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Dynamic Analysis and Reduction of a Cyclic
Symmetric System Subjected to Geometric
Nonlinearities
Adrien MARTIN1*, Fabrice THOUVEREZ1

Abstract
The search for ever lighter weight has become a major goal in the aeronautical industry as it has a direct impact
on fuel consumption. It also implies the design of increasingly thin structures made of sophisticated and flexible
materials. This may result in nonlinear behaviours due to large structural displacements. Stator vanes can be
affected by such phenomena, and as they are a critical part of turbojets, it is crucial to predict these behaviours
during the design process in order to eliminate them.
This paper presents a reduced order modelling process suited for the study of geometric nonlinearities. The
method is derived from a classical Component Mode Synthesis with fixed interfaces, in which the reduced
nonlinear terms are obtained through a STEP procedure using an adapted basis composed of linear modes
completed by modal derivatives. The whole system is solved using a harmonic balance procedure and a classic
iterative nonlinear solver. The application is implemented on a schematic stator vane model composed of
nonlinear Euler-Bernoulli beams under von Kàrmàn assumptions.
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Introduction
The aim of this paper is to describe the analysis of periodic structures. They have already been studied for a long time [17] by
focusing on their symmetry. The context of non-conservative nonlinearity, such as friction, is well known with the use of several
vibration mitigation devices on the bladed disks. An overview of the methods used for the study of such phenomena has been
proposed recently by Krack [11]. The scope of polynomial nonlinearity was considered in the 1990s by Samaranayake [15],
Vakakis [19], and more recently by Georgiades [4] and Grolet [5], in the context of nonlinear normal modes (NNMs) [9], as
they exhibited bifurcations in the case of simplified models composed of Duffing oscillators.

It is necessary to reduce such structures due to the size of the finite element (FE) model. Symmetry can be used to
considerably reduce size by considering a reference sector and using it to determine the response of the other sectors [17]. The
study proposed herein deals with a system subjected to nonlinear effects which means that the response of the structure can no
longer be expressed with independent diameters, even in the case of a system with natural cyclic symmetry. However, it is
possible to use classical Component Mode Synthesis (CMS) such as the Craig & Bampton [3] method and consider each sector
as a substructure. Paired with NNMs, this method has been used for the study of friction nonlinearity [10, 8], and in the case of
cubic nonlinearity [1].

This paper proposes an original coupling of several methods used for the study of nonlinear systems. The nonlinear effects
of each substructure are reduced by using linear normal modes (LNMs) completed with modal derivatives (MD) [7, 16]. The
reduced nonlinear stiffnesses associated with the basis are determined using a STiffness Evaluation Procedure (STEP) [13].
With this basis we are able to derive an original nonlinear CMS which can be used for our simluations. The originality of
this work also lies in its application to a periodic structure. Indeed, the innovative approach proposed allows determining the
nonlinear response of such specific structures within a reasonable computation time, demonstrating the improvement it provides.
The model studied is a periodic stator vane modeled with nonlinear Euler-Bernoulli beams in conformity with the von Kàrmàn
simplification of the Green-Lagrange tensor.

1. Reduction Procedure
The study is carried out on a n dimensional system of nonlinear equations

Mẍ(t) + Cẋ(t) + K x(t) + fnl(x(t)) = fext(t) (1)

where x(t) is the vector of unknowns, i.e. the degrees of freedom (DOFs); M, C and K refer to the mass, damping and
linear stiffness matrices; fnl(x(t)) describes the nonlinear forces due to the geometric effects and thus depends only on the
displacements of the structure; and fext(t) is the vector of external forces applied on the structure.

1.1 Fixed-interface Component Mode Synthesis: Craig-Bampton reduction
Let us consider the underlying linear system of Eqn. (1), written as

Mẍ(t) + Cẋ(t) + K x(t) = fext(t) (2)

where the nonlinear forces have been omitted.
The reduction method presented herein lies on a classical Craig-Bampton procedure [3]. Thus, the matrices are partitioned

into internal (x i) and boundary (xb) DOFs, and the Eqn. (2) can be re-written with respect to the ordered DOFs y

[
M ii M ib
Mbi Mbb

]
ÿ(t) +

[
C ii C ib
Cbi Cbb

]
ẏ(t) +

[
K ii K ib
Kbi Kbb

]
y(t) =

[
fext

i
fext

b

]
(3)

Each substructure is then reduced with the fixed-interface eigenvectors Φ
j
i associated with the internal DOFs (Eqn. (4)) and

the static modes Ψ
j
b, with the coupling between the substructures obtained by successively applying a unitary displacement on

one of the boundary DOF while the others are clamped (Eqn. (5)).(
K j

ii − ω
2M j

ii

)
Φ

j
i = 0 (4)

Ψ
j
b = −

[
K j

ii

]−1
K j

ib (5)
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The transformation from the physical coordinates y(t) to the reduced coordinates z(t) is done using matrix TCB

y(t) =


x1

i (t)
...

xNS
i (t)

xb(t)

=


Φ

1
i Ψ

1
b

. . .
...

Φ
NS
i Ψ

NS
b

Ib




q1
i (t)
...

qNS
i (t)

xb(t)

= TCB z(t) (6)

Thus, the projection of Eqn. (3) onto the subspaces spanned by TCB leads to the reduced system

MCB z̈(t) + CCB ż(t) + KCB z(t) = fext
CB(t) (7)

where ACB = Tᵀ
CB ATCB for the matrices, and aCB = Tᵀ

CB a for the vectors.

1.2 Computation of the reduced nonlinear terms
1.2.1 Formulation and hypothesises
Two hypothesises are made to extend the CMS procedure to the nonlinear forces. The first one, already used in the context of
polynomial nonlinearity [1, 14], assumes that the static modes, and thus the DOFs associated with them, remain linear. It has
shown its reliability in the framework of Duffing oscillators [1, 14]. The second hypothesis assumes that the nonlinear terms
depend only on the reduced coordinates associated with the internal modes. This results in expressing the reduced nonlinear
forces as

fnl
CB(z(t)) =


[
Φ

1
i
]ᵀ f1,nl (

Φ
1
i q1

i (t)
)

...[
Φ

NS
i

]ᵀ
fNS,nl

(
Φ

NS
i qNS

i (t)
)

0

 (8)

1.2.2 Completing the internal modes: modal derivatives
The basis used for the projection of the nonlinear terms is critical for the precision of the reduction. Some of them have already
been studied and used. LNMs have shown their capacities to take into account the membrane-flexion coupling [12] induced by
the nonlinearities, but they require numerous vectors to do so. Regarding the procedure for projecting the nonlinear terms onto
the basis presented further on, it must be kept as small as possible. Thus, the choice was made to use modal derivatives [7, 16],
due to their capacities to take into account coupling effects along with LNMs. Their mathematical origin lies in the fact that
NNMs depend on the amplitude of the DOFs. Using a Galerkin procedure, the solution can be developed by applying Taylor’s
expansion

x(q) = Φ(q)q

= x(q = 0) +
r

∑
k=1

∂x
∂qk

∣∣∣∣
q=0

qk +
1
2

r

∑
k,l=1

∂ 2x
∂qk∂ql

∣∣∣∣
q=0

qkql
(9)

Identifying each term in Eqn. (9)

∂x
∂qk

∣∣∣∣
q=0

= Φk +
r

∑
p=1

∂Φp

∂qk

∣∣∣∣∣
q=0

qp

= Φk

∂ 2x
∂qk∂ql

∣∣∣∣
q=0

=
∂Φk

∂ql
+

∂Φl

∂qk
+

r

∑
p=1

∂ 2Φp

∂qk∂ql

∣∣∣∣∣
q=0

qp

=
∂Φk

∂ql
+

∂Φl

∂qk

= ∂Φkl

(10)

allows writing the solution naturally as a sum of a set of LNMs and modal derivatives.

x(q) =
[
Φ ∂Φ

] [q
p

]
(11)
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where p refers to the unified variables qkql associated with the MDs.
The computation of the MDs can be performed in several ways [16]. Analytic formulas are proposed which take the

mass into account or not and they are well-suited for simple problems where the jacobian of the nonlinear terms is known. A
numerical solution is also proposed that relies on a finite difference method between two eigenvalue problems (Eqn. (12)):
the LNMs of the structure around an equilibrium position Φ, x = 0 in our case, which is not necessarily a stable equilibrium
position; and the LNMs of the structure deformed along one of the previous LNMs Λ(Φk) and which take into account the
nonlinear effects, i.e. computed using the tangent stiffness.

∂Φk

∂ql
=

Φk − Λk(δhl Φl)

δhl
(12)

This method is particularly well-adapted to the computation of MDs using a commercial FE solver.

1.2.3 Projection of the nonlinear forces onto the basis : STEP procedure
The projection of the nonlinear forces can be time-consuming as it is necessary to re-build the solution vector, construct the
nonlinear terms and then project them onto the reduction basis. One solution is to estimate the reduced stiffnesses associated
with the projection basis a priori, and compute the nonlinear forces directly as proposed by the STiffness Evaluation Procedure
(STEP) [13].

Integrating the Green-Lagrange tensor in the FE method [20] leads to formulating the nonlinear internal forces as a third
degree polynomial

f tot
p (x) =

n

∑
k=1

Kpk xk +
n

∑
k=1

n

∑
l=k

Kq
pkl xk xl +

n

∑
k=1

n

∑
l=k

n

∑
m=l

Kc
pklm xk xl xm (13)

where Kq and Kc indicate the quadratic and cubic stiffness matrices. Projecting Eqn. (13) onto the basis Φ leads to the reduced
internal forces

f tot
red,p(x) = Φ

ᵀ
p f tot(Φq)

=
r

∑
k=1

βpk qk +
r

∑
k=1

r

∑
l=k

β
q
pkl qk ql +

r

∑
k=1

r

∑
l=k

r

∑
m=l

β
c
pklm qk ql qm

(14)

where β , β
q and β

c are the reduced linear, quadratic and cubic stiffness matrices. The method proposed by Muravyov [13]
allows determining the reduced stiffnesses through several static loads along linear combinations of vectors of the basis. For
example, to compute the terms of the form βpi, β

q
pii and β c

piii, at least three loadings are required along the vector Φi at different
amplitudes, providing the necessary equations (Eqn. (15)). Note that β can be obtained simply by projecting the linear stiffness
K onto the basis Φ. Similarly, β

q
pij, β c

pijj and β c
pii j are obtained through loadings along hiΦi + h jΦ j with differents hi and h j

(Eqn. (16)), and β c
pi jk with hiΦi + h jΦ j + hkΦk (Eqn. (17)). In all the cases i 6 j 6 k.

f tot
red,p(hiΦi) = Φ

ᵀ
pf tot(hiΦi)

= βpi hi +β
q
pii h2

i +β
c
piii h3

i
(15)

Φ
ᵀ
p f tot(hiΦi +h jΦ j) = βpihi +β

q
pii h2

i +β
c
piiih

3
i

+βp jh j +β
q
p j jh

2
j +β

c
p j j jh

3
j

+β
q
pi jhih j +β

c
pii jh

2
i h j +β

c
pi j jhih2

j

(16)

Φ
ᵀ
pf tot(hiΦi +h jΦ j +hkΦk) = βpihi +β

q
piih

2
i +β

c
piiih

3
i

+βp jh j +β
q
p j jh

2
j +β

c
p j j jh

3
j

+βpkhk +β
q
pkkh2

k +β
c
pkkkh3

k

+β
q
pi jhih j +β

c
pii jh

2
i h j +β

c
pi j jhih2

j

+β
q
pikhihk +β

c
piikh2

i hk +β
c
pikkhih2

k

+β
q
p jkh jhk +β

c
p j jkh2

jhk +β
c
p jkkh jh2

k

+β
c
pi jkhih jhk

(17)
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Prediction from
previous point

ẑ = ẑinit

r = ZCB(ω)ẑ+ f̂
nl
CB (ẑ)− f̂

ext
CB

ẑ

r < ε

Prediction to
next point

z(t) = F ẑ

f̂
nl
CB (ẑ) = F f nl

CB (z(t))

yes

no
ẑ = ẑiter+1

Evaluation of f̂
nl
CB (ẑ) :

AFT Procedure Nonlinear Solver

f̂
nl
CB

Eq. 8

Figure 1. HBM procedure of the reduced system

2. Frequency Analysis: the Harmonic Balance Method (HBM)

The complete and reduced solutions of Eqn. (1) are studied in the framework of a frequency analysis. Their limit cycles are
searched by assuming a solution of the form

x(t) = a0 +
Nh

∑
k=1

(ak cos(kωt) + bk sin(kωt)) (18)

Substituting Eqn. (18) in the general equation, complete Eqn. (1) or reduced Eqn. (7), and projecting it onto the basis of the
harmonic function with respect to the adapted scalar product

〈 f (t),g(t)〉 = ω

π

∫ 2π
ω

0
f (t)g(t)dt (19)

leads to the general equation of the HBM

Z(ω) x̂ + f̂
nl
(x̂) = f̂

ext
(20)

where x̂, f̂
nl

and f̂
ext

are the Fourier coefficients of x, f nl and f ext, while Z is the dynamic stiffness expressed as

Z =


2K

Z1
. . .

ZNh

 , Zk =

[
K− (kω)2 M kωC
−kωC K− (kω)2 M

]
(21)

The Fourier coefficients of the nonlinear terms are not easily computable analytically, except for very simple systems. Thus,
an Alternating Frequency-Time (AFT) method [2] is used to determine them as it allows computing nonlinear terms regardless
of the nonlinearity involved. The method consists in passing forwards and backwards in the frequency and time domains using
direct (F) and inverse (F) discrete Fourier transformation matrices. A flow chart of the method is presented in (Fig. 1).
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(a) cyclic symmetric model (b) beam representation

L
c

L
bl

W
bl
,t

bl

W
c
,t

c

(c) dimensions of the
reference sector

k

N
c

N
bl

k

k

(d) finite element
representation of the
reference sector

Figure 2. Stator vane model

Table 1. Properties of the reference sector

Lc wc tc Nc Lbl wbl tbl Nbl k
0.1m 0.02m 0.01m 6 0.1m 0.02m 0.002m 30 1e5N.m−1

3. Application

3.1 Presentation of the model
The structure considered for the application of the method proposed is a schematic stator vane composed of 6 blades (•bl) and 2
rings (•c) providing the coupling between the blades (Fig. 2a). A beam model is proposed Fig. 2b, and the repeating sector
is shown in Fig. 2c. The dimensions of the beams representing the blades and the rings are given in (Tab. 1) (Length, width,
thickness), and the finite element discretization in (Fig. 2d, Tab. 1). The springs can be assimilated with locating pins used to
fix the vane on the carter. Thus, the complete model is composed of 726 DOFs.

3.1.1 Nonlinear Euler-Bernoulli theory
The beams are modelled using a classical Euler-Bernoulli theory, with u being the longitudinal displacement, v the transversal
displacement and θ the rotation of the sections.

The general displacements are thus expressed as

u(x,y) =
[

u(x) − yθ(x)
v(x)

]
(22)

The nonlinearities are a consequence of the large strains of the beam, which leads to considering the nonlinear part of the
Green tensor.

ε =
1
2
(∇u + ∇

ᵀu) +
1
2

∇u∇
ᵀu (23)

The constraint along the longitudinal displacement of the model allows applying the von Kàrmàn hypothesis [18] and
simplifying Eqn. (23)

ε = εxx

= u,x − yv,xx +
1
2

v2
,x

(24)

Using Eqn. (24) in the strain energy

Ep =
1
2

∫ L

0

(
ES
(

u2
,x + u,x v2

,x +
1
4

v4
,x

)
+ EIv2

,xx

)
dx (25)

where S = w× t and I =
w× t3

12
, and applying Lagrange’s equations gives the linear and nonlinear stiffness matrices. The

linear mass matrices are determined thanks to the kinetic energy. The material used is a classical steel (E = 210GPa,
ρ = 7800kg/m3).

6



Dynamic Analysis and Reduction of a Cyclic Symmetric System Subjected to Geometric Nonlinearities

1 2 3 4 5 6
Beam number

-2

0

2

am
pl

itu
de

 [m
]
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Figure 3. Mode shapes of the first flexural mode family

Table 2. Pulsations of the first flexural mode family

Nodal diameters 3 2 1 0
Pulsation [rad/s] 6638 6662.3 6676.7 6907.4

3.2 Study of the underlying linear system
3.2.1 Complete system
Let us consider the system described by Eqn. (2). In the case of cyclic symmetry, the system will be subject to simple and
double eigenvalues, characterized by nodal diameter mode shapes [15]. This study focuses on the first flexural mode family of
the blades. The mode shapes are represented in Fig. 3, where the amplitude is taken at the middle of each beam transversally.
Classical results are obtained, with 0 and 3 diameters (as there are 6 sectors) as simple modes and 1 and 2 diameters as double
modes.

The forced response of the system is computed in order to account for all the diameters. Thus, the excitation is applied
at the middle of one of the beams transversally. The excited beam is numbered 1, the other following beams are numbered
consecutively. A Rayleigh damping is applied that takes into account the mass matrix and a damping ratio of 0.1% on the 3
diameter modes. The result is plotted in Fig. 4. The graph represents the transversal amplitude at the middle of each beam.

The 0 diameter mode is clearly identified with all the beams having the same amplitude (ω ≈ 6900rad/s). The other
diameter modes, especially the 3 diameters (1st peak), do not appear so clearly, certainly due to the proximity of those 3 modes.

3.2.2 Linear Craig & Bampton reduction
As the simulations are conducted for the first flexural mode family, the reduction of each substructure is performed with the first
flexural mode Φ1F. In order to process the nonlinearities in the followings parts, a modal derivative is added to the LNM. To
simulate a simple system like a beam, the modal derivative ∂Φ11 is sufficient, in addition to the LNM, to take the nonlinear
effects into account [6]. Therefore the basis for the internal modes of the substructures is Φ i =

[
Φ1F ∂Φ11

]
. The reduction

allows reducing the number of unknowns from 726 to 48 (6 × 2 internal modes plus 2 × 3 statics modes for each of the 6
junctions between substructures), equivalent to 93.4%. The modal derivative ∂Φ11 was computed with δh = 1e−3 (Eqn. (12)).

The results of the linear reduction (Fig. 5 and Tab. 3) show good correlation with the complete model with less than 7e−3%
error on the frequencies. Thus, as this basis shows its reliability in the linear context, it will be used again in the nonlinear
reduction procedure.

3.3 Simulation of the full nonlinear system
Let us assume that only the thin blades are subjected to nonlinearities. As the rings are thick compared to the blades, they do
not undergo such effects.

Table 3. Error on the linear reduction

Nodal diameters 3 2 1 0
Reference puls. [rad/s] 6638 6662.3 6676.7 6907.4
Reduced puls. [rad/s] 6638.1 6662.3 6676.7 6907.9
Relative error [%] 5.4e−4 1.4e−4 1.7e−5 6.6e−3
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Figure 4. Linear forced response of the system for F=1N
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Figure 5. Comparison of the results obtained with reduction on beam 1
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Figure 6. Comparison of the results obtained with 3 and 5 harmonics in the HBM on the beam 1 with F=1.1N

The solutions presented in Fig. 6 are computed on the full system with respect to the HBM. The solutions for 3 and 5
harmonics are compared and they are perfectly superposed, the 3 harmonics solution can thus be considered as harmonically
converged. In the following, the solutions presented will be computed with 3 harmonics.

In order to present the global results, the following outcomes are plotted in a pulsation-energy diagram [4, 5] such that

E(x) =

√√√√‖a0‖2 +
Nh

∑
k=0

(
‖ak‖2 + ‖bk‖2

)
(26)

An example is given in Fig. 7 with responses of the system to several excitations.
As the amplitude of excitation increases, the nonlinearity becomes increasingly visible (Fig. 7). From F=0.6N, the system

seems to follow a bifurcated branch, like those preesented by Grolet [5]. The time series in Fig. 8b–8c, representing the
transversal amplitude at the middle of each beam as a function of time, clearly highlights that the amplitude is mostly localized
on the excited beam, number 1, in the nonlinear case (Fig. 8b), whereas the linear time response is similar to the 1 diameter
linear mode (Fig. 8c). In addition, still referring to the time series (Fig. 8b), beam 1 is in phase opposition with all the other
beams, which totally breaks the nodal diameter characteristic of the mode (Fig. 3c). In the following, the time series will be
taken at the resonance peak of the 1 diameter mode, for both linear and nonlinear signals.

The behaviours in play demonstrate the usefulness of the study and the need to perform it within an acceptable time.
Although the analysis is performed along a simplified structure, the phenomena exhibited appear at moderate amplitudes and
highlight a strong localisation on the beam 1, clearly showing the limitations of the linear approach and the risks subjected by
the structure.

3.4 Reduction of the model
The basis presented in the linear study is re-utilized for the reduction of the nonlinear system. The whole nonlinear procedure
presented previously is applied, and the nonlinear terms of each substructure are projected using the STEP procedure on the
basis and then assembled along the boundary DOFs. The reduced stiffnesses are computed with hi = 1e−3 and h j = 5e−3

(Eqns. (15–16)) (2 coefficients are needed as there are 2 vectors in the basis). The results of the simulations can be seen in
Fig. 9 and the correlation between the full and the reduced models is quite good, whether for the bifurcated diameter mode or
the unbifurcated ones (Figs. 9a). The behaviour of the structure around the bifurcation is also well reproduced (Figs. 9b–9c)
compared to the full nonlinear response. The computation times are presented in Tab. (4) and demonstrate a significant gain
thanks to the reduction, more than 99%. It is noteworthy that the whole offline computation, including the computation of the
linear mode, the modal derivative and the STEP coefficients, lasts less than 0.2s.

3.5 Parametric study: impact of the rings
Thanks to the capacities of the method, a parametric study is performed on the thickness of the rings. The thickness was chosen
in the range

[
−40% +40%

]
of the initial model. The results in terms of forced responses and time series of the 1 diameter

mode are visible in Fig. 10.
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Figure 7. Pulsation-Energy diagram of the full nonlinear system for several forcing amplitudes (Linear: - -, Nonlinear: 0.1N,
0.3N, 0.6N, 0.8N, 1.1N)
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Figure 8. Highlighting the localization on the 1 diameter mode for F=1.1N
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reduced nonlinear system F=0.6N

Figure 9. Comparison of the full and reduced models

Table 4. Gain in time of the reduction

F [N] Full [s] Reduced [s] Gain in time [%]
0.6 11927 89.97 99.246
0.8 9264 44.4 99.5
1.1 10243 73.2 99.286
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(c) tc = 0.8cm (d) tc = 0.8cm
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Figure 10. Influence of the thickness of the rings (Linear: - -, Nonlinear: 0.1N, 0.5N, 0.8N, 1.1N)

The first impact of the rings’ thickness on the structure is observable on the linear frequencies of the diameter modes.
Indeed, the thinner the rings are, the farther the frequencies are from each other due to the strength of the coupling performed
by the rings.

This also has a clear impact on the nonlinear response of the system. For a weak coupling, i.e. tc = 0.6cm, the system
appears to show no bifurcation, as highlighted in Fig. 10a. This is supported by the time series in Fig. 10b where the 1 diameter
mode appears clearly. For stronger coupling, tc > 0.6cm, the 1 diameter mode reaches the bifurcated branch, as shown in
Figs. 10c–10e–10g and the phase opposition of the beam 1 with the others (Figs. 10d–10f–10h). For approximately the same
energy level, the bifurcation of the 1 diameter mode is thus expected to occur for a coupling thickness between 0.6cm and
0.8cm.

The time series Figs. 10b–10d–10f–10h also leads to a configuration where the amplitude localization is particularly marked
for tc = 0.8cm. In this case, the risk of reaching the fatigue limit is more significant than the others, highlighting the impact
that such nonlinear localization phenomena can have on the design process.

Conclusion
This work was devoted to the presentation of a reduction procedure suited to the study of structures subjected to geometric
nonlinearities. The method is based on a component mode synthesis, completed by the use of modal derivatives and a stiffness
evaluation procedure in order to reduce the nonlinear terms. The application was tested on a schematic stator vane composed
of nonlinear beams. The results showed that the procedure is efficient in taking into account the nonlinear behaviours of the
structure, especially the specific dynamical effects associated with cyclic symmetry such as energy localization. What is more it
provides an interesting gain in time.

Besides the reduction procedure, this paper illustrated the extreme behaviours that a cyclic system can be exposed to. The
nonlinear effects exhibited strong localizations on the structure at low amplitudes which must be avoided to ensure the integrity
of the components. The method proposed here allowed performing this study in accordance with the imperative of reducing
design time, for example, with respect to the thickness of the rings, and highlighting the presence or not of localization and its
significance.

In further works, it would be interesting to perform such a study with NNMs and compare it with the results of the forced
responses presented in this paper. This would allow predicting the bifurcation points more easily in a design procedure. Also,
the extension of the method to a more realistic and complex system, such as a 3D bladed disk, is planned to assess its real
potential. Lastly, coupling this method with that proposed by Joannin [8] to incorporate friction non-linearity in the model will
also be considered.
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Nomenclature
NNM Nonlinear Normal Mode.
FE Finite Element.
CMS Component Mode Synthesis.
LNM Linear Normal Mode.
MD Modal Derivative.
STEP STiffness Evaluation Procedure.
DOF Degree Of Freedom.
AFT Alternating Frequency-Time.
HBM Harmonic Balance Method.
x(t) Vector of unknowns in the physical coordinates.
y(t) Vector of unknowns ordered along the internal and boundary DOFs.
z(t) Vector of unknows in the reduced coordinates.
fext(t), fnl(t) External and nonlinear forces.
Φ

k
i , Ψ

k
b Internal eigenvectors and static modes of the k th sub-structure.

Λ LNMs of the deformed structure.
ak, bk Fourier coefficients of the solution.
•̂ Vector of Fourier coefficients.
M, C, K Mass, damping and linear stiffness matrices.
TCB Transformation matrix of the Craig-Bampton Method
Kq, Kc Quadratic and cubic stiffness matrices.
β , β

q, β
c Linear, quadratic and cubic reduced stiffness matrices.

Z Dynamic stiffness matrice.
ε Green-Lagrange tensor.
NS Number of sectors.
Nh Number of harmonics.
ω Excitation pulsation.
L, w, t Length, width and thickness of the beams.
Nc, Nbl Number of elements in the FE model.
u, v, θ Displacements in the Euler-Bernoulli formulation.
E, S, I, ρ Young’s modulus, section, moment of inertia and density.
• i, •b Subscripts associated with internal and boundary values.
•c, •bl Subscripts associated with ring and blade values.
• ,x Differentiation with respect to variable x.
∇ Nabla differential operator.
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