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Abstract

Background: Electroencephalogram (EEG) measurements are always contaminated by non-cerebral signals, which disturb EEG

interpretability. Among the different artifacts, ocular artifacts are the most disturbing ones. In previous studies, limited improvement

has been obtained using frequency-based methods. Spatial decomposition methods have shown to be more effective for removing

ocular artifacts from EEG recordings. Nevertheless, these methods are not able to completely separate cerebral and ocular signals

and commonly eliminate important features of the EEG.

New Method: In a previous study we have shown the applicability of a deflation algorithm based on generalized eigenvalue

decomposition for separating desired and undesired signal subspaces. In this work, we extend this idea for the automatic detection

and removal of electrooculogram (EOG) artifacts from multichannel EEG recordings. The notion of effective number of identifiable

dimensions, is also used to estimate the number of dominant dimensions of the ocular subspace, which enables the precise and fast

convergence of the algorithm.

Results: The method is applied on real and synthetic data. It is shown that the method enables the separation of cerebral and ocular

signals with minimal interference with cerebral signals.

Comparison with Existing Method(s): The proposed approach is compared with two widely used denoising techniques based on

independent component analysis (ICA).

Conclusions: It is shown that the algorithm outperformed ICA-based approaches. Moreover, the method is computationally

efficient and is implemented in real-time. Due to its semi-automatic structure and low computational cost, it has broad applications

in real-time EEG monitoring systems and brain-computer interface experiments.

Keywords: Subspace decomposition; Electroencephalogram denoising; Ocular artifacts; Semi-blind source separation

1. Introduction

Electroencephalography (EEG) is widely used for analyzing

and interpreting human cerebral activity. EEG signals are usu-

ally interpreted by means of spectral and topographical mea-

sures that reflect global activity of the brain network. However,

EEG measurements are always contaminated by non-cerebral

signals, which may disturb the interpretation of the brain ac-

tivity. This issue has become a recurrent problem, for example

in brain-computer interface (BCI), where it has been proved to

decrease the classification rates of mental tasks inferred from

the EEG (Thulasidas et al., 2004). Among the commonly en-

countered artifacts, ocular artifacts are considered as the most

disturbing ones.

Ocular artifacts generally occur during blinking or saccades

of the eye and are featured by high amplitude transient artifacts

that defect the EEG. They are best recorded by an electroocu-

logram (EOG) electrode or a pair of electrodes located close to

the eyes. The high amplitude peaks are not seen on all EEG

channels; but mainly (and almost exclusively) on the fronto-

parietal and occipital electrodes. These peaks are considered as

one of the most considerable artifacts in EEG studies (Koles,

1991; Gratton et al., 1983; Gasser et al., 1992).

Various methods have been proposed to remove ocular arti-

facts from EEG recordings (cf. (Fatourechi et al., 2007; Croft

et al., 2005) for a survey). Limited improvement has been ob-

tained using straightforward frequency-based methods such as

linear time-invariant filtering. The rationale behind this ap-

proach is that ocular artifacts are mainly constrained to low

frequencies, especially below 10 Hz. Linear spatial decomposi-

tion methods have also raised interest for removing EEG ocu-

lar artifacts. Due to the quasi-static approximation usually ad-

mitted in common EEG analysis, a linear approximation exists

between electrical dipole sources and electrode measurements.

Therefore, linear mixtures of the electrode measurements can

be used to separate noise and signal subspaces. For example,

principal components analysis (PCA) has led to relatively satis-

fying results. Nevertheless, it has been argued that PCA is not

able to completely separate cerebral and ocular signals, due to

their possible dependence (Fatourechi et al., 2007). Therefore,

removing the most contaminated principal components cannot
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guarantee cerebral signals integrity.

Another common way of removing EOG artifacts from the

EEG is to use subtraction-based approaches (Romero et al.,

2008; He et al., 2004). Here, the idea is to use the clean EOG

recordings to remove ocular signals from the EEG by a simple

subtraction of a scaled version of the EOG. However, due to

the bipolar nature of ocular artifacts, the signals contaminated

over the EEG do not fully resemble the recorded EOG. There-

fore, subtraction-based approaches have not been very effective.

Moreover, there is no evidence that signals recorded from EOG

leads are free of EEG. Thus by subtracting the EOG, one may

also remove small portions of the background EEG.

More recently, a popular method for removing these artifacts

is to apply independent component analysis (ICA) on multi-

channel EEG recordings and to remove the components that

are highly correlated with a reference EOG channel (Jung et al.,

2000; Ille et al., 2002; Barbati et al., 2004; Chan et al., 2010;

Delorme et al., 2007; Flexer et al., 2005). What makes this

method challenging, is that it is not always possible to asso-

ciate the components extracted by ICA to the EOG in an auto-

matic and unsupervised manner. Many works have been carried

out to design efficient criteria based on the spatial topography

of ocular artifacts to focus on the most probable contaminated

components (Li et al., 2006; Ille et al., 2002; Hesse and James,

2006). Nevertheless, this approach has not drawn high inter-

ests in the BCI community. Moreover, EEG recordings can be

rather noisy, and since ICA is based on a measure of indepen-

dence (and not a measure of signal “cleanness”), the noise in

the input channels can be even amplified by ICA, which again

makes the detection of the true EOG component rather diffi-

cult. Lastly, most ICA methods are blind to Gaussian noise and

spread the noise among the extracted components, which is un-

desired.

In recent studies we have shown the applicability of a defla-

tion algorithm based on generalized eigenvalue decomposition

(GEVD) for separating desired and undesired signal subspaces

(Sameni et al., 2010a,b; Gouy-Pailler et al., 2009; Amini et al.,

2008; Sameni et al., 2008). In these studies, one of the advan-

tages of GEVD over other source separation techniques was the

ability of ranking the extracted components in order of interest,

which provided a means of automatic and unsupervised signal

decomposition and filtering.

In this work, we extend this idea to the automatic detection

and removal of EOG artifacts from multichannel EEG record-

ings. The recently developed notion of effective number of iden-

tifiable dimensions (Nadakuditi and Silverstein, 2010), is also

used to estimate the number of dominant dimensions of the oc-

ular subspace. This notion enables precise and fast convergence

of the proposed algorithm.

The remainder of this paper is organized as follows: in Sec-

tion 2 the proposed framework is presented; Section 3 addresses

the problem of ocular subspace dimension estimation and its

impact on the algorithm, the results of this method are presented

in Section 4 over simulated and real signals. The last section is

devoted to conclusion and perspectives.

2. Signal decomposition by deflation

2.1. A linear transform for EOG and EEG separation

We assume an array of n zero-mean1 EEG channels denoted

by x(t) and a reference EOG channel denoted by r(t). Due to

the spiky nature of the EOG, it is typically possible to detect

(although approximately) the onset and offset times of the EOG

artifacts from the reference EOG channel. For this, we define

p(t), the moving average of the EOG signal power within a slid-

ing window of length w around t,

p(t)
.
=

1

w

w/2
∑

τ=−w/2

r(t − τ)2 (1)

Using this definition, an EOG is detected whenever p(t) exceeds

some predefined threshold th. Accordingly, the active epochs of

the EOG can be defined as follows

ta
.
= {t|p(t) ≥ th} (2)

The procedure of finding the offsets and onsets of the EOG does

not need to be perfect, and the results can be further improved

in a recursive procedure.

As proposed in (Sameni et al., 2010b), we next seek linear

transforms of the multichannel recordings x(t), that maximally

resemble the EOG, in the sense that the power of the extracted

signals are concentrated during the active time epochs. Denot-

ing y(t) = bT x(t), where b ∈ Rn, the following cost function is

maximized:

ζ(b) =
Eta

{

y2(ta)
}

Et

{

y2(t)
} =

bT
Eta

{

x(ta)x(ta)T
}

b

bT
Et

{

x(t)x(t)T
}

b
(3)

where Et{·} and Eta {·} represent averaging over t and ta, respec-

tively, and b is the vector of coefficients to be found. The idea

behind this cost function is to find linear mixtures of the in-

put signals, with a maximal energy ratio during the EOG active

time epochs, ta. Equation (3) is in the form of the Rayleigh quo-

tient (Strang, 1988), and its maximum is achieved by the joint

diagonalization of two matrices (also known as GEVD):

{

BCxBT = I

BDxBT = Λ
, (4)

where Λ is a diagonal matrix containing the generalized eigen-

values on its diagonal in descending order, B = [b1,b2, ...,bn]

is the matrix containing the generalized eigenvectors on its

columns2, Cx is the covariance matrix of the EEG channels over

the whole dataset, and Dx is the covariance matrix of the data

during the active periods of the EOG, respectively defined as

Cx
.
= Et{x(t)x(t)T } , (5)

1The zero-mean assumption avoids biased estimates of later defined covari-

ance matrices. This assumption does not limit the generalization of the method.
2Note that, contrary to the eigenvalues of symmetric matrices that are mu-

tually orthogonal, generalized eigenvectors, i.e., the columns of B, are not

generally orthogonal to one other; but following (4) they are “Cx-orthogonal”

(Strang, 1988, p. 344).
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Dx
.
= Eta {x(ta)x(ta)T } . (6)

As suggested in (Sameni et al., 2010b), the intuition behind this

method is to achieve decorrelated components that are at the

same time globally and locally decorrelated. Global decorre-

lation is achieved by diagonalizing (and sphering) Cx, which

assures that the later extracted components have no redundancy

up to second order statistics. In addition, the diagonalization of

Dx assures that the achieved components are also locally decor-

related over the active EOG epochs.

The signals may now be decomposed as

y(t) = BT x(t) (7)

where the elements of y(t) correspond to a linear transform

of the original data x(t) ranked according to their resemblance

with the EOG activation epochs. In other words, y1(t) mostly

resembles the EOG, while yn(t) is the least resembling the EOG.

2.2. Signal vs. noise separation

Using (7), the components are ranked descendingly accord-

ing to their resemblance with the EOG. The next step is to re-

move the ocular artifacts from the most contaminated compo-

nents using a linear or nonlinear transformation. The result of

this noise removal, denoted by z(t)
.
= (z1(t), · · · , zn(t))T , can be

expressed as

zi(t) = fi[yi(t)] , i = 1, ..., n (8)

The denoising transform must be carefully chosen to remove

ocular artifacts from the most contaminated signals, while pre-

serving the non-EOG components. The simplest approach is to

nullify the first m (m ≪ n) components of y(t). The prelim-

inary results of this approach were presented in (Gouy-Pailler

et al., 2009). This approach eliminates the effect of the EOG

and EEG components within the first m channels. However, the

rank of the multichannel signals is also reduced to n−m. A bet-

ter approach, which is adopted here and preserves the rank of

the signals and preserves the non-EOG components is to use an

appropriate denoising scheme such as wavelet denoisers over

the first m components of y(t). Next, the denoised signals zi(t)

are back-projected to the original signal space using B−T , the

inverse of the decomposing matrix.

2.3. Iterative decomposition

To this end, the most dominant EOG components are elim-

inated through a combination of a linear decomposition (pro-

jection), denoising, and recomposition (back-projection). The

results can be further improved by repeating the upper men-

tioned method in a recursive procedure (Figure 1), each time

re-estimating the EOG active times.

In order to re-estimate the onset and offsets of the EOG and

its activation epochs in each iteration, one can define the vector

ym(t)
.
= [y1(t), ..., ym(t)]T , which is a vector of the m components

that most resemble the EOG. Now, the reference EOG signal

used in (1) can be recalculated as follows

r(t) = ‖ym(t)‖ (9)

where ‖ · ‖ represents the vector norm (2-norm or Frobenius

norm). All the other steps of the algorithm are repeated in each

iteration. In fact, by repeating this procedure in several itera-

tions, a better estimate of the EOG will be achieved, which is

of special interest for the cases that a good EOG reference is not

available. Therefore, one can start with a coarse EOG onset and

offset estimate and improve this estimate in later iterations. The

iterative procedure is repeated until the residual signals satisfy

some predefined criterion. Alternatively, the algorithm may be

repeated for a number of fixed iterations.

This overall algorithm can be summarized as follows:

Iterative EOG Cancellation Algorithm:

1: x(0)(t)← x(t) , k ← 0

2: r(t)← reference EOG channel

3: repeat

4: p(t)← 1
w

∑w/2

τ=−w/2
r(t − τ)2

5: ta ← {t|p(t) ≥ th}
6: Cx ← Et{x(k)(t)x(k)(t)T }
7: Dx ← Eta {x(k)(ta)x(k)(ta)T }
8: B← GEVD(Dx,Cx)

9: y(t)← BT x(k)(t)

10: Estimate m: number of EOG dimensions

11: z(t)← f(y(t),m)

12: x(k+1)(t)← B−T z(t)

13: ym(t)← [y1(t), ..., ym(t)]T

14: r(t)← ‖ym(t)‖
15: k ← k + 1

16: until ∆(x(k)(t)) ≤ c

In this algorithm, f(·,m) is the denoising operator applied to

the first m components of y(t), ∆(·) is a measure of the EOG re-

moval used as a stopping criterion and c is a predefined thresh-

old, which are both rather subjective. For this application, we

select

∆(x(k)(t))
.
=

tr
(∑

ta
x(k)(ta)x(k)(ta)T

)

tr
(∑

t x(k)(t)x(k)(t)T
) (10)

where tr(·) denotes matrix trace and
∑

t and
∑

ta
denote sum-

mations over the indexes t and ta, respectively. Since N(ta) ≤
N(t)3, by definition 0 ≤ ∆(x(k)(t)) ≤ 1, and the algorithm is ex-

pected to reduce ∆(·) in successive iterations4. A similar index

can be defined for each channel

δi(x
(k)(t))

.
=

∑

ta
x

(k)

i
(ta)2

∑

t x
(k)

i
(t)2

(11)

where x
(k)

i
(t) is the ith channel of x(k)(t). In (Sameni

et al., 2010b), alternative measures were presented for pseudo-

periodic signals.

2.4. Implementation issues

The proposed method can be implemented for real-time and

automatic preprocessing of EEG measurements. In fact, since

the noisy components are automatically extracted as the first

3N(·) denotes the number of elements of a set.
4Ideally ∆(·) approaches zero as k increases.
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Figure 1: The iterative decomposition scheme adapted from (Sameni et al., 2010b).

components of GEVD, no supervision is required for removing

these components. The window length for computing the time-

varying EOG energy can be chosen according to the sampling

frequency and the expected duration of a typical ocular blink

(about 300ms).

The algorithm also requires the energy threshold th, to find

the onsets and offsets of ocular artifacts given the EOG energy.

Due to the iterative procedure, a first estimation of this thresh-

old does not need to be perfect. It can either be set to a default

value (e.g. 50% of the peak of instantaneous energy) for auto-

matic denoising, or manually be chosen by visual inspection of

short periods of typical datasets. In the results section, an alter-

native approach, with stronger theoretical support, based on a

hypothesis test is proposed.

One of the limitations of the method is that enough data is

needed for a consistent estimate of the covariance matrices, es-

pecially for the estimation of the covariance matrix during oc-

ular activity (Dx), where the number of samples used in the

calculation of Dx is much less than the total signal length.

Therefore, depending on the sampling rate and data dimen-

sions, appropriate robust covariance estimators may be used (cf.

Rousseeuw and Leroy (2003) for a survey).

Finally, the number of GEVD components to denoise (m) and

the denoising technique f(·) should be chosen such as to elim-

inate the ocular artifacts and to preserve the EEG components.

These factors also depend on the dimensionality of the data.

For the proposed application f(·) is a wavelet denoiser from the

Daubechies least-asymmetric family (Nason, 2008). The selec-

tion of this mother wavelet was due to its temporal similarity

with typical EOG and saccades which enables better EEG de-

noising. Although other denoising schemes are also applicable

in the proposed deflation technique, wavelet denoising with a

profound theoretical support has been extensively used for sig-

nal denoising in various applications. Specifically, for this ap-

plication, the advantage of the wavelet denoising is that it can

be applied to signals with minimal assumptions about their tem-

poral shape (Donoho and Johnstone, 1995).

Finally, the dimensionality of the ocular signal subspace is

studied in the following section, based on the recently presented

notion of effective number of dimensions (Nadakuditi and Sil-

verstein, 2010). Alternatively, one may choose fixed or empiri-

cal values for m, depending on the application.

3. Ocular subspace dimension estimation

It is known that ocular signals do not have a punctual origin.

Instead, they are mainly spread throughout the frontal and oc-

cipital regions of the brain. This explains why classical ICA

techniques are not always successful in separating ocular arti-

facts from the background EEG; since the punctuality assump-

tion of sources is not met. This commonly results in the extrac-

tion of multiple signals that are correlated with the EOG, which

appear as residual traces of ocular artifacts in the background

EEG. Due to the distributedness of the ocular sources, the ex-

act number of dimensions of the ocular subspace is unknown

(and not necessarily finite). However, for the hereby proposed

method and ICA-based techniques, it is helpful to calculate the

number of dominant ocular signal dimensions, which can be

used as the parameter m in the deflation denoising algorithm.

The problem can be formally stated as follows. We assume

x(t) = As(t) + n(t) (12)

where x(t) ∈ R
n (t = 1, · · · ,T ) is the zero-mean multichannel

observation defined in section 2.1, s(t) ∈ Rm is the ocular signal

with an unknown dimension m (m ≤ n), A ∈ Rn×m is a projector

from the ocular subspace to the sensor subspace, and n(t) ∈
R

n contains all the non-ocular components, including the EEG,

background noise, etc. We further assume that T > n, which is

a realistic assumption in our application and permits us to use

simplified versions of dimension estimation algorithms. The

T -sample estimate of the covariance matrix of x(t) is

Rx =

T
∑

t=1

x(t)x(t)T (13)

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The objective is to find m,

the number of dominant (or effective) ocular dimensions.

There are several classical methods for estimating the num-

ber of dimensions of a signal embedded in noise. In the fol-

lowing two of the methods, which have been used for this study

and were proved to be more effective for EEG/EOG signals in

our studies are further discussed.

3.1. Eigenvalue-based measure of dimensionality

We assume that the ocular (s(t)) and non-ocular (n(t)) signals

be independent. Furthermore, we assume that the elements of

the non-ocular signal n(t) are uncorrelated and have equal vari-

ances, i.e., Rn = σ
2I (the latter is only a simplifying assump-

tion used for illustrating the idea and is not necessarily true in

reality). Under these assumptions, the covariance matrix of the

observations x(t) is

Rx = ARsA
T + σ2I (14)
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Figure 2: The logarithmic plot of the eigenvalues of Rx for a typical segment

of EEG data. The dashed line indicates the threshold for the effective number

of identifiable signals, discussed in section 3.2. In this example three of the

eigenvalues exceed this threshold.

Assuming that A is full column rank, ARsA
T is rank-m. Hence,

the n − m smallest eigenvalues of Rx are equal to σ2. There-

fore, under the mentioned assumptions, a simple approach to

find m is to calculate and rank the eigenvalues of Rx and to

identify where the smallest eigenvalues are equal. However,

for EEG/EOG signals, the non-ocular components (such as the

EEG) have inter-correlations, their variances are not necessar-

ily equal, and only an estimate of Rx is available based on a

finite number of samples, which make the method inapplicable

for the problem of interest. In (Lee and Verleysen, 2007), other

eigenvalue-based techniques have also been discussed. For in-

stance, a considerable change in the slope of the ranked eigen-

value plots, or a change of slope in the logarithmic plot of the

ranked eigenvalues, can also be interpreted as potential dimen-

sion changes. In Figure 2, the logarithmic plot of the sorted

eigenvalues are depicted for a typical EEG signal of length 20s,

recorded from 25 channels. It is observed that there is a change

of slope between m = 1 and m = 3. It is however difficult to

identify a precise value for m.

3.2. Information theoretical measures of dimensionality

To date, many information theoretical measures have been

proposed for estimating the number of dimensions of a signal

embedded in noise, including the Akaike information criteria

(AIC) (van Trees, 2002; Nadakuditi and Edelman, 2008, Ch.

4), minimum descriptive length (MDL) criterion and a more

recent measure proposed by Nadakuditi and Edelman (Nadaku-

diti and Edelman, 2008). However, as discussed in (Nadakuditi

and Edelman, 2008) for high-dimensional noisy data with lim-

ited sample size, there is no clear-cut on the exact number of

dimensions using information theoretical measures. Based on

this fact, Nadakuditi and Edelman proposed the notion of effec-

tive number of identifiable signals for such data. They heuristi-

cally define the effective number of identifiable signals as “the

number of signal eigenvalues of the population covariance ma-

trix (here Rx), which exceed the noise variance (σ2) by a factor

strictly greater than 1 +
√

n/T”, i.e.,

m̂eff = N
(

{λi|λi > σ
2(1 +

√

n/T ), i = 1, · · · , n}
)

(15)

where, as before, N(·) represents the number of elements of a

set. In Figure 2, the horizontal line represents the threshold

σ2(1 +
√

n/T ). We can see that for a sample EEG signal, the

number of eigenvalues that exceed this threshold (the effective

number of identifiable signals) is equal to m = 3.

In the hereby proposed algorithm, one can set the number of

signals that are denoised in each iteration of the algorithm (m)

smaller or equal to the effective number of identifiable signals

calculated from (15). In fact, the selection of m is a compro-

mise between accuracy and speed. By selecting m = 1 we only

eliminate one of the ocular dimensions in each iteration of the

deflation algorithm, which makes the algorithm rather conser-

vative in removing ocular artifacts and requires more iterations

to remove the entire ocular subspace. On the other hand, if

m̂eff > 1, setting m = m̂eff removes more ocular related com-

ponents in each iteration, which makes the convergence faster;

but has the risk of removing non-ocular components. In the

following section, a real example is presented, which uses the

idea of effective number of identifiable signals in the denoising

algorithm.

4. Results

4.1. Simulated data

The performance of the proposed approach is assessed by

means of a simulation study. First a surrogate method is em-

ployed to generate artificial, yet plausible, EEG recordings in

a two-fold approach. On the one hand, artifact-free real EEG

measurements serve as a basis to train a multivariate autore-

gressive p-order filter (Anderson et al., 1998) (in the following

p = 8). In such a model, the current EEG observation is repre-

sented as the weighted sum of p previous observations

EEG(t) = −
p
∑

i=1

AiEEG(t − i) + ε(t) , (16)

in which Ai ∈ R
n×n (i = 1, · · · , n) and ε represents the zero-

mean error of the model. While the model is trained using gen-

eralized Levinson’s recursions, a straightforward way to gener-

ate new artifact-free EEG signals consists in injecting random

Gaussian noise to the previously trained recursive model (16).

Although a univariate autoregressive approach would have been

sufficient to render temporal dependencies inside single chan-

nel EEG signals, the multivariate approach has been preferred

to take into account spatial correlation of the EEG measure-

ments (Nuñez, 2005). This approach yields realistic artifact-

free surrogate signals. On the other hand, ocular signals are se-

lected from real EOG measurements, which have been filtered

to remove potential EEG signals. Artifact-free EEG and ocular

signals are then combined in each run, as follows

x(t) = EEG(t) + ζ ·H · EOG(t) , (17)

5



where H stands for a plausible mixing matrix, which projects

the ocular noisy signal onto the EEG sensors. ζ is a varying

simulation parameter, which is directly linked to the signal-to-

noise ratio (SNR). In each run, for a given ζ, the multivariate

Gaussian signal and the portion of EOG signal used to generate

the ocular artifact are randomized. The synthetic data have been

generated with a sampling rate of 250 Hz.

The hereby proposed approach, which we name denoising

by deflation (DEFL), is compared with widely used denoising

techniques based on ICA (Comon and Jutten, 2010). Two pop-

ular approaches are commonly employed for ocular artifact re-

jection, namely, FastICA (Makeig et al., 1996; Hyvarinen et al.,

2001) and JADE (Cardoso and Souloumiac, 1993). They rely

on the extraction of the most independent components accord-

ing to distinct criteria. Next, semi-automatic procedures re-

move the components that most resemble (in the correlation

sense) the ocular signals. In this study, FastICA and JADE are

applied to the simulated signals x(t), and the components whose

absolute correlations with EOG(t) are greater than a predefined

threshold are rejected.

DEFL is implemented in a fully automatic fashion. The dis-

tribution of the moving average power r(t) of the reference

EOG signal is estimated to discriminate samples drawn from

a Gamma distribution (resulting from a Gaussian hypothesis in

the absence of ocular activity), whose estimated parameters are

easily used to set an adapted threshold th.

A wavelet denoising approach is employed to remove oc-

ular contamination from the first extracted component. The

SURE policy (Donoho and Johnstone, 1995), is used to deter-

mine an adapted threshold based on the first eight wavelet de-

composition levels. The wavelet decomposition is based on the

Daubechies Least-Asymmetric filters, which yielded satisfac-

tory results based on preliminary visual inspections. As men-

tioned before, the major advantage of wavelet denoisers for the

problem of interest is that they do not dictate many assump-

tions on the signal smoothness or noise structure (Donoho and

Johnstone, 1995).

The results of DEFL, FastICA and JADE are finally com-

pared by quantifying the residual variance of the back-projected

denoised signals with initial clean EEG signals (cf. (Makeig

et al., 1996)). This yields the residual signals

eICA(t) = EEG(t) − xFastICA(t) (18)

eJADE(t) = EEG(t) − xJADE(t) (19)

eDEFL(t) = EEG(t) − xDEFL(t) . (20)

The input of the algorithms consists in n = 9 signals, which are

denoised by means of the three aforementioned methods. The

length of the signals is L = 20000 points with a sampling rate of

250 Hz. The result is quantified by computing the normalized

residual variances on each channel

ηFastICA,JADE,DEFL =
V(eFastICA,JADE,DEFL(t))

V(EEG(t))
, (21)

where V(·) denotes the variance operator.

The input SNR, tuned by ζ, is swept from -50dB to 15dB in

5dB steps. Considering that a blinking artifact can typically

have an amplitude of up to 20 times stronger than the EEG

and may occupy up to 20% of the signal length, the studied

input SNR covers a broad range of real scenarios. Figure 3,

presents the results obtained after 100 repetitions of the evalu-

ation algorithm for each SNR. Distributions of the normalized

residual variance for each method are schematically depicted by

means of the median, 20 and 80 percentiles. Medians indicate

that DEFL clearly outperforms results obtained using classical

ICA approaches. The result is further confirmed by observing

the standard deviations of the errors (the shaded bands), which

show that the results obtained using DEFL are more robust than

FastICA and JADE. As expected the performances of the three

algorithms increase as the noise decreases. However, the pro-

posed method is shown to clearly outperform classical ICA for

a broad range of input SNRs. This effect is more significant in

low SNRs, showing that the method is of particular interest for

highly contaminated signals.

In order to quantify the differences between the three denois-

ing methods, a two-step analysis of the observed performances

is performed for each value of the SNR. First, an analysis of

variance at fixed SNR shows that a significant difference be-

tween FastICA, JADE and DEFL exists for −50dB ≤ SNR ≤
10dB, whereas the p-value is 0.065 for a SNR value of 15dB.

Another analysis is then performed to further analyze the differ-

ences between pairwise methods. In order to correct for multi-

ple comparisons, we used a Tukey contrast function in the pair-

wise t-tests computations (degree of freedom = 2). Table 1, de-

tails the results corresponding to pairwise comparisons between

performances obtained by the three denoising methods. This

table shows that all comparisons between DEFL and JADE or

FastICA prove significant, confirming that DEFL clearly out-

performs other considered methods for a broad range of SNR

values. Marginally, the table also shows that the performances

of FastICA and JADE cannot be ranked except for very low

SNR (SNR = −50dB).

4.2. Real data

The proposed method is also evaluated using a BCI exper-

iment dataset, recorded in the Laboratory of Brain-Computer

Interfaces of Graz University of Technology 5 (Brunner et al.,

2008). The data consists of 22 EEG channels and three EOG

channels. The inter-electrode distance is about 3.5 cm. The

electrode configuration is shown in Figure 4. The signals are

sampled with 250 Hz and bandpass filtered between 0.5 Hz and

100 Hz. An additional 50 Hz notch filter is used to suppress

power-line noise. According to the proposed method, the refer-

ence EOG channel, the normalized time-varying signal power,

and the active time epoch pulse are depicted in Figure 5. For

this example the sliding window length is w=75 samples (i.e.

300 ms), and the activation threshold is th=0.5. The DEFL pro-

cedure has been carried out in seven iterations. In Figure 6, a

typical noisy EEG channel and the output of the first three it-

erations are shown. It is clearly seen that the EOG is reduced

in each iteration. The original and back-projected signals after

5BCI competition IV, dataset 2a, subject A05 (Brunner et al., 2008)
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Table 1: p-values corresponding to pairwise comparisons between FastICA (F), JADE (J) and DEFL (D). Results are only considered in cases that the analysis of

variance showed a significant difference between the pairwise methods.

SNR (dB) -50 -45 -40 -35 -30 -25 -20

F vs D 0.006 0.006 0.005 0.005 0.004 0.003 0.003

J vs D 0.003 0.004 0.003 0.004 0.004 0.003 0.002

J vs F 0.047 0.108 0.145 0.423 0.494 0.679 0.891

SNR (dB) -15 -10 -5 0 5 10

F vs D 0.004 0.003 0.004 0.004 0.005 0.016

J vs D 0.003 0.003 0.003 0.003 0.005 0.015

J vs F 0.928 0.973 0.989 0.880 0.877 0.927
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Figure 3: Distributions of Normalized Residual Variance for each three methods (FastICA, JADE and DEFL) versus signal to noise ratios tuned by ζ. Each

distribution is depicted using the median, 20 and 80 percentiles.

seven iterations are depicted in Figure 7, for typical noisy chan-

nels. For comparison, the spectrum of the first channel before

and after EOG removal are shown in Figure 8. By comparing

the temporal and spectral performance of the algorithm, it can

be concluded that although the method has filtered considerable

portions of the signal energy (due to the high EOG amplitudes),

but the filtering has specifically targeted the EOG portions, with

minimal impact on the non-EOG segments.

The ∆(·) and δi(·) measures calculated in each iteration are

listed in Table 2. Comparing the electrode configuration in Fig-

ure 4 and the results of Table 2, one can see that the frontal elec-

trodes initially have high values of δi(·). However, by applying

the algorithm, this measure monotonically decreases from the

first to the sixth iteration in all channels. In the seventh itera-

tion the measures no longer change, showing the fact that there

are no ‘significant’ EOG artifacts left and the algorithm should

stop.

5. Conclusion

In this work, a novel automatic procedure was presented for

removing ocular artifacts from EEG measurements without re-

ducing the rank of the observations and with minimal influence

on the temporal and frequency contents of the original EEG.

The algorithm outperformed state of the art approaches based

on independent component analysis. Moreover, the method is

computationally efficient and has been implemented in real-

time. Therefore, it is believed that due to its semi-automatic

structure and low computational cost, it has broad applications

in real-time EEG monitoring systems and BCI experiments,

where ocular artifacts are dominant sources of noise. The

hereby developed algorithm has been implemented in Matlab®

and is online available at (Sameni, 2010).

Future works include many promising directions. Firstly, it

can be shown that the optimal threshold, under Gaussian condi-

tions can be automatically determined if a long enough period
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Figure 4: The EEG (left) and EOG (right) electrode configurations used in

Section 4.2, adopted from (Brunner et al., 2008).
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Figure 5: The reference EOG channel (top), the normalized time-varying sig-

nal power (middle), and the active time epoch pulse (bottom) for the studied

dataset.

of ocular-free signals can be provided. The resulting distribu-

tion of the power in sliding windows is proved to be Gamma-

distributed, yielding natural thresholds for discriminating be-

tween active and inactive ocular periods. Secondly, this article

introduced the application of multiple EOG references by aver-

aging them into a signal reference signal. It can be shown that

given the automatic dimension selection procedure, the active

periods of a group of channels can be determined as a whole.

This procedure can indeed be seen as a robust statistical proce-

dure that is able to generalize the classical variance ratio tests

widely used in the signal processing literature.

The BCI application also requires a more thorough study, in-

cluding ANOVA and pairwise t-tests for evaluating the perfor-

mance of the hereby proposed techniques versus classical ICA-

based methods. The sensitivity and specificity of the method

should be compared with conventional techniques, using re-

ceiver operating characteristic (ROC) curves of various meth-

ods, over a broad real dataset.

Another promising direction is to use the robust signal-noise
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Figure 6: Noisy EEG channel (top) and the output of three successive iterations.

separation from (Nadakuditi and Edelman, 2008) to isolate ac-

tive ocular periods from the EEG measurements. This approach

would soften the condition that reference EOG channels are

necessary to compute active periods.
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