute to the wavefunc-
tions of EA1 to about 56% and 30%, respectively; in the case
of EA2, these contribute by about 37% and 59%, respectively.

The EOM-EA calculations for CH2IBr show a similar
trend, but with the first electron attachment state (EA1) being
only slightly bound, at 0.02 eV below the CH2IBr ground
state energy and with a second attachment state (EA2) at
around 0.54 eV above the CH2IBr ground state energy. We
also observe that wavefunctions for the electron attachment
states are made up of more than a single determinant. The
IHFS(0h1p) calculations yield results not far from EOM-EA
for all the electron attachment states considered, but that show
instead a weakly unbound (0.01 eV) EA1. We believe that this
is an artifact of the calculations, due to the impossibility of
using a larger model space. There are unfortunately no experi-
mental results to which compare our calculations for CH2IBr,
but we note that in the work of Guerra and co-workers,152 for
the series of chloromethanes (from CH3Cl to CCl4) only CCl−4
shows a bound state; for the series of bromomethanes (from
CH3Br to CBr4) the CH2Br−2 species is not bound (though it
shows a state slightly above zero energy151), but further sub-
stituting hydrogens by bromines yields stable anions. These
findings, taken together with those for the iodine-substituted
species, indicate that the heavier halogens help stabilize the
first electron attachment state for the same degree of substitu-
tion. This makes it plausible that CH2IBr−, by the substitution
of bromine by iodine, would have its first electron attachment
state stabilized with respect to CH2Br−2 and have it become
(weakly) bound.

Finally, we present results for excitation energies in
Tables VI and VII for CH2I2 and CH2IBr, respectively. We
are only aware of the studies of Liu and co-workers,153,154

who considered SOC for these systems with the SO-CASPT2
approach. The electronic spectra of CH2I2 have been well-
studied experimentally, in the gas-phase155,156 and in organic
solvents.155,157 In the gas-phase, two main features at 4.29 eV
and 4.98 eV have been first identified,155 with later photodisso-
ciation studies156 revealing additional transitions. For CH2IBr,
we are aware of studies in the gas phase,158 which yield valence
transitions at 4.58 eV and 5.79 eV, which are slightly changed
in the presence of an organic solvent.159

As for I−3 , we observe in Table VI a tendency of EOM-EE
results to systematically overestimate the IHFS(1h1p) ones,
with a mean deviation of 0.18 eV for both Hamiltonians con-
sidered (with differences between 2DCGM and 2DCM of the
order of 0.01 eV or less) and similarly low σ values (0.03 eV),
which is quite close to what is obtained for I−3 (MAD of 0.17
eV and σ of 0.02 eV). The states considered have been found
to be of a singly excited nature and the EOM and IHFS wave-
functions are dominated by the same excited determinants.
We observe once more the tendency of SO-CASPT2 to show
somewhat higher deviations to IHFS(1h,1p) than EOM-EE,
with much more uneven errors for the different excitations
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TABLE VI. Vertical excitation energies (Tv , in eV) for CH2I2 with the
EOM-EE and IHFS(1h1p) approaches employing the molecular mean-field
Hamiltonians with (2DCGM ) and without (2DCM ) the Gaunt interaction.
We also present the SO-CASPT2 results with ANO-RCC bases of Liu and
co-workers153 (at CASPT2 equilibrium geometries in C1 symmetry) and
experimental results, along with the mean absolute difference (MAD) and
its standard deviation (σ) between the EOM-EE and IHFS(1h1p) approaches
and between IHFS(1h1p)-2DCGM and SO-CASPT2. Expt., photodissocia-
tion of molecular beams, model:156 3.98, 4.34, 4.42, 4.89, 4.97, 5.79. Expt.,
absorption in vapour, maxima:155 4.29, 4.98. Expt., absorption in iso-octane,
maxima:155 4.25, 4.94, 5.85. Expt., absorption in iso-octane, resolved:155 4.02,
4.39, 4.91, 5.88. Expt., MCD in cyclohexane, resolved:157 3.97, 4.19, 4.49,
4.91, 5.48, 5.88.

2DCM 2DCGM

State Symmetry EOM IHFS EOM IHFS CASPT2153

1 a 3.60 3.44 3.60 3.44 3.76
2 b 3.62 3.46 3.62 3.45 3.78
3 a 3.63 3.47 3.63 3.46 3.78
4 b 3.85 3.68 3.85 3.68 4.03
5 a 3.87 3.70 3.87 3.70 4.27
6 b 3.94 3.79 3.94 3.79 4.27
7 a 3.99 3.83 3.99 3.83 4.31
8 b 4.06 3.90 4.06 3.90 4.38
9 b 4.22 4.04 4.22 4.03 4.50
10 a 4.32 4.15 4.32 4.14 4.60
11 b 4.35 4.17 4.35 4.16 4.62
12 a 4.49 4.32 4.49 4.31
13 b 4.64 4.48 4.63 4.47
14 a 4.68 4.52 4.68 4.52
15 b 4.75 4.58 4.74 4.58
16 a 4.91 4.75 4.91 4.74
17 a 5.59 5.33 5.59 5.33
18 b 5.61 5.35 5.61 5.35
MAD 0.18 0.18 0.43
σ 0.03 0.03 0.09

than EOM-EE (MAD of 0.43 eV and σ of 0.09 eV). Without
transition moments, it is difficult to comment on the accu-
racy with respect to the experimental values since our results
show a number of close-lying states with energies close to the
experimental peak values, but at the same time this gives us
confidence that we shall be able to reproduce the peak positions
to a tenth of an eV or less.

For the excitation energies of CH2IBr, the general obser-
vations with respect to a comparison to experiment made
for CH2I2 apply, as we see from Table VII that we obtain
EOM excitation energies that match well the energies of the
experimental peak maxima, and that there is little difference
between Hamiltonians (in general, differences are smaller
than 0.01 eV). We note from the EOM-EE results that once
more there is little difference between Hamiltonians. Unfor-
tunately, we were unable to perform a detailed comparison to
IHFS(1h1p) due to the impossibility of converging the latter
calculations, and therefore only make a comparison to SO-
CASPT2.154 As was the case for CH2I2, there is a general shift
to higher energies in the SO-CASPT2 results compared to the
EOM-EE 2DCGM ones, but which is not very systematic: shifts
for the low-end of the spectrum (up to 4.8 eV) are of '0.15-
0.21 eV range, with the high-end (from about 5.8 eV onwards)
showing large variations (from 0.11 to 0.42 eV) while the

TABLE VII. Vertical excitation energies (Tv , in eV) for CH2IBr with the
EOM-EE approach employing the molecular mean-field Hamiltonians with
(2DCGM ) and without (2DCM ) the Gaunt interaction, using the correlating
space which does not include the Br 3d spinors. We also present the SO-
CASPT2 results with ANO-RCC bases of Liu and co-workers154 (obtained
at CASPT2 equilibrium geometries, and for C1 symmetry) and experimen-
tal results, along with the mean absolute difference (MAD) and its standard
deviation (σ) between EOM-EE-2DCGM and SO-CASPT2. Expt., absorption
on hexane:159 4.63, 5.82. Expt., absorption in gas phase:158 4.58, 5.79; 6.52
(Rydberg state).

State Symmetry 2DCM 2DCGM CASPT2153

1 b 3.86 3.86 4.07
2 a 3.86 3.86 4.07
3 b 3.98 3.98 4.16
4 a 4.04 4.04 4.25
5 b 4.34 4.34 4.49
6 a 4.45 4.44 4.61
7 b 4.66 4.66 4.75
8 a 4.67 4.67 4.77
9 b 5.08 5.07 5.17
10 a 5.13 5.13 5.21
11 b 5.16 5.16 5.25
12 a 5.30 5.30 5.39
13 b 5.37 5.37 5.44
14 a 5.39 5.38 5.81
15 b 5.80 5.80 5.91
16 a 5.82 5.82 6.24
17 b 6.09 6.09 6.24
18 b 6.10 6.10 6.28
MAD 0.17
σ 0.17

variations in the mid-range of the spectrum are of about 0.1 eV,
which make the σ value go up to 0.17 eV.

VI. CONCLUSIONS

In this work, we have described the formulation and imple-
mentation in the DIRAC code of the EOM-CCSD method for
electron attachment (EOM-EA-CCSD), electron detachment
(EOM-IP-CCSD), and excitation energies (EOM-EE-CCSD)
based on four-component Hamiltonians. This implementation,
which can be used with any of the Hamiltonians available
in DIRAC, exploits double point group symmetry for all
of the above EOM variants and yields both left and right
eigenvectors.

We have proceeded in validating the implementation by a
careful comparison to intermediate Hamiltonian Fock-space
(IHFS-CCSD) calculations on different classes of systems:
the series of halogen monoxide radicals (XO, X = Cl–Ts);
the triiodide (I−3 ) species and some of its electron detached
(the I3 radical) and attached (the I2−

3 species) states; as well
as the neutral, cationic, and anionic forms of the diiodo- and
iodobromethane molecules.

In all of the electron attachment and detachment cases con-
sidered (XO, I3/I2−

3 , CH2I−/+2 , CH2IBr−/+), we have found the
EOM-CCSD and IHFS-CCSD methods to differ only slightly,
as expected from formal considerations. Whenever more sig-
nificant discrepancies were found, we believe to have shown
that these are due to the shortcomings on the main model spaces
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employed in the IHFS-CCSD case, which were not sufficiently
large. In the cases where experimental data are available, our
calculations are in very good agreement with them.

For the excited states, in the cases where we compared
singly excited states (I−3 and CH2I2) and had a ground state
reference described by a single determinant, the agreement
between EOM-EE-CCSD and IHFS-CCSD is quite good,
though EOM-EE-CCSD shows a tendency to systematically
overestimate the IHFS-CCSD values. From formal considera-
tions, the two methods are in general not expected to yield
the same results due to the lack of valence extensivity for
EOM-EE-CCSD. The differences found here are in line with
those found in other comparisons of EOM-EE-CCSD and
IHFS-CCSD for other small systems (containing or not heavy
centers).

We believe that the trade-off in EOM-EE-CCSD between
losing some accuracy (in the absolute sense) by forsaking
valence extensivity and the gain in robustness in the calcu-
lations (due to the diagonalization-based approach used, as
opposed to the iterative one used in IHFS-CCSD) is well worth
taking in practical applications. This is exemplified in the case
of CH2IBr, for which we have not been able to converge the
IHFS-CCSD(1h1p) calculations. Though in this case we have
been unable to compare the two coupled cluster approaches,
we note that the performance of EOM-EE-CCSD relative to
the SO-CASPT2 results is similar to that for CH2I2 and I−3 . We
believe that a more stringent comparison to SO-CASPT2 and
experiments requires the availability of transition moments
for the EOM-EE-CCSD case, which we shall describe in a
subsequent publication.

Another important aspect not addressed in this work is
that of going beyond the CCSD model for transition energies
since it is known for instance that molecular properties and
energetics can be quite sensitive to details of the electron cor-
relation. In subsequent publications, we envisage to explore
the inclusion of triple excitations, notably via a perturbative
approach, on the different EOM variants.160–163

Finally, as far as Hamiltonians are concerned we have
shown first that, based on single-point comparisons of our
EOM-CC results for the XO systems and triiodide calcula-
tions performed with the Dirac–Coulomb Hamiltonian, the
corresponding two-component molecular mean-field approach
(2DCM ) does indeed yield results which are nearly indistin-
guishable from the former, and for this reason we strongly
recommend the use of the molecular mean-field approach.
Concerning the inclusion of the Gaunt interaction, we have
determined it to have in general a small effect on the energet-
ics of the species under consideration (and on the spectroscopic
constants for the case of halogen monoxides), though for ClO,
BrO, and TsO it is necessary to include it as it corresponds to
roughly between 7% and 2% of the spin-orbit splitting of the
2Π ground-state.

SUPPLEMENTARY MATERIAL

See supplementary material for results discussed but not
shown in the manuscript: (a) spectroscopic constants, vertical
and adiabatic excitation energies, projection and wavefunc-
tion analysis for halogen monoxide radicals, along with spinor

magnetization plots for the halogen monoxide anions; (b) DC
and 2DCM energies for halogen monoxides (anions and radi-
cals), triiodide radical and anions; (c) optimized structures for
the halomethanes. These resources are also available via the
zenodo repository,98 along with the outputs for the respective
calculations.
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APPENDIX A: USE OF DOUBLE GROUP SYMMETRY
IN TENSOR CONTRACTION INVOLVING
NON-TOTALLY SYMMETRIC TENSORS

Let us consider a generalized tensor contraction involv-
ing tensors belonging to non-totally symmetric irreps of the
following form:

Ak′l′...
ij... ∗ Bi′j′...

kl... = Ck′l′...i′j′..
ij...kl.. . (A1)

In Eq. (A1), when upper (primed) and lower (unprimed)
indices are the same, they define a contraction.

We define the product irreps ΓKf and ΓKc for the products
of all free (f) or contracted (c) ket indices of tensor B. The
product ΓKc is necessarily equal to the product of contracted
indices appearing in tensor A, but since these indices then refer
to bra functions the result will be the complex conjugate irrep
Γ∗Kc

. The same is true for the irrep product of the contracted bra
functions of B: Γ∗Lc

, which is equal to the product ΓLc appearing
in the ket of tensor A. The free indices of both tensors are
different and lead to four possible product irreps: Γ∗L′f

, Γ∗K′f
,

ΓLf , and ΓKf .
Using these definitions, the tensor contraction can be

expressed with its explicit symmetry content as

A
(
(Γ∗k′ ⊗ Γ

∗
l′ . . .) ⊗ (Γi ⊗ Γj . . .)

≡ (Γ∗K′f
⊗ Γ∗Kc

) ⊗ (ΓLf ⊗ ΓLc ) ≡ ΓA
)
,

B
(
(Γ∗i′ ⊗ Γ

∗
j′ . . .) ⊗ (Γk ⊗ Γl . . .)

≡ (Γ∗L′f
⊗ Γ∗Lc

) ⊗ (ΓKf ⊗ ΓKc ) ≡ ΓB
)

= C((Γ∗K′f
⊗ Γ∗L′f

) ⊗ (ΓLf ⊗ ΓKf ) ≡ ΓC).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-010842
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In order to use the efficient BLAS matrix multiplication
routines, we first sort the tensors in a block sparse manner

A→ A′ : (Γ∗K′f
⊗ ΓLf ) ⊗ (Γ∗Kc

⊗ ΓLc ) = ΓfA ⊗ ΓcA = ΓA, (A2)

B→ B′ : (Γ∗Lc
⊗ ΓKc ) ⊗ (Γ∗L′f

⊗ ΓKf ) = ΓcB ⊗ ΓfB = ΓB (A3)

and then multiply the sorted tensors A′ and B′ to produce the
product tensor C ′,

C ← C ′ : (Γ∗K′f
⊗ ΓLf ) ⊗ (Γ∗L′f

⊗ ΓKf ) = ΓfA ⊗ ΓfB = ΓC . (A4)

Here we take into account that ΓcA = Γ
∗
cB

. We then resort
C ′ tensors to obtain C.

We have included this extension to our previous contrac-
tion routines by communicating the irreps to which left and
right input tensors belong to as two additional arguments.
As before, the symmetry of the product tensor is obtained
by taking direct product between the input irreps using the
multiplication tables that were already available.

APPENDIX B: EOMCC σ-VECTOR EQUATIONS
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The F, W, and G intermediates are defined as follows:
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Martı́n, J. F. Lamarque, and S. Tilmes, Atmos. Chem. Phys. 14, 13119
(2014).
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