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Abstract: This paper presents an interface reconstruction method called moment of �uid (MOF)
method for two-phase �ows using statistical moments of liquid volume fraction. In each �ow solver
grid cell, the liquid volume fraction and liquid center of mass are used for computing the interface
unit normal. The transport of the liquid volume fraction and center of mass is performed by a
directionally split advection scheme. This method is validated, results are compared with those
from coupled level set volume of �uid (CLSVOF) method for 2D and 3D test cases, and is found
to be at least second�order accurate in spatial resolution. Furthermore, MOF method is shown
to outperform CLSVOF method in terms of interface reconstruction for thin and under�resolved
liquid ligaments and �laments thereby conserving mass in the domain.

Keywords: moment of �uid, volume fraction, atomization, center of mass.

1 Introduction

Atomization of liquid fuel plays a crucial role in its subsequent combustion and pollutant formation. Due
to the multiphase and multi�physical aspect of this atomization process, experimental investigations prove
to be challenging endeavor. This motivates the development of numerical models and methods to study this
process. An obvious requirement of these methods is least numerical error which will make it more trustable
and suitable to be used in detailed simulations such as direct numerical simulations (DNS) of liquid fuel jet
atomization [1�3]. In addition, these numerical methods ideally must require less computational resources,
thus not taxing even the most powerful supercomputers available today [4].

Numerical simulations are powerful tools for investigation of physical processes, for example atomization.
The main challenge in numerical simulations is accurately simulating the complex, turbulent, and multiphase
atomization process since the two phases can have di�erent material properties. In particular, the density
ratio between the liquid and gas phases can be as high as 2000. The bottleneck with such conditions in
numerical simulations is the discretization of the Navier�Stokes equations. Additionally, a force due to
surface tension is generated due to the curvature of the interface that is acting only on the interface. The
computation of this force can be di�cult as the information about interface curvature is a prerequisite.
Lastly, the accurate liquid/gas interface reconstruction method in such multiphase �ows is a big challenge
and has been one of the main topics of extensive research in the numerical atomization research community.
Of these challenges in numerical simulations of multiphase �ows, this work addresses to the development
of accurate liquid/gas interface reconstruction method. Particularly, the method presented in this paper
is intended speci�cally for reconstruction of under�resolved interface topologies such as liquid ligaments
and �laments. Such interface topological structures are of importance in primary atomization simulations
because mass loss in the system can occur if their interfaces are not reconstructed accurately.

Many interface capturing methods have been developed over the past decades, the prominent method
being volume of �uid (VOF) method [5�8]. The predominant usage of this method comes from its inherent
volume conservation property when reconstructing the interface. An implicit representation of the interface
came with the level set (LS) method [9�11] which reconstructs the interface as a signed distance function
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but su�ered from the volume and mass losses of the phases in under�resolved �ow regions. Thus, a coupled
level set volume of �uid (CLSVOF) method [1, 12, 13] had been developed as an improvement to these two
methods thereby combining the advantages of volume conservation and accurate interface reconstruction.
Further improvements in the past years, to state a couple include, the development of consistent mass and
momentum �uxes computation [14] and development of unsplit interface advection methods [13,15].

Although these improved methods have proved to be useful in simulating multiphase �ows, they can
still fail in the computation of geometrical properties especially for under�resolved interface topologies.
To address this limitation, moment of �uid (MOF) method [16] has been developed in the in�house code
ARCHER [1,9, 14] and presented in this work. MOF method has been proved � to preserve the orientation
of the liquid/gas interface in the context of multiphase �ows [16,17]; to be second�order accurate in spatial
resolution [18]. In this work, the MOF method is tested for its ability to capture under�resolved topological
structures, thereby avoiding loss of mass in the system, in the context of numerical study of liquid jet primary
breakup.

This paper is structured as follows. A brief description of the numerics of MOF method is presented
in Section 2. This is followed by the presentation of the �nite di�erence incompressible momentum solver
used in this work along with the presentation of various numerical schemes involved in discretization of
convective and di�usive terms in the Navier�Stokes equations in Section 3. The results obtained from MOF
and CLSVOF methods are presented and compared in Section 4 for academic test cases in which velocity
pro�le is imposed (Section 4.1) and in which Navier�Stokes equations are solved (Section 4.2) for the �ow
�eld and pressure. Finally, Section 5 draws the important conclusions from the results presented in this
work.

2 Moment of Fluid (MOF) method

MOF method is an extension of VOF method for interface tracking in the context of multiphase �ows. VOF
method uses only liquid volume fraction F (0th moment of the liquid volume) in every mixed computational
cell. As a step further, MOF method tracks both the liquid volume fraction and coordinates of the liquid
center of mass (COM) xCOM (1st moment of liquid volume) for the interface reconstruction in each such
cell. A mixed computational cell, within this study, is de�ned as the cell in which 0 < F < 1 holds. The
de�nitions of the 0th and 1st moments of the liquid volume are given as

F =

∫
ω
dx∫

Ω
dx
, (1)

xCOM =

∫
ω
xdx∫

Ω
dx

, (2)

where ω is the domain of the liquid packet inside the computational cell Ω. The availability of these two
parameters establishes a self-su�ciency of the required information to reconstruct the approximate interface
in a cell thus, eradicating data requirement from the neighboring cells. The consequence of this property
is a uniform treatment of the internal and boundary cells in the mesh thus, yielding the resolution of the
interface as high as that of the computational mesh itself. With the presentation of this introduction, the
numerics of interface reconstruction and advection in MOF method implemented in this work are presented
below.

2.1 Interface Reconstruction

The commonly used piecewise linear interface calculation (PLIC) is employed in this work for approximating
the original interface. Thus, the equation of the approximated interface in 3D is given by ax+by+cz+d = 0,
which represents the equation of a plane. In 2D, this equation becomes the equation of a line. The unit
normal n of the interface is therefore expressed as n = [a, b, c]T . The shortest distance of the interface from
the cell center is characterized by the parameter d.

The interface reconstruction in MOF method is a constrained optimization problem as described in [17]
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wherein n and d have to be determined simultaneously by the satisfaction of the two conditions

| F ref − F act(n, d) |= 0, and (3)

EMOF(n, d) = min
Eq. (3) holds

∥∥xref
COM − xact

COM(n, d)
∥∥

2
. (4)

All the variables containing the superscript �ref� represents the variables pertaining to the original (reference)
interface while those containing the superscript �act� represents the variables pertaining to the reconstructed
(actual) interface. The explanation of these conditions is assisted through Figure 1. The shortest distance of

n

d

xact
COM

xref
COM

Figure 1: Pictorial representation of reference (solid line) and reconstructed (dashed line) interfaces along
with liquid COM of reference (white circle) and actual (black circle) interface in a computational cell

the interface from the cell center d is determined by the volume conservation condition (c.f. Equation (3)).
To this end, the linear approximated interface (shown by dashed line in Figure 1) is constructed such that
liquid volume under reference (shown by solid line in Figure 1) and actual (approximated) interface is exactly
the same upto the machine precision. The computation of optimal value of d is carried out using Newton�
Raphson iterative method as described by Ménard et al [1]. The interface unit normal is then computed by
minimizing the error EMOF (also called distance defect) between the coordinates of the reference and the
actual COM of the liquid in the computational cell (c.f. Equation (4)).

In order to solve this minimization problem, n is parameterized [17] using the polar coordinates as follows

n =

ab
c

 =

sin Φ cos Θ
sin Φ sin Θ

cos Φ

 . (5)

Thus, the Equation (4) transforms into a non�linear least square problem for (Φ,Θ), i.e., �nding (Φ∗,Θ∗)
such that the error EMOF is minimum, i.e.,

EMOF(n, d) =
∥∥g(Φ∗,Θ∗, d)

∥∥
2

= min
Eq.(3) holds

∥∥g(Φ,Θ, d)
∥∥

2
, (6)

where g(Φ,Θ, d) = xref
COM − xact

COM. Equation (6) is solved numerically for (Φ∗,Θ∗) using Gauss�Newton
method. Once the optimal parametric angles (Φ∗,Θ∗) are known, the components of the unit normal
[a, b, c]T can be retrieved using Equation (5). The new reference COM in each cell takes the value of the
actual COM pertaining to the reconstructed interface using which the new values of the normal components
are computed.

2.2 Interface Advection

The advection of interface in the case of MOF method involves advection of reference liquid volume fraction
F ref and coordinates of reference COM xref

COM. A directionally split numerical scheme is employed for the
advection of both quantities. The transport equation and numerical scheme implemented for the advection
are presented in the following subsections. Since the advection pertains solely to the reference quantities,
the superscript �ref� will be dropped in volume fraction and the coordinates of the COM hereon.
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2.2.1 Volume Fraction

The advection equation for the volume fraction solved in ARCHER is given as

∂F

∂t
+∇ · (Fu) = c (∇ · u); c =

{
1, F > 0.5

0, otherwise
(7)

where F is the liquid volume fraction and c is a constant. A directionally split algorithm proposed in the
work of Weymouth and Yue [19] is implemented for the advection of the volume fraction. For more details
on the �nite di�erence discretization of the above equation and computation of volume �uxes across cell
faces, the reader is referred to [19].

2.2.2 Centre of Mass

The advection equation of the reference COM is given as

d

dt
(xCOM) = u(xCOM), (8)

where u(xCOM) is the velocity �eld interpolated linearly from the face-centers of the computational cell to
the location of the COM. This velocity is non�dimensionalized using the mesh spacing and the time step size
∆t = tn+1 − tn, hence the velocity component becomes the local Courant-Friedrichs-Lewy (CFL) number.
In this study, the COM is considered as a Lagrangian particle [16, Appendix A] that is associated with a
liquid packet/parcel.

An Eulerian Implicit�Lagrangian Explicit (EI�LE) scheme [20] is employed in this study for solving
Equation (8). A �rst�order time integration of this equation keeping constant velocity over the time step
size ∆t yields,

xn+1
COM = xnCOM + u(x∗COM) (9)

in which the mode of the scheme is Eulerian Implicit if x∗COM = xn+1
COM and Lagrangian Explicit if x∗COM =

xnCOM. In order to have the consistency between the advection of liquid volume fraction and COM, the mode
of the scheme for COM advection is switched between EI and LE for a Cartesian direction at each time
step, i.e., if x−direction advection of COM for tn → tn+1 is carried out using EI mode, then the x−direction
advection of COM for tn+1 → tn+2 will be carried out in LE mode. The converse is implemented for the
advection along y−direction for the consistent advection of COM with its associated liquid packet. For the
sake of completeness, the z−direction advection for the 3D test cases is performed in the same manner as
that of x−direction. In this study, the coupling between the advections of the volume fraction and that of
COM is carried out similar to that in the study of Jemison et al [17].

3 Coupling with momentum solver

3.1 Incompressible Navier�Stokes equations

The pressure and velocity �elds describing the �ow are obtained from solving the incompressible Navier�
Stokes equations. The following form of the Navier�Stokes equations are solved in ARCHER:

∇ · u = 0, (10)

∂ρu

∂t
+∇ · (ρuu) = −∇P +∇ · (2µD) +B, (11)

where u is the velocity �eld, P is the pressure �eld, µ is dynamic viscosity, ρ is density, D is the strain rate
tensor given as D = 1

2 (∇u+ (∇u)T ), and B is the sum of the body and surface tension forces. B = Bb +Bst

where Bb is the force due to gravity and Bst is the force due to surface tension which is given as Bst = σκδIn.
σ represent the surface tension, κ is the curvature of the interface computed using the liquid/gas interface
unit normal n as κ = ∇ · n, and δI is the Dirac delta function centered on it.
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3.2 Flow solver

The solver used in this study is ARCHER, whose capabilities are described extensively in multiple works
[1,9,14]. This solver is structured, parallel and developed for direct numerical simulations (DNS) of complex
and turbulent multiphase �ows with the application to study primary breakup of liquid fuel jet. This solver
has been validated for various cases of complex turbulent �ow con�gurations [21, 22] thus, the numerical
methods employed in this solver are tailored for treating turbulence in the system.

A staggered variable con�guration is used with central �nite di�erence scheme for least numerical dissi-
pation. One�step forward Euler and second�order total variation diminishing (TVD) Runge�Kutta schemes
are available for the time advancement.

3.2.1 Projection Method

In order to solve the Equations (10) and (11), a projection method as described in Ménard et al [1] is
employed. The algorithm of implementation of this method in ARCHER is given as follows:

Algorithm 1 Projection Method

1: Solve for u∗:

u∗ = un + ∆t

(
−(un · ∇)un +

1

ρn+1
∇ · (2µnD) +

1

ρn+1
B

)
(12)

2: Solve for pressure Pn+1 (Poisson equation for pressure):

∇ ·
(

1

ρn+1

(
∇Pn+1

))
=
∇ · u∗

∆t
(13)

3: Solve for un+1:

un+1 = u∗ +
∆t

ρn+1
(−∇Pn+1) (14)

Equation (13) is obtained from the application of the divergence operator on Equation (14). The solution
of the Poisson equation is essential to obtain the pressure which in turn is required in Equation (14) to solve
for un+1.

3.2.2 Numerical Methods

The numerical schemes used in this study for the discretization of the various terms in the Navier�Stokes
equations are presented as follows. A 2nd order central di�erence scheme is employed for discretization
of the spatial derivatives to avoid any dissipation. However, the convection term is discretized using 5th

order WENO scheme to ensure a robust behavior of the solution. A consistent mass and momentum �ux
computation [14] is employed. The viscous term is discretized following the method described in Sussman et
al [23]. Ghost Fluid Method (GFM) [24] is employed for the spatial discretization of the Poisson equation
(Equation (13)) for taking into account the force due to surface tension as a pressure jump. The resulting
linear system of symmetric and positive de�nite matrix with �ve diagonals is solved using multigrid algorithm
for preconditioning a conjugate gradient (CG) method [9]. The temporal derivatives in this study are
discretized using one-step forward Euler scheme.

4 Validation and numerical results

4.1 Transport and Deformation Tests

Having described the MOF method, results from various numerical tests are presented in this section to assess
its accuracy, order of convergence, and utility as interface reconstruction method. The choices of these test
cases are made so that the errors due to reconstruction and advection algorithms can be evaluated. In multiple
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tests presented in the following subsections, the reconstruction accuracy of MOF and CLSVOF algorithms
are compared along with the order of convergence of the error with respect to the spatial resolution of the
mesh. The CLSVOF reconstruction algorithm of Ménard et al [1] is used for result comparison with MOF
method in this work.

In all the test cases presented in this work, a constant CFL number of 0.5, periodic boundary conditions
along x− and y−directions, and ∆x = ∆y (= ∆z in 3D) are employed. The time step size ∆t is computed
from the CFL number and the mesh spacing unless stated otherwise explicitly.

The quanti�cation of the error for each test case varies and are carried out in three ways. The formula
for the computation of each of the error reported in this study are given below:

EL1
=
∑
i,j,k

Vi,j,k | F (i, j, k, T )− F (i, j, k, 0) |, (15)

EnL1
=

∑
i,j,k

| F (i, j, k, T )− F (i, j, k, 0) |∑
i,j,k

| F (i, j, k, 0) | , and (16)

Evol =
∣∣∑
i,j,k

F (i, j, k, T )−
∑
i,j,k

F (i, j, k, 0)
∣∣ (17)

where F is the liquid volume fractions, Vi,j,k = ∆x∆y∆z is the volume of each computational cell in the
mesh, and T is the physical �nal time until which the simulation is run. For the 2D test cases presented in
this study, the Vi,j,k becomes the area of each cell computed as Vi,j = ∆x∆y.

4.1.1 Zalesak's notched disk test

First, the traditional Zalesak's notched disk test that were performed in many studies, for example [13,25,26],
is presented here. In this test, a slotted circle of �uid revolves around the center of the domain in a solenoidal
velocity �eld. Within the scope of this test, MOF and CLSVOF methods are used separately as interface
reconstruction method and the results of each are compared and contrasted.

The premise of this test is as follows: a slotted circle of radius r = 0.15 units having slot width of 0.06
units and slot length of 0.2 units is placed in a 1× 1 domain with center of the circle located at (0.5, 0.75).
The revolution of this slotted circle around the center of the domain is accomplished using the following
velocity �eld

u =
π

3.14
(0.5− y), and (18)

v =
π

3.14
(x− 0.5). (19)

Since this velocity is divergence-free throughout the domain, the interface of the Zalesak's notched circular
disk is expected to retain the original shape at the end of rotation. The test ends when the �rst (anticlock-
wise) revolution of the slotted circular disk is completed. The resulting error between the exact and the
reconstructed interface is then computed using Equation (16).

The initial interface is depicted using black solid line, the �nal interface from MOF method is depicted
using red solid line while that from CLSVOF method is depicted using blue solid line. It can be observed
from Figures 2a to 2c, that the error in reconstruction is mainly concentrated in the regions of high curvature
of the interface. Furthermore, it is obvious from from Figure 2d that the MOF method is quantitatively
more accurate in capturing the interface under a solenoidal velocity �eld than CLSVOF method and displays
second�order convergence rate in spatial resolution.

4.1.2 Vortex in a box test

A progressively more strict test for an interface capturing method is vortex in a box test. This test assesses
the ability of an interface reconstruction method to represent the under�resolved interfacial structures, such
as ligaments, in a robust manner. A circular disk is made to undergo severe deformation under a given
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(a) 32× 32 (b) 64× 64 (c) 128× 128

10−2 10−1

10−2

10−1

∼ (∆x)2

∆x

E
n
L

1

MOF
CLSVOF

(d) Error convergence for Za-
lesak disk rotation

Figure 2: Initial and �nal interfaces of Zalesak's slotted disk after one full revolution and error convergence
plot; (a)�(c): red contour line correspond to MOF; blue contour line correspond to CLSVOF; black contour
line correspond to initial interface

velocity �eld. The following time reversing velocity �eld is prescribed in the 1× 1 domain

u = −2 sin2(πx) sin(πy) cos(πy) cos(πt/T ) (20)

v = 2 sin2(πy) sin(πx) cos(πx) cos(πt/T ) (21)

where T is the time period of reversal of the velocity �eld. In this study, T = 6 is chosen for the analysis of
the interface reconstruction accuracy. This velocity �eld stretches and tears the initially circular �uid body
as it becomes progressively entrained by the vortex and comes back to its original shape at time t = T . The
entrainment is demonstrated as long thin �uid �lament spiraling inward towards the vortex center. Unlike
Zalesak's notched disk test, the velocity �eld in this test is non�linear deeming this test to be a more realistic
assessment for the reconstruction method.

The results of the interfaces are shown in Figure 3 for the mesh resolutions 64×64, 128×128, and 256×256
with the reference solution (depicted by black solid line in the sub�gures) obtained on a 1024 × 1024 grid.
The top row in this �gure pertain to the time instant t = T/2 corresponding to the maximum stretching of
the �uid body and those at the bottom row pertain to the time instant t = T corresponding to the return to
the original shape. The reconstruction algorithm proves to be robust in the smooth regions of the interface
and it can be said qualitatively that the L1−error reduces with the increase in mesh resolution at both the
time instants of maximum stretch and at �nal time instant at which the interface returns back to its original
shape. It is obvious from the top sub�gure in Figure 3b that MOF method is able to capture thin ligaments
at the tail of the spiral at the time instant of maximum stretch. Figure 3d quanti�es the L1−error computed
at time t = T when the interface returns to its initial shape. From this �gure, it can be seen that both MOF
and CLSVOF reconstruction algorithms are of the same level of accuracy in terms of reconstruction error.
Once again, it can be seen that the MOF method exhibit second�order accuracy in spatial resolution.

4.1.3 Circular �uid body deformation test

To have even more stringent test for the MOF method, a complex time reversing velocity �eld [27] given by

u = sin(4π(x+ 1/2)) sin(4π(y + 1/2)) cos(πt/T ) (22)

v = cos(4π(x+ 1/2)) cos(4π(y + 1/2)) cos(πt/T ) (23)

is used in this test for the deformation of a circular liquid droplet to induce radical deformations to the
interface. To this end, a circular liquid droplet of radius r = 0.15 units is placed with its center at (0.5, 0.75)
in a 1 × 1 domain. At its maximum deformation, the circular �uid body is entrained into two of the four
nearest vortices with a small portion (thin �laments) entrapped by the two of the neighboring vortices. The
time period for velocity reversal chosen is T = 2.0.
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(a) 64× 64 (b) 128× 128 (c) 256× 256

10−3 10−2 10−1
10−6

10−4

10−2

∼ (∆x)2

∆x

E

MOF
CLSVOF

(d) Error convergence for vor-
tex in a box test

Figure 3: Vortex in a box test; t = T/2 (top row) and t = T (bottom row) and error convergence plot
for T = 6; (a)�(c): red contour line correspond to MOF; blue contour line correspond to CLSVOF; black
contour line correspond interface from 1024× 1024 grid

The results are shown in Figures 4b to 4d for the 128× 128, 256× 256, and 512× 512 mesh resolutions
respectively for t = T/2 (top row) and t = T (bottom row) with initial interface (black line), reconstructed
interfaces using MOF (red line), and CLSVOF (blue line) for the corresponding time instants. In addition,
a zoomed view of the miniature ligament found in the �nal time iteration for the 512× 512 mesh is shown.
From this zoomed view along with the underlying mesh, it can be seen that the depicted interface structure
is extremely under�resolved. Thus, even with MOF method spurious oscillations in the �nal interface are
seen in the �gures in the top row of Figures 4b to 4d. Albeit this current limitation, even under extreme
velocity �elds which is tearing the interface apart, the MOF method is observed to perform satisfactorily for
interface reconstruction under extreme deformations of the liquid body topology (c.f. top row in Figures 4b
to 4d).

The plot of the convergence of the L1−error is shown in Figure 4a for mesh resolutions ranging from
32× 32 to 512× 512. This error initially decreases at a slower rate and then decreases faster with increasing
mesh resolution. Furthermore, it can be seen that both the MOF and CLSVOF method exhibits a third�
order convergence rate for all the spatial resolutions considered for this test case. The reason for this behavior
in comparison to the other test cases could be attributed to the fact that as the mesh resolution increases,
particularly for this test case, smaller structures of the interface are increasingly identi�ed thereby enhancing
the convergence rate of the error.

4.1.4 Liquid spherical droplet deformation test

With the presentation of the results pertaining to 2D test cases, it is therefore interesting to assess the
accuracy of MOF method for 3D test case with imposed non-linear velocity �eld in the domain. As an
example for such a test case, deformation of three-dimensional liquid droplet is considered. This test case, was
initially proposed in [28] using the velocity �eld described in the work of LeVeque [29], assesses the robustness
and properties of convergence of the interface reconstruction method in three-dimensional con�gurations.
Following [13], it is presented in this paper for qualitative test for the capabilities of MOF in 3D setup.

The test consists of a spherical liquid droplet of radius 0.15 placed in a 1× 1× 1 domain with its center
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10−3 10−2 10−1

10−5

10−4

10−3 ∆x ∼

∼ (∆x)3

∆x

E
L

1

MOF
CLSVOF

(a) Error convergence plot for
deformation of circular �uid
body

(b) 128× 128 (c) 256× 256 (d) 512× 512

Figure 4: Interface reconstruction for deformation of circular �uid body t = T/2 (top row) and t = T
(bottom row) and error convergence plot using MOF method; (a)�(c): red contour line correspond to MOF;
blue contour line correspond to CLSVOF; black contour line correspond to initial interface

located at (0.35, 0.35, 0.35) undergoing a severe deformation under the following time reversing velocity �eld.

u(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T ) (24)

v(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T ) (25)

w(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T ) (26)

with time period of reversal of the velocity chosen to be T = 3. The domain is discretized using multiple
mesh resolutions 64 × 64 × 64, 128 × 128 × 128, 256 × 256 × 256, and 320 × 320 × 320. The result of the
simulation run for the 320× 320× 320 mesh resolution is presented in Figures 5a to 5c for the time instants
t = 0, 1.5, and 3 respectively. Additionally, a slice of the membrane of the sphere under extreme deformation
(i.e., t = 1.5) is also shown in Figure 6. Three noteworthy inferences can be drawn from these results: one,
there are no holes in the spherical membrane under the extreme deformation evidently conclusive of the
better performance of the interface capturing by MOF method; two, even though the slice of the sphere at
t = 1.5 is only resolved to single cell, MOF is able to perform robustly under severely deforming velocity
�eld; and three, at �nal time t = T = 3, the shape obtained is close to the initial shape of the sphere, except
for a little deformation. The computed volume error (c.f. Equation (17)) for this mesh resolution in this test
case is around 6× 10−7 which is a clear evidence of the superior capability of MOF method.

The L1−error (c.f. Equation (15)) shown in Figure 7a initially converges slowly as a �rst�order and then
rapidly with the second�order in spatial resolution. For the case of volume error (c.f. Equation (17)) shown
in Figure 7b, the error converges rapidly at a third�order for the coarse meshes and decreases as �fth�order
in spatial resolution after 256 mesh points per Cartesian direction.
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(a) t = 0 (b) t = 1.5 (c) t = 3

Figure 5: Interface position of a spherical liquid droplet at various time instants for 320 × 320 × 320 mesh
using MOF method

Figure 6: Slice of spherical membrane at t = 1.5 for spherical liquid droplet deformation for 320× 320× 320
mesh
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(b) Volume error convergence plot

Figure 7: Error convergence plot for various mesh resolutions for spherical liquid droplet deformation test
using MOF method
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4.2 Applications

With the results of interface reconstruction for various deformative settings presented, we now focus on the
application of the MOF method to problems that involve complex interface topologies coupled with solving
the Navier�Stokes equations.

4.2.1 2D Shear Layer test

The MOF method is now applied to a purely convection driven physical problem of a 2D shear layer. This
test was performed using CLSVOF method as interface capturing method by Vaudor [30] for testing the
robustness of computation of the convection term and the computation of the mass and momentum �uxes.
The conclusion was presence of unphysically high velocity values in the domain resulting from incorrect
computation of mass and momentum �uxes which has its causal link to the underlying interface capturing
method. It is now intriguing to perform the same test case with MOF as interface reconstruction method
under such extreme convective conditions and compare the results with that of CLSVOF.

In this test case, a 2D shear layer as shown in Figure 8 is considered and placed in a L×L domain with a
liquid shear layer of thickness δ = L/10 and gas phase on its either sides. The value of L = 0.003 is chosen in
this work. The gas phase �owing from left to right at a very high velocity in comparison to the liquid phase
causes shear and results in atomization of the liquid shear layer. The liquid phase has density of ρl = 1000

L

L δLiquid

Gas

Gas

Figure 8: Con�guration of a 2D shear layer test case dominated by convection

and the gas phase has a density of ρg = 1. A divergence free initial velocity �eld is prescribed in the domain
given as follows

u = A− 0.04 cos

(
2πx

L

)(
L

x

)(−2

δ

)
exp

(
−2y

δ

)
, (27)

v = 0.04 sin

(
2πx

L

)
exp

(
−2y

δ

)
(28)

in which δ is the thickness of the liquid shear layer and the value for A is taken as

A =

{
30 , in gas phase

2 , in liquid phase.
(29)

Five mesh resolutions are considered in this test case ranging from 32×32 to 512×512 and periodic boundary
conditions are used along x− and y−directions. The simulation is run until the physical time t = 3× 10−3.
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(a) Sum of kinetic energies of liquid and gas phases
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(b) Peak cell centered velocity magnitude in the domain

Figure 9: Time-based evolution of sum of kinetic energies of liquid and gas phases, and maximum velocity
magnitude in the domain for 64 × 64 mesh resolution for 2D shear layer test case. Solid red line: MOF,
dashed blue line: CLSVOF

Since periodic boundary conditions are used in this test case, the total kinetic energy of the system
theoretically has to be preserved at all times. An additional expectation is non�presence of spurious ve-
locity spikes for single time step. To test these two expectations, a plot of time evolution of the sum of
kinetic energies of liquid and gas phases, and the evolution of maximum cell centered velocity magnitude

‖uc‖2
(

=
√

(uc)2 + (vc)2
)
in the domain for the 64× 64 mesh resolution are shown in Figure 9.

Figure 9a shows the time evolution of the total kinetic energy computed as the sum of the kinetic energies
of liquid and gas phases. The red solid line correspond to results obtained using MOF while blue dashed
line using CLSVOF method in this plot. The reduction in the total kinetic energy of the system over time
is caused by the numerical di�usion of the WENO scheme employed for convection term. This reduction is
minor and thus essentially total kinetic energy of the system is preserved over time. However, from the inset
plot in Figure 9a, it is apparent that the CLSVOF method is experiencing large number of small spikes in
the total kinetic energy. This is due to the spurious velocity shoot ups in the domain when using CLSVOF
method. Such shoot ups are evident from observing Figure 9b which shows the time evolution of peak of the
cell centered velocity magnitude in the domain. It is seen in this plot (and in its inset plot) that there are
large number of spurious velocity spikes in the domain at multiple time instants when CLSVOF is used as
interface reconstruction method. However, when using MOF method, such sudden increase in the velocity is
not encountered. This is due to the correct computation of the interface unit normal in MOF method thereby
leading to correct computation of density resulting in accurate computation of velocity �eld. Thus, clearly,
it is proved again that MOF is performing better than CLSVOF under the extreme convective conditions.

The visualization of this shear layer using MOF method is shown in Figure 10 for two time instants. The
liquid/gas is interface represented by solid black line and the contour plot is colored using the magnitude
of the cell centered velocity in the cut plane shown. It can be seen that the liquid/gas interface is getting
severely distorted due to the high velocity of the gas phase even at times as early as t = 4.9× 10−4. At the
�nal time instant of t = 3× 10−3, the liquid shear layer is atomized into larger droplets and ligaments.

4.2.2 Rayleigh�Taylor instability test

Finally, the MOF method is applied to the Rayleigh�Taylor instability problem which has been investigated
extensively by many, for example [31�33]. However, these works did not consider e�ect due to surface tension.
In recent studies, such as [11, 13, 26], this e�ect has been considered and hence, the same con�guration and
numerical setup will be used in this study. To be speci�c, this case study follows the work of Desjardins and
Pitsch [26].
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(a) t = 4.9× 10−4 (b) t = 3× 10−3

Figure 10: Liquid/gas interface for 2D shear layer colored by contour of magnitude of cell centered velocity
for t = 4.9× 10−4 and t = 3× 10−3 using MOF method. Flow direction from left to right.

In this test case, a 1 × 4 domain is considered containing two �uid phases about each other that are
separated by an interface. This interface is de�ned by the zero value of the level set given as

φ(x, y) = y +A cos(2πx) (30)

where A = 0.05 is chosen for this test case. The density of the top �uid (denoted as �uid 1) is ρ1 = 1.225
while that of the bottom �uid (denoted as �uid 2) is ρ2 = 0.1694. The dynamic viscosities of the two �uids
are same µ1 = µ2 = 0.00313. The surface tension is taken as σ = 0.1337. Periodic boundary condition is
considered along x−direction and wall boundary condition along y−direction. Five di�erent mesh resolutions
are considered ranging from 32× 128 to 512× 2048. The test case is run upto a physical time of t = 1.2.

Figure 11 shows the interface shape as a function of time for the 512 × 2048 mesh resolution. These
results are in good agreement with that of Desjardins and Pitsch [26] that was performed with a spectrally
re�ned level set method.

Figure 12 shows the �uid phase interfaces for all mesh resolutions for the time steps t = 1.0, 1.1, 1.2. The
arrow in these �gures indicates the increasing mesh resolutions considered in this work for this test case.

For the quantitative assessment of the performance of MOF method for this test, an error de�ned as
the di�erence between maximum penetration of the spike of the �uid 1 into �uid 2 is computed for each
mesh resolution considering the �nest as the reference solution. This spike penetration error is plotted as a
function of the mesh resolution and is shown in Figure 13 for time instants t = 1.0, 1.1, 1.2. Three inferences
are to be noted at this juncture: �rst, it can be observed that the trend of the error convergence in the plot
is in very good agreement with that from Desjardins and Pitsch [26]; second, the error initially converges at
a slower rate and then rapidly increases to third-order in spatial resolution; and third, the error convergence
reverts back to �rst-order after the 128× 256 mesh resolution which could be attributed to the formation of
smaller and complex topological structures with large curvature as the time proceeds.

5 Conclusions

Study of liquid fuel atomization process is essential in order to meet the stringent emission norms. This is due
to the fact that this process has a direct in�uence on the production of pollutant emissions. Numerical study
of atomization under turbulent conditions give insights which are otherwise challenging to obtain through
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(a) t = 0.7 (b) t = 0.8 (c) t = 0.9 (d) t = 1.0 (e) t = 1.1 (f) t = 1.2

Figure 11: Fluid phase interface shape as a function of time for 512 × 2048 mesh resolution using MOF
method

(a) t = 1.0 (b) t = 1.1 (c) t = 1.2

Figure 12: Fluid phase interface shape as a function of time for Rayleigh�Taylor instability test using MOF
method with arrow indicating increasing mesh resolutions from 32× 128 to 512× 2048

experimental investigations.
In this work, the moment of �uid (MOF) method was presented for liquid/gas interface reconstruction in

the context of incompressible multiphase �ows to the application of numerical analysis of primary breakup
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Figure 13: Error convergence plot for various mesh resolutions for Rayleigh�Taylor instability test considering
512× 2048 mesh as reference solution using MOF method

of liquid fuel. In this method, the unit normal of the liquid/gas interface is computed by reducing the defect
in the �rst order moment of liquid volume, i.e., coordinates of liquid center of mass, in a volume conservative
manner. For various test cases presented in this study, MOF method proved to be at least as accurate
as that of CLSVOF method in terms of reconstruction error, preservation of the shape, and orientation
of the interface topologies. Moreover, MOF method demonstrated its superior capability of preserving the
interface for under�resolved topological structures such as thin �laments and ligaments. Furthermore, this
new method of interface reconstruction has proved to avoid spurious unphysical velocity for such topologies
and produce nearly third-order convergence error when coupled with Navier�Stokes equations. This deems
MOF method a robust and accurate interface reconstruction method that can be used in DNS of primary
atomization.
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