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Abstract: The statistical analysis of surfaces is an important issue of Im-
age Analysis, especially in Computational Anatomy. In 2005, Glaunès and
Vaillant proposed to handle surfaces through some mathematical currents
defined as linear forms on a space of mappings from R3 into itself. In this
paper, we extend this deterministic representation of surfaces using some
random linear forms inspired from generalized stochastic processes. Then,
we set an observation model where observed surfaces are viewed as random
variations of a mean representative of a population (called the template).
This observation model accounts not only for the variability of surfaces
within an homogeneous population but also for errors due to acquisition.
Within this model, we construct an estimate of the template and establish
its consistency.

Keywords and phrases: surface statistics, mathematical currents, gener-
alized stochastic processes, template estimation, computational anatomy,
image analysis.

1. Introduction

Since its emergence in engineering and research, the field of image analysis have
always been influenced by statistical issues. Confronted with a set of images
coming from homogeneous populations, it was often a question of using sta-
tistical models to extract, compare or validate some population properties by
means of estimation and test techniques. Such issues still remain central to the
so-called Computational Anatomy [15], an important discipline of image analy-
sis which is mainly motivated by medical applications. Specific to this discipline,
images from a same population are considered as variations of a mean image
called a template. Variations result from both geometrical deformations of the
template and additive intensity variations. The generic observation model can
be formally stated as

Ik = ϕk · µ+Bk, (1)

where Ik is a kth observed image in a population, ϕk ·µ a template µ deformed
by the action of a deformation ϕk, and Bk a random additive term accounting
for variations [2, 15]. In this context, the estimation of the template µ from a
sample of observed images is a critical issue [2, 1, 20, 19, 22].
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Computational Anatomy has been extensively developed for images [2, 3, 15].
But, it has always been concerned with primitives extracted from images such as
curves [25], surfaces [6, 12, 21] or bundles [8, 7, 13, 14]. However, the definition
of a model of the form (1) for these objects is problematic in many ways. In
particular, the addition operation is not obviously defined since these objects
do not belong to any Euclidean space. More importantly, it is still an open
issue to give a mathematical meaning to random variations for these objects.
In this paper, we focus on surfaces. We first propose a stochastic framework
where Model (1) can be correctly interpreted when dealing with surfaces. In this
framework, we then construct an estimate of the template and further establish
its consistency in the case when they are not geometrical deformations.

In their seminal work [23], Glaunès and Vaillant have achieved a major break-
through for the study of surfaces in the context of Computational Anatomy
[11, 23, 12, 8, 7]. Rather than dealing directly with surfaces, they proposed to
use surface representations inspired from mathematical currents. These repre-
sentations are continuous linear forms defined on a Hilbert space V of smooth
mappings from R3 into itself (see Section 2 for more details). Belonging to an
Euclidean space, they can be manipulated with an addition and compared with
a norm. Completed by an action of deformations [23], they can be used to
compute templates and deformations from observation samples (template regis-
tration). However, they are purely deterministic and can not account for random
variations within a model of the form (1).

To overcome this shortcoming, we propose to extend these representations
in a stochastic way by defining random linear forms on the functional Hilbert
space V . This extension is inspired from the generalized stochastic processes
introduced by Gelfand and Vilenkin [10] and Itô [16, 17], and also studied in
[9, 18, 24]. Using this extended representation, we build an observation model
of the form of (1). In this model, observations are intended to be random linear
forms associated to some meshed surfaces. These meshed surfaces are usually
extracted from images by practitioners. Here, they are considered as discrete
approximations of smooth real-world surfaces seen through an imaging device
with a given precision. The model template stands for a mean representation of
real-world surfaces over a population. Model variations account for two effects:
an acquisition error due to the approximation of real-world surfaces by meshed
surfaces, and a variability of real-world surfaces across a population.

After model definition, we investigate the issue of estimating the template.
By construction of surface representations, the template belongs to an infinite
dimensional space (the topological dual V ∗ of V ). Hence, for its estimation,
it has to be approximated in some finite-dimensional subspaces of V ∗. In this
paper, we adopt a Ritz-Galerkin approach to construct a series of embedded
finite-dimensional subspaces tending to V ∗ [5]. Within each subspace, we then
derive a maximum likelihood estimate of the template. We eventually show that
the template estimates tend to the template as the approximation subspace
tends to V ∗, the number of samples to infinity, and the precision at which real-
world surfaces are discretized to 0. Let us emphasize that this consistency result
takes into account two main practical approximations resulting from surface



Coulaud and Richard/Statistical Analysis of Surfaces 3

discretizations and template approximations.
In Section 2, a surface representation akin to [23] is presented in a determin-

istic framework, and extended in a stochastic one. This section further includes
the construction of an observation model. It ends up with a first asymptotic re-
sult ensuring the convergence of surface discretization errors to 0 as the precision
tends to 0. Section 3 is devoted to the estimation of the template. The construc-
tion of the estimate is described into details together with the approximation
procedure. The main consistency theorem is eventually established.

2. Surface modeling

2.1. Deterministic representations of surfaces

Let D be a closed and bounded cube of R3, and Θ be a set of compact and
continuously differentiable surfaces included in D. Let V0 be a a Reproductive
Kernel Hilbert Space (RKHS) [4] of L2(D,R)∩C1(D,R) equipped with an inner
product 〈·, ·〉V0

and having a reproductive kernel K0 bounded on D×D. Define
the Hilbert space V = V 3

0 equipped with the inner product 〈·, ·〉V defined, for

any v = (v1, v2, v3) and w = (w1, w2, w3) in V , by 〈v, w〉V =
3∑
i=1

〈vi, wi〉V0 , and

its associated norm ‖ · ‖V .
Following [23], any surface S of Θ can be represented by a linear form s

defined, for any w ∈ V , by

s(w) =

∫
S
〈w(x), e1(x) ∧ e2(x)〉R3dσS(x), (2)

where ∧ stands for the cross product on R3, 〈·, ·〉R3 the Euclidean inner product
on R3, σS the surface element on S, and vectors e1(x), e2(x) form a direct
orthogonal basis of the tangent plane to S at the point x. The representative
s is an element of the topological dual V ∗ of the Hilbert space V . Indeed, s is
linear and, due to RKHS properties of V ,

|s(w)| ≤ A(S)‖w‖∞ ≤ CA(S)‖w‖V ,

where A denotes the area measure on surfaces. Hence, s is also continuous.
In practice, an observed surface is usually a meshed surface extracted from

an image using some processing. It is a discrete approximation of a real-world
surface seen through an imaging device. In our modeling, real-world surfaces S
are in Θ. They are approximated by discrete surfaces F ρ of the form

F ρ =
Mρ

∪
m=1

fρm, (3)

where, for m ∈ {1, · · · ,Mρ}, fρm are triangular faces, and ρ stands for a precision
parameter defined as the maximal area of these triangles.

The representative sρ of a discretized surface F ρ as the linear form is defined,
for any w ∈ V , by
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sρ(w) =

Mρ∑
s=1

∫
fρm

〈Nρ
m, w(x)〉R3dx, (4)

where Nρ
m denotes the unitary vector normal to the face fρm and external to the

surface F ρ. The error eρ of approximating a surface S by a discrete surface F ρ

can be expressed in terms of linear forms as eρ = s− sρ.

2.2. Stochastic extension of representations

Let E = (Ω,F ,P) be a probability space, and L2(E) the set of square integrable
random variables defined on E , equipped with the usual inner product 〈·, ·〉L2(E)
and its associated norm ‖ · ‖L2(E).

A random linear form S on V is a linear and continuous application mapping
V into L2(E), such that

P(∃ C > 0, sup
‖w‖V ≤1

|S(w)| ≤ C). (5)

Property (5) means that realizations of S, viewed as mappings from V to R, are
almost surely in V ∗. The space of random linear forms will be denoted by V ∗E .
It can be equipped with a vectorial space structure and a norm ‖.‖V ∗E defined,
for any S ∈ V ∗E , as

‖S‖V ∗E = sup
‖w‖V ≤1

‖S(w)‖L2(E). (6)

The law of a random linear form S is defined as the set of distribution laws
of random vectors (S(v1), · · · , S(vN )) associated to any N -uplet (v1, · · · , vN ) of
elements of V . Two random linear forms S and T are said independent if, for
any couple of N -uplets (v1, · · · , vN ) and (w1, · · · , wN ) of elements of V , random
vectors (S(v1), · · · , S(vN )) and (T (w1), · · · , T (wN )) are independent.

The expectation E∗[S] of a random linear form S is defined as the mapping
from V into R given, for any w ∈ V , by

E∗[S](w) = E[S(w)],

where E denotes the usual expectation of square-integrable random variables. A
random linear form whose expectation is identically zero is said centered. The
autocovariance γS of a random linear form S is the mapping from V × V into
R given, for any (v, w) ∈ V 2, by

γS(v, w) = Cov(S(v), S(w)), (7)

where Cov stands for the usual covariance of square-integrable random variables.
Due to RKHS properties, the expectation of any random linear form on V is
an element of V ∗. Similarly, its autocovariance is a continuous bilinear form on
V ×V , which is an element of V ∗∗. Therefore, we can define Riesz representatives
for both of them.
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A random linear form S ∈ V ∗E is Gaussian if, for any N -uplet (v1, · · · , vN )
of V , the random vector (S(v1), · · · , S(vN )) is Gaussian. Let us quote that a
random Gaussian linear form S is entirely characterized by its expectation E∗[S]
and autocovariance γS .

As mention earlier, the surface representation of this section is related to
generalized stochastic processes [10, 16, 17]. These processes are also random
linear forms but they are mapping the space of C∞-functions with compact
supports to a set of random variables which is more general than L2(E). The
adaptation of definition spaces of these processes allowed us to obtain a space
V ∗E with some required properties. In particular, we could define a norm on
the space V ∗E and guarantee the existence and continuity of expectations and
autocovariances of its elements.

2.3. Observation model

For k ∈ {1, · · · ,K}, let F ρk be a meshed surface which is obtained through an
imaging device and approximates a real-world surface Sk with a precision ρ. Let
sρk and sk be representatives in V ∗ of F ρk and Sk, respectively.

We consider representatives sρk and sk as realizations of random linear forms
Sρk and Sk, respectively. We define the error of approximating Sk by Sρk in terms
of random linear forms as

ερk = Sρk − Sk. (8)

We consider that surfaces were acquired in same conditions and that approx-
imation errors are independent from a surface acquisition to another. Hence, we
assume that discretization errors ερk are independent and identically distributed
according to the law of a same centered Gaussian random linear form with
autocovariance γρε .

We will also use the mean error defined, for any K > 0, as

ερK =
1

K

K∑
k=1

ερk. (9)

Besides, we model variations of real-world surfaces through their associated
random linear forms. More precisely, we assume that, for all k ∈ {1, · · · ,K},

Sk = µ+Bk, (10)

where the template µ is a linear form of V ∗ and variations Bk are independent
and identically distributed according to the law of a same centered Gaussian
random linear form with autocovariance γB . In this model, the expectation of
Sk is µ. Hence, the template can be seen as a mean element of the surface
population.

Combining the Equations (8) and (10), we eventually obtain the observation
model

Sρk = µ+Bk + ερk, k ∈ {1, · · · ,K}. (11)
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2.4. Convergence of discretization errors

In this part, we state some supplementary assumptions ensuring that the dis-
cretization errors ερk of our model converge to 0 as the precision ρ tends to
0. Such a convergence is required to guarantee the coherence of the transition
from continuous surfaces to their discrete approximations within the observation
model.

Assumption 1. For any ρ > 0 and k > 0, there exist a partition (Sρm,k)m∈{1,··· ,Mρ
k}

of Sk and a set of diffeomorphisms (Hρ
m,k)m∈{1,··· ,Mρ

k}, each diffeomorphism

Hρ
m,k mapping Sρm,k onto fρm,k.
There also exists a function a1 satisfying lim

ρ→0
a1(ρ) = 0 such that, for any

ρ > 0 and k > 0,

E

[
sup

m∈{1,··· ,Mρ
k}

(‖Hρ
m,k − I‖∞ + ‖J(Hρ

m,k)− I‖∞)2

]
≤ a1(ρ),

where I denotes the identity on R3 and J(Hρ
m,k) the Jacobian matrix of Hρ

m,k.

Assumption 2. There exists C0 > 0 such that, for any k > 0,

P
[
A(Sk))2 ≤ C0

]
= 1,

where A denotes the area measure of surfaces.

Theorem 1 (Convergence of the discretization error). Under Assumptions 1
and 2, one has

lim
ρ→0

lim
K→+∞

sup
k∈{1,··· ,K}

sup
‖w‖V =1

E
[
(ερk(w))2

]
= 0, (12)

and
lim
ρ→0

lim
K→+∞

sup
‖w‖V =1

E
[
ερK(w)

2
]

= 0. (13)

Proof. Let k > 0, ρ > 0 and w ∈ V be arbitrary. We set

Iρk (w) =

Mρ
k∑

m=1

∫
Sρm,k
|〈Nk(u)−Nρ

m,k, w(u)〉R3 |dσ(u),

and Jρk (w) =

Mρ
k∑

m=1

|
∫
fρm,k

〈Nρ
m,k, w(u)〉R3du−

∫
Sρm,k
〈Nρ

m,k, w(u)〉R3dσ(u)|.

Then, using a Cauchy-Schwarz inequality, we obtain

E
[
(ερk(w))2

]
≤ E

[
(Iρk (w))2

]
+ E

[
(Jρk (w))2

]
+ 2E [Iρk (w)Jρk (w)] ,

≤ E
[
(Iρk (w))2

]
+ E

[
(Jρk (w))2

]
+ 2
√

E [(Iρk (w))2]E [(Jρk (w))2].
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On the one hand, since |w(u)| ≤ ‖K0(u, ·)‖V0‖w‖V for any u ∈ D, we get

|Iρk (w)| ≤ ‖w‖V sup
u∈D
‖K0(u, ·)‖V0

A(Sk) sup
m∈{1,··· ,Mρ

K}
sup
u∈Sk
‖Nk(u)−Nρ

m,k‖R3 .

We now use the following proposition shown in Appendix.

Proposition 1. Under Assumption 1, there exists a function a2 satisfying
lim
ρ→0

a2(ρ) = 0 such that, for any ρ > 0 and k > 0,

E

[
sup

m∈{1,··· ,Mρ
k}

sup
u∈Sρm,k

‖Nk(u)−Nρ
m,k‖

2
R3

]
≤ a2(ρ),

where Nk(u) and Nρ
m,k denote the normal unit vectors external to the surface

Sk at point u and to the triangle fρm,k, respectively.

Due to this proposition, we have

E
[
(Iρk (u))2

]
≤ ‖w‖2V sup

u∈D
‖K0(u, ·)‖2V0

E
[
A(Sk)2

]
a2(ρ).

Hence, using Assumption 2, we obtain

E
[
(Iρk (u))2

]
≤ C0‖w‖2V sup

u∈D
‖K0(u, ·)‖2V0

a2(ρ).

Consequently, for some C1 > 0,

E
[
(Iρk (w))2

]
≤ C1a2(ρ)‖w‖2V . (14)

On the other hand,

|Jρk (w)| ≤
Mρ
k∑

m=1

∫
Sρm,k
|〈Nρ

m,k, w(u)−Det(JHρm,k)w(Hρ
m,k(u))〉R3 |dσ(u)

≤
Mρ
k∑

m=1

(

∫
Sρm,k
|〈Nρ

m,k, w(u)− w(Hρ
m,k(u))〉R3 |dσ(u)

+

∫
Sρm,k
|〈Nρ

m,k, w(Hρ
m,k(u))−Det(JHρm,k(u))w(Hρ

m,k(u))〉R3 |dσ(u))

≤
Mρ
k∑

m=1

(

∫
Sρm,k
‖w(u)− w(Hρ

m,k(u))‖R3dσ(u)

+

∫
Sρm,k
‖w(Hρ

m,k(u))−Det(JHρm,k(u))w(Hρ
m,k(u))‖R3dσ(u)).

RKHS properties of V imply that

|Jρk (w)| ≤ C2‖w‖V
Mρ
k∑

m=1

∫
Sρm,k
‖K0(u, ·)−K0(Hρ

m,k(u), ·)‖V0+|1−Det(JHρm,k(u))|dσ(u),

for some C2 > 0. We now apply two propositions shown in Appendix.
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Proposition 2. Under Assumption 1, there exists a function a3 satisfying
lim
ρ→0

a3 (ρ) = 0 such that, for any k > 0,

E

[
sup

m∈{1,··· ,Mρ
k}

sup
u∈Sρm,k

‖K0(Hρ
m,k(u), ·)−K0(u, ·)‖2V0

]
≤ a3(ρ).

Proposition 3. Under Assumption 1, there exists a function a4 satisfying
lim
ρ→0

a4(ρ) = 0 such that, for any k > 0,

E

[
sup

m∈{1,··· ,Mρ
k}

sup
u∈Sρm,k

|1−Det(JHρm(u))|2
]
≤ a4(ρ).

From these propositions and Assumption 2, we conclude that

E
[
(Jρk (w))2

]
≤ C3‖w‖2V (a3(ρ) + a4(ρ)), (15)

for some C3 > 0. From (14) and (15), we then deduce that

sup
‖w‖V ≤1

E
[
(ερk(w))2

]
≤ a(ρ), (16)

where a(ρ) = C1a2(ρ) + C3(a3(ρ) + a4(ρ)) + 2
√
C1C3a2(ρ)(a3(ρ) + a4(ρ)) is a

function satisfying lim
ρ→0

a(ρ) = 0. This yields the convergence stated in Equation

(12).
Moreover, since ερk are i.i.d., we have

E
[
ερK(w)

2
]
≤ 1

K2

K∑
k=1

E
[
(ερk(w))2

]
+

1

K2

∑
k 6=l

E [ερk]E [ερl ] .

Then, by using a Cauchy-Schwarz inequality, we get

sup
‖w‖V ≤1

E
[
ερK(w)

2
]
≤
(

1

K
+
K − 1

K

)
sup

k∈{1,··· ,K}
sup
‖w‖V ≤1

E
[
(ερk(w))2

]
.

Due to Equation (16), it follows that

sup
‖w‖V ≤1

E
[
ερK(w)

2
]
≤
(

1

K
+
K − 1

K

)
a(ρ).

Hence, the convergence stated in Equation (13) holds.

We add a last assumption that will be required to establish the consistency
of the template estimate.

Assumption 3. There exists ρ0 > 0 such that, for all K ∈ N∗, one has almost
surely:

∀ρ ∈]0, ρ0[,∀k ∈ {1, · · · ,K},∀w ∈ V s.t. ‖w‖V ≤ 1, |ερk(w)| ≤ 1.
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3. Template estimation

This section is devoted to the estimation of the template µ of the observation
model (11). As the template is defined in an infinite dimensional space, its
estimation requires approximations which are presented first.

3.1. Approximations

Let (φi)i∈I be a total and free system of V . Let (IN )N∈N∗ an increasing sequence
of embedded subsets of I, whose union is I. For N ∈ N∗, we consider subspaces
of V

V N = Vect({φi, i ∈ IN}),

equipped with the inner product of V . These approximation subspaces are em-

bedded and their reunion is dense in V . We also define subspaces V̂ N,∗ of V ∗

V̂ N,∗ = {s = 〈vS , ·〉, vS ∈ V N}

formed by linear forms s whose Riesz representatives vs are in V N . For s in V ∗,
let

sN = argmin
ν∈V̂ N,∗

‖s− ν‖V ∗

be the orthogonal projection of s into V̂ N,∗. Similarly, for all v ∈ V , let

vN = argmin
w∈V̂ N

‖v − w‖V

be the orthogonal projection of v into V N . Notice that vsN = vNs .

Each element s of V ∗ can be approximated by an element of V̂ N,∗ by using the
orthogonal projection vNs of its Riesz representative vs into V N . This projection
vNs satisfies

〈vNs , w〉V = s(w),∀w ∈ V N ,

or, equivalently, vNS =
∑
i∈IN

αiφi, where (αi)i∈IN is the solution of the linear

system ∑
j∈IN

αi〈φi, φj〉V =
∑
j∈IN

s(φj),∀ i ∈ IN .

For any i, j ∈ IN , let hNi,j be the solution of∑
k∈IN

〈φi, φj〉V hNk,j = δi,j . (17)

We can also write

vNs =
∑
i∈IN

∑
j∈IN

hNi,js(φj)

φi. (18)
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3.2. Estimates

Let us consider the observation model (11), and construct random linear forms
that estimate projections of the template µ in successive approximation spaces
V N,∗.

For k ∈ {1, · · · ,K} and i ∈ I, let

Sρk,i = Sρk(φi), µi = µ(φi), and ηρk,i = Bk(φi) + ερk(φi) (19)

denote variables specifying terms of the observation model (11) for a basis ele-
ment φi of V . Expressed in the basis {φi, i ∈ IN} of V N , the observation model
becomes

SN,ρk = µN + ηN,ρk ,∀k ∈ {1, · · · ,K}, (20)

where µN = (µi)i∈IN is a vector of size |IN |, and SN,ρk = (Sρk,i)i∈IN and ηN,ρk =

(ηρk,i)i∈IN are two Gaussian random vectors with a covariance matrix ΓN,ρ of

size |IN | × |IN | whose terms are given by

ΓN,
ρ

i,j = Cov(SNk,i,S
N
k,j) = γB(φi, φj) + γρε (φi, φj).

Due to model assumptions, the expectation of SN,ρk is µN . Within Model
(20), its maximum-likelihood estimate is given by the empirical mean

SN,ρK =
1

K

K∑
k=1

SN,ρk .

Now, let vNµ be the orthogonal projection of the Riesz representative vµ of the

template µ into V N , and µN = 〈vNµ , ·〉V its corresponding linear form. According

to Section 3.1, the projection vNµ may be estimated by

v̂N,ρK =
∑
m∈IN

(∑
n∈IN

hNm,nSN,ρK,n

)
φm, (21)

where terms SN,ρK,n are components of the random vector SN,ρK , and hNi,j solutions

of Equation (17). The linear form µN may be accordingly estimated by

µ̂N,ρK (w) = 〈v̂N,ρK , w〉V ,∀w ∈ V. (22)

3.3. Consistency

Next, we establish the consistency of template estimates built in Section 3.2.

Theorem 2 (Consistency of template estimates). Under Assumptions 1, 2

and 3, the random linear forms µ̂N,ρk converge to the template µ in the space
(V ∗E , ‖.‖V ∗E ) as N and K tend to +∞ and ρ tends to 0, i.e.

lim
ρ→0

K,N→∞

sup
‖w‖V ≤1

√
E
[
|µ̂N,ρk (w)− µ(w)|2

]
.
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Proof. Let us first introduce

ṽNK =
∑
m∈IN

(∑
n∈IN

hNm,nSK,n

)
φm, (23)

where SK,n is the average over the sample of continuous surface representatives
at φn

SK,n =
1

K

K∑
k=1

Sk(φn),

and hNi,j are solutions of Equation (18). This random element ṽNK would be an
estimate of the Riesz representative vµ of the template µ if continuous surface
representatives Sk were directly observed. We also define the random linear form

µ̃NK(w) = 〈ṽNK , w〉V ,∀w ∈ V. (24)

Using a triangular inequality, we obtain

‖µ̂N,ρK − µ‖V ∗E ≤ ‖µ̂
N,ρ
K − µ̃NK‖V ∗E + ‖µ̃NK − µ‖V ∗E . (25)

We first show the convergence of the first term of the right-hand side of this
inequality. We notice that

‖µ̂N,ρK − µ̃NK‖
2
V ∗E

= sup
‖w‖V ≤1

E
[
|〈v̂N,ρK − ṽNK , w〉V |

2

]
= sup
‖w‖V ≤1

E
[
|〈v̂N,ρK − ṽNK , w

N 〉V |2
]
.

Setting wN =
∑
i∈IN

αNi φi, we have

‖µ̂N,ρK − µ̃NK‖
2
V ∗E

= sup
‖w‖V ≤1

∑
s∈IN

∑
t∈IN

αNs α
N
t

∑
j∈IN

∑
m∈IN

E[ερK(φm) ερK(φj)]
∑
i∈IN
〈φs, φi〉V hNi,j

∑
l∈IN
〈φt, φl〉V hNl,m

= sup
‖w‖V ≤1

∑
s∈IN

∑
t∈IN

αNs α
N
t E[ερK(φs) ε

ρ
K(φt)] = sup

‖w‖V ≤1
E
[(
ερK(wN )

)2]
.

Therefore,

‖µ̂N,ρK − µ̃NK‖
2
V ∗E
≤ sup
‖w‖V ≤1

E
[(
ερK(w)

)2]
.

Hence, the convergence of ‖µ̂N,ρK − µ̃NK‖2V ∗E to 0 follows from Theorem 1.

We now show the convergence of the second term of the right-hand side of
Equation (25). Using a triangular inequality, we have

‖µ̃NK − µ‖V ∗E ≤ ‖µ̃
N
K − µ

N‖V ∗E + ‖µN − µ‖V ,



Coulaud and Richard/Statistical Analysis of Surfaces 12

where µN is the orthogonal projection of µ into V̂ N,∗. By definition of the
projection, the second term of the right-hand side of the inequality converges
to 0 as N tends to +∞. Hence, it suffices to show the convergence of the first
term.

Let be K ∈ N∗. We have

‖µ̃NK − µ
N‖V ∗E =

√
sup
‖w‖V ≤1

E
[
(µ̃NK(w)− µN (w))2

]
=

√
sup
‖w‖V ≤1

Var
(
µ̃NK(w)

)
,

since µN (w) = E
[
µ̃NK(w)

]
,∀w ∈ V . Yet, as the sequence (Sk), 1 ≤ k ≤ K is

i.i.d.,

Var
(
µ̃NK(w)

)
=

1

K
Var

(
µ̃N1 (w)

)
=

1

K
E
[
(µ̃N1 (w)− µN (w))2

]
.

We now use the following proposition proved in Appendix.

Proposition 4. For any N > 0,

sup
‖w‖V ≤1

E
[
(µ̃N1 (w)− µN (w))2

]
≤ ‖γB‖2V ∗∗ ,

where ‖γB‖2V ∗∗ is the norm of the bilinear form γB defined by

‖γB‖V ∗∗ = sup
w∈V,|v|V =1

|γB(w,w)|.

Due to Proposition 4, we have

‖µ̃NK − µ
N‖V ∗E =

√
1

K
sup
‖w‖V ≤1

E
[
(µ̃N1 (w)− µN (w))2

]
≤ ‖γ

B‖V ∗∗√
K

.

Hence, ‖µ̃NK − µN‖V ∗E converges to 0 as K tends to +∞. This concludes the
proof.

4. Discussion

In the continuation of the work of Glaunès and Vaillant [23], we proposed a
stochastic framework where surfaces are represented by some random linear
forms defined on a Hilbert space of mappings from R3 into itself. We further con-
structed an observation model where observed surfaces are viewed as variations
of a same template representating an average of surfaces over an homogeneous
population. These variations accounted not only for a population variability but
also for discretization errors due to acquisition. Using the observation model, we
presented a methodology to estimate the template from a population sample.
This methodology is based on an original procedure to approximate random
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linear forms in finite-dimensional subspaces. We eventually established a consis-
tency result ensuring that the template can be estimated as closely as expected
if the number of observed samples is sufficient and surface discretizations and
approximations are accurate enough.

The approach we use to tackle the template construction departs from the
ones proposed in [12, 21]. Rather than being a simple algorithmic solution to
that issue, it is anchored in a stochastic framework which has a Bayesian in-
terpretation. Furthermore, the method used to approximate the template is
different. In [12, 21], the template is expanded in a basis of kernels centered at
vertices of surface meshes. Hence, it depends on the discretization of observed
surfaces. In particular, the template representation may become too large when
observed surfaces are numerous or discretized in an accurate way. Moreover, ker-
nels depend on a scale parameter that restrict scales at which surfaces can be
analyzed. By contrast, our approximation is based on a functional basis which
is independent on surface meshes and can be easily specified in a multiscale
fashion.

The observation model we used did not account for possible geometric defor-
mations of the template. When such deformations are included in the model,
maximum-likelihood estimates of the template are not explicit anymore. How-
ever, as shown for images in [2, 1, 20], they can be approached using an EM-
algorithm where likelihood terms are iteratively approximated with a stochastic
procedure. In a future work, the present study could serve as a background to
design such an EM-algorithm for surfaces and analyze its convergence.

In this paper, the estimation was focused on the template while the rest of the
model was assumed to be known. Hence, we plan to extend the estimation to the
autocovariance of model variations. In our framework, such an estimation could
be obtained using a same maximum-likelihood approach as the one used for the
template. It would enable to fully adapt the model to observed data. It would
also path the way to the analysis of variation modes of a surface population.
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framework for dense deformable template estimation. J. R. Stat. Soc. Ser.
B. Stat. Methodol., 69(1):3–29, 2007.

[2] S. Allassonnière, J. Bigot, Glaunès, et al. Statistical models for deformable
templates in image and shape analysis. Ann. Math. Blaise Pascal, 20(1):1–
35, 2013.

[3] S. Allassonnière, E. Kuhn, A. Trouvé, et al. Construction of bayesian de-
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Appendix A: Proof of supporting propositions

Proof of Proposition 1. We have the identity

‖Nk(u)−Nρ
m,k‖R3 = ‖Nρ

m,k(J(Hρ
m,k)− I)‖R3 .

This yields
‖Nk(u)−Nρ

m,k‖R3 ≤ ‖J(Hρ
m,k)− I‖L(R3,R3).

We conclude the proof using Assumption 1.

Proof of Proposition 2. This results from the uniform continuity of the function
y → K0(y, ·) on the compact D and Assumption 1.

Proof of Proposition 3. Let P be a polynomial of order q defined on Rp, and K
a compact subset of Rp. Then, there exists C > 0 such that, for all x ∈ K, ε > 0
with x+ ε ∈ K,

|P (x+ ε)− P (x)| ≤ C
q−1∑
k=1

‖ε‖k.

We get the result by applying this inequality to the determinant Det(JHρm(u)),
which is a polynomial function of matrix coefficients.

Proof of Proposition 4. Let w be in V and wN =
∑
i∈IN

αNi φi its orthogonal pro-

jection on V N . One has

E
[(
µ̃N1 (w)− µN (w)

)2]
=
∑
m∈IN

∑
n∈IN

αNmα
N
n Cm,n,

where
Cm,n = E

[(
µ̃N1 (φm)− µN (φm)

)(
µ̃N1 (φn)− µN (φn)

)]
.

According to Model (10), Cm,n = E[BN1 (φm)BN1 (φn)], where BN1 is the or-
thogonal projection ofB1 into V N . Using the Riesz representative

∑
s∈IN

∑
t∈IN

hNs,tB1(φt)φs

of BN1 , we thus obtain

Cm,n =
∑
i∈IN

∑
j∈IN

∑
s∈IN

∑
t∈IN

(
hNi,jh

N
s,t〈φi, φm〉V 〈φs, φn〉V E [B1(φj)B1(φt)]
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Since
∑
i∈IN

hNi,j〈φi, φm〉V = δj,m, it follows that

Cm,n =
∑
j∈IN

∑
t∈IN

γBj,tδj,mδt,n = γBm,n.

Therefore,

E
[(
µ̃N1 (w)− µN (w)

)2]
=
∑
i∈IN

∑
j∈IN

αNi α
N
j γ

B
i,j .

Hence,

E
[(
µ̃N1 (w)− µN (w)

)2]
≤ ‖w‖2V ‖γB‖V ∗∗ .


