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Abstract. Community detection consists in searching cohesive subgroups of nodes in 
complex networks. It has recently become one of the domain pivotal questions for 
scientists in many different fields where networks are used as modeling tools. 
Algorithms performing community detection are usually tested on real, but also on 
artificial networks, the former being costly and difficult to obtain. In this context, being 
able to generate networks with realistic properties is crucial for the reliability of 
algorithms testing. Recently, Lancichinetti et al. [1] designed a method called LFR, able 
to produce realistic networks with a community structure, and power law distributed 
degrees and community sizes. However, other realistic properties such as degree 
correlation and transitivity are missing. In this work, we propose a modification of the 
LFR model, based on the preferential attachment model, in order to remedy this 
limitation. We analyze the properties of the generated networks and compare them to 
the original approach. We then apply different community detection algorithms and 
observe significant changes in their performances when compared to results on 
networks generated with the original approach. 

Keywords: Complex Networks, Community Detection, Random Networks, Networks 
Generation, Networks Properties. 

Proposition d’une modification du modèle LFR pour un meilleur 
réalisme des réseaux générés 

Résumé. La détection de communauté consiste à rechercher des sous-ensembles de 
nœuds densément connectés dans des réseaux complexes. Il s’agit d’une problématique 
centrale pour des chercheurs issus des nombreux domaines différents dans lesquels les 
réseaux complexes sont utilisés comme outil de modélisation. Les algorithmes de 
détection de communauté sont généralement testés à la fois sur des réseaux réels et 
artificiels. Les premiers sont plus difficiles et coûteux à obtenir, tandis que le niveau de 
réalisme des derniers a un effet direct sur la fiabilité des tests. Récemment, Lancichinetti 
et al. [1] ont défini un modèle appelé LFR, qui permet de produire des réseaux 
possédant une structure de communauté, ainsi que des degrés et des tailles de 
communautés distribués selon une loi de puissance. Cependant, d’autres propriétés 
observées dans un grand nombre de réseaux réels sont manquantes, telles qu’une 
corrélation de degré non-nulle et une transitivité élevée. Dans cet article, nous 
proposons une modification du modèle LFR basée sur le modèle d’attachement 
préférentiel, afin de résoudre cette limitation. Nous analysons les propriétés des réseaux 
générés et les comparons à ceux obtenus avec la méthode originale. Nous appliquons 
ensuite différents algorithmes de détection de communauté à ces réseaux et observons 
des modifications significatives dans leurs performances, comparées à celles obtenus sur 
les réseaux issus de LFR. 

Mots-clés: Réseaux complexes, Détection de communauté, Réseaux aléatoires, 
Génération de réseaux, Propriétés des réseaux. 
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1 Introduction 

Complex networks constitute a powerful modeling tool, able to represent most real-
world systems. The objects composing the system are represented under the form of 
nodes while their interactions correspond to links. Thanks to this versatility, they 
became very popular during the last decades, attracting the attention of scientists 
from many different domains, and are now used to model and analyze complex 
systems in areas like physics, biology, social sciences or computer science [2, 3]. 
Among the various approaches used to study complex networks properties, 
community detection has become one of the most popular ones. A community in a 
complex network is a cohesive subset of nodes with denser inner links, relatively to 
the rest of the network [4]. Because of the spread of complex networks, the 
community detection problem has been studied in many different areas too, 
resulting in tens of algorithms based on a whole range of principles: hierarchical 
clustering, optimization methods, graph partitioning, spectral properties of the 
network, etc.[5] 

Until recently, those algorithms were tested on a few real and/or artificial 
networks. Limiting these tests to real networks can be considered as an issue for 
several reasons. First, building such networks is a costly and difficult task, and 
determining reference communities can only be done by experts. This leads to small 
networks, where actual communities are not always defined objectively, or even 
known. Second, a complex network is characterized by various properties like its 
average degree, degree distribution, shortest average path, etc. By definition, it is 
not possible to control these features in a real network. This means the algorithm is 
tested only on a very specific and limited set of features. Hopefully, artificial 
networks allow overcoming these limitations. First, by using some generative model, 
it is possible to automatically build many of them. Moreover, since they are 
generated, objective reference communities are defined. Finally, depending on the 
selected generative model, various properties can be directly controlled. The only 
point of concern with artificial networks is their level of realism. Indeed, for 
algorithm testing to be relevant, the generated networks must exhibit realistic 
properties. For this purpose, generative models are generally defined in order to 
mimic known real networks properties. Of course, current knowledge regarding 
these properties may not be exhaustive, and we can consequently never be 
completely assured the generated networks are perfectly realistic. For this reason, 
tests on artificial networks should be seen as complementary to tests on real 
networks.  

A few methods have been designed to generate networks with a community 
structure. The most popular one is certainly the model by Girvan and Newman (GN) 
[6]. First, an empty (i.e. without any link) network is created, then nodes are 
randomly assigned equal-sized virtual communities, and finally links are randomly 
drawn with probabilities  and  for intra- and inter-community links, 
respectively. This results in a set of interconnected Erdős-Rényi networks [7]. Several 
extensions were derived to generate weighted or oriented links, and hierarchical or 
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overlapping communities (see [5] for more details). However, in this paper, we focus 
on non-oriented unweighted networks with non-overlapping communities, because 
almost all existing community detection algorithms are dedicated to this type of 
networks. Although widely used to test and compare these algorithms [6, 8-10], the 
GN method is limited in terms of realism [1]: the generated networks are rather 
small compared to most real world networks studied in the literature [11]; all nodes 
have roughly the same degree; and all communities have the same size. Yet, it is well 
known real networks exhibit power law or exponential degree distribution [2, 11], 
and community sizes generally follow a power law [11, 12]. To tackle this problem, 
several GN variants were defined, producing bigger networks, and communities with 
heterogeneous sizes[5, 13, 14]. More recently, a different approach appeared, based 
on rewiring [1, 15]. First an initial network with desired properties (but no 
community structure) is randomly generated, then virtual communities are drawn, 
and finally some links are rewired so that these communities appear in the network, 
but without changing the existing degree sequence. The method described by 
Bagrow [15] uses the Barabási–Albert [16] model to generate the initial network, 
resulting in a power law degree distribution, but produces small networks with 
equal-sized communities. The method by Lancichinetti et al. (LFR) [1] is based on the 
configuration model [17], which generates networks with power law degree 
distribution, too. However, unlike Bagrow’s method, LFR generates power law 
distributed community sizes, and the network size is not constrained. In other terms, 
LFR exhibits the most realistic properties among the presented generative 
approaches. Nevertheless, it also has some noticeable limitations regarding the low 
transitivity and close to zero degree correlation measured in the generated networks 
[18]. According to Newman [2], real world networks usually have a clearly non-zero 
degree correlation, and their transitivity, or clustering coefficient, is relatively high. 

Interestingly, improvement on the realistic aspect of the generated networks has 
a noticeable effect on most community detection algorithms. A performance drop 
was observed when authors switched from equal-sized communities to 
heterogeneous distributions[13, 14]. This allowed to show one algorithm may not 
perform on the same level depending on the size of the considered communities. 
The introduction of a power law degree distribution also made the benchmarks 
more discriminatory, allowing to highlight differences between algorithms whose 
performances were considered similar before [1]. The fact Lancichinetti et al.’s 
method, which is the most realistic one to date, still has room for improvement 
naturally raises two questions, which we will try to answer in this work: 1) how is it 
possible to produce more realistic networks, and 2) will this have an effect on 
community detection algorithms. In section 2, we describe briefly the LFR method, 
its characteristics and the improvements we proposed. We also describe a few 
community detection algorithms, to be used to test the effect of network realism on 
community detection. In section 3, we present the properties of the networks 
generated with the modified method, and use them to compare the community 
detection algorithms performances. Finally, in section 4 we comment these results 
and propose some further improvements. 
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2 Methods 

2.1 LFR Generative Method 

The LFR method was proposed by Lancichinetti et al. [1] to randomly generate 
undirected and unweighted networks with mutually exclusive communities. Nodes 
degrees and community sizes are both distributed according to a power law. The 
method was subsequently extended to generate weighted and/or oriented 
networks, with possibly overlapping communities [19, 20], but here we focus on the 
first version. 

This method allows to control directly the following parameters: number of nodes 
, desired average  and maximum  degrees, exponent  for the degree 

distribution, exponent  for the community size distribution, and mixing coefficient 
. The latter represents the desired average proportion of links between a node and 

nodes located outside its community, called inter-community links. Consequently, 
the proportion of intra-community links is – . It is generally not possible to meet 
this constraint exactly, and the mixing coefficient is therefore only approximated in 
practice. It is an important parameter, because it determines how clearly the 
communities are defined in terms of structure. For small  values, the communities 
are distinctly separated, whereas for high values, the network has almost no 
community structure, making community identification a difficult task. Intuitively, 
one may think the community structure remains clear for , because this 
value corresponds to a network where, in average, nodes have the same number of 
inter- and intra-community links. In practice though, some algorithms are able to 
successfully detect communities even when  approaches  [18, 20]. Let us note 

 (resp. ) the ratio of existing to possible intra- (resp. inter-) community links, 
or in other terms: the probability to have a link between two nodes belonging to the 
same community (resp. different communities). Then the communities are well-
defined when , which translates to , where  and  
are the number of nodes in the network and in the biggest community, respectively 
[20]. 

The LFR method is three-stepped. First, it uses the configuration model [17] to 
generate a network with average degree , maximum degree  and power law 
degree distribution with exponent . Second, virtual communities are defined, so 
that their sizes follow a power law distribution with exponent . Third, an iterative 
process takes place to rewire certain links, so that  is approximated, but without 
changing the degree distribution.  

2.2 LFR Properties 

By construction, the LFR method guaranties to obtain several realistic properties: 
size of the network, power law distributed degrees and community sizes. Moreover, 
some parameters give the user a direct control on these properties: network size ( ), 
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degree distribution ( , , ), community structure ( , ). For these reason, we 
call them controlled properties.  

However, real world networks are known to exhibit additional properties. They 
have the small world property [21], which states that for a fixed average degree, the 
average distance (i.e. the length of the shortest path) between pairs of nodes 
increases logarithmically (or slower) with the number of nodes  [2]. This property is 
important, because it is related to the network efficiency to propagate information. 
Another property of interest is related to the transitivity coefficient (also called 
clustering coefficient [21]), which assesses the density of triangles (three completely 
connected nodes) in the network. The higher the transitivity, the more probable it is 
to observe a link between two nodes both connected to a third one. A real network 
is supposed to have a higher transitivity than a random Erdős–Rényi network [7] 
possessing the same number of nodes and links, by a factor of order  [2]. Finally, 
degree correlation constitutes another interesting property, by describing how a 
node degree is related to its neighbors. Real networks usually show a non-zero 
degree correlation. If it is positive (resp. negative), the network is said to be 
assortatively (resp. disassortatively) mixed [2]. According to Newman, social 
networks tend to be assortatively mixed, while other kinds of networks are generally 
disassortatively mixed. Degree correlation is related to the concepts of hubs and 
authorities, which are specific nodes with central positions. 

In the context of this work, the purpose of network generation is to compare 
algorithms which completely rely on the networks structure to identify communities. 
These three additional properties are hence particularly important, in the sense they 
are all related to the network structure. The LFR method does not allow controlling 
them directly, but these uncontrolled properties were analyzed on a wide range of 
parameters values [18]. At this occasion, it was shown LFR generates small world 
networks, with relatively high transitivity and degree correlation, but only under 
certain circumstances. Indeed, uncontrolled properties are affected by changes in 
certain parameters, and this is especially true for the mixing coefficient. All three 
properties exhibit realistic values when  is almost zero, but when it gets closer to , 
one can observe strong decreases, resulting in unrealistic transitivity and degree 
correlation values. In all studies evaluating community detection algorithms, 
performances are assessed in function of some index representing the communities 
level of separation [1, 5, 6, 8-10, 13-15, 18]. In the case of the LFR method, this index 
is , so its influence on some structural property can be a serious limitation. Indeed, 
when comparing some algorithm performances on networks generated with 
different , one generally considers the only difference between the networks is 
how much communities are separated. But  also affects other properties, possibly 
influencing the observed performance.  

2.3 Proposed Modifications 

One of the possible causes for the observed unrealistic properties is the use of the 
configuration model (CM) [17] to generate the initial network during the LFR first 
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step. On the one hand, the CM is very flexible in the sense it is able to produce 
networks with any size and degree distribution, but on the other hand it is known 
these networks have zero correlation [22] and low transitivity (when degrees are 
power law distributed) [2]. We propose to use a different generative model, with 
more realistic properties. We considered the Barabási–Albert preferential 
attachment model [23] and one of its variants called evolutionary preferential 
attachment [24]. The rest of the method is not modified: community sizes are still 
drawn from a power law distribution, and the rewiring process must be applied to 
make the community structure appear. 

The Barabási–Albert preferential attachment model (BA) [16] was designed as an 
attempt to explain the power law degree distribution observed in real networks by 
the building process of these networks. Starting from an initial network containing 

 connected nodes, a realistic iterative process is applied to simulate growth. At 
each iteration, one node is added to the network, and is randomly connected to m 
existing nodes ( ). These  nodes are selected with a probability which is a 
function of their current degree : . In other terms: the higher a 
node degree, the higher its chances of being selected. This so-called preferential 
attachment mechanism results in a power law degree distribution, since degree 
increases faster for nodes with higher degree, as new nodes are added to the 
network. The exponent cannot be controlled though, and tends towards  [16]. The 
average distance is always less than in same-sized Erdős-Rényi networks, so it has 
the small world property [23]. The average degree depends directly on the  
parameter:  [2]. Transitivity is greater than in Erdős-Rényi networks, but 
nevertheless decreases with network size following a power law  [23]. 

The evolutionary preferential attachment (EV) [24] model is a variant of the BA 
model. It also uses the preferential attachment and growth mechanisms, except the 
attachment probabilities are not based on some topological properties, like the 
current degree in the case of BA, but on some nodal dynamic property, updated 
using the prisoner’s dilemma game. Every few iterations, each node plays either 
cooperation or defection against all its neighbors. It gets a total score depending on 
the individual results:  for unilateral cooperation or bilateral defection,  for 
bilateral cooperation, and  for unilateral defection, with . The first move is 
randomly chosen, whereas the next one depends on the respective results of the 
considered node and a randomly picked neighbor. If the neighbor’s score is better, 
the node might switch to its strategy, with a probability depending on the difference 
between their scores. Nodes with higher scores are more attractive to a node added 
to the network, because by being connected to them, it may use a strategy which 
proved to be successful. According to its authors, this process is more realistic and 
leads to networks with high transitivity and degree correlation. Besides the 
parameters already needed by BA ( ,  and ), EV uses  (points scored for 
unilateral cooperation) and ε (selection pressure). The latter allows to modulate the 
influence of the preferential attachment mechanism: all nodes are equiprobable 
when , whereas the nodes scores are fully considered for . 
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2.4 Community Detection Algorithms 

To study the effects of the networks realism on the community detection process, 
we applied four popular algorithms: Newman et al.’s Fast Greedy algorithm (FG) [25] 
relies on a modularity-based agglomerative hierarchical approach. Its name is due to 
the use of a standard greedy method, making it relatively faster than earlier 
algorithms, and allowing it to process large networks. Pons and Latapy’s Walktrap 
algorithm (WT) [26] follows another agglomerative hierarchical method, in which the 
distance between two nodes is defined in terms of random walk processes. 
Raghavan et al’s Label Propagation algorithm (LA) [27] analyzes information 
diffusion to identify communities. Each node is initially labeled with a unique value. 
Then, an iterative process takes place, where each node takes the label which is the 
most spread in its neighborhood. When the process ends, communities correspond 
to sets of nodes with identical labels. Blondel et al.’s Louvain algorithm (LV) [28] is 
the most recent of the considered algorithms. It relies on a two-stepped hierarchical 
modularity optimization method. The first step consists in detecting small 
communities by performing a greedy optimization on modularity. In the second step, 
the algorithm creates a network whose nodes represent the communities identified 
during at step one. These two steps are repeated to build the complete hierarchy of 
communities.   

3 Results and Discussion 

3.1 Generated Networks Properties 

The networks were generated by applying first one of the three previously presented 
methods (CM, BA, EV) to produce initial networks, and then using the LFR approach 
to generate the communities sizes and perform rewiring. In other terms, the 
generating processes differ only in their first step. For simplicity matters, we will 
thereafter refer to them by using only the name of the model employed during their 
first step. Consequently, CM will correspond to the original LFR method, whereas BA 
and EV are modified versions based on the corresponding model.  

We selected our parameters values based on previous experiments in artificial 
networks generation [1, 18] and descriptions of real world networks measurement 
from the literature [2, 11, 23, 29]. Some parameters are common to all three 
processes: we fixed the size  and the power law exponent for the 
community sizes distribution ; and made the mixing coefficient  range from 

 to  with a  step. Other parameters are model-dependent. In particular, 
with the original LFR method based on CM, it is possible to specify the desired power 
law exponent  for the degree distribution, and average  and maximal degrees 

. We used the values ,  and . The alternative 
models do not allow as much control as the CM, and we had to adjust their 
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parameters so that the resulting networks had approximately the same degree-
related properties. Preferential attachment does not give any control on , which 
tends towards  by construction. To control the average degree, we used  
for both BA and EV. The maximal degree is not controlled, but the values measured 
in the resulting networks are of the same order than the values specified for CM. EV 
additionally allows controlling transitivity, and we found out score  and 
selection pressure  gave the best results.  

 
We produced  networks for each combination of parameters, and averaged the 

measured properties. Figure 1 shows the results for average distance, degree 
correlation and transitivity. Results were very similar for  and , so we 
only present the latter here, but comments apply to both. The largest communities 
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Figure 1. Influence of the mixing coefficient  on the measured properties: (a) average distance, (b) 
degree correlation and (c) transitivity. Networks were generated with parameters , , 

,  and using the LFR method on three different generative models: configuration model 
(CM), Barabási–Albert model (BA) and evolutionary preferential attachment model (EV). Each point 
corresponds to an average over  generated networks. The vertical lines at  represent the 

average limit above which communities stop being clearly defined. 

(a) (b) 



TR201002121 Günce Keziban Orman and Vincent Labatut 
 

A Modification to Improve the Realism of Networks Generated with the LFR Model 9/16 
 

in the generated networks have around  nodes, so communities are supposed to 
be structurally well-defined (cf. section 2) for . This mixing limit is 
represented on the plots under the form of a vertical line. 

The average distance is rather similar for all three models, both in terms of 
absolute value and sensitivity to . It ranges approximately from  to , and is 
relatively stable, especially for . On the one hand, the stability of this 
property is a good point, since it means networks with much separated communities 
(small ) and networks with very mixed communities (high ) have comparable 
average distances. Consequently, the effect of this property can be considered as 
negligible when comparing algorithms performances on networks generated with 
various  values. But on the other hand, since all three models lead to very close 
average distances, this property cannot be used to compare them in terms of realism 
of the generated networks. 

CM has the highest transitivity, with values around  (the theoretical minimum 
and maximum being  and , respectively) for , but it also has almost zero 
transitivity for , exhibiting a serious sensitiveness to . Other methods also 
show a decreasing transitivity when  increases, but the range is much smaller, 
mainly because their values for  are significantly smaller: around  and  
for BA and EV, respectively. Like CM, they reach almost zero value when . So 
contrarily to what we expected, networks generated with EV do not have a higher 
transitivity than CM, at least for small . However, thanks to its lesser sensitivity to 

, EV has a better transitivity for . Note that in the literature, real world 
networks with a  transitivity greater than  are considered highly transitive [11], so 
we can state all three models exhibit realistic transitivity for small . The issue is 
more about their sensitivity to , leading to non realistic values for high . This non-
linear decrease in transitivity observed for all three models could be linked to the 
rewiring process performed by the LFR method. In this case, the final transitivity 
would never be stable, whichever model is used to generate the initial networks. But 
testing this hypothesis would require an exhaustive analysis of the side-effects of 
rewiring on networks, which is out of the scope of this work. Another explanation 
would be that network transitivity is directly related to the nature of community 
structure itself, independently of the way the network is created. Testing this 
hypothesis would require being able to quantify the separation level of communities 
in real world networks (using Newman’s modularity [4], for instance), in order to 
compare it to the measured transitivity. The authors are not aware of any work of 
this kind, which is also out of this paper scope. 

Considering the degree correlation, there is a clear difference between CM and 
the other two models. CM degree correlation has acceptable values for small  
( ), but it decreases rapidly and oscillates around zero for . EV shows the 
highest degree correlation, with values greater than  for . It also decreases 
when  increases, resulting in values close to  for . Finally, unlike other 
models, BA degree correlation slightly increases with , ranging approximately from 

 ( ) to  ( ). Although its values are lower than for EV, it is also 
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more stable both in terms of sensitivity to  and low standard-deviation (especially 
for ). 

In conclusion to this section, we can state EV and BA are slightly above CM in 
terms of realism. All three of them have extremely similar results on the average 
distance. They have significantly different transitivity, but all three are realistic, at 
least for small  values. Concerning the degree correlation, both BA and EV exhibit 
realistic values for any , whereas CM is realistic only for . The main difference 
between the reviewed generative models is related to their sensitivity to . CM is 
clearly the most sensitive, showing the largest range of values for both transitivity 
and degree correlation, whereas BA is the most stable. However, EV generally has 
highest values than BA, so it is difficult to decide which one is the most adapted. The 
next subsection will be dedicated to study how these differences in stability and 
realism translate in terms of community detection performances. 

3.2 Community Detection Performances 

We applied the four community detection algorithms presented in section 2 on all 
the networks we generated. These algorithms do not need the user to specify any 
parameter, except for WT, for which we used the default value to define the length 
of the random walks. We compared the performances using the normalized mutual 
information (NMI). This measure was defined in the context of conventional 
clustering to compare two different partitions of one data set [3, 30] and was later 
used to assess community detection performance [1, 19, 20, 31]. 

Figure 2 shows the results for all four algorithms, in function of the mixing 
coefficient . Although we applied the algorithms on networks with average degree 

 and , there was no relevant difference between the results: the 
performances were uniformly slightly better for  than for . Consequently, our 
plots show only the former. Generally, as expected from previous studies [1, 18-20], 
the accuracy of all algorithms decreases along  increases, i.e. communities become 
more mixed and difficult to distinguish. When , all algorithms manage to 
successfully identify communities, whereas when the mixing limit of  is 
reached, they all perform badly. The way the performance evolves in function of  
depends on the algorithm, though. It is almost linear for FG, which has poor 
performances even for values of  far from the mixing limit. For the other 
algorithms, the performance stays close to the maximum until some individual limit 
is reached, at which point a sudden drop occurs. This individual limit is very close to 

 for LV and WT, whereas it is around  for LP. The main differences between LV 
and WT are the former’s performance slightly decreases before suddenly dropping 
off, whereas the latter’s stays maximal; and LV performance are bellow WT’s when 

. So a clear hierarchy appears between algorithms, in terms of general 
accuracy: FG<LP<LV<WT. 

The effect of the generative model on community detection performance 
depends strongly on the considered algorithm. FG does not seem to be sensitive at 
all, since its performances for all three models are not significantly different. This 
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suggests the information it uses to identify communities is not related at all to 
transitivity nor degree correlation. FG is essentially based on a modularity 
optimization approach, so on the one hand, this raises a question regarding the 
sensitivity of modularity to these properties. On the other hand, FG is not the best 
algorithm for modularity optimization, plus LV, which is also modularity-based, 
shows signs of sensitivity to the model. More efficient modularity optimization 
approaches such as Spinglass [32] could be applied on the same networks to verify 
this hypothesis (the authors could not achieve this task by lack of time, Spinglass 
being extremely long compared to other algorithms, especially those presented 
here). 

 
LP, which is not modularity-based, is much more sensitive to the generative 

model. EV and BA have close low drop-off limits, around  and , whereas it is 

Figure 2. Community detection performances in function of the mixing coefficient , for (a) Fast Greedy, 
(b) Label Propagation, (c) Louvain and (d) Walktrap algorithms. The networks are the same than in Fig.1 

( , ,  and ). Each point corresponds to an average over  processed 
networks. The vertical lines at  represent the average limit above which communities stop being 

clearly defined. Performances are expressed in terms of normalized mutual information. 
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approximately  for CM. However, note these values may not precisely represent 
the actual performance, due to the high variance observed in LP results. LP 
performance is far better for CM than for the other models, which could suggest it 
finds more realistic networks harder to process. More precisely, the way models are 
ordered in terms of performance is the exact opposite of their order in terms of 
degree correlation. This could mean LP does not handle well networks with positive 
degree correlation, maybe because such a property modifies the way labels spread 
in the network. But this observation is difficult to confirm here. Indeed, for  
BA has a higher correlation degree than EV, but the effect on performance cannot be 
discussed because NMI has already reached  for these values of . 

As stated before, LV is modularity-based but, unlike FG, it performs differently 
depending on the model. WT does not rely on modularity to identify communities, 
but it is generally used as a criterion to select the best partition (or cut) in the 
hierarchy it outputs (called dendrogram). Both algorithms do not show any model-
sensitiveness until they reach their drop off limit. Then performances are clearly 
better for CM and EV than for BA. In the case of WT, CM leads to even higher 
performances than EV on the range . This order fits with the models 
transitivity, so we could assume LV performs better when this property is high 
enough. However, EV transitivity is higher than CM’s for  and this does not 
appear at all in the performance plot. On the contrary, the performance for CM stays 
above the other models until , whereas its transitivity is roughly the same. 

The compared algorithms use different principles and mechanisms to identify 
communities, which can explain why their performances are influenced in various 
ways by the studied generative models. However, if we do not take FG into account, 
it generally appears the Barabási–Albert model is the most difficult to process, 
whereas the configuration model is associated to the highest results. The 
evolutionary preferential attachment model lies somewhere in between (LV), 
sometimes closer to the former (LP) and sometimes closer to the latter (WT). It 
remains difficult to explain exactly why in general we observed differences in 
performances, because the data seem to be incomplete for that matter. Drawing 
more solid conclusions would necessitate first applying other algorithms, if possible 
using a wide range of principles to detect communities. Additionally, one could 
consider studying other network properties, possibly responsible for the changes in 
performance. However, for now, we would say results measured on the BA-based 
LFR method are the more reliable, because of the stability of generated networks 
properties to changes in the mixing coefficient . 

4 Conclusion 

In this paper, we proposed an improvement for the LFR method designed by 
Lancichinetti et al. [1] to randomly produce realistic complex networks with 
community structure. LFR uses the configuration model (CM) [17] to randomly 
generate a network with power law distributed degree, and then rewires it partially 
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to make a community structure appear. An important parameter called mixing 
coefficient allows controlling the level of separation between communities. This type 
of method is used to benchmark community detection algorithms on huge 
collections of artificial networks, before testing them on real world ones [1, 18, 19]. 
For this reason, their realistic aspect is of utmost importance and is known to affect 
the algorithms performances [13]. To our knowledge, LFR is currently the method 
generating the most realistic networks, but it has some limitations regarding certain 
properties [18]: degree correlation and transitivity (a.k.a. clustering) are not realistic 
and are not stable to changes in the mixing coefficient. Our improvement consists in 
replacing the configuration model by the Barabási–Albert (BA) [16] and evolutionary 
preferential attachment (EV) [24] models, which are known to produce more 
realistic networks regarding these properties. We generated several collections of 
networks with the LFR method, based successively on CM, BA and EV. We used 
realistic values for all the directly controlled properties (number of nodes, average 
degree and power law exponent) and compared the values of the uncontrolled ones 
(average distance, transitivity and degree correlation). We found out our 
improvement allows producing networks with comparable average distance, more 
realistic and stable degree correlation and more stable transitivity, compared to the 
original LFR method (using CM). For these properties, EV exhibits better absolute 
values but BA is more stable.  

In order to study the effect of our modification on the community detection 
process, we applied four different algorithms on the generated collections: Fast 
Greedy (FG) [25],  Label Propagation (LP) [27], Louvain (LV) [28] and Walktrap (WT) 
[14]. We assessed their performances thanks to the normalized mutual information 
measure, already used for the same purpose before [1, 19, 20, 31]. For all algorithms 
and on all networks we observed the usual decrease in performance caused when 
increasing the mixing coefficient [1, 19, 20]. Moreover, three algorithms out of four 
showed significant changes in their performances depending on the considered 
generative model (CM, BA or EV). FG is not sensitive at all, but has the poorest 
results and seems a bit out of date compared to more recent algorithms. Globally, 
for the three sensitive algorithms, the highest performances are obtained when 
applied to CM, whereas the lowest correspond to BA. The results on EV networks 
depend on the considered algorithm: close to BA for LP, close to CM for WT, and 
somewhere in between for LV. We could not determine if the observed changes in 
performance were due to some property in particular, though. BA seems to be the 
most interesting model in terms of discrimination of the community detection 
algorithms, because its stability to changes in the mixing coefficient allows to 
consistently compare performances for different levels of separation of the 
communities. 

Our goal was to improve the realism of the networks generated by the LFR 
method, and from this point of view the modifications we proposed were efficient. 
But they also resulted in a loss of control, since the replacement models (BA and EV) 
do not allow to specify directly as many properties as CM. For instance, in CM the 
exponent of the degree power law distribution is a parameter, whereas BA can 
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generate only networks with an exponent  (which, hopefully, is an extremely 
realistic value). We suppose it is one of the reasons why Lancichinetti et al. chose to 
base their approach on this model in the first place. Moreover, the improvement 
was not as strong as expected, especially concerning the transitivity, which is still 
very sensitive to changes in the mixing coefficient. Different ways can be explored to 
try to solve these limitations. First, it would be interesting to study the side effects of 
the rewiring process used in the LFR approach, by simply comparing the generated 
networks properties before and after the wiring step. This work is necessary to know 
if some properties observed in the final networks depend on the initial (pre-rewiring) 
network or on the rewiring process itself. Second, many other models exist to 
generate networks with power law distributed degree [33-40]. A systematic review 
could allow detecting more flexible models, offering more control on the generated 
networks properties, and more realistic properties. It is a long and difficult task 
though, because source codes are rarely easily available. 

Concerning the effect of realism on community detection algorithms, our work 
can be extended in two ways. First, other algorithms could be applied to networks 
generated with the modified LFR method. Indeed, the four algorithms we compared 
exhibit rather different reactions to the models we used, making it difficult to infer 
general remarks concerning their effects on community detection performance. For 
example, we observed FG, which is a modularity-based algorithm, was not sensitive 
to the selected generative model, whereas LV, which optimizes modularity too, is. By 
considering algorithms such as Spinglass [32], which is known to be a good estimator 
of maximal modularity, we could study the influence of the generative model on 
modularity. Second, we could consider other properties to characterize networks. 
Maybe we did not find any strong relationships between the generated networks 
properties and the performance changes because we did not focus on the relevant 
properties. We chose the most widely used ones in the context of real networks 
analysis, but many others exist [41, 42], even if they have not been so popular up to 
now. 
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