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. Introduction

Mathematical modeling refers to the use of mathematical language to simulate the behaviour of a ‘real
orld’ (practical) system. Its role is to provide a better understanding and characterisation of the system.
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Theory is useful for drawing general conclusions from simple models, and computers are useful for drawing
specific conclusions from complicated models (Bender, 2000 [1]). In the theory of mechanical vibrations,
mathematical models—termed structural models—are helpful for the analysis of the dynamic behaviour of the
structure being modeled.

The demand for enhanced and reliable performance of vibrating structures in terms of weight, comfort,
safety, noise and durability is ever increasing while, at the same time, there is a demand for shorter design
cycles, longer operating life, minimisation of inspection and repair needs, and reduced costs. With the advent
of powerful computers, it has become less expensive both in terms of cost and time to perform numerical
simulations, than to run a sophisticated experiment. The consequence has been a considerable shift toward
computer-aided design and numerical experiments, where structural models are employed to simulate
experiments, and to perform accurate and reliable predictions of the structure’s future behaviour.

Even if we are entering the age of virtual prototyping (Van Der Auweraer, 2002 [2]), experimental testing

and system identification still play a key role because they help the structural dynamicist to reconcile numerical
predictions with experimental investigations. The term ‘system identification’ is sometimes used in a broader
context in the technical literature and may also refer to the extraction of information about the structural
behaviour directly from experimental data, i.e., without necessarily requesting a model (e.g., identification of
the number of active modes or the presence of natural frequencies within a certain frequency range). In the
present paper, system identification refers to the development (or the improvement) of structural models from
input and output measurements performed on the real structure using vibration sensing devices.

Linear system identification is a discipline that has evolved considerably during the last 30 years (Ljung, 1987
[3]; Soderstrom and Stoica, 1989 [4]). Modal parameter estimation—termed modal analysis—is indubitably the
most popular approach to performing linear system identification in structural dynamics. The model of the
system is known to be in the form of modal parameters, namely the natural frequencies, mode shapes and
damping ratios. The popularity of modal analysis stems from its great generality; modal parameters can
describe the behaviour of a system for any input type and any range of the input. Numerous approaches have
been developed for this purpose: Ibrahim time domain method (Ibrahim and Mikulcik, 1973 [5]), eigensystem

realisation algorithm (Juang and Pappa, 1985 [6]), stochastic subspace identification method (Van Overschee
and De Moor, 1996 [7]), polyreference least-squares complex frequency domain method (Peeters et al., 2004 [8])
to cite a few of them. A description of modal analysis is not within the scope of this paper; the interested
reader may consult (Heylen et al., 1997 [9]; Maia and Silva, 1997 [10]; Ewins, 2000 [11]) for further details. It is,
however, important to note that modal identification of highly damped structures or complex industrial
structures with high modal density and large modal overlap are now within reach. Unification of the
theoretical development of modal identification algorithms was attempted in (Allemang and Brown, 1998 [12];
Allemang and Phillips, 2004 [13]), which is another sign of the maturity of this research field.

The focus in this overview paper is on structural system identification in the presence of nonlinearity.
Nonlinearity is generic in Nature, and linear behaviour is an exception. In structural dynamics, typical sources
of nonlinearities are:
�
 Geometric nonlinearity results when a structure undergoes large displacements and arises from the
potential energy. An illustration is the simple pendulum, the equation of motion of which is
€yþ o2

0 sin y ¼ 0; the nonlinear term o2
0 sin y represents geometric nonlinearity, since it models large

angular motions. Large deformations of flexible elastic continua such as beams, plates and shells are also
responsible for geometric nonlinearities (see, e.g., (Amabili and Paidoussis, 2003 [14]; Nayfeh and Pai, 2004
[15])). An example of a test rig presenting a geometric nonlinearity is shown in Fig. 1. A cantilever beam is
connected at its right end to a thin, short beam that exhibits a geometric nonlinearity when large deflections
occur.

�
 Inertia nonlinearity derives from nonlinear terms containing velocities and/or accelerations in the equations

of motion, and takes its source in the kinetic energy of the system (e.g., convective acceleration terms in a
continuum and Coriolis accelerations in motions of bodies moving relative to rotating frames).

�
 A nonlinear material behaviour may be observed when the constitutive law relating stresses and strains is

nonlinear. This is often the case in foams (White et al., 2000 [16]; Schultze et al., 2001 [17]; Singh et al., 2003
[18]) and in resilient mounting systems such as rubber isolators (Richards and Singh, 2001 [19]).
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Fig. 1. Cantilever beam connected to a thin, short beam (ECL benchmark; COST Action F3): (a) experimental fixture; (b) close-up of the

connection.
�
 Damping dissipation is essentially a nonlinear and still not fully modeled and understood phenomenon.
The modal damping assumption is not necessarily the most appropriate representation of the physical
reality, and its widespread use is to be attributed to its mathematical convenience. Dry friction effects
(bodies in contact, sliding with respect to each other) and hysteretic damping are examples of nonlinear
damping (see, e.g., Caughey and Vijayaraghavan, 1970 [20]; Tomlinson and Hibbert, 1979 [21]; Sherif and
Abu Omar, 2004 [22]; Al-Bender et al., 2004 [23]). It is important to note that dry friction affects the
dynamics especially for small-amplitude motion, which is contrary to what might be expected by
conventional wisdom. For example, the helical wire rope isolators depicted in Fig. 2 are characterised by a
softening behaviour (Juntunen, 2003 [24]) with friction within the wire rope, and change of the wire loop
geometry when loaded; for this system, the resonant frequency shifts down as the level of excitation is
raised, which is a clear indication of nonlinear behaviour.

�
 Nonlinearity may also result due to boundary conditions (for example, free surfaces in fluids, vibro-impacts

due to loose joints or contacts with rigid constraints, clearances, imperfectly bonded elastic bodies), or
certain external nonlinear body forces (e.g., magnetoelastic, electrodynamic or hydrodynamic forces).
Clearance and vibro-impact nonlinearity possesses non-smooth force–deflection characteristic as shown in
Fig. 3 and generally requires a special treatment compared with other types of nonlinearities (Babitsky and
Krupenin, 2001 [25]).

Many practical examples of nonlinear dynamic behaviour have been reported in the engineering literature.
In the automotive industry, brake squeal which is a self-excited vibration of the brake rotor related to the
friction variation between the pads and the rotor is an irritating but non-life-threatening example of an
undesirable effect of nonlinearity (Rhee et al., 1989 [26]). Many automobiles have viscoelastic engine mounts
which show marked nonlinear behaviour: dependence on amplitude, frequency and preload. In an aircraft,
3



Fig. 3. Impacting beam: (a) experimental fixture; (b) measured restoring force.
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Fig. 2. Helical wire rope isolators (VTT benchmark; COST Action F3): (a) experimental fixture; the isolators are mounted between the

base mass of an electrodynamic shaker and a load mass; (b) measured restoring force.
besides nonlinear fluid–structure interaction, typical nonlinearities include backlash and friction in control
surfaces and joints, hardening nonlinearities in the engine-to-pylon connection, and saturation effects in
hydraulic actuators. In (Von Karman, 1940 [27]) a commercial airplane is described in which the propellers
induced a subharmonic vibration of order 1=2 in the wings which produced a subharmonic of order 1=4 in the
rudder. The oscillations were so violent that the effects on the airplane were catastrophic (Nayfeh and Mook,
1979 [28]). In mechatronic systems, sources of nonlinearities are friction in bearings and guideways, as well as
backlash and clearances in robot joints. In civil engineering, many demountable structures such as
grandstands at concerts and sporting events are prone to substantial structural nonlinearity as a result of
looseness of joints. This creates both clearances and friction and may invalidate any linear model-based
simulations of the behaviour created by crowd movement. Nonlinearity may also arise in a damaged structure:
fatigue cracks, rivets and bolts that subsequently open and close under dynamic loading or internal parts
impacting upon each other.
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With continual interest to expand the performance envelope of structures at ever increasing speeds, there is
the need for designing lighter, more flexible, and consequently, more nonlinear structural elements. It follows
that the demand to utilise nonlinear (or even strongly nonlinear) structural components is increasingly present
in engineering applications. It is, therefore, rather paradoxical to observe that very often linear behaviour is
taken for granted in structural dynamics. Why is it so? It should be recognised that at sufficiently small-
amplitude motions, linear theory may be accurate for modeling, although it is not always the case (e.g., dry
friction). However, the main reason is that nonlinear dynamical systems theory is far less established than its
linear counterpart. Indeed, the basic principles that apply to a linear system and that form the basis of modal
analysis are no longer valid in the presence of nonlinearity. In addition, even weak nonlinear systems can
exhibit extremely interesting and complex phenomena which linear systems cannot. These phenomena include
jumps, bifurcations, saturation, subharmonic, superharmonic and internal resonances, resonance captures,
limit cycles, modal interactions and chaos. Readers who look for an introduction to nonlinear oscillations may
consult (Nayfeh and Mook, 1979 [28]; Strogatz, 1994 [29]; Verhulst, 1999 [30]; Rand, 2003 [31]). More
mathematically inclined readers may refer to (Guckenheimer and Holmes, 1983 [32]; Wiggins, 1990 [33]). A
brief tutorial which emphasises the important differences between linear and nonlinear dynamics is available
in Section 2.1 of this paper.

This is not to say that nonlinear systems have not received considerable attention during the last decades.
Even if, for years, one way to study nonlinear systems was the linearisation approach (Caughey, 1963 [34]; Iwan,
1973 [35]), many efforts have been spent in order to develop theories for the investigation of nonlinear systems
in structural dynamics. A nonlinear extension of the concept of mode shapes was proposed in (Rosenberg, 1962
[36]; Rosenberg, 1966 [37]) and further investigated in (Rand, 1974 [38]; Shaw and Pierre, 1993 [39]; Vakakis et
al., 1996 [40]; Vakakis, 1997 [41]). Weakly nonlinear systems were thoroughly analysed using perturbation
theory (Nayfeh and Mook, 1979 [28]; Nayfeh, 1981 [42]; O’Malley, 1991 [43]; Kevorkian and Cole, 1996 [44]).
Perturbation methods include for instance the method of averaging, the Lindstedt–Poincaré technique and the
method of multiple scales and aim at obtaining asymptotically uniform approximations of the solutions.
During the last decade or so, one has witnessed a transition from weakly nonlinear structures to strongly
nonlinear structures (by strongly nonlinear systems, a system for which the nonlinear terms are the same order
as the linear terms is meant) thanks to the extension of classical perturbation techniques (Chan et al., 1996 [45];
Chen and Cheung, 1996 [46]) and the development of new methodologies (Pilipchuk, 1985 [47]; Manevitch,
1999 [48]; Qaisi and Kilani, 2000 [49]; Babitsky and Krupenin, 2001 [25]).

Recently, a few studies proposed to take advantage of nonlinearities instead of ignoring or avoiding them,
which represents an interesting shift in paradigm. For example, the concept of parametric resonance is
exploited to design microelectromechanical oscillators with filtering capabilities in (Rhoads et al., 2005 [50]).
In (Vakakis and Gendelman, 2001 [51]; Vakakis et al., 2004a [52]; Kerschen et al., 2005b [53]), it is shown that
essential (i.e., nonlinearisable) nonlinearity leads to irreversible nonlinear energy transfer phenomena between
subsystems—termed nonlinear energy pumping. In (Nichols et al., 2004 [54]), chaotic interrogation and phase
space reconstruction are used to assess the strength of a bolted connection in a composite beam. In (Epureanu
and Hashmi, 2005 [55]), the geometric shape of dynamic attractors is exploited to enhance small parametric
variations in a system.

Focusing now on the development (or the improvement) of structural models from experimental
measurements in the presence of nonlinearity, i.e., nonlinear system identification, one is forced to admit that
there is no general analysis method that can be applied to all systems in all instances (see, e.g, previous
overviews (Adams and Allemang, 1998 [56]; Worden, 2000 [57])), as it is the case for modal analysis in linear
structural dynamics. In addition, many techniques which are capable of dealing with systems with low
dimensionality collapse if they are faced with system with high modal density. Two reasons for this failure,
namely the inapplicability of various concepts of linear theory and the highly ‘individualistic’ nature of
nonlinear systems, are discussed in Section 2.1. A third reason is that the functional S½�� which maps the input
xðtÞ to the output yðtÞ, yðtÞ ¼ S½xðtÞ�, is not known beforehand. For instance, the ubiquitous Duffing oscillator

(Duffing, 1918 [58]), the equation of motion of which is m €yðtÞ þ c _yðtÞ þ kyðtÞ þ k3y
3ðtÞ ¼ xðtÞ, represents a

typical example of polynomial form of restoring force nonlinearity, whereas hysteretic damping is an example
of non-polynomial form of nonlinearity. This represents a major difficulty compared with linear system
identification for which the structure of the functional is well defined.
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1. Detection Yes or No ?

Aim:detect whether a nonlinearity is present or not (e.g., Yes)

2. Characterization What ?  Where ? How ?

Aim: a.  determine the location of the non-linearity (e.g., at the joint)

b. determine the type of the non-linearity (e.g., Coulomb friction)
c. determine the functional form of the non-linearity

[e.g., f
NL

(y, y) = � sign (y)]

3. Parameter estimation

Aim:  determine the coefficient of the non-linearity (e.g., � = 5.47)

.

. .

.

How much ?

f
NL

(y, y) = 5.47 sign (y) at the joint

Fig. 4. Identification process.
Even if there is a difference between the way one did nonlinear system identification ‘historically’ and the
way one would do it now, the identification process may be regarded as a progression through three steps,
namely detection, characterisation and parameter estimation, as outlined in Fig. 4. Once nonlinear behaviour
has been detected, a nonlinear system is said to be characterised after the location, type and functional form of
all the nonlinearities throughout the system are determined. The parameters of the selected model are then
estimated using linear least-squares fitting or nonlinear optimisation algorithms depending upon the method
considered.

Nonlinear system identification is an integral part of the verification and validation ðV&VÞ process.
According to (Roache, 1998 [59]), verification refers to solving the equations correctly, i.e., performing the
computations in a mathematically correct manner, whereas validation refers to solving the correct equations,
i.e., formulating a mathematical model and selecting the coefficients such that physical phenomenon of
interest is described to an adequate level of fidelity. As stated in (Doebling, 2002 [60]), one definition that
captures many of the important aspects of model validation is taken from the simulation sciences literature:

The substantiation that a model within its domain of applicability possesses a satisfactory range of accuracy

consistent with the intended application of the model (Schlesinger et al., 1979 [61]).
The discussion of verification and validation is beyond the scope of this overview paper; the reader may

consult (Roache, 1998 [59]; Link and Friswell, 2003 [62]; Babuska and Oden, 2004 [63]; Hemez et al., 2005 [64])
and references therein.

Scope of the paper: The motivation behind this survey paper is threefold. First, it is meant to provide a
concise point of departure for researchers and practitioners alike wishing to assess the current state of the art
in the identification of nonlinear structural models. Second, the paper intends to review several methods that
have been proposed in the technical literature and to highlight some of the reasons that prevent these
techniques from being applied to complex structures. The last goal of this paper is to identify future research
needs which would help to ‘push the envelope’ in nonlinear system identification.

The subject of nonlinear dynamics is extremely broad, and an extensive literature exists. This paper is
inevitably biased toward those areas which the authors are most familiar with, and this of course means those
areas which the authors and colleagues have conducted research in. Therefore, it is not a comprehensive
overview of the past and current approaches for the identification of nonlinear dynamical structures; for
instance, there is no attempt to summarise many of the developments originating in control theory.
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Experiment design (e.g, selection of excitation sources, number and location of sensors) which conditions
the success of the identification process is not described herein. Some information may be found in
(Leontaritis and Billings, 1987 [65]; Duym and Schoukens, 1995 [66]; Worden and Tomlinson, 2001 [67]).
System identification in the presence of chaotic vibrations (Moon, 1987 [68]) is not discussed either.

Finally, all systems referenced in this report are assumed to be time-invariant and deterministic, i.e., for
given excitation conditions, the system response is always the same without any uncertainty.

2. Nonlinear dynamics: a tutorial

2.1. Dynamics of nonlinear oscillations

Even though at sufficiently small-amplitude motions nonlinearity may not ‘perturb’ significantly the linear
dynamics, when the energy of the motion increases, stiffness, inertial and/or damping nonlinearities may
introduce dynamical phenomena that are radically different than those predicted by linear theory. These
distinct dynamical effects must be accounted for in order to accurately understand and robustly model the
dynamics.

In fact, in certain practical applications ‘nonlinear effects may be unavoidable’; they may affect the
dynamics even when the amplitude of the motion is small, contrary to what might be expected by conventional
wisdom. Examples are dry friction, strongly nonlinear vibro-impact oscillations and strong geometric
nonlinearities that do not admit linearisation even in the small-amplitude regime (e.g, machine components
supported in space by configurations of multiple, non-vertical linear springs). To give an example of how
common and unavoidable strong nonlinearity can be, consider the vibrations of a system composed of two
flexible elements coupled by means of a mechanical joint. A small degeneration of the joint (due to defect or
fatigue) may introduce gaps (free-play) between structural components inside the joint, which may generate
strong vibro-impact nonlinearities that affect the dynamics over broad frequency ranges (Babitsky and
Krupenin, 2001 [25]). To emphasise this last point, it has been shown in (Azeez and Vakakis, 1999 [69]) that
even very small free-plays in the bearings of a rotordynamic system lead to strong and potentially catastrophic
nonlinear instabilities, evidenced by large-amplitude chaotic motions with frequencies close to linearised
critical speeds.

What makes nonlinear dynamics challenging to analyse and model is the well-known result that the principle

of linear superposition does not (generally) apply to nonlinear systems.1 This means that the system response to
any combination of dynamic loads, simultaneously applied, does not equal the sum of the individual responses
to each of the loads acting separately. The linear superposition principle is the cornerstone of linear theory,
and, probably, the main reason why this theory is so well developed and applied to many fields of science and
engineering. Of course, this does not necessarily mean that ‘linear problems are easy to analyse’, given, for
example, the current limitations of quasi-linear theory (there is no complete theory for linear ordinary or
partial differential equations with general time-dependent coefficients, though the case of periodically varying
coefficients is addressed by Floquet theory (Yakubovich and Starzhinskii, 1975 [73])).

Based on the linear superposition principle, various concepts, theories and methods for analysing the
dynamics and performing system identification of linear systems have been developed, including,
�

1

199
Convolution integrals, or more generally, the theory of Green’s functions.

�
 Frequency response functions (FRFs) for vibration analysis and modal analysis in the frequency domain,

or more generally, the theory of linear integral transforms (Laplace, Fourier, Hankel and others); time-
domain modal analysis methods.

�
 The theory of linear operators and spectral theory.

�
 Linear boundary value problems (BVPs), Sturm–Liouville problems, eigensolutions, and the theory of

orthogonal functions; eigenvector/eigenfunction expansions of response vectors/functions in finite/infinite-
dimensional eigenspaces spanned by complete sets of eigensolutions of appropriately formulated linear BVPs.
It is noted that attempts for developing nonlinear superposition principles have been made (e.g., Bäcklund transformations (Jackson,

0 [70]) and (Ames, 1978 [71]; Anderson et al., 1982 [72])).
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These concepts which are purely linear constructions cannot be directly applied to nonlinear problems. For
example, no invariance or even strict definition of FRFs applies for nonlinear vibration because harmonic
external forces typically generate multi-harmonic nonlinear responses, rendering the concept of FRF invalid.
Another example is that linear constructions such as regular convolution integrals do not hold in nonlinear
theory, though higher-order convolution operators can be defined and the nonlinear response expressed in
terms of Volterra series expansions and higher-order FRFs (HOFRFs). This does not mean that these linear
methods cannot be indirectly applied to certain classes of nonlinear problems through, for example,
perturbation techniques, whereby the nonlinear problems are reduced to a hierarchy of linear subproblems
where the aforementioned techniques can be applied (see for example, (Nayfeh and Mook, 1979 [28]; Vakakis
et al., 2004b [74])).

The inapplicability of traditional, well-established linear techniques to nonlinear theory poses serious
technical challenges to the development of nonlinear system identification techniques capable of (i) reliably
identifying the (predominant) nonlinearities present in the measured dynamics; (ii) providing accurate
measures of these nonlinearities; (iii) creating models that correctly regenerate the measured dynamical
response; and (iv) being applicable to a wide class of nonlinear dynamical systems. A first step toward
addressing these challenges is the discussion of the basic features that distinguish the linear from the nonlinear
dynamics. Of course, given our incomplete knowledge of nonlinear dynamics (especially in higher dimensions)
and the highly individualistic nature of nonlinear systems that prevents the formulation of general theories
encompassing wide classes of nonlinear dynamical systems, any attempt for such broad a discussion is
destined to be non-exhaustive.

A first typical dynamical feature of the nonlinear response is the frequency– energy dependence of free
oscillations. In other words, the frequency of motion of an unforced nonlinear oscillator with hardening or
softening characteristics increases or decreases with amplitude, respectively (Nayfeh and Mook, 1979 [28]).
This frequency–energy dependence is a basic deviation from linear vibration theory which predicts amplitude-
independent natural frequencies. It is the cause of many features in the dynamics, such as Liapunov (but not
necessarily orbital) instability of the free periodic responses of undamped nonlinear oscillators (Nayfeh and
Mook, 1979 [28]; Minorsky, 1983 [75]); the non-existence of analytic solutions for free damped nonlinear
responses (Panayotounakos et al., 2002 [76]); and complex nonlinear phenomena in the unforced dynamics,
such as nonlinear mode localisation in periodic arrays of nonlinear oscillators (Vakakis et al., 1996 [40]).

One way to make a transition between linear and nonlinear dynamics is through the extension of the
concept of normal mode of classical linear vibration theory to nonlinear systems. In particular, the concept of
nonlinear normal mode (NNM) has been introduced (Rosenberg, 1966 [37]; Vakakis et al., 1996 [40]; Vakakis,
1997 [41]). Although such a notion might seem self-contradictory in view of the inapplicability (in general) of
the principle of linear superposition to nonlinear systems, it has been shown that employing the concept of
NNMs one can better understand and explain the free and forced dynamics of nonlinear oscillators. For
example, complex dynamic interactions occurring in systems of coupled oscillators, such as nonlinear
localisation of energy in space (Vakakis et al., 1996 [40]) and irreversible nonlinear energy transfer phenomena
between subsystems—termed nonlinear energy pumping—(Vakakis and Gendelman, 2001 [51]; Vakakis et al.,
2004a [52]; Kerschen et al., 2005b [53]), have been studied in a framework of NNMs. Given that the classical
theory of Sturm–Liouville BVPs cannot be directly extended to nonlinear theory, alternative ways have been
developed to define rigorously NNMs of discrete or continuous nonlinear oscillators.

An obvious phenomenological and formal definition of a NNM is through the nonlinear extension of the
concept of normal mode of classical vibration theory. In that context one defines a NNM of an undamped
discrete or continuous system as a synchronous (vibration in-unison) periodic oscillation where all material points

of the system reach their extreme values and pass through zero simultaneously.2 Clearly, when a discrete system
vibrates on a NNM the corresponding oscillation is represented by a line in its configuration space, termed
modal line. Linear systems possess straight modal lines since their coordinates obey linear relations during
normal mode oscillation. The modal lines of nonlinear systems are typically curves, though when special
symmetries are obeyed these curves degenerate to straight lines as in the linear case.
2When internal resonances occur, the previous NNM definition is not valid in the configuration space of the system, but rather in an

appropriately defined modal space as discussed in (King and Vakakis, 1996 [77]; Vakakis et al., 1996 [40]).
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A unique feature of modal curves of nonlinear systems is their energy dependence, which is in similarity to
the energy dependence of the corresponding frequency of oscillation. This means that the nonlinear mode

shapes change with varying energy (however, no such dependence exists when the nonlinear modal lines
degenerate into straight lines due to special symmetries). The energy dependence of the nonlinear modal
curves prevents the direct separation of space and time in the governing nonlinear equations of motion, in
contrast to linear theory. This, in turn, prevents the computation of the modal curves of an undamped
nonlinear oscillator by solving a BVP (again in contrast to the linear case). Instead, a singular perturbation
problem is formulated, which coupled with a double-expansion perturbation method, leads to a hierarchy of
linear BVPs, the solutions of which provide analytic approximations to the modal curves (Vakakis et al., 1996
[40]). We mention here the alternative definition of Shaw and Pierre (1991 [78], 1993 [39]) and of A.H. Nayfeh
and S.A. Nayfeh (1994 [79], 1995 [80]), who defined NNMs as invariant manifolds in the phase space of the
system. This alternative definition enables the direct extension of the concept of NNM to damped oscillators,
although extension of ‘undamped’ NNMs to the weakly damped case is also possible.

Another distinct and intriguing feature of NNMs is that they can exceed in number the degrees of freedom
(DOFs) of a discrete oscillator. This is due to NNM bifurcations that lead to mode instabilities (a concept that
is foreign to linear theory), and bifurcating branches of nonlinear localised modes. Such mode bifurcations
may occur even in simple mechanical oscillators with a small number of DOFs (Vakakis et al., 1996 [40]); so
essentially nonlinear vibration modes with no counterparts in linear theory may be encountered more often in
practical applications than intuition may suggest. These bifurcations should be taken into account in studies of
system identification and order reduction of nonlinear dynamical systems.

Starting from the area of system identification and modal analysis, traditional techniques for analysing the
dynamics of nonlinear structures are based on the assumptions of weak nonlinearities and of a ‘nonlinear’
modal structure that is similar or small perturbation of the underlying linearised system. The previous
discussion shows that this simplified approach to nonlinear system identification may lead to erroneous results
when mode bifurcations occur, that generate additional, essentially nonlinear modes of vibration with no
counterparts in linear theory. In this context, the concept of NNM provides a valuable tool for understanding
the effects of structural nonlinearities on the dynamics, and for developing truly nonlinear system
identification—modal analysis methodologies that take into account the possibilities of modal interactions
and modal spaces that are distinctly different than those predicted by classical linear vibration theory.

In general, bifurcations of equilibrium positions or periodic orbits of nonlinear systems are the source of
additional distinctively nonlinear features in the dynamics. A bifurcation takes place when qualitatively
different dynamics occur in the neighbourhood of a point in parameter space, and is associated with the
failure of analytic continuation of a solution branch at that point. In mathematical terms, a bifurcation
corresponds to the failure of the implicit function theorem at this point in parameter space (Guckenheimer and
Holmes, 1983 [32]; Wiggins, 1990 [33]) or equivalently with the non-invertibility of the Jacobian of the
linearised dynamical system at this point. Among essentially nonlinear dynamics caused by bifurcations
we mention:
�
 The possibility of multiple, co-existing stable equilibrium positions (in contrast to linear systems that possess
only a single equilibrium), each with its own separate domain of attraction (to which one the motion is
eventually attracted depends on the initial conditions). An example of co-existing stable solutions is given in
the frequency–energy diagram of Fig. 9 where multiple NNMs may co-exist at specific frequency and
energy ranges.

�
 Sudden nonlinear transitions between stable attractors (jumps) caused by nonlinear hysteresis phenomena.

These transitions can be especially dangerous when a linear-like (trivial) stable equilibrium co-exists in a
certain frequency range with an essentially nonlinear (finite-amplitude) stable equilibrium. This is the case,
for example, in forced resonances of systems with cubic nonlinearities (Nayfeh and Mook, 1979 [28]). In
Fig. 5 we present a nonlinear hysteresis loop in the fundamental resonance of a mode with softening cubic
nonlinearities (the frequency of the periodic excitation is nearly identical to the linearised natural frequency
of the mode). As a result of nonlinear hysteresis there occur sudden transitions (jumps) between co-existing
stable branches of solutions, which appear as sudden changes in the amplitude and phase of the motion for
small variations of the forcing frequency. These jump phenomena are caused by small variations of the
9



Fig. 6. Nonlinear jump phenomenon in the subharmonic resonance of a mode with stiffening cubic nonlinearity.

Fig. 5. Nonlinear jump phenomena in the fundamental resonance of a mode with softening cubic nonlinearity.
initial conditions of the motion which may drift the response between competing domains of attraction of
stable solutions in the phase space of the system. Note that the forward frequency jump III–IV is sensitive
to damping, since lighter damping shifts downward the frequency where this jump occurs. Such nonlinear
transitions are typical in forced resonances of nonlinear oscillators. This type of transitions between co-
existing stable branches is not always associated with nonlinear hysteresis phenomena. In Fig. 6 a jump in
the subharmonic resonance of a mode with hardening cubic nonlinearity is depicted (the frequency of the
external excitation is nearly one third the linearised natural frequency of the mode (Nayfeh and Mook, 1979
[28])). In this case, there is a sudden transition between a trivial and a non-trivial subharmonic solution for
forward or backward frequency sweeps. It is interesting that the trivial subharmonic solution corresponds
to the linearised response of the mode, meaning that the nonlinear subharmonic resonance may appear
suddenly ‘out of nowhere’ for small variations of the initial conditions when the frequency of the external
force is in the range of co-existing subharmonic solutions. As a result the structure may experience severe
levels of unwanted (and unaccounted) vibrations.

�
 Transitions of regular motions to chaotic, where the dynamics seem to be unpredictable, irregular and

random-like, possessing sensitivity to initial conditions. It has been established in the literature that chaotic
motions occur even in nonlinear oscillators with relatively simple configurations, such as strange attractors
in forced, single-degree-of-freedom (SDOF) vibro-impact oscillators (Shaw and Holmes, 1983 [81]), in
forced, single-mode vibrations of beams in magnetic fields (Moon and Holmes, 1979 [82]) and in as simple
systems as bouncing balls on moving barriers (Holmes, 1982 [83]). Hamiltonian chaos may also occur
during the free vibrations of n-DOF ðnX2Þ non-integrable Hamiltonian oscillators (Vakakis and Rand,
1992 [84]).

�
 Chaotic explosions where for a small parameter change a regular dynamic response ‘explodes’ to chaotic

behaviour introducing a global form of instability in the dynamics. Such chaotic explosions might often
10



Fig. 7. (a) Rod–pendulum system; (b) chaotic explosion for increasing forcing amplitude (Schwartz et al., 2004 [85]).
appear in flexible assemblies designed to operate in the linear regime when a certain component degenerates
due to fatigue or defect (for example, (Azeez and Vakakis, 1999 [69]) shows that in rotordynamic systems
with a small clearance defect in one of the bearings small variations of the frequency of rotation may lead to
chaotic explosions with no precursors (cascade of bifurcations)). Another example of a chaotic explosion is
given in (Schwartz et al., 2004 [85]), where the oscillations of the rod–pendulum system of Fig. 7(a) were
studied. The rod is forced from the top harmonically with frequency O and amplitude a, and possesses
complicated dynamics. In Fig. 7(b) the numerical Poincaré map of a measure of the rod displacement D1 for
varying forcing amplitude a under fixed frequency O is depicted (for fixed a the Poincaré map is constructed
by plotting on the same vertical line the values of D1 at integer multiples of the period of the forcing). Note
the sudden loss of stability of the periodic orbit above a � 1:29 when sudden onset of chaos occurs. Such
chaotic explosions occur in multi- or infinite-DOF nonlinear systems, and are characterised by the sudden
appearance of unstable chaotic motions for small changes of the control parameters.

�
 For small parameter changes, transitions from one type of motion to a qualitatively different one may

occur. This is the case, for example, of the supercritical Hopf bifurcation (Guckenheimer and Holmes, 1983
[32]; Wiggins, 1990 [33]) when for a small parameter change a stable linear-like (trivial) equilibrium looses
stability and gives rise to a stable limit cycle motion (clearly such bifurcations can become especially
dangerous if left unaccounted for in the system design).

�
 Increase of the dimensionality of the dynamics when a bifurcation occurs. This means that the attractor of

the dynamics after the bifurcation is realised in a higher-dimensional subspace of the phase space of the
system, compared to the attractor before the bifurcation (such dimensionality increases are captured nicely
by the method of proper orthogonal decomposition (POD) as shown in (Cusumano et al., 1994 [86]; Azeez
and Vakakis, 2001 [87])).

Essentially nonlinear phenomena such as the aforementioned ones are caused by nonlinear energy
interactions due to internal resonances (IRs), or transient/sustained resonance captures (TRCs/SRCs). IRs are
nonlinear beat phenomena whereby two or more nonlinear modes with commensurable linearised natural
frequencies exchange energy between them in a reversible or irreversible fashion (Nayfeh and Mook, 1979
[28]). The only analog in linear theory is the classical beat phenomenon where two modes with nearly
equal natural frequencies exchange reversibly energy between them. IRs increase the dimensionality of the
dynamics and are the cause of many interesting dynamic phenomena in nature (MacKay and Meiss, 1987
[88]), ranging from orbital mechanics (gaps in distributions of asteroids (Dermott and Murray, 1983 [89]),
chaotic rotation of Hyperion (Wisdom et al., 1984 [90])), to nuclear physics (Gerasimov et al., 1986 [91]),
11



and chaotic transport and mixing in fluids (Wiggins, 1992 [92]). In mechanical systems, IRs are responsible
for virtually every strongly nonlinear phenomenon, ranging from bifurcations to nonlinear localisation and
chaos (Guckenheimer and Holmes, 1983 [32]; Wiggins, 1990 [33]). We mention merely the very interesting
high- to low-frequency energy transfers in flexible systems (Nayfeh and Mook, 1995 [93]; Malatkar and
Nayfeh, 2003b [94]), caused by IRs between the amplitude modulations of high- and low-frequency
modes. Clearly, such energy exchanges between modes with well-separated frequencies are not possible in
linear theory.

Resonance captures (RCs) occur when the dynamics of a nonlinear system are ‘captured’ on a resonance
manifold defined by an integrable relationship between the frequency of the mode and a different frequency.
The capture of the dynamics on the resonance manifold can be either sustained (SRC), or transient (TRC); in
the latter case after a finite duration of capture the dynamics ‘escape’ from the neighbourhood of the
resonance manifold (Quinn, 1997 [95]; Zniber and Quinn, 2003 [96]). It has been shown that RC leads to
interesting dynamic phenomena, including irreversible transfer of energy between different components of a
mechanical system (Kerschen et al., 2005b [53]; Lee et al., 2005 [97]). The previous discussion leads to the
conclusion that any attempt to apply traditional linear system identification techniques to capture the
dynamics of mechanical system possessing such phenomena is bound to failure.

Considering the steady state responses of nonlinear systems to harmonic excitations, IRs or RCs lead to
forced resonances, which, apart from the case of fundamental resonance (i.e., strong steady response at the
frequency of the external excitation), have no counterparts in linear dynamics: subharmonic, superharmonic,
combination, or autoparametric resonances. Because of the capacity of a nonlinear system to generate multiple
harmonics subject to single harmonic input, it is possible to obtain strong steady state nonlinear response at
frequencies considerably apart from the forcing frequency (Nayfeh and Mook, 1979 [28]). It follows that the
study of the harmonics of the response can be a useful tool for identifying the essentially nonlinear properties
of a system. Indeed, it is exactly this multi-harmonic content of the steady state nonlinear output that prevents
the extension of the concept of FRF to nonlinear systems (though approximate methods based on
linearisation have been developed leading to describing functions, i.e., approximate nonlinear FRFs). In
addition, for systems composed of linear ‘primary’ systems nonlinearly coupled to ‘secondary’ subsystems,
there is the possibility of autoparametric resonance, where the linear mode of the primary system looses
stability through nonlinear interaction with the secondary subsystem (Tondl et al., 2000 [98]). Again, such
structural instabilities generated through nonlinear energy interactions between components of the system
cannot occur in linear settings, and can be dangerous if left unaccounted for at the design stage.

Some basic, distinctively nonlinear features of forced and unforced dynamic responses with no counterparts
in linear theory have been discussed. These features differentiate clearly the nonlinear from the linear
dynamics, and, hence, can form the basis for developing efficient nonlinear system identification techniques.
The efficacy of any nonlinear system identification technique should be judged by the degree to which it
addresses at least a subset of these essentially nonlinear features (it would be unrealistic to expect that a
method could be capable of identifying all possible nonlinear phenomena given the highly individualistic
nature of nonlinear systems). In addition to detecting and identifying qualitatively and quantitatively broad
classes of nonlinear phenomena, the reliability and robustness of nonlinear system identification would be
enhanced if it leads to mathematical models that can accurately and robustly regenerate the measured
response.

2.2. Complicated dynamics of a two degree-of-freedom nonlinear system: a nonlinear normal mode perspective

2.2.1. Dynamics of the undamped system

In this section, the dynamics of a two-DOF system comprised of a linear oscillator coupled by means of an
essentially nonlinear stiffness to a small-mass attachment is discussed; the system is depicted in Fig. 8.
Through this example, the objective is to demonstrate that even nonlinear systems of very simple configuration
can possess surprisingly complicated and rich dynamics. It is also shown that through the use of NNMs the
dynamics of this system can be systematically explored and understood. Moreover, the knowledge of the
structure of periodic solutions of the undamped system can be used to understand complex multi-frequency
transitions in the transient damped dynamics. A more detailed discussion of the dynamics of this system can
12



Linear oscillator Nonlinear attachment

k1

m1 m2

c2c1

k2

y v

Fig. 8. The two-DOF system with essential stiffness nonlinearity.
be found in (Kerschen et al., 2005b [53]; Lee et al., 2005 [97]), where additional dynamical features such as
passive energy transfer are studied.

The equations of motion of the system are given by

m1 €yþ c1 _yþ c2ð _y� _vÞ þ k1yþ k2ðy� vÞ3 ¼ 0,

m2 €vþ c2ð_v� _yÞ þ k2ðv� yÞ3 ¼ 0. ð1Þ

The variables o2
0 ¼ k1=m1, C ¼ k2=m1, � ¼ m2=m1, l1 ¼ c1=m1, l2 ¼ c2=m1 are introduced

€yþ l1 _yþ l2ð _y� _vÞ þ o2
0yþ Cðy� vÞ3 ¼ 0,

�€vþ l2ð_v� _yÞ þ Cðv� yÞ3 ¼ 0. ð2Þ

The periodic orbits of the undamped system (2) (i.e., with l1 ¼ l2 ¼ 0) are studied for small values of �, that is,
for small-mass nonlinear attachments.

In Fig. 9, the various branches of periodic solutions for parameters o0 ¼ C ¼ 1:0, � ¼ 0:05 are presented in
a frequency– energy plot. There are two general classes of solutions: symmetric solutions Snm� correspond to
orbits that satisfy the initial conditions _vð0Þ ¼ �_vðT=2Þ and _yð0Þ ¼ � _yðT=2Þ, where T is the period, n is the
number of half-waves in v, and m the number of half-waves in y in a half-period interval; unsymmetric solutions

Unm� are orbits that fail to satisfy the initial conditions of the symmetric orbits, with the same notation for
the two indices. A frequency index is assigned to a specific branch of solutions and is equal to the ratio of its
indices; e.g., S21� is represented by the frequency index o ¼ 2=1 ¼ 2. This convention holds for every branch
except S11�, which, however, are particular branches because they form the basic backbone of the entire plot.
On the energy axis the (conserved) total energy of the system when it oscillates in the corresponding periodic
motion is depicted. Transitions between certain branches represented by dashed lines in Fig. 9 seem to involve
‘jumps’, but this is only due to the frequency convention adopted; no actual discontinuities in the dynamics
occur (by their definition, branches SðknÞðkmÞ�, k integer, are identified with Snm�).

Four elements of the frequency–energy plot are described in what follows: (a) the backbone of the plot; (b)
the branches of symmetric solutions; (c) the branches of unsymmetric solutions and (d) the special orbits.

The backbone of the frequency–energy plot is formed by the branches S11þ and S11�, which represent in-
and out-of-phase NNMs possessing one half-wave per half-period, respectively. The natural frequency of the
linear oscillator o0 ¼ 1 (which is identified with a frequency index equal to unity, o ¼ 1) naturally divides the
periodic solutions into higher- and lower-frequency modes. A close-up of S11þ branch is presented in Fig. 10
together with some modal curves depicted in the configuration plane ðy; vÞ of the system. The horizontal and
vertical axes in the configuration plane are the nonlinear and linear oscillator responses, respectively, and the
aspect ratios in these plots are set so that equal tick mark increments on the horizontal and vertical axes are
equal in size, enabling one to directly deduce whether the motion is localised in the linear or the nonlinear
oscillator. Fig. 10 clearly highlights the energy dependence of the NNMs; the NNMs become strongly
localised to the nonlinear attachment as the total energy in the system decreases.

There is a sequence of higher- and lower-frequency periodic solutions bifurcating or emanating from
branches S11�, which are denoted as tongues. Each tongue occurs in the neighbourhood of an IR between the
linear oscillator and the nonlinear attachment, and corresponds to either symmetric (S-tongue) or
13
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Fig. 9. Frequency–energy plot of the periodic orbits; for the sake of clarity no stability is indicated; symbols indicate bifurcation points

(stability–instability boundaries): (+) four Floquet multipliers at þ1, and ð�Þ two Floquet multipliers at þ1 and two at �1; special orbits

are denoted by bullets � (Lee et al., 2005 [97]).
unsymmetric (U-tongue) periodic motion of the system. For example, the subharmonic NNMs on tongues
S13� correspond to motions where the linear oscillator oscillates ‘three times faster’ than the nonlinear
attachment. A close-up of branches S13� is shown in Fig. 11 and is another illustration of the energy
14



Fig. 11. Close-up of S13� branch in the frequency index-logarithm of energy plane; the special periodic orbit is represented by triple stars

ð
���
Þ; at certain points of the branch the corresponding motions in the configuration plane ðy; vÞ are depicted (Lee et al., 2005 [97]).
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Fig. 10. Close-up of S11þ branch in the frequency index-logarithm of energy plane; at certain points of the branch the corresponding

motions in the configuration plane ðy; vÞ are depicted (Lee et al., 2005 [97]).
dependence of the NNMs. Different qualitative behaviours along S13� have been observed in (Lee et al.,
2005 [97]):
�
 Near point G1, the nonlinear attachment vibrates nearly independently and ‘drives’ the linear oscillator;

�
 in the vicinity of G2 the oscillators vibrate as a set of ‘uncoupled linear oscillators’ with natural frequencies

at ratio 1/3, which explains why the branches S13� appear as horizontal straight line segments at frequency
index 1/3 in the frequency–energy plot;

�
 as energy increases toward point G3, because the force generated by the nonlinear spring is negligible

compared to that generated by the linear spring, the linear oscillator vibrates nearly independently and
drives the nonlinear attachment;

�
 eventually point G3 is reached where the periodic motion is approximately given by yðtÞ � Y cos ot,

vðtÞ � V cos ot; there occurs triple coalescence of branches S13� and S33� (which is identical to S11�).

Similar results hold for the other S-branches.
Periodic motions on the U-tongues are not NNMs because non-trivial phases between the two oscillators

are realised. The motion on these tongues is represented by Lissajous curves in the configuration plane,
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whereas motion on S-tongues corresponds to one-dimensional curves. For example, a typical periodic orbit on
branch U21 is represented by a 8-shape in the configuration plane. Localisation phenomena are also detected
in certain regions of U-tongues (Lee et al., 2005 [97]).

It turns out that specific periodic orbits (termed special orbits and represented by bullets in Fig. 9) satisfy the
initial conditions vð0Þ ¼ _vð0Þ ¼ yð0Þ ¼ 0 and _ya0. In addition, certain stable special orbits are localised to the
nonlinear oscillator as discussed in (Lee et al., 2005 [97]). If the system initially at rest is forced impulsively,
and if one of the stable, localised special orbits is excited, the major portion of the induced energy is channeled
directly to the invariant manifold of that special orbit, and, hence, the motion is rapidly and passively
transferred (pumped) from the linear to the nonlinear oscillator. Therefore, the impulsive excitation of one of

the stable special orbits is one of the triggering mechanisms initiating (direct) passive nonlinear energy pumping in

the system.

2.2.2. Dynamics of the weakly damped system

This section intends to demonstrate that the intricate structure of NNMs of Fig. 9 can lead to complicated
transient responses of the corresponding weakly damped system. When viewed from such a perspective, one

can systematically interpret the complex transitions between multi-frequency modes of the transient, weakly

damped dynamics by relating them to the different branches of NNMs in the frequency– energy plot.

The response of system (2) with parameters o0 ¼ C ¼ 1:0, � ¼ 0:05 and damping coefficients l1 ¼ 0; l2 ¼
0:0005 was simulated. In Fig. 12 the motion is initiated from the stable special orbit of branch U76 leading to
an oscillation of the system on that branch during the early stage of the motion (see Fig. 12c). As the total
energy of the system decreases due to viscous dissipation there occurs a transition (jump) to the stable branch
S12�. On this branch, the nonlinear oscillator is locked into a transient 1:2 IR with the linear oscillator as
shown in Fig. 12d; this is referred to as a 1:2 RC (Arnold, 1988 [99]; Quinn, 1997 [95]). As energy decreases
even further there occurs escape from RC, and the motion evolves along branches S13, S15, S17, etc.

The numerical evidence of these findings is given in Fig. 12e,f which depicts the dominant harmonic
components of the measured displacements computed using a wavelet transform. Darkly shaded areas
correspond to regions where the amplitude of the wavelet transform is high, which reveals the presence of a
significant frequency component, whereas lightly shaded regions correspond to low amplitudes. A schematic
presentation of these transitions in the frequency–energy plot of Fig. 9 is depicted in Fig. 13. Energy decrease
due to damping dissipation triggers the transitions between different branches of NNMs, and the damped
nonlinear response possesses consecutive multi-frequency stages.

The results of this example show that even low-dimensional nonlinear oscillators with relatively simple
configuration may possess very complicated and rich dynamics. Clearly, the nonlinear phenomena discussed in
this example cannot be realised in linear theory; it would be impossible to understand them (or even more,
identify them) using linear or linearised system identification methods.

3. Nonlinear system identification in structural dynamics: a literature review

Nonlinear structural dynamics has been studied for a relatively long time, but the first contribution to the
identification of nonlinear structural models date back to the 1970s (Ibanez, 1973 [100]; Masri and Caughey,
1979 [101]). Since then, numerous methods have been developed because of the highly individualistic nature of
nonlinear systems. A large number of these methods were targeted to SDOF systems, but significant progress
in the identification of multi-degree-of-freedom (MDOF) lumped parameter systems has been realised during
the last 10 or 20 years. To date, simple continuous structures with localised nonlinearity are within reach. Part
of the reason for this shift in emphasis is the increasing attention that this research field has attracted,
especially in recent years. We note that:
�
 The first textbook Nonlinearity in Structural Dynamics: Detection, Identification and Modelling was written
by Worden and Tomlinson (2001 [67]).

�
 Synthesis of nonlinear system identification in structural dynamics was made in several survey papers

(Adams and Allemang, 1998 [56]; Hemez and Doebling, 2000 [102]; Worden, 2000 [57]; Hemez and
Doebling, 2001a [103]).
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Fig. 12. Motion initiated on the stable special orbit of branch U76 with weak damping: (a,b) transient responses of the linear and

nonlinear oscillators; (c) early ðU76Þ, and (d) main ðS12�Þ regimes of the motion; (e,f) wavelet transforms of the transient responses

depicted in (a,b) (Kerschen et al., 2005b [53]).
�
 From 1997 to 2001, a working group in the framework of the European Cooperation in the field of
Scientific and Technical Research (COST) Action F3 Structural Dynamics was devoted to the Identification

of Nonlinear Systems (Golinval et al., 2003b [104]). Several institutions worked on two benchmarks, namely
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Fig. 13. Damped motion initiated on the stable special orbit of branch U76: schematic of the transitions between different branches of

solutions (Lee et al., 2005 [97]).
the Ecole Centrale de Lyon (ECL) benchmark and the benchmark from the VTT Technical Research Center

of Finland (see Figs. 1–2 and (Juntunen, 2003 [24]; Thouverez, 2003 [105]) for a description of the
benchmarks), with different techniques.

�
 A special issue on Nonlinear System Identification was published in the Nonlinear Dynamics journal and

edited by Dowell and Epureanu (2005 [106]).

In what follows, a review of the literature on nonlinear system identification in structural dynamics is
realised. In this literature review, a relatively important number of methods are cited. For clarity, the methods
are classified according to seven categories, namely by-passing nonlinearity: linearisation, time and frequency-

domain methods, modal methods, time– frequency analysis, black-box modeling and structural model updating.
The proposed classification is certainly not exhaustive, and additional categories could be considered, e.g., a
distinction between parametric and non-parametric methods could be made. For each method, we cited the
papers, we believe, which are the most relevant; these papers and the references therein should be a good point
of departure for researchers and practitioners wishing to learn the theoretical foundations and the possible
applications of the methods. For light reading, the authors and year of publication of a paper have been added
to its reference number (the numeric style of referencing is the standard in MSSP). Each reference in the
bibliography is also accompanied by the section(s) where it is cited in.

Readers who look for an introduction to nonlinear oscillations may consult (Nayfeh and Mook, 1979 [28];
Strogatz, 1994 [29]; Verhulst, 1999 [30]; Rand, 2003 [31]). More mathematically inclined readers may refer to
(Guckenheimer and Holmes, 1983 [32]; Wiggins, 1990 [33]). The textbook (Worden and Tomlinson, 2001 [67])
is a reference book for anyone conducting tests on nonlinear structures and then constructing a dynamic
model of the system as discussed in (Singh, 2004 [107]) (its companion is (Ewins, 2000 [11]), dedicated to linear
structures). The monographs by Bendat (1998 [108]) and Bendat and Piersol (2000 [109]) are strongly
recommended if random data are available.
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3.1. By-passing nonlinearity: linearisation

Modal analysis is an extremely powerful theory of linear systems. It is so effective in that restricted area that
one might be tempted to apply the procedures of modal analysis directly to nonlinear systems without
modification. In this situation, the curve-fitting algorithms used will associate a linear system with each FRF—
in some sense the linear system which explains it best. As the nonlinear system FRF will usually change its
shape as the level of excitation is changed, any linearisation is only valid for a given excitation level. Also,
because the form of the FRF is a function of the type of the excitation, different forcing types of nominally the
same amplitude will require different linearisations. These are clear limitations. Linearisations based on
random excitation are arguably more fundamental than those based on harmonic forcing because random
excitation is the only excitation which generates nonlinear systems FRFs which ‘look like’ linear system FRFs.

Caughey in his seminal papers (1959 [110], 1960 [111], 1963 [34]) proposed to replace a nonlinear oscillator
with external Gaussian excitation by a linear one with the same excitation such that the mean-square error
between the actual nonlinear and linearised systems is minimised in a statistical sense. The procedure
developed, equivalent linearisation, operated directly on the equations of motion. It is often associated in the
literature with the statistical linearisation technique introduced by Kazakov (1956 [112]), but the methods are
not the same as discussed in (Socha and Pawleta, 2001 [113]). Many developments have been proposed since
the fundamental work of Caughey (e.g., (Iwan, 1973 [35]) and (Iwan and Mason, 1980 [114])), and a
comprehensive treatment of the subject can be found in (Roberts and Spanos, 1990 [115]). This commonly
used approach has proved useful in most applications, particularly for the random vibration analysis of
systems where the nonlinear restoring force is hysteretic. For experimental applications, the extraction of a
linear model requires the knowledge of the functional form of the restoring force, which is generally not the
case. Hagedorn and Wallaschek (1987 [116]) have developed an effective experimental procedure for doing
precisely this. This approach assumes that the mass matrix is known, but this limitation has been addressed by
Fillatre (1992 [117]). Nonlinear system identification is carried out in (Rice, 1995 [118]) by comparing
an experimentally derived equivalent linear model to the one derived directly from the assumed equation
of motion.

It is well known that equivalent linearisation does not correctly predict the response of strongly nonlinear
random oscillators. An interesting generalisation of this technique was proposed by Miles (1989 [119]). The
approach involves calculating the expected value of the spectral response of an equivalent linear system where
the equivalent natural frequency is assumed to be a random variable.3 This work triggered the development of
the concept of equivalent linear systems with random coefficients (Bouc, 1994 [121]; Soize, 1994 [122]) which has
enjoyed some success for system identification of nonlinear systems (Soize, 1995 [123]; Soize and Le Fur, 1997
[124]; Bellizzi et al., 1998 [125]; Bellizzi and Defilippi, 2003 [126]).

The harmonic balance method described in (Nayfeh and Mook, 1979 [28]) can be employed for linearising
nonlinear equations of motion with harmonic forcing. By considering one dominant harmonic in the analysis
(i.e., by assuming that sub- and superharmonics are negligible compared to the fundamental harmonic), it
offers a means of approximating the FRFs of nonlinear systems (in this case, the harmonic balance method is
often referred to as the describing function method). This method has been the basis of several nonlinear
system identification techniques (see, e.g., (Yasuda et al., 1988a,b [127,128]; Benhafsi et al., 1992 [129]; Meyer
et al., 2003 [130]; Ozer et al., 2005 [131])).

3.2. Time-domain methods

A method is said to be a time-domain method if the data considered during the identification process take the
form of time series (e.g., force and acceleration). Such techniques have the advantage that the signals are
directly provided by current measurement devices; less time and effort is spent on data acquisition and
processing.

One fruitful approach to time-domain identification, the restoring force surface (RFS) method, began with
Masri and Caughey’s 1979 paper [101]; a parallel approach named force-state mapping was developed
3We note that the concept of random natural frequency already appeared in (Crandall, 1963 [120]).
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independently in (Crawley and O’Donnell, 1986 [132]; Crawley and Aubert, 1986 [133]). The RFS method
which is described in Section 6.1 initiated the analysis of nonlinear structural systems in terms of their internal
RFSs. It was first developed for SDOF systems, but the generalisation to MDOF systems soon followed
(Masri et al., 1982 [134]). The method was extremely appealing in its simplicity, the starting point being
Newton’s second law. However, the initial version depended on the rather arbitrary use of Chebyshev
polynomials for the expansion of the nonlinear restoring forces. This made for a rather complicated numerical
analysis. The approach also suffered from bias unless the identification was iterated, and this made it rather
time-consuming. A further signal processing demand was that displacement, velocity and acceleration data
were required for each DOF necessitating the use of complex instrumentation or further numerical analysis.
All these exceptions were overcome in the following years by an array of researchers (Yang and Ibrahim, 1985
[135]; Masri et al., 1987a,b [136,137]; Al-Hadid and Wright, 1989, 1990, 1992 [138–140]; Worden, 1990a,b
[141,142]; Mohammad et al., 1991 [143]; Shin and Hammond, 1998a [144]); the application of the method in
the frequency domain was also proposed in (Kim and Park, 1994 [145]). Extension of the technique to cover
hysteretic and chaotic systems have been devised (Lo and Hammond, 1988 [146]; Benedettini et al., 1991 [147];
Shin and Hammond, 1998b [148]). The method has proved to be a robust addition to the structural
dynamicists toolbox, and various experimental studies have been published, notably for the identification of
nonlinear automotive components (Audenino et al., 1990 [149]; Belingardi and Campanile, 1990 [150]; Surace
et al., 1992 [151]; Cafferty et al., 1993 [152]; Duym et al., 1996a [153]). The latter reference sparked a
resurgence of interest in the theory of the method (Duym et al., 1995 [66], 1996b,c [154,155]). The RFS method
still enjoys some recent applications, adaptations and developments. For instance, experimental investigations
are performed in (Kerschen et al., 2001a [156]; Meskell et al., 2001 [157]), curve-fitting is avoided in
(Dimitriadis and Cooper, 1998 [158]) and nonlinear system identification in the absence of input measurement
is proposed in (Haroon et al., 2004, 2005 [159,160]).

A technique which was widely applied in Control Engineering at first, but was taken up by structural
dynamicists, was time-series analysis. The linear variant of the approach based on ARMA (Auto-Regressive
Moving Average) models has long been used for modeling and prediction purposes (Box and Jenkins, 1970
[161]). There have been numerous attempts to generalise the model structure to the nonlinear case, arguably
the most versatile and enduring structure has been the NARMAX (Nonlinear ARMA with eXogeneous input)
model proposed by Leontaritis and Billings (1985a,b [162,163]). A detailed discussion of this method is given in
Section 6.3. Since the inception of the method, there have been many developments, notably the introduction
of an orthogonal estimation algorithm (Korenberg et al., 1988 [164]), which allows model parameters to be
estimated sequentially so that the complexity of the model can be controlled. Also noteworthy are the
correlation tests designed to assess model validity (Billings et al., 1989c [165]). The NARMAX structure is
general enough to admit many forms of model including neural networks although the estimation problem
becomes nonlinear and the orthogonal estimator will not work (Billings et al., 1991a [166]). If a radial basis
function network structure is used, however, under certain training conditions, the linear-in-the-parameters
estimation problem is recovered (Chen et al., 1990a [167]). The NARMAX theory also makes a very useful
contact with the functional series methods. Using a variant of the harmonic probing algorithm (Bedrosian and
Rice, 1971 [168]), it is possible to extract the HOFRFs directly from the NARMAX model (Billings and
Tsang, 1989a,b [169,170]). The input and output variables are usually physical quantities like force and
displacement response, respectively. An interesting alternative approach to this was followed by Thouverez
and Jezequel (1996 [171]), who fitted a NARMAX model using modal coordinates.

Most applications of the Hilbert transform (e.g, nonlinearity detection) used the frequency-domain Hilbert
transform. In contrast, Feldman showed how to use the traditional definition of the analytic signal and the
time-domain Hilbert transform in order to identify nonlinear models of SDOF systems. The FREEVIB

approach proposed in (Feldman, 1994a [172]) is based on free vibration whereas the FORCEVIB approach
proposed in (Feldman, 1994b [173]) deals with forced vibration. As explained in Section 6.4, these approaches
can be used to construct the nonlinear damping and stiffness curves for a large class of nonlinear systems, but
are only suitable for monocomponent signals. A practical application to a nonlinear ocean mooring system is
detailed in (Gottlieb et al., 1996 [174]), and the extension to two-component signals is discussed in (Feldman,
1997 [175]). We mention that a method for the decomposition of signals with multiple components into a
collection of monocomponents signals, termed intrinsic mode functions (IMFs), was proposed in Huang et al.
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(1998 [176]) and is now referred to as Huang– Hilbert transform in the technical literature. The IMFs are
constructed such that they have the same number of extrema and zero-crossings, and only one extremum
between successive zero-crossings. As a result, they admit a well-behaved Hilbert transform. The method now
enjoys several applications in structural dynamics including linear system identification (Yang et al., 2003a,b
[177,178]) and damage detection (Yang and Lin, 2004b [179]).

Other time-domain techniques have been proposed. They include a nonlinear version of the stochastic

subspace identification approach (Lacy and Bernstein, 2001 [180]), a method based upon the Lie series

solutions (Pilipchuk and Tan, 2005 [181]), methods for the simultaneous estimation of Coulomb and viscous
friction (Feeny and Liang, 1996 [182]; Liang and Feeny, 1998, 2004a [183,184]; Singh et al., 2001 [185]), an
observer-based method (Chatterjee and Cusumano, 2003 [186]) and two techniques for identification of
nonlinear beams (Yasuda and Kamiya, 1999 [187]).

3.3. Frequency-domain methods

A method is said to be a frequency-domain method if the data considered during the identification process
take the form of FRFs or spectra. A wide range of frequency-domain methods have been proposed in the
technical literature during the last two decades.

An early attempt to exploit frequency-domain data for the purpose of nonlinear system identification was
through the use of functional series—the Volterra and Wiener series (A comprehensive description on the
Volterra and Wiener theories of nonlinear systems is given by Schetzen (1980 [188])). These series enable the
generalisation of the concept of impulse response function and FRF to nonlinear systems, as discussed in
Section 6.5. HOFRFs have enjoyed greater popularity, at least for the purpose of system identification (see
(Thouverez and Jezequel, 1998 [189]) for a time-domain analysis), perhaps because frequency-domain
treatment offers easier computation and more intuitive interpretation. The first major application in the field
of structural dynamics occurred with the work of Gifford (1989 [190]). He proposed to extract nonlinear
parameters by fitting surfaces or hypersurfaces to the HOFRFs. This work was extended by Storer (Storer,
1991 [191]; Storer and Tomlinson, 1993 [192]), who demonstrated that it is sufficient to curve-fit to the parts of
the FRFs above the diagonal frequency subspaces. Parameter estimation of SDOF systems using HOFRFs
was also investigated in (Khan and Vyas, 1999 [193]; Chatterjee and Vyas, 2003 [194]), MDOF oscillators
being studied in (Khan and Vyas, 2001b [195]; Chatterjee and Vyas, 2004 [196]). The experimental
identification of a rotor-bearing system was reported in (Khan and Vyas, 2001a [197]). The extension of modal
analysis to nonlinear structures was discussed in (Tawfiq and Vinh, 2003, 2004 [198,199]).

Higher-order spectra have also received some consideration for system identification (Bendat, 1998 [108]).
Realising that only the equivalent linear damping level can be estimated using second-order spectra (Roberts
et al., 1995 [200]), and Vasta and Roberts (1998 [201]) developed a procedure involving the fourth-order
spectrum, namely the trispectrum. In addition, the excitation measurement is not necessary; it is possible, in
principle, at least, to formulate non-Gaussian models of the excitation in a parametric form and to estimate
the parameters in such models, alongside various system parameters (Roberts and Vasta, 2000a [202]). To
overcome the assumption of known parametric form for the input spectra, an energy identification technique
was also proposed in (Roberts and Vasta, 2000b [203]). In (Hajj et al., 2000 [204]), multiple scales and the
third-order spectrum, namely the bispectrum, are combined to characterise and quantify damping and
nonlinear parameters of the first mode of a three-beam two-mass frame. An extensive bibliography on higher-
order statistics can be found in (Swami et al., 1997 [205]).

Other early contributions to nonlinear system identification using frequency-domain data are those of
Yasuda and co-authors (1988a,b [127,128]) in which the harmonic balance method is used in an inverse way to
estimate parameters. Elastic structures were also investigated in (Yasuda and Kamiya, 1990, 1997 [206,207]).
These studies targeted nonlinear systems with periodic steady state response resulting from external excitation.
In (Yuan and Feeny, 1998 [208]), the harmonic balance-based identification was extended to nonlinear systems
with chaotic behaviour; an experimental magnetoelastic oscillator was investigated in (Feeny et al., 2001 [209])
and a MDOF system in (Liang and Feeny, 2004b [210]). Harmonic balance-based methods were also
considered in (Thothadrai et al., 2003 [211]; Thothadrai and Moon, 2005 [212]) for identification of
fluid–structure systems with self-excited motions.
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Spectral methods based on the reverse path analysis were developed and utilised for identification of SDOF
nonlinear systems in (Rice and Fitzpatrick, 1988 [213]; Esmonde et al., 1990a,b [214,215]; Bendat, 1990 [216];
Rice and Fitzpatrick, 1991a [217]; Bendat et al., 1995 [218]; Zeldin and Spanos, 1998 [219]). The concept of
reverse path is discussed at length in (Bendat, 1998 [108]), and for its historical evolution, the reader may refer
to the extensive literature review provided by Bendat (1993 [220]). A generalisation of reverse path spectral
methods for identification of MDOF systems was first proposed in (Rice and Fitzpatrick, 1991b [221]). This
method determines the nonlinear coefficients together with a physical model of the underlying linear structure
and requires excitation signals at each response location. A second alternative referred to as the conditioned

reverse path (CRP) method was presented in (Richards and Singh, 1998 [222]) and is exposed in Section 7.1. It
estimates the nonlinear coefficients together with a FRF-based model of the underlying linear structure and
does not ask for a particular excitation pattern (we note that a physical model of the underlying structure can
also be built using structural model updating techniques as discussed in (Kerschen and Golinval, 2005a [223])).
A detailed discussion of the fundamental differences between the two techniques is given in (Fitzpatrick and
Rice, 2000 [224]; Richards and Singh, 2000a,b [225,226]). The CRP method was compared to the RFS method
using numerical examples in (Richards and Singh, 1999 [227]) whereas it was used for identification
of experimental systems in (Kerschen et al., 2001b, 2003a [228,229]; Garibaldi, 2003 [230]; Marchesiello,
2003 [231]).

The nonlinear identification through feedback of the output (NIFO) method presented in Section 7.2 is
another interesting spectral approach which was proposed by Adams and Allemang (2000a [232]). The central
idea of the method is to treat the nonlinear forces as internal feedback forces in the underlying linear model of
the system as discussed in (Adams and Allemang, 1999a,b [233,234]). By coupling the NIFO and RFS
methods, an algorithm for nonlinear system identification in the absence of input measurements was also
developed in (Haroon et al., 2005 [160]).

Other frequency-domain approaches include system identification using associated linear equations

(Vazquez Feijoo et al., 2004 [235]), methods for parameter estimation of squeeze film dampers (Zhang and
Roberts, 1996 [236]), methods based upon curve-fitting experimental frequency- and force–response data
points (Krauss and Nayfeh, 1999 [237]; Malatkar and Nayfeh, 2003a [238]) and methods exploiting nonlinear
resonances (Nayfeh, 1985 [239]; Fahey and Nayfeh, 1998 [240]).

Finally, comparison between time- and frequency-domain algorithms can for instance be found in
(Richards and Singh, 1999 [227]; Doughty et al., 2002 [241]) and in the special issue dedicated to the COST
Action F3 Structural Dynamics in the Mechanical Systems and Signal Processing journal (Golinval and Link;
2003a [242]).

3.4. Modal methods

Modal analysis is indubitably the most popular approach to performing linear system identification in
structural dynamics (Heylen et al., 1997 [9]; Maia and Silva, 1997 [10]; Ewins, 2000 [11]). The model of the
system is known to be in the form of modal parameters, namely the natural frequencies, mode shapes and
damping ratios. The popularity of modal analysis stems from its great generality; modal parameters can
describe the behaviour of a system for any input type and any range of the input.

Traditional techniques for analysing the dynamics of nonlinear structures are based on the assumptions of
weak nonlinearities and of a ‘nonlinear’ modal structure that is similar or a small perturbation of the
underlying linearised system (see, e.g., (Piranda et al., 1998 [243])). Although this may be the case for some
aerospace structures as commented in (Göge et al., 2004 [244]), the discussion in Section 2.1 shows that this
approach to nonlinear system identification may lead to erroneous results when mode bifurcations are
responsible for additional, essentially nonlinear modes of vibration.

Thanks to the seminal work of Rosenberg (1962, 1966 [36,37]), the concept of NNM was introduced and
further developed in (Rand, 1974 [38]; Shaw and Pierre, 1993 [39]; Vakakis et al., 1996 [40]). The focus in this
section is on the inverse problem, i.e., on the development of a nonlinear model in modal space from
experimental measurements. For a discussion of NNMs, the reader may refer to Section 2 and to the
monograph (Vakakis et al., 1996 [40]), and should consult (Vakakis, 1997 [41]) for their applications in
vibration theory.
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The NNMs provide a rigorous theoretical framework for extending modal analysis to nonlinear systems.
It is therefore attractive to develop nonlinear system identification techniques based on these nonlinear
modes. However, in contrast to the linear theory, NNMs and their period are amplitude-dependent,
which complicates the analysis. Szemplinska-Stupnicka (1979, 1983 [245,246]) showed that the mode of
vibration in resonant conditions can be considered as a good approximation of the NNM. The stationary
solution can then be expanded in terms of the NNM and its corresponding natural frequency, both of which
are function of the modal amplitude. The numerical computation of these modal parameters involves a
nonlinear eigenvalue problem generally solved using a Newton–Raphson procedure. By curve-fitting forced
responses in the neighbourhood of a resonance, the nonlinear modal parameters can be obtained from
experimental data.

Based on this methodology, modal parameter identification procedures for forced response of nonlinear
systems were developed in (Jezequel, 1987 [247]; Setio et al., 1992a,b [248,249]; Chong and Imregun,
2001 [250]). In these studies, it is assumed that the resonant frequencies are not close to each other, and
the frequency response is expressed as a linear combination of contributions from resonant NNMs. The
coupled nature of the modal space is accounted for, by adding (small) contributions from the non-resonant
modes. The modal parameters of the resonant NNMs behave nonlinearly with the modal amplitudes, and, as
explained above, they are identified by curve-fitting procedures. The non-resonant modal parameters are
merely the linear modal parameters which are computed by standard modal analysis at sufficiently small-
amplitude motions. In (Gibert et al., 1999 [251]), the procedure was applied to an aircraft landing gear,
whereas the ECL benchmark depicted in Fig. 1 was analysed in (Gibert, 2003 [252]). Identification of
amplitude-dependent nonlinear modes using successive approximation model is proposed in (Huang and
Iwan, 1997 [253]).

The identification of individual NNMs may represent a limitation when considering the arbitrary motion of
a nonlinear system; in this case, the NNMs are bound to interact. To progress in this direction, Pesheck et al.
(2001a [254]) have introduced the notion of multi-mode invariant manifold which takes the possible modal
interactions into account. To our knowledge, this concept has not yet been exploited for nonlinear system
identification, but it should form the basis of future methods.

The method proposed by Wright et al. (2001 [255]) targets a multi-stage identification of large
structures with high modal density and weakly nonlinear effects (see Section 7.3). It is based on a linear
modal space model in which the modes may be coupled nonlinearly by additional terms in the equations
of motion. The key idea is to reduce the scale of the identification problem by classifying the modes
into different categories (i.e., influenced or not by nonlinear effects, coupled or uncoupled in damping
and/or nonlinearity) and by extending the classical linear force appropriation approach (Williams et al.,
1986 [256]; Wright et al., 1999 [257]) to non-proportionally damped nonlinear systems. For this purpose,
two methodologies which enable the treatment of modes individually or in small groups were developed:
the force appropriation of nonlinear systems (FANS, (Atkins et al., 2000 [258])) method and the
nonlinear resonant decay method (NLRD, Wright et al. (2001 [255])). A ‘low-order’ regression analysis in
modal space is then carried out using the classical RFS method (Masri et al., 1982 [134]; Al-Hadid and
Wright, 1989 [138]). Experimental validation of the method using a single-bay panel structure and a
wing-store structure is available in (Platten et al., 2002 [259]) and in (Platten et al., 2004 [260]),
respectively.

Finally, several authors have used ‘other nonlinear modes’ for identification of nonlinear systems from free
vibration. In (Bellizzi et al., 2001 [261]), identification is performed by comparing experimental coupled

nonlinear modes to the predicted ones. In (Hasselman et al., 1998 [262]; Hemez and Doebling, 2001a [103];
Lenaerts et al., 2001, 2003 [263,264]), a similar procedure is derived for the modes extracted from the POD,
termed proper orthogonal modes (POMs). In (Argoul et al., 2004 [265]), instantaneous mode shapes are
extracted using the wavelet transform. All these modes do not have the theoretical foundations of the NNMs,
but they provide an appealing alternative, at least for nonlinear system identification, because (i) they are
sensitive to the nonlinear behaviour; (ii) their computation is relatively straightforward (e.g, the POMs are
readily obtained from a singular value decomposition of the response matrix) and (iii) they obey to ‘a sort of
principle of superposition’ due to the fact that the original signal is retrieved when all the modal contributions
are added up.
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3.5. Time– frequency analysis

A typical feature of nonlinear vibrations is that the instantaneous natural frequency and damping
coefficient of the system may become functions of time depending upon the type of nonlinearity. One possible
means of studying the time-varying nature of the system vibration characteristics is to compute backbone and
damping curves, an elegant method for their computation being the time-domain version of the Hilbert
transform. However, one difficulty of this approach is in the case of multicomponent signals as already
discussed in Section 3.2.

A variety of methods for time–frequency analysis of non-stationary signals have been proposed in the
literature. Time–frequency methods do not provide additional insight into the system dynamics compared
with combined time- and frequency-domain analyses, but, due to their specific representation, they offer a
different perspective of the dynamics. Another advantage of time–frequency decompositions is that they
permit projections of the time history onto a space that allows separation of components of the signal, which
facilitates filtering in the case of multicomponent signals. This class of methods was already considered in the
1960s for problems in acoustics and vibrations (Priestley, 1967 [266]; Hammond, 1968 [267]), but it is only
from the 1990s that it gained widespread popularity within the structural dynamics community. A survey of
the analysis of non-stationary signals using time–frequency methods is available in (Hammond and White,
1996 [268]).

Linear systems have been investigated using this class of methods, mainly for the purpose of natural
frequency and damping estimation (see, e.g., (Park et al., 1995 [269]; Ruzzene et al., 1997 [270]; Staszewski,
1997 [271]; Argoul and Le, 2004 [272]; Boltezar and Slavic, 2004 [273])).

Time–frequency analysis is also suitable for the analysis of nonlinear oscillations. Linear

representations which decompose a signal in terms of a set of simpler components which when
added up yield the original signal have been used in nonlinear structural dynamics. For instance,
nonlinear oscillations are studied using the Gabor transform in (Spina et al., 1996 [274]; Franco
and Pauletti, 1997 [275]). An overview of the use of the wavelet transform in nonlinear dynamics
can be found in (Staszewski, 2000 [276]). Quadratic representations which include the Wigner– Ville

distribution and the Cohen-class of distributions have also received some attention (Feldman and
Braun, 1995 [277]; Wang et al., 2003a [278]). Focusing now on the inverse problem, i.e., on the
extraction of parameters from measured data, the joint application of the Gabor and Hilbert trans-
forms is proposed in (Spina et al., 1996 [274]). The Gabor transform identifies a time-variant
matrix representing the spatial behaviour of the system; this matrix is used to decouple the
transient response into a set of quasi-harmonic components. The Hilbert transform is then applied
to identify the dissipative and elastic restoring forces associated with each component. In (Bellizzi
et al., 2001 [261]), the Gabor transform is used for the computation of coupled nonlinear modes
from measured data, nonlinear modal parameters being extracted from these modes. In (Staszewski,
1998 [279]), the backbone curve and the signal envelope are extracted based on the ridges and skeletons
of the wavelet transform, which enables parameter estimation of SDOF and MDOF nonlinear
systems. Wavelet-based identification is also performed in (Garibaldi et al., 1998 [280]; Argoul and Le,
2003 [281]). A comparison between the RFS method and the approach proposed in (Garibaldi et al., 1998
[280]) is available in (Lenaerts et al., 2004 [282]). We note that all these methodologies deal with
free oscillations.

A different approach using the wavelet transform for nonlinear system identification consists in expanding
the system response and excitation in terms of scaling functions (in (Kitada, 1998 [283])), it is the tangent
stiffness of the structural system which is expressed as a series expansion of wavelets). This wavelet-Galerkin

oriented procedure transforms the original nonlinear differential problem into a set of algebraic equations in
the unknown parameters and has been implemented for free and forced vibrations using the Daubechies’

scaling functions (Ghanem and Romeo, 2001 [284]). A variant of this method using the Haar wavelet is
proposed in (Chen and Ho, 2004 [285]).

Alternative approaches for identification of nonlinear parameters are those employing the Wigner–Ville
distribution (Feldman and Braun, 1995 [277]) or a quadratic time–frequency distribution of Cohen class
(Wang et al., 2003b [286]).
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3.6. Black-box modeling

One major difficulty of nonlinear system identification is that the functional S½�� which maps the input xðtÞ

to the output yðtÞ, yðtÞ ¼ S½xðtÞ�, is generally unknown beforehand. Physical insight is most often of great help
to select a reasonably accurate model of the nonlinearity. Only if this gives unsatisfactory results or if physical
insight is completely lacking, it is then time to move to nonlinear black-box modeling. A nonlinear black-box
structure is a model structure that is prepared to describe virtually any nonlinear dynamics on the basis of the
data alone. This is a very ambitious objective knowing that nonlinearity may be caused by many different
mechanisms and may result in plethora of dynamic phenomena, but there exist theorems supporting this
finding (e.g., Cybenko (1989 [287]) showed that neural networks are universal approximators).

As extensively discussed in (Sjöberg et al., 1995 [288]), nonlinear black-box modeling is as a mapping from
past observed data to a regressor space followed by a nonlinear, function expansion type, mapping to the
space of the system’s outputs. Some methods for performing the nonlinear mapping are:
�
 artificial neural networks have come into prominence because of their universal approximation features;

�
 wavelet networks are attractive because they unify multi-resolution features of wavelet bases and universal

approximation features of neural networks;

�
 splines are interesting functions, because they are computationally very simple, can be made as smooth as

desired and are very economic to store;

�
 neuro-fuzzy models combine the semantic transparency of rule-based fuzzy systems with the learning

capabilities of neural networks; they can be regarded more as grey-box models.

Most of the possibilities for black-box nonlinear dynamical models are described in a common framework in
two excellent papers: (Juditksy et al., 1995 [289]) is geared toward the theoretical aspects, and (Sjöberg et al.,
1995 [288]) focuses on the user and algorithmic aspects.

Some of the earliest examples of the use of neural networks for system identification and modeling are the
work of Chu et al. (1990 [290]) and Narendra and Parthasarathy (1990 [291]). The most comprehensive
programme of work to date is that of Billings and co-workers starting with (Billings et al., 1991a [166]) for the
multi-layer perceptron structure and (Chen et al., 1990b [292]) for the radial basis function network. Masri et al.
(1992,1993 [293,294]) were amongst the first structural dynamicists to exploit the techniques. The latter work is
interesting because it demonstrates ‘dynamic neurons’ which are said to increase the utility of the multi-layer
perceptron structure. In (Worden et al., 1994a,b [295,296]), it is shown that multi-layer perceptron neural
networks can represent a broad range of SDOF nonlinear systems, with continuous or discontinuous
nonlinearities. In (Chassiakos and Masri, 1996 [297]), the identification of MDOF systems is considered.
Smyth and co-workers (Kosmatopoulos et al., 2001 [298]; Pei et al., 2004 [299]) have developed a procedure
for adaptive identification of nonlinear hysteretic dynamic systems by using Volterra– Wiener neural networks

which combine a dynamic linear module in series with a static neural network module. In (Le Riche et al., 2001
[300]; Song et al., 2004 [301]), the neural network does not learn the functional which relates the system’s input
xðtÞ to its output yðtÞ but rather the relation that links carefully selected structural features and the parameters
to be identified. Fuzzy adaptive neural networks are investigated in (Liang et al., 2001 [302]) to increase the
training speed of the network. In (Fan and Li, 2002 [303]), a hybrid approach that embeds neural networks to
represent unknown nonlinearities in a otherwise typical physical model is developed. A similar study
employing radial basis function network is proposed in (Saadat et al., 2004 [304]).

Clearly, among the different choices for nonlinear black-box modeling, artificial neural networks have
received the most attention in nonlinear structural dynamics. The use of splines for non-parametric
identification of wire rope isolators is investigated in (Peifer et al., 2003 [305]). Neuro-fuzzy models and
wavelet networks can also be useful for nonlinear system identification (Liu et al., 2000 [306]; Babuska and
Verbruggen, 2003 [307]), but they have not yet been applied extensively for this purpose in structural
dynamics.

We conclude this section by noting that black-box modeling has also some limitations. First and foremost,
the identified model parameters do not provide physical information about the structure, which may limit the
practical usefulness of the resulting model. An important question is how to deal with the large number of
25



potentially necessary parameters required to handle arbitrary nonlinear dynamical systems, which may lead to
overfitting (the trade-off between bias and variance must therefore be adequately addressed) and may imply a
high-dimensional nonlinear optimisation problem for the estimation of the parameters.

3.7. Structural model updating

For the investigation of more complex structures in a wider frequency range, resorting to models with many
DOFs is inevitable. However, the estimation of all the model parameters from experimental measurements
may quickly become intractable. A solution to this problem is to use structural modeling techniques which
compute the model parameters based on the knowledge of the geometrical and mechanical properties of the
structure.

Despite the high sophistication of structural modeling, practical applications often reveal considerable
discrepancies between the model predictions and experimental results, due to three sources of errors, namely
modeling errors (e.g, imperfect boundary conditions or assumption of proportional damping), parameter
errors (e.g., inaccuracy of Young’s modulus) and testing errors (e.g, noise during the measurement process).
There is thus the need to improve structural models through the comparison with vibration measurements
performed on the real structure; this is referred to as structural model updating.

Very often, the initial model is created using the finite element method (see, e.g., (Zienkiewicz, 1977 [308])),
and structural model updating is termed finite element model updating. Finite element model updating was first
introduced in the 1970s for linear structures (Berman and Nagy, 1971 [309]; Baruch, 1978 [310]). For a detailed
description of this field of research and the issues commonly encountered (e.g., model matching step and error
localisation), the reader is invited to consult (Natke, 1992 [311]; Friswell and Mottershead, 1995 [312]; Link,
1999 [313]).

The literature on methods that propose to update nonlinear dynamic models is rather sparse. In (Schmidt,
1994 [314]), parameters of nonlinear elements are updated by fitting simulated time history functions and the
corresponding measurement data. The problem of estimating the initial values as well as the problem of
increasing error between simulated and measured time history functions is overcome by using the method of
modal state observers. Kapania and Park (1997 [315]) proposed to compute the sensitivity of the transient
response with respect to the design parameters using the time finite element method. The minimum model error

estimation algorithm is exploited in (Dippery and Smith, 1998 [316]) to produce accurate models of nonlinear
systems. In this algorithm, a two-point BVP is solved in order to obtain estimates of the optimal trajectories
together with the model error. In (Kyprianou, 1999 [317]; Kyprianou et al., 2001 [318]), model updating is
realised through the minimisation of an objective function based on the difference between the measured and
predicted time series. The optimisation is achieved using the differential evolution algorithm which belongs to
the class of genetic algorithms. The formulation proposed by Meyer and co-authors (Meyer and Link, 2002
[319]; Meyer et al., 2003 [130]) involves a linearisation of the nonlinear equilibrium equations of the structure
using the harmonic balance method. Updating of the finite element model is carried out by minimising the
deviations between measured and predicted displacement responses in the frequency domain. In (Yuen and
Beck, 2003 [320]), model updating is performed in the presence of incomplete noisy response measurements. A
stochastic model is used for the uncertain input, and a Bayesian probabilistic approach is used to quantify the
uncertainties in the model parameters. In (Kerschen and Golinval, 2005a [223]), a two-step methodology
which decouples the estimation of the linear and nonlinear parameters of the finite element model is proposed.
This methodology takes advantage of the CRP method and is applied to a numerical application consisting of
an aeroplane-like structure.

Due to the inapplicability of modal analysis, test–analysis correlation which is inherent to structural model
updating is a difficult task in the presence of nonlinearity. Several efforts have been made in order to define
features (i.e., variables or quantities identified from the structural response that give useful insight into the
dynamics of interest) that facilitate correlation. In the case of pyroshock response, NASA has proposed
criteria such as peak amplitude, temporal moments and shock response spectra as appropriate features of the
response signal (Mulville, 1999 [321]). In (Doebling et al., 2000 [322]; Schultze et al., 2001 [17]), the peak
response and time of arrival are defined as features in order to study the transient dynamics of a viscoelastic
material. In (Song et al., 2004 [301]), the envelope of transient acceleration responses is considered as the best
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information to identify joint parameters associated with adjusted Iwan beam elements. The POD method, also
known as Karhunen– Loève transform or principal component analysis, has been investigated in several studies
(Ma and Vakakis, 1999 [323]; Hasselman et al., 1998 [262]; Hemez and Doebling, 2001a [103]). Specifically, the
modes extracted from the decomposition, the POMs, have been shown to be interesting features for the
purpose of test-analysis correlation. In (Lenaerts et al., 2001, 2003 [263,264]), the POMs together with the
wavelet transform of their amplitude modulations are considered for finite element model updating. Although
it is frequently applied to nonlinear problems, it should be borne in mind that the POD only gives the optimal
approximating linear manifold in the configuration space represented by the data. This is the reason why finite
element model updating was performed in (Kerschen, 2003c [324]; Kerschen and Golinval, 2004a [325]) using
the features extracted from a nonlinear generalisation of the POD, termed nonlinear principal component

analysis (Kramer, 1991 [326]). In (Zimmerman et al., 2005 [327]), the POD is coupled with neural network and
genetic algorithms for approximation and calibration of nonlinear structural models.

A statistics-based model updating and validation philosophy is proposed in (Doebling et al., 2000 [322];
Schultze et al., 2001 [17]). The motivation for including statistical analysis is driven by the desire to account for
the effects of environmental and experimental variability. The feature comparison is implemented using
metrics such as Mahalanobis distance and Kullback– Leibler relative entropy function. In addition, the finite
element model is replaced by an equivalent meta-model with a much smaller analytical form. This strategy
aims at reducing the number of computer simulations required during optimisation while maintaining the
pertinent characteristics of the problem. The demonstration application consists in analysing the response of a
steel/polymer foam assembly during a drop test.

As stated in the introductory section, model updating, being a particular class of system identification
techniques, is an integral part of the verification and validation process. We note that the first book dedicated
to this subject in structural dynamics has been recently published (Hemez et al., 2005 [64]).
4. Detection of nonlinearity

4.1. Literature review

According to the scheme in Fig. 4, the detection of structural nonlinearity is the first step toward
establishing a structural model with a good predictive accuracy. Since the focus in this overview paper is
mainly on parameter estimation techniques, the relevant methods for nonlinearity detection will only be cited
or briefly described. More details can be found in the references cited throughout this section. An excellent—
though not up to date—overview is available in (Wyckaert, 1992 [328]). More recent overviews can be found in
(Adams and Allemang, 1998 [56]; Vanhoenacker et al., 2002 [329]; Gloth and Göge, 2004 [330]). A number of
different approaches are also described in (Ewins, 2000 [11]; Worden and Tomlinson, 2001 [67]; Wong et al.,
2002 [331]).

As discussed in Section 2.1, various concepts and analytical constructions for the analysis of linear systems
do not directly apply to nonlinear theory. The breakdown of the principle of superposition is a possible means
of detecting the presence of a nonlinear effect. Let y1ðtÞ and y2ðtÞ be the responses of a structure to the input
forces x1ðtÞ and x2ðtÞ, respectively. The principle of superposition is violated if ay1ðtÞ þ by2ðtÞ is not the
structural response to the input ax1ðtÞ þ bx2ðtÞ. However, as explained in (Worden and Tomlinson, 2001 [67]),
it is of limited practical utility, and simpler procedures should be employed.

The test for homogeneity which is a restricted form of the principle of superposition—b is set to 0—is one of
the most popular detection technique. Homogeneity violation is best visualised in the frequency domain
through distortions of FRFs. However, because a weaker condition is enforced, this linearity test is not
infallible. An homogeneity test was applied to the ECL benchmark depicted in Fig. 1. Close-ups of FRFs
measured at excitation levels of 1.4 and 22Nrms (see the solid and dotted lines, respectively) are shown in
Fig. 14. Due to the geometric nonlinearity, severe distortions are introduced in the FRFs when the excitation
level increases. Another means of inspecting FRFs for distortions indicative of nonlinearity is through
visualisation of Nyquist plots which combine gain and phase characteristics in a single plot. For a linear system
with well-separated modes, each resonance should generate the major part of a circle. In addition, the
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Fig. 14. Magnitude of H73 (ECL benchmark): (a) first resonance; (b) second resonance. (—–, FRF measured using H2 estimate at

1.4Nrms (the geometric nonlinearity is not activated); � � � � � �, FRF measured using H2 estimate at 22Nrms; - - -, FRF measured using Hc2

estimate at 22Nrms).
isochrones (i.e., the lines connecting points of constant frequency for different excitation levels) should be
straight lines for a linear system. If these two properties do not hold, a nonlinearity should be suspected.

Due to the symmetry of the dynamic compliance matrix HðoÞ, to measure a FRF by impacting point A and
measuring the response at point B is equivalent to measure a FRF by impacting point B and measuring the
response at point A. The reciprocity test is not infallible either because reciprocity can hold for symmetrical
nonlinear systems. Also, as mentioned in (Wyckaert, 1992 [328]), interchanging exciter and transducer
locations can introduce additional reciprocity violation errors due to misalignment of the shaker for instance.

The ordinary coherence function g (Newland, 1984 [332]) is normally used for assessing the quality of data
measured under random excitation

g2ðoÞ ¼
jSyxðoÞj2

SxxðoÞSyyðoÞ
¼

H1

H2
with H1ðoÞ ¼

SyxðoÞ
SxxðoÞ

; H2ðoÞ ¼
SyyðoÞ
SyxðoÞ

, (3)

where SyyðoÞ, SxxðoÞ and SyxðoÞ contain the power spectral density (PSD) of the response (e.g., acceleration
signal), the PSD of the applied force and the cross PSD between the response and the applied force,
respectively; H1 and H2 represent the so-called H1 and H2 FRF estimators. The coherence function is required
to be unity for all accessible o if and only if the system is linear and noise-free. Allemang and Brown (1987
[333]) suggested to utilise it as a detection tool for nonlinear behaviour because it is a rapid indicator of the
presence of nonlinearity in specific frequency bands or resonance regions. It is arguably the most often-used
test, by virtue of the fact that almost all the commercial spectrum analysers allow its calculation; however, it
does not distinguish between the cases of a nonlinear system and noisy signals. The coherence function
measured on the ECL benchmark at excitation levels of 1.4 and 22Nrms is depicted in Fig. 15. It is close to
unity for the lowest excitation level for which the geometric nonlinearity is not activated whereas severe drops
can be observed for the highest level confirming the presence of a nonlinearity.

A more sophisticated diagnostic tool introduced in (Simon and Tomlinson, 1984 [334]) is provided by the
Hilbert transform H½�� which diagnoses nonlinearity on the basis of measured FRF data. It merely exploits
the fact that the FRF of a linear system is invariant under a Hilbert transformation. This is discussed in more
details in Section 4.2. Another indicator based on the Hilbert transform is the corehence function l of Rauch
(1992 [335])

l2ðoÞ ¼
jH½HðoÞ�HðoÞ�j2

jH½HðoÞ�j2jHðoÞj2
, (4)
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Fig. 15. Ordinary coherence function (ECL benchmark): (a) 1.4Nrms; (b) 22Nrms.
where star denotes the complex conjugate. It is defined to be unity for linear systems. The coherence function
appears to be a more sensitive indicator of nonlinearity than the coherence. However, to some extent its utility
is offset by its greater difficulty of calculation. As more commercial analysers with Hilbert transform facilities
become available this objection should vanish.

Returning to the time domain, Billings and co-workers have established a number of simple correlation tests
which can signal nonlinearity by manipulating measured time data. If records of both input x and output y are
available, it can be shown that the correlation function

fx2y
0 ðtÞ ¼ E½xðtÞ2y0ðtþ tÞ� (5)

vanishes for all t if and only if the system is linear (Billings and Tsang, 1990 [336]). The apostrophe signifies
that the mean has been removed from the signal. If only sampled outputs are available, it can be shown that
under certain conditions (Billings and Fadzil, 1985 [337]) the correlation function

fy
0
y
02 ðkÞ ¼ E½y0ðtþ kÞðy0ðtÞÞ2� (6)

is zero for all k if and only if the system is linear. In practice these functions will never be identically zero;
however, confidence intervals for a zero result can be calculated straightforwardly. As an example the
correlation functions for acceleration data from a bilinear system at both low and high excitation are shown in
Fig. 16; the dashed lines are the 95% confidence limits for a zero result. The function in Fig. 16b indicates that
the data from the high excitation test arises from a nonlinear system. The low excitation test did not excite the
nonlinearity and the corresponding function (Fig. 16a) gives a null result as required.

Because harmonic distortion in nonlinear systems produces vibration response components at frequencies
other than the excitation frequency, HOFRFs (Storer and Tomlinson, 1993 [192]) and higher-order spectra
(Choi et al., 1984 [338]; Collis et al., 1998 [339]) have the capability to detect the presence of a nonlinear effect.
Their advantage is that, besides nonlinearity detection, they can provide some qualitative information about
the nonlinear behaviour (e.g., the type of the nonlinearity). One difficulty is that they are not easy to compute
and measure. HOFRFs are discussed in detail in Section 6.5.

Another typical feature of nonlinear systems is that the frequency of motion is amplitude dependent. The
plot which depicts the frequency as a function of the free vibration envelope is called a backbone curve; the
presence of nonlinearity can be directly inferred from it. A backbone curve can be extracted using a time-
domain version of the Hilbert transform (Feldman, 1994a [172]) in the case of a monocomponent signal with
slowly varying amplitude (see also Section 6.4). For signals with multiple components, filtering efforts are
needed, but this drawback has been recently removed with the introduction of the Huang–Hilbert transform
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Fig. 16. Correlation tests: (a) linear system; (b) nonlinear system.
(Huang et al., 1998 [176]). Time–frequency analysis using the wavelet (Staszewski, 2000 [276]) or Gabor (Spina
et al., 1996 [274]) transforms also offers a convenient means of computing a backbone curve.

Other detection techniques are the harmonic detection function (Van Der Auweraer et al., 1984 [340];
Mertens et al., 1986 [341]), the inverse receptance method (He and Ewins, 1987 [342]), the complex stiffness

method (Mertens et al., 1989 [343]), the non-causal power ratio (Kim and Park, 1993 [344]) and carpet plots
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(Ewins, 2000 [11]). Recently developed techniques include the use of autocorrelation functions of residuals from
overdetermined FRF calculations (Adams and Allemang, 2000b [345]) and the use of multisine excitations

(Vanhoenacker et al., 2001 [346]; Verboven et al., 2005 [347]). In (Trendafilova et al., 2000 [348]), the
nonlinearity detection procedure is recast into a classification problem using a nearest neighbour approach.

Finally, it is noted that damage causes a structure that initially behaves in a predominantly linear manner to
exhibit nonlinear response when subject to its operating environment. The formation of cracks that
subsequently open and close under operating loads is an example of such damage. The detection of
nonlinearity may thus sometimes be related to the presence of a structural damage (Trendafilova and Van
Brussel, 2001 [349]; Farrar et al., 2004 [350]).

4.2. An example of nonlinearity detection: the Hilbert transform

4.2.1. Theory

The Hilbert transform diagnoses nonlinearity on the basis of measured FRF data. The map on a FRF HðoÞ is

H½HðoÞ� ¼ ~HðoÞ ¼
�1

ip

Z 1
�1

HðOÞ
O� o

dO. (7)

This mapping reduces to the identity on the FRFs of linear systems. For nonlinear systems, the Hilbert
transform results in a distorted version ~HðoÞ of the original FRF. This is illustrated in the Nyquist plot of
Fig. 17 in the case of a hardening cubic stiffness; the characteristic circle is rotated clockwise and elongated
into a more elliptical form. Distortions due to other types of nonlinearities (e.g, softening cubic stiffness and
Coulomb friction) are discussed in (Worden and Tomlinson, 2001 [67]).

The origin of the distortion is described in (Worden and Tomlinson, 2001 [67]) and summarised here.
Suppose HðoÞ is decomposed so

HðoÞ ¼ HþðoÞ þH�ðoÞ, (8)

where HþðoÞ [respectively, H�ðoÞ] has poles only in the upper (respectively, lower) half of the complex o-
plane. It can be shown that

H½H�ðoÞ� ¼ �H�ðoÞ. (9)

The distortion suffered in passing from the FRF to the Hilbert transform is given by

DHðoÞ ¼H½HðoÞ� �HðoÞ ¼ �2H�ðoÞ. (10)

A major problem in using the Hilbert transform on FRF data occurs when non-baseband (i.e, data which
does not start at zero frequency) or band-limited data is employed. Practically speaking, all data falls into one
of these categories, and the problem of neglecting the ‘out of band’ data always exists; the data over the
intervals (�1;omin) and (omax;1) will be unavailable. By making use of the parity of the real and imaginary
Fig. 17. Hilbert transform of a hardening cubic spring FRF at a low sine excitation level.
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parts of the FRF, the Hilbert transform can be recast in a slightly different form to that described above

R½ ~HðoÞ� ¼ �
2

p

Z 1
0

I½HðOÞ�O

O2 � o2
dO, (11)

I½ ~HðoÞ� ¼
2o
p

Z 1
0

R½HðOÞ�

O2 � o2
dO. (12)

If zoomed data from ðomin;omaxÞ is measured, data is missing from the intervals ð0;ominÞ and ðomax;1Þ.
The problem is usually overcome by adding correction terms to the Hilbert transform evaluated from omin

to omax (Simon, 1983 [351]; Ahmed, 1987 [352]). An alternative approach establishes the position of the FRF
poles in the complex planes and forms the decomposition (8). This is achieved by formulating a rational

polynomial (RP) model of the FRF over the chosen frequency range and then converting this into the required
form via a pole zero decomposition.

A general FRF may be expanded into a rational polynomial representation

HðoÞ ¼
QðoÞ
PðoÞ

¼

PnQ

i¼0 aioiPnP

i¼0 bioi
. (13)

The polynomial coefficients ai and bi are functions of the natural frequencies, dampings and participation
factors of the modes. Once the RP model HRP is established, it can be converted into a pole-zero form

HRPðoÞ ¼
QnQ

i¼1ðo� qiÞQnP

i¼1ðo� piÞ
, (14)

where qi and pi are the (complex) zeroes and poles of the function, respectively. The next stage is a long
division and partial fraction analysis in order to produce the decomposition (8)

HþRPðoÞ ¼
XNþ
i¼1

Cþi
o� pþi

; H�RPðoÞ ¼
XN�
i¼1

C�i
o� p�i

, (15)

where Cþi and C�i are coefficients fixed by the partial fraction analysis; Nþ and N� are the number of poles in
the upper and lower half plane, respectively. Once this decomposition is established, the Hilbert transform
follows from (10).

The procedure described above is demonstrated using data from a simulated Duffing oscillator system

€yþ 20 _yþ 10; 000yþ 5	 109y3 ¼ X sinðotÞ. (16)

Data was generated over 256 spectral lines from 0 to 38:4Hz in a simulated stepped-sine test. The data was
truncated by removing data above and below the resonance leaving 151 spectral lines in the range
9.25–32:95Hz. Fig. 18 shows the Hilbert transforms of the FRF calculated by the RP method on the truncated
Fig. 18. Comparison of Hilbert Transforms from RP approach and standard integral.

32



data and by a standard numerical method which used the full range of the data. The agreement between the two
methods is good. Note also the characteristic clockwise rotation of the Nyquist plot for the hardening cubic
stiffness system.

The pole-zero decomposition method can also be used to compute analytical expressions for the Hilbert
transform as in (King and Worden, 1994 [353]).
4.2.2. Assessment

The Hilbert transform is a fast and effective means of testing for nonlinearity on the basis of a measured
FRF. It has the advantage over a test of homogeneity, for example, in that it can be applied to a single FRF
measured at a single level of excitation (as long as the nonlinearity has been adequately excited). Computation
is fairly straightforward for a baseband FRF, but complications can arise for zoomed FRFs. However, the
problems can be circumvented by the use of correction terms or a pole-zero computation. An appealing
feature of the Hilbert transform is that the form of the distortion observed for a nonlinear system FRF can
give some (limited) insight into the qualitative form of the nonlinearity. Perhaps the main limitation of the
Hilbert transform is associated with all detection methods which look for distortion in a measured quantity; it
is that there is currently no established technology to determine if the deviations observed in the FRF are
statistically significant. As the Hilbert transform is usually used, the diagnosis of nonlinearity depends on
expert judgment. A further (probably minor) concern is that the Hilbert transform does not strictly detect
nonlinearity, but non-causality. It is not established beyond doubt that all nonlinear systems have noncausal
FRFs (in the sense that their corresponding impulse responses have support for negative times) and this means
that there may exist classes of nonlinear systems which the Hilbert transform would not detect.
5. Characterisation of nonlinearity

5.1. Literature review

According to the scheme in Fig. 4, the characterisation of nonlinearity is the second step toward the
development of a structural model with a good predictive capability. Since the paper mainly focuses on
parameter estimation techniques, the relevant methods for nonlinearity characterisation will solely be cited or
very briefly described. In fact, this research topic could deserve its own survey paper.

A nonlinear system is said to be characterised when the location, type and functional form of all the
nonlinearities throughout the system are determined. It is of crucial importance to have an accurate
characterisation of the nonlinear elastic and dissipative behaviour of the physical structure prior to parameter
estimation. Without a precise understanding of the nonlinear mechanisms involved, the identification
process is bound to failure. Characterisation is a very challenging step because nonlinearity may be caused by
many different mechanisms and may result in plethora of dynamic phenomena. This is evidenced in (Malatkar
and Nayfeh, 2003c [354]) in which a simple cantilever plate may exhibit 2:1 and 3:1 internal resonances,
external combination resonance, energy transfer between widely spaced modes, period-doubled motions
and chaos.
5.1.1. The location of the nonlinearity

The spatial localisation of local nonlinearities is the first step in the characterisation process. The literature
on this topic is not so extensive because nonlinearities may often be located easily, at least for simple
structures. Some information may be gleaned by studying FRFs at various excitation levels and examining the
deformation shapes of the modes which are most corrupted by the nonlinear response; nonlinearities may be
assumed where the relative displacements of these mode shapes are the largest. Other procedures have been
developed, e.g., procedures based on the RFS method (Al-Hadid and Wright, 1989 [138]), test– analysis

correlation (Lin and Ewins, 1995 [355]), error localisation in a linear model updating framework (see, e.g.,
(Fritzen et al., 1998 [356]; Pascual et al., 1999 [357])), pattern recognition (Trendafilova et al., 2000 [348]) and
scanning laser vibrometry (Vanlanduit et al., 2000 [358]).
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5.1.2. The type of the nonlinearity

Nonlinearity classification is useful for determining the type of the nonlinearity. It amounts to answering
several questions: (i) does the nonlinearity come from stiffness or damping (or both)? (ii) does the system have
hardening or softening characteristics? (iii) is the restoring force symmetric or asymmetric? (iv) is the
nonlinearity weak or strong? and (v) is the restoring force smooth or non-smooth?

Answers to some of these questions may be provided by looking at the distortions in measured FRFs of
nonlinear systems using Bode plots (see Fig. 14), Nyquist plots (Vakakis and Ewins, 1994 [359]), Volterra
series and HOFRFs (Storer and Tomlinson, 1993 [192]; Schoukens et al., 2000 [360]; Chatterjee and Vyas,
2001 [361]), frequency-domain ARX (Auto-Regressive with eXogenous inputs) models (Adams, 2002 [362])
and modulation matrices (Adams and Allemang, 1999b [234]) [FRFs of nonlinear systems are discussed at
length in (Nayfeh and Mook, 1979 [28]; Worden and Tomlinson, 2001 [67])]. Because one class of nonlinearity
can behave like another in a certain input–output amplitude range, the shape of the FRF is not always
conclusive evidence of a particular nonlinearity.

The form of the distortion introduced during a Hilbert transform of the FRF can also be characteristic of
the type of nonlinearity (Simon and Tomlinson, 1984 [334]; Worden and Tomlinson, 2001 [67]). In the case of
a hardening cubic stiffness, the peak of the Hilbert transform curve in the Bode plot appears at a higher
frequency than in the FRF; the peak magnitude of the Hilbert transform is also higher. The time-domain
version of the Hilbert transform described in Section 6.4 also provides some insight into the nonlinearity. The
hardening or softening characteristic of the system can be easily deduced from the backbone curve which
depicts the frequency as a function of the free vibration envelope. Information about damping can be inferred
from the damping curve and the signal envelope; e.g, it is well known that Coulomb friction has an envelope
with linear decay. The same kind of information can be gathered using the wavelet transform (Staszewski,
2000 [276]; Argoul and Le, 2003 [281]) and the Gabor transform (Franco and Pauletti, 1997 [275]). For
instance, characterisation of nonlinearities of an aeroelastic system using the wavelet transform is performed
in (Lind et al., 2001 [363]).

Higher-order spectra yield information about a signal’s non-Gaussianity; e.g, a Gaussian input to a
nonlinear system produces a non-Gaussian output (Collis et al., 1998 [339]). For symmetrically distributed
inputs and restoring forces with only odd terms, the output has a symmetric distribution and consequently a
zero bispectrum. The trispectrum provides further information in this case and enables a quantitative measure
of the strength of the nonlinearity. In (Hajj et al., 2000 [204]) the phase obtained from the bispectrum is used
for nonlinearity characterisation.

The RFS method (Masri and Caughey, 1979 [101]) has ‘built-in characterisation capabilities’ as discussed in
Section 5.2. By representing the restoring force as a function of the displacement and velocity in a three-
dimensional plot, the nonlinearity can be conveniently visualised. A characterisation of the elastic and
dissipative forces can be obtained by taking a cross section of this three-dimensional plot along the axes where
either the velocity or the displacement is equal to zero, respectively.

5.1.3. The functional form of the nonlinearity

A priori knowledge and nonlinearity classification may help to select a reasonably accurate model of the
nonlinearity. If little is known about the form of the model before starting the identification process, one may
resort to polynomial expansion. The principle of polynomial expansion is to approximate the restoring force
by a polynomial of some degree in displacement and velocity (coupling terms may also be included). The
number of possible terms increases rapidly with the polynomial order, but most often not all terms in the
expansion have a significant contribution to the restoring force. Indicators such as the significance factor

(Atkins and Worden, 1997 [364]) and coherence functions (Richards and Singh, 1999 [227]; Bendat and Piersol,
2000 [109]) provide a means of determining which terms are significant and which terms can be safely
discarded. However, there may be several disadvantages to using ordinary polynomial series in practice:
�
 The restoring forces of real structures are not necessarily governed by integer power series. For instance,
non-integer exponent-type models were successful at describing the nonlinear behaviour of a rubber
isolator (Richards and Singh, 2001 [19]), of a vehicle suspension (Adams and Allemang, 2000c [365]) and of
the ECL benchmark (Kerschen et al., 2003a [229]; Lenaerts et al., 2003 [264]; see also Sections 7.1.2 and
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7.4.2). Fractional derivatives have also enjoyed some success for modeling viscoelastic materials (Schmidt
and Gaul, 2003 [366]).

�
 When using high-order polynomial expansions, several models may be equally good, and overfitting may

also be an issue. An algorithm based on a Bayesian inference approach may alleviate these drawbacks
(Kerschen et al., 2003b [367]). The key advantage of the method is that a collection of potential models
together with their posterior probability is obtained instead of the single best model; this allows for more
flexibility in deciding the most appropriate model of the nonlinearity.

�
 Poor numerical conditioning may occur for polynomial series which contain both small and large powers.

Normalised and pseudo-orthogonal generating functions do not have this limitation (Adams and
Allemang, 2000c [365]).

�
 There are classes of nonlinearity that cannot be modeled accurately even with high-order polynomial

expansions (e.g, non-smooth nonlinearities).

Analytical studies and experiments are also of great utility to model the nonlinear structural behaviour.
Structural systems exhibiting inelastic restoring forces with hereditary characteristics are widely encountered
in the field of mechanics. Due to the hysteretic nature of the restoring force, the nonlinear force cannot be
expressed in the terms of the state variables of the system. As a result, much effort has been devoted to develop
models of hysteretic restoring forces (Iwan, 1966 [368]; Iwan, 1967 [369]; Bouc, 1967 [370]; Wen, 1976 [371];
Baber and Noori, 1985 [372]). Recent results on modeling and analysis of hysteretic systems are found in
(Vestroni and Noori, 2002 [373]). Joints and interfaces (Goodman, 1959 [374]; Groper, 1985 [375]; Gaul and
Lenz, 1997 [376]; Hartwigsen et al., 2004 [377]; Song et al., 2004 [301]), breathing cracks (Ibrahim et al., 1987
[378]; Worden et al., 1994b [296]; Sundermeyer and Weaver, 1995 [379]; Friswell and Penny, 2002 [380];
Luzzato, 2003 [381]), and materials such as rubber and polyurethane foams (White et al., 2000 [16]; Schultze et
al., 2001 [17]; Richards and Singh, 2001 [19]; Singh et al., 2003 [18]) can produce interesting and complicated
nonlinear dynamics. Their successful modeling largely depends on understanding and reproducing their basic
physics. We also mention that the rising need for additional damping in fast developing fields such as
aerospace industries has led to the development of new technologies with highly nonlinear mechanical
properties (e.g., particle dampers and hard ceramic coatings); their modeling may be a challenging task (Liu et
al., 2002 [382]; Wong et al., 2004 [383]).

Even if a priori information and physics-based models should not be superseded by any ‘blind’
methodology, the lack of knowledge about nonlinearity may be circumvented by nonlinear black-box models
such as those proposed in (Kosmatopoulos et al., 2001 [298]; Fan and Li, 2002 [303]; Peifer et al., 2003 [305]).
These models are prepared to describe virtually any nonlinear dynamics on the basis of the data alone, but the
identified parameters have little or no physical meaning. Problems may also arise when choosing a too
simplistic or too complex model; however, this issue is also encountered in parametric methods.

5.2. An example of nonlinearity characterisation: the restoring force surface method

The RFS procedure which is described in Section 6.1 has been applied to the characterisation and
identification of automotive shock absorbers in a number of publications (see Section 3.2).

The results presented in Fig. 19 are for a number of sets of test data from a FIAT vehicle shock absorber.
The data was obtained by FIAT engineers using the experimental facilities of the vehicle test group at Centro
Ricerche FIAT, Torino. The apparatus and experimental strategy are described in (Belingardi and Campanile,
1990 [150]); the subsequent data processing and analysis can be found in (Surace et al., 1992 [151]). Briefly,
data was recorded from an absorber which was constrained to move in only one direction in order to justify
the assumption of SDOF behaviour. The top of the absorber was fixed to a load cell so that the internal force
could be measured directly (it was found that inertial forces were negligible). The base was then excited
harmonically using a hydraulic actuator. The absorber was tested at six frequencies, 1, 5, 10, 15, 20, and 30Hz;
the results shown here are for the 10Hz test.

The RFS and the associated contour map are given in Fig. 19, they both show a very clear bilinear
characteristic. On the contour map, the contours, which are concentrated in the positive velocity half-plane,
are almost parallel and inclined at a small angle to the _y ¼ 0 axis showing that the position dependence of the
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Fig. 19. Experimental restoring force surface for an automotive shock absorber: (a) surface; (b) contour plot.
absorber is small and essentially linear. Note that if a parametric representation of the internal force had been
obtained, say a least-squares polynomial, it would have been impossible to infer the bilinear characteristic
from the coefficients alone; it is the direct visualisation of the nonlinearity which makes the force surface
so useful.

The surfaces from the tests at other frequencies showed qualitatively the same characteristics, i.e., a small
linear stiffness and a bilinear damping. However, the line of discontinuity in the surface was found to rotate in
the phase plane as the test frequency increased. A simple analysis using differenced force surfaces showed that
this dependence on frequency was not simply a consequence of disregarding the absorber mass (Worden and
Tomlinson, 1992 [384]). Force surfaces have also been used to investigate the temperature dependence of
shock absorbers (Surace et al., 1992 [151]).
6. Parameter estimation in the presence of nonlinearity: established methods

Parameter estimation is the last step toward the establishment of a structural model with a good predictive
accuracy as shown in Fig. 4. An important assumption which conditions the success of parameter estimation is
that all the nonlinearities throughout the system have been properly characterised.

In this section, several established methods for parameter estimation in the presence of nonlinearity are
described. Numerical and/or experimental examples are presented to illustrate their fundamental concepts but
also their assets and limitations.
6.1. The restoring force surface method

6.1.1. Theory

The simple procedure described in this section allows a direct identification for SDOF nonlinear systems.
The basic procedures were introduced by Masri and Caughey (1979 [101]), although the approach described
here resembles more the variant developed independently by Crawley and Aubert (1986 [133]) and Crawley
and O’Donnell (1986 [132]) and referred to as force-state mapping. A recent variation on the theme is the local

approach of Duym and Schoukens (1996b [154]) which fits a piecewise linear RFS.
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The starting point is the equation of motion as specified by Newton’s second law

m €yþ f ðy; _yÞ ¼ xðtÞ, (17)

where m is the mass (or an effective mass) of the system, and f ðy; _yÞ is the internal restoring force which acts to
return the absorber to equilibrium when disturbed. The function f can be a quite general function of position
yðtÞ and velocity _yðtÞ. Because f is assumed to be dependent only on y and _y it can be represented by a surface
over the phase-plane, i.e., the ðy; _yÞ plane. A trivial re-arrangement of Eq. (17) gives

f ðy; _yÞ ¼ xðtÞ �m €y. (18)

Now, if the mass m is known, and the excitation xðtÞ and acceleration €yðtÞ are measured, all the quantities on
the right-hand side of this equation are known, and hence so is f. As usual, measurement of a time signal
entails sampling it at regularly spaced intervals Dt. If ti ¼ ði � 1ÞDt denotes the ith sampling instant, then at ti,
Eq. (18) gives

f i ¼ f ðyi; _yiÞ ¼ xi �m €yi, (19)

where xi ¼ xðtiÞ and €yi ¼ €yðtiÞ, and hence f i is known at each sampling instant. If the velocities _yi and
displacements yi are also known (i.e., from direct measurement or from numerical integration of the sampled
acceleration data), at each instant i ¼ 1; . . . ;N a triplet ðyi; _yi; f iÞ is specified. The first two values indicate a
point in the phase plane, the third gives the height of the RFS above that point. Given this scattering of force
values above the phase plane there are a number of methods of interpolating a continuous surface on a regular
grid (one is Sibson’s natural neighbor method, implemented in the commercial software package TILE4

(Sibson, 1985 [385])). There are a couple of other issues of signal processing here. In the first case, direct
sampling of the displacement, velocity and acceleration data requires considerable instrumentation. It is more
economical to measure one and estimate the remaining states by numerical differentiation or integration; the
issues which arise in this strategy are addressed in (Worden, 1990a [141]). This problem was neatly avoided in
(Shin and Hammond, 1998a [144]), where the authors adopted a state-space embedding approach and fitted a
force surface of the form f i ¼ f ðyi; yi�1Þ. A second issue is the choice of excitation signal to give uniform
coverage of the phase plane; this is addressed in (Worden, 1990b [142]; Duym and Schoukens, 1995 [66]).

Once the surface is obtained, Masri and Caughey (1979 [101]) construct a model of the restoring force in the
form of a double Chebyshev series

f ðy; _yÞ ¼
Xm

i¼0

Xn

j¼0

CijTiðyÞTjð _yÞ, (20)

where TiðyÞ is the Chebyshev polynomial of order i. It has since been established (Al-Hadid and Wright, 1989
[138]; Worden and Tomlinson, 1989 [386]) that a straightforward polynomial expansion of the form

f ðy; _yÞ ¼
Xm

i¼0

Xn

j¼0

Cijy
i _yj (21)

is superior in terms of ease, speed and accuracy of estimation. The only advantage of the Chebyshev form of
the expansion is that the coefficients can be estimated independently of each other due to the fact that the
polynomials are orthogonal (Masri and Caughey, 1979 [101]).

There is a class of systems for which the RFS method cannot be used in the simple form described above;
i.e., systems with memory or hysteretic systems. In this case, the internal force does not depend entirely on the
instantaneous position of the system in the phase plane. As an illustration, consider the Bouc–Wen model
(Bouc, 1967 [370]; Wen, 1976 [371])

m €yþ f ðy; _yÞ þ z ¼ xðtÞ, (22)

_z ¼ �aj _yjz:jzjn�1 � b _yjznj þ A _y, (23)

which can represent a broad range of hysteresis characteristics. The RFS method would fail here because the
internal force is a function of y, _y and z; this means that the force surface over ðy; _yÞ would appear to be multi-
valued. A smooth surface can be obtained by exciting the system at a single frequency over a range of
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amplitudes; however, the surfaces would be different for each frequency. Extensions of the method to cover
hysteretic systems have been devised by Lo and Hammond (1988 [146]) and Benedettini et al. (1991 [147]);
models of the type

_f ¼ gðf ; _yÞ (24)

are obtained which also admit a representation as a surface over the ðf ; _yÞ plane. A parametric approach to
modeling hysteretic systems was pursued in (Yar and Hammond, 1987 [387]) where a Bouc–Wen model
(22)–(23) was fitted to measured data; this approach is complicated by the fact that model (22)–(23) is
nonlinear in the parameters.

6.1.2. Application example

There exist in the literature a number of examples of the application of force surface techniques to
experimental systems. One of the first is that of Crawley and O’Donnell (1986 [132]) which includes a study of
space–structure joints. Worden and Tomlinson (1991 [388]) consider an impacting cantilever beam as does the
more recent study by Kerschen et al. (2001 [156]). Meskell et al. (2001 [157]) applied the approach to a
nonlinear fluid-loading example. The experimental study of Hunter et al. (1989 [389]) is also of interest in that
it contains a frequency domain formulation of the method. The RFS procedure has also been applied to the
characterisation and identification of automotive shock absorbers in a number of publications (see, e.g.,
(Audenino et al., 1990 [149]; Belingardi and Campanile, 1990 [150]; Surace et al., 1992 [151])).

The example chosen to illustrate the method is the impacting cantilever beam in Fig. 3 (Kerschen et al., 2001
[156]). The beam was excited using a band-limited white noise centered on its first natural frequency (see
Fig. 20a), 18Hz, and behaved as a SDOF system. The acceleration shown in Fig. 20b was measured at the
beam tip, and the displacement and velocity were deduced from this signal using integration and filtering
procedures. A piecewise linear model

f ðy; _yÞ ¼

kyþ c _yþ kþðy� dÞ þ cþð _y� _yy¼d Þ if yXd;

kyþ c _y if jyjod;

kyþ c _yþ k�ðyþ dÞ þ c�ð _y� _yy¼�dÞ if yp� d

8><
>: (25)

was fitted to the data, which allowed the estimation of the parameters k; c; kþ; cþ; k�; c�. By looking for the
minimum value of the normalised mean-square error (NMSE (Allen, 1971 [390])) between the predicted and
measured restoring force for variations of the clearance d, this parameter could have been identified; the
smallest NMSE was 1.80%, which is the sign of an accurate identification. Fig. 21 presents the comparison
between the measured stiffness curve (i.e., a cross section of the three-dimensional surface corresponding to
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zero velocities) and the reconstructed curve given by the piecewise linear model. A polynomial model was also
fitted to the experimental data in (Kerschen et al., 2001 [156]); its stiffness curve is also displayed in Fig. 21.
6.2. Direct parameter estimation and restoring force surfaces

The identification procedure of Masri and Caughey (1979 [101]) which was discussed in the previous section
was shown to extend to MDOF systems in (Masri et al., 1982 [134]). Although in principle arbitrarily complex
nonlinear systems could be identified, in practice, the computational burden was considerable. Attempts to
obtain a practical implementation of the procedure were made in (Worden and Tomlinson, 1988 [391]; Al-
Hadid and Wright, 1989 [138]). The main difficulty was that the identification procedure was carried out in
modal coordinates, the intention being to simplify matters by diagonalising the underlying linear system. The
procedure therefore required a priori estimates of the modal matrix and mass matrix. Although the linear
parts of the restoring forces were simplified by this procedure, each component of the nonlinear restoring force
vector remained a function of all the coordinates. Al-Hadid and Wright showed that unless a time-consuming
iterative version of the procedure was adopted, any model parameters would be biased. A further problem is
that RFSs can no longer be obtained before the parameter estimation stage.

However, research continued, and in Al-Hadid and Wright (1989, [138]) a useful form of the identification
procedure was obtained by utilising a physical coordinate representation for the nonlinear forces while
retaining a modal coordinate approach to the underlying linear system. This can be contrasted with the later
work of Masri et al. (1987a,b [136,137]) where physical coordinates are used for the linear identification and
modal coordinates for the nonlinear. As described in the previous section, it was also found that simple
polynomial expansions are preferable to the double Chebyshev expansions of Masri and Caughey. In
subsequent papers by Al-Hadid and Wright (1990, 1992 [139,140]), experimental results are presented for a
MDOF system, and a powerful technique for obtaining estimates of the mass and modal mass matrices
appears. Al-Hadid (1989 [392]), Worden (1989 [393]) and Wright and Al-Hadid (1991 [394]) present a number
of results relating to the sensitivity of the identification procedure to measurement errors.

In the remainder of this section, an alternative approach to MDOF system identification is described.
Rather than make any use of modal coordinates, a physical coordinate system based on a lumped parameter
representation of the system is adopted. Although this is now a direct parameter estimation (DPE) scheme
similar to that adopted by Masri et al. (1987a,b [136,137]) for linear systems, it will be shown that all system
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parameters can be obtained if the system is excited at a single point. Also, restoring forces are shown to be a
useful by-product. An alternative approach to DPE is described in (Mohammad et al., 1991 [143]).

6.2.1. Theory

For a general N DOF system, it is assumed that the mass is concentrated at N measurement points, mi being
the mass at point i. Each point i is then assumed to be connected to each other point j by a link lij, and to
ground by a link lii. The situation is illustrated in Fig. 22 for a three-DOF system.

If the masses are displaced and released, they are restored to equilibrium by internal forces in the links.
These forces are assumed to depend only on the relative displacements and velocities of the masses at each end
of the links. If dij ¼ yi � yj is the relative displacement of mass mi relative to mass mj, and _dij ¼ _yi � _yj is the
corresponding relative velocity, then

Force in link lij:¼f ijðdij ; _dijÞ, (26)

where dii ¼ yi and
_dii ¼ _yi for the link to ground. It will be clear that, as links lij and lji are the same

f ijðdij ; _dijÞ ¼ �f jiðdji; _djiÞ ¼ �f jið�dij ;�_dijÞ. (27)

If an external force xiðtÞ is now applied at each mass, the equations of motion are

mi €yi þ
XN

j¼1

f ijðdij ; _dijÞ ¼ xiðtÞ i ¼ 1; . . . ;N. (28)

It is expected that this type of model would be useful for representing a system with a finite number of
modes excited. In practice, only the N accelerations and input forces at each point are measured. Differencing
Fig. 22. Link model for a 3DOF system.
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yields the relative accelerations €dij which can be integrated numerically to give _dij and dij. A polynomial
representation is adopted here for f ij giving a model

mi €yi þ
XN

j¼1

Xp

k¼0

Xq

l¼0

aðijÞklðdijÞ
k
ð_dijÞ

l
¼ xi. (29)

Least-squares parameter estimation can be used to obtain the values of the coefficients mi and aðijÞkl which
best fit the measured data. Note that an a priori estimate of the mass is not required. If there is no excitation at
point i, transmissibility arguments yield the appropriate form for the equation of motion of mi

f 0ijðdij ; _dijÞ ¼
XN

j¼1

Xp

k¼0

Xq

l¼0

a0ðijÞklðdijÞ
k
ð_dijÞ

l
¼ � €yi, (30)

where a0ðijÞkl ¼ aðijÞkl=mi.
In terms of the expansion coefficients, the symmetry relation (27) becomes

aðijÞkl ¼ ð�1Þ
kþlþ1aðjiÞkl (31)

or

mia
0
ðijÞkl ¼ ð�1Þ

kþlþ1mja
0
ðjiÞkl . (32)

In principle, the inclusion of difference variables allows the model to locate nonlinearity (Al-Hadid and
Wright, 1989 [138]); for example, if a term of the form ðd23Þ

3 appears in the appropriate expansion one can
infer the presence of a cubic stiffness nonlinearity between points 2 and 3.

Suppose now that only one of the inputs xi is non-zero. Without loss of generality it can be taken as x1. The
equations of motion become

m1 €y1 þ
XN

j¼1

f ijðdij ; _dijÞ ¼ x1ðtÞ, (33)

€yi þ
XN

j¼1

f 0ijðdij ; _dijÞ ¼ 0 i ¼ 2; . . . ;N. (34)

One can identify all coefficients in the €y2 equation up to an overall scale—the unknown m2 which is
embedded in each f 02j. Similarly, all the coefficients in the €y3 equation can be known up to the scale m3.
Multiplying the latter coefficients by the ratio m2=m3 would therefore scale them with respect to m2. This
means that coefficients for both equations are known up to the same scale m2. The ratio m2=m3 can be
obtained straightforwardly; if there is a link l23 the two equations will contain terms f 023 and f 032. Choosing one
particular term, e.g., the linear stiffness term, from each f 0 expansion gives, via (32)

m2

m3
¼

a0ð32Þ10

a0
ð23Þ01

. (35)

The scale m2 can then be transferred to the €y4 equation coefficients by the same method if there is a link l24
or l34. In fact, the scale factor can be propagated through all the equations since each mass point must be
connected to all other mass points through some sequence of links. If this were not true the system would fall
into two or more disjoint pieces.

If the €y1 equation has an input, m1 is estimated and this scale can be transferred to all equations so that the
whole MDOF system can be identified using only one input. Yang and Ibrahim (1985 [135]) observed that if
the unforced equations of motion are considered, the required overall scale can be fixed by a knowledge of the
total system mass; i.e., all system parameters can be obtained from measurements of the free oscillations.

If a restriction is made to linear systems, the symmetry relations in (27) yield the reciprocity relation. By
assuming that reciprocity holds at the outset, it is possible to identify all system parameters using one input by
an alternative method which is described in Mohammad et al. (1991 [143]).
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A further advantage of adopting this model is that it allows a natural definition of the RFS for each link.
After obtaining the model coefficients the surface f ij can be plotted as a function of dij and _dij for each link lij. In
this case the surfaces are purely a visual aid to the identification, and are more appropriate in the nonlinear case.

This approach is illustrated on an experimental system in (Worden et al., 1994c [395]). The DPE scheme has
also been implemented for distributed systems in (Liang and Cooper, 1992 [396]).

6.2.2. Assessment of the RFS and DPE methods

Although the RFS and DPE methods can deal with MDOF nonlinear systems, they are essentially
appealing because of their simplicity and efficiency for identification of SDOF systems or nonlinearity
localised between two DOFs. These methods offer a convenient means of determining the functional form of
the nonlinearity through the visualisation of the RFS as shown in Section 5.2. A characterisation of the elastic
and dissipative forces can be obtained by taking a cross section of this three-dimensional plot along the axes
where either the velocity or the displacement is equal to zero, respectively. A difficulty lies in the need for
numerical differentiation or integration which may introduce errors in the estimation of signals; careful signal
processing is required.

6.3. NARMAX modeling

6.3.1. Theory

Suppose one is interested in the SDOF linear system

m €yþ c _yþ ky ¼ xðtÞ. (36)

This can be converted by a process of discrete approximation to the discrete-time form

yi ¼ a1yi�1 þ a2yi�2 þ b1xi�1, (37)

where a1, a2 and b1 are constant coefficients and functions of the original parameters m, c, k and the sampling
interval Dt ¼ tiþ1 � ti where the ti are the sampling instants. In a more general form

yi ¼ F ðyi�1; yi�2; xi�1Þ. (38)

This is an ARX (Auto-Regressive with eXogenous inputs) model. The advantage of adopting this form is that
only the two states x and y need to be measured in order to estimate all the model parameters a1, a2 and b1 in
(38) and thus identify the system. It is a simple matter to show that a general MDOF linear system has a
discrete-time representation

yi ¼
Xny

j¼1

ajyi�j þ
Xnx

j¼1

bjxi�j (39)

or

yi ¼ F ðyi�1; . . . ; yi�ny
; xi�1; . . . ;xi�nx

Þ. (40)

As before, all parameters a1; . . . ; any
; b1; . . . ; bnx

can be estimated using measurements of the x and y data
only.

The extension to nonlinear systems is straightforward. Consider the Duffing oscillator represented by

m €yþ c _yþ kyþ k3y3 ¼ xðtÞ. (41)

One can pass to the discrete-time representation

yi ¼ a1yi�1 þ a2yi�2 þ b1xi�1 þ cy3
i�1. (42)

Model (42) is now termed a NARX (Nonlinear ARX) model. The regression function yi ¼ F ðyi�1; yi�2; xi�1Þ

is now nonlinear; it contains a cubic term. If all terms of order three or less were included in the model
structure, i.e., ðyi�2Þ

2xi�1, etc., a much more general model would be obtained

yi ¼ F ð3Þðyi�1; yi�2; xi�1Þ (43)
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(the superscript denotes the highest-order product terms) which would be sufficiently general to represent the
behaviour of any dynamical systems with nonlinearities up to third order, i.e., containing terms of the form _y3,
_y2y, etc.
The most general polynomial NARX model (including products of order pnp) is denoted by

yi ¼ F ðnpÞðyi�1; . . . ; yi�ny
; xi�1; . . . ; xi�nx

Þ. (44)

It has been proved by Leontaritis and Billings (1985a,b [162,163]) under very mild assumptions that any
input–output process has a representation by a model of form (44). If the system nonlinearities are polynomial
in nature, this model will represent the system well for all levels of excitation. If the system nonlinearities are
not polynomial, they can be approximated arbitrarily accurately by polynomials over a given range of their
arguments (Weierstrass approximation theorem in (Simmons, 1963 [397])). This means that the system can be
accurately modeled by taking the order np high enough. However, the model would be input-sensitive as the
polynomial approximation required would depend on the data. This problem can be removed by including
non-polynomial terms in the NARX model as described in (Billings and Chen, 1989d [398]). The NARX
model can even be cast as a neural network (Billings et al., 1991a,b [166,399]).

The preceding analysis unrealistically assumes that the measured data is free of noise. As shown below, if
the system is nonlinear the noise process can be very complex; multiplicative noise terms with the input and
output are not uncommon, but can be easily accommodated in the discrete-time models as described in
(Leontaritis and Billings, 1985a,b [162,163]; Korenberg et al., 1988 [164]; Chen et al., 1989 [400]).

Suppose the measured output has the form

yðtÞ ¼ ycðtÞ þ zðtÞ, (45)

where ycðtÞ is the ‘clean’ output from the system. If the underlying system is the Duffing oscillator of Eq. (41),
the equation satisfied by the measured data is now

m €yþ c _yþ kyþ k3y
3 �m€z� c_z� kz� k3z

3
� 3y2zþ 3yz2 ¼ xðtÞ (46)

and the corresponding discrete-time equation will contain terms of the form zi�1, zi�2, zi�1y2
i�1, etc. Note that

even simple additive noise on the output introduces cross-product terms if the system is nonlinear. Although
these terms all correspond to unmeasurable states they must be included in the model. If they are ignored the
parameter estimates will generally be biased. The system model (44) is therefore extended again by the
addition of a noise model and takes the form

yi ¼ F ð3Þðyi�1; yi�2; xi�1; zi�1; zi�2Þ þ zi. (47)

This type of model is referred to as NARMAX (Nonlinear Auto-Regressive Moving-Average with eXogenous

inputs). The NARMAX model was introduced in (Leontaritis and Billings, 1985a,b [162,163]).
Finally, the term moving-average requires some explanation. Generally, for a linear system a moving-

average model for the noise process takes the form

zi ¼ ei þ c1ei�1 þ c2ei�2 þ � � � , (48)

i.e., the system noise is assumed to be the result of passing a zero-mean white noise sequence feig through
a digital filter with coefficients c1; c2; etc. The terminology comes from the literature of time series analysis.
Eq. (40) requires a generalisation of this concept to the nonlinear case. This is incorporated in the NARMAX
model which takes the final general form

yi ¼ F ðnpÞðyi�1; . . . ; yi�ny
; xi�1; . . . ; xi�nx

; ei�1; . . . ; ei�ne
Þ þ ei. (49)

In this form the noise sequence or residual sequence ei is now zero-mean white noise. This allows the model
to accommodate a wide class of possibly nonlinear noise terms.

The input and output variables xi and yi are usually physical quantities like force and displacement
response, respectively. An interesting alternative approach to this was followed by Thouverez and Jezequel
(1996 [171]), who fitted a NARMAX model using modal coordinates.

Having obtained a NARMAX model for a system, the next stage in the identification procedure, i.e., model

validity, is to determine if the structure is correct and the parameter estimates are unbiased. It is important to
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know if the model has successfully captured the system dynamics so that it will provide good predictions of the
system output for different input excitations, or if it has simply fitted the model to the data; in which case it
will be of little use since it will only be applicable to one data set. Three basic tests of the validity of a model
have been established by Billings et al., they are described below in increasing order of stringency. In the
following, yi denotes a measured output while ŷi denotes an output value predicted by the model.

One-step-ahead predictions: Given the NARMAX representation of a system

yi ¼ F ðnpÞðyi�1; . . . ; yi�ny
; xi�1; . . . ;xi�nx

; ei�1; . . . ; ei�ne
Þ þ ei (50)

the one-step-ahead prediction of yi is made using measured values for all past inputs and outputs. Estimates of
the residuals are obtained from the expression êi ¼ yi � ŷi, i.e.,

ŷi ¼ F ðnpÞðyi�1; . . . ; yi�ny
; xi�1; . . . ;xi�nx

; êi�1; . . . ; êi�ne
Þ. (51)

The one-step-ahead series can then be compared to the measured outputs. Good agreement is clearly a
necessary condition for model validity. An objective measure of the goodness of fit can be obtained using the
NMSE.

Model predicted output: In this case, the inputs are the only measured quantities used to generate the model
output, i.e.,

ŷi ¼ F ðnpÞðŷi�1; . . . ; ŷi�ny
; xi�1; . . . ;xi�nx

; 0; . . . ; 0Þ. (52)

The zeroes are present because the prediction errors will not generally be available when one is using the
model to predict output. In order to avoid a misleading transient at the start of the record for ŷ, the first ny

values of the measured output are used to start the recursion. As above, the estimated outputs must be
compared with the measured outputs, with good agreement a necessary condition for accepting the model. It is
clear that this test is stronger than the previous one; in fact the one-step-ahead predictions can be excellent in
some cases when the model predicted output shows complete disagreement with the measured data.

Correlation tests: These represent the most stringent of the validity checks. The appropriate reference is
(Billings et al., 1989c [165]). The correlation function fuvðkÞ for two sequences of data ui and vi is defined by

fuv ¼ EðuiviþkÞ �
1

N � k

XN�k

i¼1

uiviþk. (53)

For a linear system the necessary conditions for model validity are

feeðkÞ ¼ d0k (54)

and

fxeðkÞ ¼ 0 8k. (55)

The first of these conditions is true only if the residual sequence ei is a white noise sequence. It is essentially a
test of the adequacy of the noise model whose job is to reduce the residuals to white noise. If the noise model is
correct, the system parameters should be free from bias. The second of the conditions above states that the
residual signal is uncorrelated with the input sequence xi, i.e., the model has completely captured the
component of the measured output which is correlated with the input. Another way of stating this requirement
is that the residuals should be unpredictable from the input.

In the case of a nonlinear system it is sometimes possible to satisfy the requirements above even if the model
is invalid. It is shown in (Billings et al., 1989c [165]) that an exhaustive test of the fitness of a nonlinear model
requires the evaluation of three additional correlation functions. The extra conditions are

feðexÞðkÞ ¼ 0 8kX0, (56)

fx20 eðkÞ ¼ 0 8k, (57)

fx20 e2ðkÞ ¼ 0 8k. (58)
44



The dash which accompanies x2 above indicates that the mean has been removed. Normalised estimates of
all the correlation functions above are usually obtained so that confidence limits for a null result can be added.

6.3.2. Assessment

The NARMAX modeling technique is very versatile. In most cases, it can exploit well-established linear-
algebraic means of least-squares estimation (the exception being for neural network NARX models, for
example, which are nonlinear-in-the-parameters). The possibility of using a noise model makes it very
powerful, although stability of the iterative procedure that fits the noise model can sometimes be a practical
issue. If the method has a disadvantage, it is that the models do not directly give insight into the physics of the
system being modeled, although it is possible to pass to a continuous-time model from the NARMAX model
by using the HOFRFs. On the latter point, the NARMAX approach gives the fastest and least data-intensive
means of computing the HOFRFs by harmonic probing of the parametric models. Another appealing feature
of the NARMAX approach is the availability of nonlinear model validation criteria based on correlation tests.

6.4. The Hilbert transform

6.4.1. Theory

The frequency-domain Hilbert transform has been used for nonlinearity detection (see Section 4.2), but the
time-domain version of the method has also enjoyed some success as a direct method of non-parametric
identification. The method described in this section is the result of a programme of research by Feldman (1985,
1994a,b [401,172,173]). It provides a means of obtaining the stiffness and damping characteristics of SDOF
systems. There are essentially two approaches, one based on free vibration FREEVIB and one on forced
vibration FORCEVIB. Only FREEVIB is discussed here. Note that Feldman uses the traditional definition of
the analytic signal and time-domain Hilbert transform throughout his analysis (this differs from the
frequency-domain object defined elsewhere in this review by a factor of �i).

Consider a SDOF nonlinear system under free vibration

€yþ hð _yÞ _yþ o2
0ðyÞy ¼ 0. (59)

The object of the exercise is to deduce the forms of the nonlinear damping function hð _yÞ and nonlinear stiffness
kðyÞ ¼ o2

0ðyÞ.
The method is based on the analytic signal

Y ðtÞ ¼ yðtÞ þ i ~yðtÞ, (60)

where ~y is the Hilbert transform of yðtÞ. The approach uses the magnitude and phase representation

Y ðtÞ ¼ AðtÞeicðtÞ, (61)

where AðtÞ is the instantaneous magnitude or envelope, and cðtÞ is the instantaneous phase, both are real
functions so

yðtÞ ¼ AðtÞ cosðcðtÞÞ; ~y ¼ AðtÞ sinðcðtÞÞ (62)

and,

AðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðtÞ2 þ ~yðtÞ2

q
, (63)

cðtÞ ¼ tan�1
~yðtÞ

yðtÞ

� �
. (64)

So both envelope and phase are available as functions of time if yðtÞ is known and ~yðtÞ can be computed. The
derivatives can also be computed, either directly or using the relations

_AðtÞ ¼
yðtÞ _yðtÞ þ ~yðtÞ_~yðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yðtÞ2 þ ~yðtÞ2
q ¼ AðtÞR

_Y ðtÞ

Y ðtÞ

� �
, (65)
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oðtÞ ¼ _cðtÞ ¼
yðtÞ_~yðtÞ � _yðtÞ ~yðtÞ

yðtÞ2 þ ~yðtÞ2
¼ I

_Y ðtÞ

Y ðtÞ

� �
, (66)

where oðtÞ is the instantaneous frequency, again a real signal. The last two equations can be used to generate
the first two derivatives of the analytic signal

_Y ðtÞ ¼ Y ðtÞ
_AðtÞ

AðtÞ
þ ioðtÞ

� �
, (67)

€Y ðtÞ ¼ Y ðtÞ
€AðtÞ

AðtÞ
� oðtÞ2 þ 2i

_AðtÞoðtÞ
AðtÞ

þ i _oðtÞ

" #
. (68)

Now, consider the equation of motion (59), with hð _yðtÞÞ ¼ hðtÞ and o2
0ðyðtÞÞ ¼ o2

0ðtÞ considered purely as
functions of time. Because the functions h and o2

0 will generally be low-order polynomials of the envelope A,
they will have a lowpass characteristic. If the resonant frequency of the system is high, yðtÞ will, roughly
speaking, have a highpass characteristic. This means that h and y can be considered as non-overlapping signals
as can o2

0 and y. If the Hilbert transform is taken of (59), it will pass through the functions h and o2
0. Further,

the transform commutes with differentiation, so

€~yþ hðtÞ_~yþ o2
0ðtÞ ~y ¼ 0. (69)

Adding (59) and i	 (69) yields a differential equation for the analytic signal Y, i.e.,

€Y þ hðtÞ _Y þ o2
0ðtÞY ¼ 0 (70)

or, the quasi-linear form

€Y þ hðAÞ _Y þ o2
0ðAÞY ¼ 0. (71)

Now, the derivatives €Y and _Y are known functions of A and o by (67) and (68). Substituting yields

Y
€A

A
� o2 þ o2

0 þ h
_A

A
þ i 2o

_A

A
þ _oþ ho

� �" #
¼ 0. (72)

Separating out the real and imaginary parts gives

hðtÞ ¼ �2
_A

A
�
_o
o
, (73)

o2
0ðtÞ ¼ o2 �

€A

A
� h

_A

A
, (74)

or

o2
0ðtÞ ¼ o2 �

€A

A
þ 2

_A
2

A2
þ
_A _o

Ao
(75)

and these are the basic equations of the theory.
Suppose the free vibration is induced by an impulse, the subsequent response of the system will take the

form of a decay. yðtÞ can be measured and ~y can then be computed. This means that AðtÞ and oðtÞ are available
by using (63) and (64) and numerically differentiating cðtÞ.

Now, consider how the damping function is obtained. hðtÞ is known from (73). As AðtÞ is monotonically
decreasing (energy is being dissipated), the inverse function tðAÞ is single-valued and can be obtained from the
graph of AðtÞ against time (Fig. 23). The value of hðAÞ is simply the value of hðtÞ at tðAÞ (Fig. 24). Similarly, the
stiffness function is obtained via the sequence A�!tðAÞ�!o2

0ðtðAÞÞ ¼ o2
0ðAÞ. The inverse of the latter

mapping AðoÞ is sometimes referred to as the backbone curve of the system.
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Fig. 23. Envelope used in Feldman’s method.
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Fig. 24. Damping curve for Feldman’s method.
Once hðAÞ and o2
0ðAÞ are known, the damper and spring characteristics f d ðAÞ and f sðAÞ can be obtained

trivially

f dðAÞ ¼ oðAÞAhðAÞ, (76)

f sðAÞ ¼ Ao2
0ðAÞ. (77)

Note that there are no assumptions on the forms of f d and f s, the method is truly non-parametric. However,
once the graphs A�!f d , etc., have been obtained, linear least-squares methods suffice to estimate parameters.

The method is illustrated here using data from numerical simulation.4 The first system is a Duffing oscillator
with equation of motion

€yþ 10 _yþ 104yþ 5	 104y3 ¼ 0 (78)

and initial condition _yð0Þ ¼ 200. Fig. 25a shows the decaying displacement and the envelope computed via
Eq. (63). Fig. 25b shows the corresponding instantaneous frequency obtained from (66). The backbone and
damping curves are given in Figs. 26a,b, respectively. As expected for a stiffening system, the natural
frequency increases with the amplitude of excitation. Apart from a high-frequency modulation, the damping
4The results in Figs. 25–27 were obtained by Dr. Michael Feldman—the authors are very grateful for permission to use them.
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Fig. 25. Identification of cubic stiffness system: (a) impulse response; (b) envelope.
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Fig. 26. Identification of cubic stiffness system: (a) backbone curve; (b) damping curve.
curve shows constant behaviour. Using Eqs. (76) and (77), the stiffness and damping curves can be obtained
and these are shown in Figs. 27a,b.

Alternative approaches have been constructed to yield the same information, in particular the Wigner–Ville
approach described by Feldman and Braun (1995 [277]), the method based on the Gabor transform in
(Brancaleoni et al., 1992 [402]), the wavelet approach (Staszewski, 2000 [276]) and the time-domain Fourier
filter output (Sainsbury and Ho, 2001 [403]). All of these approaches except FORCEVIB extract the
information from the free decay response of the systems.

6.4.2. Assessment

The method described above is one of the most successful approach to tracking the varying nature of
vibration of a large class of nonlinear systems. However, it is only truly suitable for monocomponent signals,
i.e., those with a single frequency dominant. The extension to two-component signals is discussed in (Feldman,
1997 [175]). We mention that a method for the decomposition of signals with multiple components into a
collection of monocomponents signals is proposed in Huang et al. (1998 [176]), which may extend the
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Fig. 27. Identification of cubic stiffness system: (a) stiffness characteristic; (b) damping characteristic.
applicability of the method. Another assumption implicit in the method is that the change in amplitude must
be slow relative to the change in phase.

6.5. The Volterra series and higher-order frequency response functions

6.5.1. Theory

For a general linear system, the input–output map can be expressed by Duhamel’s integral

yðtÞ ¼

Z 1
�1

hðtÞxðt� tÞdt. (79)

Eq. (79) is manifestly linear and therefore cannot hold for arbitrary nonlinear systems. However, it admits a
generalisation. The extended form of Eq. (79) was obtained by Volterra (1959 [404]). It takes the form of an
infinite series

yðtÞ ¼ y1ðtÞ þ y2ðtÞ þ y3ðtÞ þ � � � , (80)

where

y1ðtÞ ¼

Z þ1
�1

h1ðtÞxðt� tÞdt, (81)

y2ðtÞ ¼

Z þ1
�1

Z þ1
�1

h2ðt1; t2Þxðt� t1Þxðt� t2Þdt1 dt2, (82)

y3ðtÞ ¼

Z þ1
�1

Z þ1
�1

Z þ1
�1

h3ðt1; t2; t3Þxðt� t1Þxðt� t2Þxðt� t3Þdt1 dt2 dt3. (83)

The form of the general term is obvious from the above. The functions h1ðtÞ, h2ðt1; t2Þ, h3ðt1; t2; t3Þ, . . .,
hnðt1; . . . ; tnÞ, etc. are generalisations of the linear impulse response function and are usually referred to as
Volterra kernels. The use of the Volterra series in dynamics stems from the seminal paper of Barrett (1963
[405]) in which the series was applied to nonlinear differential equations for the first time. One can think of the
series as a generalisation of the Taylor series from functions to functionals. The expression (79) simply
represents the lowest-order truncation which is of course exact only for linear systems.

It can be shown (Schetzen, 1980 [188]) that the kernels can be considered to be symmetric without loss of
generality; i.e., h2ðt1; t2Þ ¼ h2ðt2; t1Þ, etc.
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There exists a dual frequency-domain representation for nonlinear systems. The HOFRFs or Volterra

kernel transforms Hnðo1; . . . ;onÞ, n ¼ 1; . . . ;1 are defined as the multi-dimensional Fourier transforms of the
kernels, i.e.,

Hnðo1; . . . ;onÞ ¼

Z þ1
�1

� � �

Z þ1
�1

hnðt1; . . . ; tnÞe
�iðo1t1þ���þontnÞ dt1 . . . dtn. (84)

It is a simple matter to show that symmetry of the kernels implies symmetry of the kernel transforms; so for
example, H2ðo1;o2Þ ¼ H2ðo2;o1Þ.

It is a straightforward matter to obtain the frequency-domain dual of expression (80)

Y ðoÞ ¼ Y 1ðoÞ þ Y 2ðoÞ þ Y 3ðoÞ þ � � � , (85)

where

Y 1ðoÞ ¼ H1ðoÞX ðoÞ, (86)

Y 2ðoÞ ¼
1

2p

Z þ1
�1

H2ðo1;o� o1ÞX ðo1ÞX ðo� o1Þdo1. (87)

One use of the Volterra series is the construction of analytic approximations to various quantities of interest
in experimental structural analysis. Approximations to the FRFs of SDOF and MDOF systems with cubic
nonlinearities and excited by Gaussian white noise can be found in (Worden and Manson, 1998 [406]; Worden
and Manson, 1999 [407]). The approximations derived are of interest from the point of view that the FRFs
constructed have all their poles in the upper-half of the complex frequency plane. This goes some way to
explaining why the FRFs of randomly excited nonlinear systems appear to be invariant under the Hilbert
transform. A Padé approximation to the coherence of the Duffing oscillator is constructed in (Worden and
Manson, 2005 [408]), which shows excellent qualitative agreement with experiment.

The remainder of this section is concerned with the determination and interpretation of the HOFRFs.
Harmonic probing of the Volterra series: There are various methods of determining the HOFRFs for a

system. If one has measured input and output time data, it is possible to evaluate the FRFs by carrying out
many multi-dimensional fast Fourier transforms (FFTs) and averaging the results, in much the same way as
one would evaluate a standard linear transfer function (Schetzen, 1980 [188]; Gifford, 1989 [190]; Gifford and
Tomlinson, 1989 [409]). However, this approach requires that the input be a Gaussian white noise sequence;
also, the computational burden of carrying out multi-dimensional FFTs makes evaluation of FRFs higher
than second-order prohibitive by this method. Wray and Green (1994 [410]) proposed an interesting method
of extracting the Volterra kernels for a system by fitting the time-domain response using a time-delay neural

network (TDNN) and computing the kernels from the network weights. Alternatively, it is possible to estimate
the HOFRFs efficiently by harmonic testing of a system as in Storer (1991 [191]). More recent work on
identification of nonlinear systems via the Volterra kernels and kernel transforms can be found in (Khan and
Vyas, 1999 [193]; Chatterjee and Vyas, 2003, 2004 [194,196]; Tawfiq and Vihn, 2003, 2004 [198,199]).

If one knows the equation of motion of a system, an alternative approach can be used which yields exact
expressions for the HOFRFs. The method of harmonic probing was introduced by Bedrosian and Rice (1971
[168]) specifically for systems with continuous-time equations of motion. The method was extended to
discrete-time systems by Billings and Tsang (1989b [170]). An alternative, recursive approach to probing is
presented in (Peyton Jones and Billings, 1989 [411]).

In order to explain the harmonic probing procedure, it is necessary to determine how a system responds to a
harmonic input in terms of its Volterra series.

First consider a periodic excitation composed of a single harmonic

xðtÞ ¼ eiOt. (88)

The spectral representation of this function follows immediately from the well-known representation of the
d function

dðtÞ ¼
1

2p

Z 1
�1

eiot do (89)
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so that

X ðoÞ ¼ 2pdðo� OÞ. (90)

Substituting these expressions into Eqs. (81)–(83) and forming the total response as in (80) yields, up to
third order,

yðtÞ ¼ H1ðOÞeiOt þH2ðO;OÞei2Ot þH3ðO;O;OÞei3Ot þ � � � . (91)

This shows clearly that components in the output at multiples of the excitation frequency are expected, i.e.,
harmonics. The important point here is that the component in the output at the forcing frequency is H1ðOÞ.

Probing the system with a single harmonic only yields information about the values of the FRFs on the
diagonal line in the frequency spaces. In order to obtain further information, multi-frequency excitations must
be used. With this in mind, consider the ‘two-tone’ input

xðtÞ ¼ eiO1t þ eiO2t (92)

which has spectral representation

X ðoÞ ¼ 2pdðo� O1Þ þ 2pdðo� O2Þ (93)

substituting into (81)–(83) (or the frequency domain equivalents) and thence into (80) eventually yields, up to
third order,

yðtÞ ¼ H1ðO1Þe
iO1t þH1ðO2Þe

iO2t

þ H2ðO1;O1Þe
i2O1t þ 2H2ðO1;O2Þe

iðO1þO2Þt þH2ðO2;O2Þe
i2O2t

þ H3ðO1;O1;O1Þe
i3O1t þ 3H3ðO1;O1;O2Þe

ið2O1þO2Þt

þ 3H3ðO1;O2;O2Þe
iðO1þ2O2Þt þH3ðO2;O2;O2Þe

i3O2t þ � � � . ð94Þ

The important thing to note here is that the amplitude of the component at the sum frequency for the
excitation, i.e., at O1 þ O2, is twice the second-order FRF H2ðO1;O2Þ. In fact, if a general periodic excitation is
used, i.e.,

xðtÞ ¼ eiO1t þ � � � þ eiOnt (95)

it is not difficult to show that the amplitude of the output component at the frequency O1 þ � � � þ On is
n!HnðO1; . . . ;OnÞ. This single fact is the basis of the harmonic probing algorithm. In order to find the second-
order FRF of a system for example, one substitutes the expressions for input (92) and general output (94)
into the system’s equation of motion and extracts the coefficient of eiðO1þO2Þt; this yields an algebraic expression
for H2.

The procedure is best illustrated by choosing a concrete example. Consider the Duffing oscillator in Eq. (41)
modified to include a term k2y

2 on the left-hand side—an asymmetric Duffing oscillator. In order to find H1,
the probing expressions

xðtÞ ¼ x
p
1ðtÞ ¼ eiOt (96)

and,

yðtÞ ¼ y
p
1ðtÞ ¼ H1ðOÞeiOt (97)

are substituted into the asymmetric Duffing oscillator, the result being

ð�mO2 þ icOþ kÞH1ðOÞeiOt þ k2H1ðOÞ
2ei2Ot þ k3H1ðOÞ

3ei3Ot ¼ eiOt (98)

equating the coefficients of eiOt on each side of this expression yields an equation for H1

ð�mO2 þ icOþ kÞH1ðOÞ ¼ 1 (99)

which is trivially solved, giving the expression

H1ðOÞ ¼
1

�mO2 þ icOþ k
. (100)
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Evaluation of H2 is only a little more complicated. The probing expressions

xðtÞ ¼ x
p
2ðtÞ ¼ eiO1t þ eiO2t (101)

and

yðtÞ ¼ y
p
2ðtÞ ¼ H1ðO1Þe

iO1t þH1ðO2Þe
iO2t þ 2H2ðO1;O2Þe

iðO1þO2Þt (102)

are used. Note that in passing from the general output (94) to the probing expression (102), all second-order
terms except that at the sum frequency have been deleted. This is a very useful simplification and is allowed
because no combination of the missing terms can produce a component at the sum frequency and therefore
they cannot appear in the final expression for H2. Substituting (101) and (102) into the asymmetric form of
(41), and extracting the coefficients of eiðO1þO2Þt yields

H2ðO1;O2Þ ¼ �
k2

2
H1ðO1ÞH1ðO2ÞH1ðO1 þ O2Þ. (103)

Note that the constant k2 multiplies the whole expression for H2, so that if the square-law term is absent
from the equation of motion, H2 vanishes. This reflects a quite general property of the Volterra series; if all
nonlinear terms in the equation of motion for a system are odd powers of x or y, then the associated Volterra
series has no even order kernels. As a consequence it will possess no even order kernel transforms.

In order to obtain H3, the required probing expressions are

xðtÞ ¼ x
p
3ðtÞ ¼ eiO1t þ eiO2t þ eiO3t (104)

and

yðtÞ ¼ y
p
3ðtÞ ¼ H1ðO1Þe

iO1t þH1ðO2Þe
iO2t þH1ðO3Þe

iO3t

þ 2H2ðO1;O2Þe
iðO1þO2Þt þ 2H2ðO1;O3Þe

iðO1þO3Þt þ 2H2ðO2;O3Þe
iðO2þO3Þt

þ 6H3ðO1;O2;O3Þe
iðO1þO2þO3Þt, ð105Þ

which are sufficiently general to obtain H3 for any system. Substituting into the asymmetric Duffing equation
and extracting the coefficient of eiðO1þO2þO3Þt yields

H3ðO1;O2;O3Þ ¼ �
1
6

H1ðO1 þ O2 þ O3Þ.

f4k2ðH1ðO1ÞH2ðO2;O3Þ þH1ðO2ÞH2ðO3;O1Þ þH1ðO3ÞH2ðO1;O2ÞÞ þ k3H1ðO1ÞH1ðO2ÞH1ðO3Þg. (106)

It is a general property of systems that all HOFRFs can be expressed in terms of H1 for the system. The
exact form of the expression will of course depend on the particular system.

The harmonic probing algorithm is established above for continuous-time systems, i.e., those whose
evolution is governed by differential equations of motion. The NARMAX models discussed earlier
are difference equations so the probing algorithm requires a little modification as in (Billings and Tsang,
1989b [170]).

The method of Wray and Green described earlier which extracted Volterra kernels from TDNNs (Wray and
Green, 1994 [410]), was inextendible to the NARX case. However, Chance et al. (1998 [412]) showed that it
was possible to extract kernel transforms or HOFRFs by fitting multi-layer perceptron neural networks and
then using harmonic probing. Ideas from machine learning theory have proved useful in other respects for
Volterra series approximation. Kernel methods and ideas based on reproducing kernel Hilbert spaces have
proved fruitful (Dodd and Harris, 2002 [413]; Dodd and Harrison, 2002a,b [414,415]). One particular result of
interest is a method for estimating the entire Volterra series without truncation (Wan, 2003 [416]).

Validation and interpretation of the higher-order frequency response functions: In order to justify studying the
HOFRFs it is necessary to show that they contain useful information about whatever system is under
examination. In fact, as time and frequency-domain representations are completely equivalent, the HOFRFs
contain all system information; in this section it is demonstrated that important facts can be conveyed in a
very direct and visible way.
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In order to demonstrate accurate FRFs from a NARMAX model, the following numerical simulation was
carried out. A fourth-order Runge–Kutta scheme (Press et al., 1986 [417]) was used to obtain the response of
the asymmetric Duffing oscillator under excitation by a Gaussian noise sequence xðtÞ with rms 10.0 and
frequency range 0 to 90Hz. The coefficient values adopted were: m ¼ 1; c ¼ 20; k ¼ 104; k2 ¼ 107; k3 ¼ 5:109.
This system has a resonant frequency of or ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 99 rad/s or f r ¼ or=2p ¼ 15:75Hz. The data was

generated with a sampling interval of 0:005 s, giving a Nyquist frequency of 100Hz.
A NARMAX model was fitted to 1000 points of the resulting discrete x and y data using least-squares

parameter estimation and validation methods described in the previous section. The result was

yi ¼ 1:6696yi�1 � 0:90348yi�2

� 2:1830	 102y2
i�1 � 1:0665	 105y3

i�1

þ 3:0027	 10�6xi þ 1:8040	 10�5xi�1

þ 2:7676	 10�6xi�2. ð107Þ

The fitted model was then used to generate the HOFRFs H1, H2 and H3 by the method of harmonic
probing. As the exact results could also be obtained by harmonic probing of equation for the Duffing
oscillator, direct comparisons could be made. In all cases, the exact FRFs are given with the frequency scale in
Hz; the FRFs for the discrete model are given with corresponding normalised frequency scales f n ¼ f =f s

where f s is the sampling frequency, the Nyquist frequency is 0.5 in these units. The HOFRFs are calculated
and plotted using the FREP package of Tsang and Billings (1988 [418]).

Fig. 28 shows a comparison between the exact H1 and that obtained from the model, the agreement is
excellent. However, an important point must be raised here. H1 for the discrete system is only plotted up to the
Nyquist frequency in Figs. 28c and d because it simply repeats beyond this point and is therefore meaningless.

The comparison between the exact H2 and that from the NARMAX model is given in Fig. 29 using contour
maps for the functions. Note that because H2 contains factors H1ð2pf 1Þ and H2ð2pf 2Þ it would be meaningless
to plot it outside the ranges corresponding to f 1p100; f 2p100. Further, H2 also contains a factor
H1ð2pðf 1 þ f 2ÞÞ so that the plots should not extend past the area specified by f 1 þ f 2p100. The Nyquist
region is that bounded by the solid lines in Fig. 29.

The comparison between the H3 functions also shows good agreement, they are not shown here. Note that
the whole H3 surface cannot be plotted as it exists as a three-dimensional manifold embedded in a four-
dimensional space over the ðo1;o2;o3Þ ‘plane’. However, one can plot two-dimensional submanifolds of H3,
and this is the approach which is usually adopted.

As an aside, the first-order FRF has been used in system identification for some time; the well-established
technique of modal analysis (Ewins, 2000 [11]) is based on the extraction of linear system parameters by
curve-fitting to the FRF. Gifford (1989 [190]) showed that the technique extends naturally to nonlinear
systems; nonlinear parameters are extracted by fitting surfaces or hypersurfaces to the HOFRFs. A
remarkable observation is that for a nonlinear system, the nonlinear parameters are much easier to obtain
from the HOFRFs than the linear parameters are from H1 because, for instance, the quadratic
stiffness coefficient k2 enters as a linear multiplier in Eq. (103); this is also the case for the cubic coefficient
as demonstrated by Eq. (106). This work was further extended by Storer (Storer and Tomlinson, 1991 [419];
Storer, 1991 [191]), who demonstrated that it is sufficient to curve-fit to the parts of the FRFs
above the diagonal frequency subspaces. This allowed a significantly simpler experimental procedure
based on harmonic testing. The HOFRFs can also be obtained by impulse testing (Liu et al., 1987 [420]).
Finally, returning to the subject of this section proper, Tsang and Billings (1992 [421]) have demon-
strated a general method of using the HOFRFs obtained from NARMAX models to pass to a
continuous-time model.

Having established some confidence in their reliability, the interpretation of the HOFRFs can be discussed.
The Duffing oscillator system (107) serves well as an illustration. The magnitude and phase of expression (107)
for H1ðoÞ ¼ H1ð2pf Þ is given in Figs. 28a and b on the frequency interval 0–100Hz. The interpretation of
these figures, traditionally given together and universally called the Bode plot, is well known; the peak in the
magnitude at f ¼ f r ¼ 15:75Hz shows that for this frequency of excitation the amplitude of the linear part of
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Fig. 28. Estimated and exact H1 functions for the Duffing oscillator: (a)–(b) exact; (c)–(d) estimation.
the response y1ðtÞ is a maximum. The Bode plot thus allows the immediate identification of those excitation
frequencies at which the vibration level of the system is likely to be high.

Interpretation of the second-order FRF is also straightforward. The magnitude and phase of H2 for the
Duffing system above are given in Figs. 29a and b as contour maps over the ðf 1; f 2Þ ¼ ð

o1

2p ;
o2

2pÞ plane. The
frequency ranges for the plot are the same as for H1 in Fig. 28. A number of ridges are observed. These are in
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Fig. 29. Estimated and exact H2 functions for the Duffing oscillator: (a)–(b) exact; (c)–(d) estimation.
direct correspondence with the peak in H1 as follows. According to Eq. (103), H2 is a constant multiple of
H1ðo1ÞH1ðo2ÞH1ðo1 þ o2Þ. As a consequence H2 possesses local maxima at positions where the H1 factors
have local maxima. Consequently there are two ridges in the H2 surface corresponding to the lines o1 ¼

or ¼ 2pf r and o2 ¼ or. These are along lines parallel to the frequency axes. In addition, H2 has local maxima
generated by the H1ðo1 þ o2Þ factor along the line o1 þ o2 ¼ or. This ridge has an important consequence; it
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indicates that one can expect a maximum in the second-order output y2ðtÞ if the system is excited by two
sinusoids whose sum frequency is the linear resonant frequency, i.e., a combination resonance (Nayfeh and
Mook, 1979 [28]). This shows clearly why estimation of a transfer function by linear methods is inadequate for
nonlinear systems; such a transfer function would usually indicate a maximum in the output for a harmonic
excitation close to the linear resonant frequency.However, it would fail to predict that one could excite a large
nonlinear component in the output by exciting at o ¼ or=2; this is a consequence of the trivial decomposition
2eior=2t ¼ eior=2t þ eior=2t which means that the signal can be regarded as a two-tone input with a sum frequency
at the linear resonance or. The importance of the second-order FRF is now clear. It reveals those pairs of
excitation frequencies which will conspire to produce large levels of vibration as a result of second-order
nonlinear effects.

The interpretation of H3 for the system is very similar, analogous ridges showing third-order interactions
between frequencies are observed.

6.5.2. Assessment

The Volterra series is an appealing means of establishing a non-parametric (black-box) model of a nonlinear
input–output process. The kernel transforms—the HOFRFs—provide an attractive means of identifying and
interpreting interactions between input frequencies and give a visualisation equivalent to the Bode plot for a
linear system. One disadvantage of this visualisation is that the HOFRFs are objects with higher dimension
than 3 for kernel orders higher than 3 and therefore one can only inspect lower-dimensional projections.
Computation can be intensive in terms of both time and data requirements if a stepped-sine approach or
correlation approach is adopted; however, the HOFRFs can be computed quickly by harmonic probing of
NARX (or other parametric) models. The main limitation of the Volterra approach is the existence and
convergence of the series. Many nonlinearities of practical interest have discontinuous or non-smooth
nonlinearities and the corresponding systems do not strictly have a Volterra representation. Also, as the
Volterra series is a functional Taylor series, it is single-valued and loses validity if the system being modeled is
in the vicinity of a bifurcation. A related problem is that the radius of the convergence of the series may be
restricted or that low-order truncations may not be accurate.

6.6. The reverse path method

6.6.1. Theory

Frequency-domain modal parameter estimation techniques are extensively used to identify the properties of
linear systems. They extract modal parameters from H1 and H2 estimated FRFs (Ewins, 2000 [11])

H1ðoÞ ¼
SyxðoÞ
SxxðoÞ

; H2ðoÞ ¼
SyyðoÞ
SyxðoÞ

, (108)

where SyyðoÞ, SxxðoÞ and SyxðoÞ contain the PSD of the response (e.g., acceleration signal), the PSD of the
applied force and the cross-PSD between the response and the applied force, respectively. In the presence of
nonlinear forces, the H1 and H2 estimators cannot be used because nonlinearities corrupt the underlying
linear characteristics of the response.

Reverse path spectral methods were therefore introduced to accommodate the presence of nonlinearity. The
description of the reverse path concept is limited to SDOF systems in this section (Rice and Fitzpatrick, 1988
[213]; Bendat, 1990 [216]). The extension to MDOF systems is discussed in (Rice and Fitzpatrick, 1991b [221]),
whereas an ‘enhanced’ reverse path spectral method, the CRP method (Richards and Singh, 1998 [222]), also
suitable for identification of MDOF systems, is presented in Section 7.1.

The method is best described via a simple illustration. Therefore, consider once again the symmetric Duffing
equation

m €yþ c _yþ kyþ k3y3 ¼ xðtÞ. (109)

Taking the Fourier transform F½�� of this equation gives

BðoÞY ðoÞ þ AðoÞZðoÞ ¼ X ðoÞ, (110)
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Fig. 30. A two-input-single-output reverse path model.
where BðoÞ ¼ �o2mþ iocþ k, Y ðoÞ ¼F½yðtÞ� and X ðoÞ ¼F½xðtÞ� are the objects usually observed for a
linear system [BðoÞ ¼ HðoÞ�1 is the linear dynamic stiffness matrix]. In this case, AðoÞ ¼ k3 and
ZðoÞ ¼F½y3ðtÞ�. Note that the latter object could be expressed as a rather messy convolution involving Y ðoÞ.

By exchanging the roles of input and output, one can regard Eq. (110) as representing a two-input-single-
output system as depicted in Fig. 30. Multiplying Eq. (110) by Y ðoÞ and taking expectation gives

BðoÞSyyðoÞ þ AðoÞSyzðoÞ ¼ SyxðoÞ. (111)

Similarly, multiplying (110) by ZðoÞ and taking expectation gives

BðoÞSzyðoÞ þ AðoÞSzzðoÞ ¼ SzxðoÞ. (112)

For each frequency, Eqs. (111) and (112) provide two simultaneous equations for the unknowns BðoÞ
and AðoÞ

SyyðoÞ SyzðoÞ

SzyðoÞ SzzðoÞ

!
BðoÞ

AðoÞ

 !
¼

SyxðoÞ

SzxðoÞ

!
. (113)

Note that as AðoÞ ¼ k3, it should simply be a real constant. However, as a result of the signal processing it will
be derived as a complex spectrum. If the analysis is carried out accurately though, the quantity will have small
variation with frequency and the imaginary part will generally be orders of magnitude smaller than the real
part. The best estimate of k3 would usually be obtained by averaging AðoÞ over frequency.

6.6.2. Assessment

The reverse path formulation can solve nonlinear problems that can be modeled by means of a nonlinear
differential or integrodifferential equation of motion in many fields because it is valid for random data with
arbitrary probability, correlation and spectral properties (Bendat, 1998 [108]). In addition, identification is
carried out through simple mathematical operations, and the results are in a form that is convenient to
interpret.

A possible drawback of the method for MDOF systems (which has been removed in the CRP method) is
that the excitation must be applied at the location of the nonlinearity in order to identify its coefficient. This
issue is discussed in detail in (Richards and Singh, 1998 [222]).

7. Parameter estimation in the presence of nonlinearity: recent methods

In this section, several recent methods for parameter estimation in the presence of nonlinearity are
described. These methods show promise for identification of more complex nonlinear structures because they
are inherently capable of dealing with MDOF systems. Numerical and/or experimental examples are presented
to illustrate their fundamental concepts but also their assets and limitations.

7.1. The conditioned reverse path method

To address the problem of the location of the external force inherent in the reverse path method,
the CRP method developed in (Richards and Singh, 1998 [222]) employs spectral conditioning techniques to
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remove the effects of nonlinearities before computing the FRFs of the underlying linear system contained in
the dynamic compliance matrix HðoÞ ¼ B�1ðoÞ. The key idea of the formulation is the separation of the
nonlinear part of the system response from the linear part and the construction of uncorrelated response
components in the frequency domain. The nonlinear coefficients are estimated during the second phase of
the method.
7.1.1. Theory

Estimation of the underlying system properties: The vibrations of a nonlinear system are governed by the
following equation:

M€yðtÞ þ C_yðtÞ þ KyðtÞ þ
Xn

j¼1

AjzjðtÞ ¼ xðtÞ, (114)

whereM, C and K are the structural matrices; yðtÞ is the vector of displacement coordinates; zjðtÞ is a nonlinear
function vector; Aj contains the coefficients of the term zjðtÞ; xðtÞ is the applied force vector. For example, in
the case of a grounded cubic stiffness at the ith DOF, the nonlinear function vector is

zðtÞ ¼ ½0 ::: yiðtÞ
3 ::: 0�T. (115)

In the frequency domain, Eq. (114) becomes

BðoÞYðoÞ þ
Xn

j¼1

AjZjðoÞ ¼ XðoÞ, (116)

where YðoÞ;ZjðoÞ and XðoÞ are the Fourier transform of yðtÞ; zjðtÞ and xðtÞ, respectively; BðoÞ ¼ �o2Mþ

ioCþ K is the linear dynamic stiffness matrix.
Without loss of generality, let us assume that a single nonlinear term Z1 is present. The spectrum of the

measured responses Y can be decomposed into a component Yðþ1Þ correlated with the spectrum of the
nonlinear vector Z1 through a frequency response matrix L1Y , and a component Yð�1Þ uncorrelated with the
spectrum of the nonlinear vector; i.e., Y ¼ Yðþ1Þ þ Yð�1Þ. In what follows, the minus (plus) sign signifies
uncorrelated (correlated) with. Likewise, the spectrum of the external force X can be decomposed into a
component Xðþ1Þ correlated with the spectrum of the nonlinear vector Z1 through a frequency response matrix
L1X , and a component Xð�1Þ uncorrelated with the spectrum of the nonlinear vector; i.e., X ¼ Xðþ1Þ þ Xð�1Þ.
Since both vectors Yð�1Þ and Xð�1Þ are uncorrelated with the nonlinear vector, they correspond to the response
of the underlying linear system and the force applied to this system, respectively; as a result, the path between
them is the linear dynamic stiffness matrix B

Xð�1ÞðoÞ ¼ BðoÞYð�1ÞðoÞ. (117)

The whole procedure is presented in diagram form in Fig. 31.
The generalisation to multiple nonlinearities is straightforward. In this case, the spectra of the response and

the force need to be uncorrelated with all n nonlinear function vectors

Yð�1:nÞ ¼ Y�
Pn

j¼1YðþjÞ ¼ Y�
Pn

j¼1LjYZjð�1:j�1Þ;

Xð�1:nÞ ¼ X�
Pn

j¼1LjXZjð�1:j�1Þ;

(
(118)

where Yð�1:nÞ and Xð�1:nÞ are both uncorrelated with the nonlinear function vectors; the path between them is
the linear dynamic stiffness matrix B

Xð�1:nÞðoÞ ¼ BðoÞYð�1:nÞðoÞ. (119)

By transposing Eq. (119), premultiplying by the complex conjugate of Y (i.e., Y�) taking the expectation
E½�� and multiplying by 2=T , the underlying linear system can be identified without corruption from the
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Fig. 31. Decomposition of the force and response spectra in the presence of a single nonlinearity.
nonlinear terms

Syxð�1:nÞ ¼
2

T
E½Y�XT

ð�1:nÞ� ¼
2

T
E½Y�ðBYð�1:nÞÞ

T
�

¼
2

T
E½Y�YT

ð�1:nÞB
T� ¼ Syyð�1:nÞB

T, ð120Þ

where Syxð�1:nÞ and Syyð�1:nÞ are conditioned PSD matrices. Calculation of these matrices is laborious and
involves a recursive algorithm. For the sake of conciseness, only the final formulae are given herein. In (Bendat
and Piersol, 2000 [109]), it is shown that

Sijð�1:rÞ ¼ Sijð�1:r�1Þ � Sirð�1:r�1ÞL
T
rj , (121)

where

LT
rj ¼ S�1rrð�1:r�1ÞSrjð�1:r�1Þ. (122)

It follows from Eq. (120) that the dynamic compliance matrix H which contains the FRFs of the underlying
linear system takes the form

Hc2 : H
T ¼ S�1yxð�1:nÞSyyð�1:nÞ. (123)

This expression is known as the conditioned Hc2 estimate. If relation (119) is multiplied by the complex
conjugate of X instead of Y, the conditioned Hc1 estimate is obtained

Hc1 : H
T ¼ S�1xxð�1:nÞSxyð�1:nÞ. (124)

When FRFs of linear systems are estimated, H1 always produces better estimates when there is measurement
noise on the outputs, and H2 produces better estimates when the noise is on the input measurements. Intuition
may lead us to expect the Hc2 estimate to perform better than the Hc1 estimate in the presence of uncorrelated
noise only in the excitation. Likewise, the Hc1 estimate is expected to perform better than the Hc2 estimate in
the presence of uncorrelated noise only in the response. However, experience shows that the Hc2 estimate gives
more accurate estimation of the FRFs of the underlying linear system in both situations. This may be a result
of the conditioning required to calculate these estimates.

Estimation of the nonlinear coefficients: Once the linear dynamic compliance H has been computed
by solving Eq. (123) or (124) at each frequency, the nonlinear coefficients Aj can be estimated. By applying
to Eq. (116) the same procedure as the one used for obtaining Eq. (120) from Eq. (119), the following
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relationship is obtained

Sixð�1:i�1Þ ¼ Siyð�1:i�1ÞB
T þ

Xn

j¼1

Sijð�1:i�1ÞA
T
j . (125)

It should be noted that Sijð�1:i�1Þ ¼ E½Z�ið�1:i�1ÞZ
T
j � ¼ 0 for joi since Z�ið�1:i�1Þ is uncorrelated with the spectrum

of the nonlinear function vectors Z1 through Zi�1. If Eq. (125) is premultiplied by S�1iið�1:i�1Þ, the first term in

the summation is AT
i . Eq. (125) is then transformed into

AT
i ¼ S�1iið�1:i�1Þ Sixð�1:i�1Þ � Siyð�1:i�1ÞB

T �
Xn

j¼iþ1

Sijð�1:i�1ÞA
T
j

!
. (126)

Because the expression of the linear dynamic compliance has been computed, Eq. (126) is rewritten in a more
suitable form

AT
i H

T ¼ S�1iið�1:i�1Þ Sixð�1:i�1ÞH
T � Siyð�1:i�1Þ �

Xn

j¼iþ1

Sijð�1:i�1ÞA
T
j H

T

!
. (127)

The identification process starts with the computation of An working backwards to A1. As for the reverse
path method in Section 6.6, the nonlinear coefficients are imaginary and frequency dependent. The imaginary
parts, without any physical meaning, should be negligible when compared to the real parts. On the other hand,
by performing a spectral mean, the actual value of the coefficients should be retrieved.

Coherence functions: As explained in Section 4.1, the ordinary coherence function can be used to detect any
departure from linearity or to detect the presence of uncorrelated noise on one or both of the excitation and
response signals.

For a multiple input model with correlated inputs, the sum of ordinary coherences between the inputs and
the output may be greater than unity. To address this problem, the ordinary coherence function has been
superseded by the cumulative coherence function g2Mi

g2MiðoÞ ¼ g2yixð�1:nÞ
ðoÞ þ g2zxðoÞ ¼ g2yixð�1:nÞ

ðoÞ þ
Xn

j¼1

g2jxð�1:j�1ÞðoÞ, (128)

where g2yixð�1:nÞ
is the ordinary coherence function between the ith element of Y ð�1:nÞ and excitation X

g2yixð�1:nÞ
¼
jSyixð�1:nÞj

2

Syiyið�1:nÞSxx

. (129)

It indicates the contribution from the linear spectral component of the response of the ith signal. g2jxð�1:j�1Þ is
the ordinary coherence function between the conditioned spectrum Zjð�1:j�1Þ and excitation X

g2jxð�1:j�1Þ ¼
jSjxð�1:j�1Þj

2

Sjjð�1:j�1ÞSxx

(130)

and
Pn

j¼1 g
2
jxð�1:j�1Þ indicates the contribution from the nonlinearities.

The cumulative coherence function is always between 0 and 1 and may be considered as a measure of the
model accuracy; it is a valuable tool for the selection of an appropriate functional form for the nonlinearity.

7.1.2. Application example

The CRP method was applied to the experimental structure depicted in Fig. 1 in (Kerschen et al., 2003a
[229]). The identification was carried within the range 0–500Hz in which three structural modes exist. For
more details about this experiment, the reader is invited to consult (Kerschen et al., 2003a [229]). This structure
was also investigated within the framework of the European COST Action F3 (Golinval et al., 2003 [104]).

Figs. 14, 32 and 33 summarise the results obtained. Fig. 14 represents three different FRFs in the vicinity of
the first two resonances: (a) the FRF measured using the classical H2 estimate at low level of excitation (i.e.,
1:4Nrms) for which the geometric nonlinearity is not activated; it should therefore correspond to the FRF of
60



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

C
um

ul
at

iv
e 

co
he

re
nc

e

Fig. 32. Cumulative coherence g2M7 (22Nrms).
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Fig. 33. Real part of the nonlinear coefficient (22Nrms).
the underlying linear system; (b) the FRF measured using the classical H2 estimate at high level of excitation
(i.e., 22Nrms); (c) the FRF measured using the Hc2 estimate at high level of excitation (i.e., 22Nrms). It can
clearly be observed that the FRF measured using H2 estimate at 22Nrms is contaminated by the presence of
the geometric nonlinearity whereas the FRF measured using Hc2 estimate at 22Nrms is a very accurate
estimation of the FRF of the underlying linear system. The accuracy of the identification is confirmed in
Fig. 32; overall, the cumulative coherence is close to 1. Fig. 33 represents the real part of the nonlinear
coefficient A, and its spectral mean performed within the range 10–250Hz is equal to
1:96	 109 þ i 1:55	 107 N=m2:8. As expected, the imaginary part of the coefficient is two orders of magnitude
below the real part and can be safely neglected.

A final remark concerns the functional form of the nonlinearity. Although a cubic nonlinearity was expected
due to the presence of a geometric nonlinearity, the model f ðycÞ ¼ Ajycj

asignðycÞ where yc is the response at the
bolted connection between the two beams was considered during the identification for greater flexibility. The
exponent a was determined by maximising the spectral mean of the cumulative coherence function and was
found to be 2.8.
61



7.1.3. Assessment

Although it is difficult to draw general conclusions from a single example, it turns out that the CRP method
is a very appealing and accurate method for parameter estimation of nonlinear structural models. In addition,
the cumulative coherence is a valuable tool for the characterisation of the nonlinearity. The formulation of the
method is such that it targets identification of MDOF systems, which enabled the identification of a numerical
model with 240 DOFs and two localised nonlinearities (Kerschen and Golinval, 2005a [223]).

An extension of the method to the identification of physical models instead of FRF-based models is
discussed in (Kerschen and Golinval, 2005a [223]). In this study, a finite element model of the underlying linear
structure is built from the knowledge of the geometrical and mechanical properties of the structure and is
updated using linear model updating techniques based upon FRFs (Arruda and Santos, 1993 [422]; Balmes,
1993 [423]; Lin and Ewins, 1994 [424]).

A possible drawback of the method is that it requires the measurements of the structural response at the
location of the nonlinearity, which is not always feasible in practice. Also, it is not yet clear how the method
would perform in the presence of several nonlinearities, which is typical of a structure with a large number of
discrete joints. Finally, future research should investigate how the method could deal with distributed
nonlinearities and hysteretic systems modeled using internal state variables (e.g, the Bouc-Wen model).

7.2. The nonlinear identification through feedback of the output method

The NIFO formulation (Adams and Allemang, 2000a [232]) is a recent spectral approach for identification
of MDOF nonlinear systems. As for the CRP method, the central issue is to eliminate the distortions caused
by the presence of nonlinearities in FRFs. It exploits the spatial information and treats the nonlinear forces as
internal feedback forces in the underlying linear model of the system.

7.2.1. Theory

Let us write the equation of motion in the frequency domain (116) in the form

BðoÞYðoÞ ¼ XðoÞ �
Xn

j¼1

AjðoÞZjðoÞ. (131)

The nonlinear forces may be considered as internal feedback forces and may be evaluated from the measured
outputs. For example, in the case of a grounded cubic stiffness at the ith DOF, the nonlinear function vector is

Z1ðoÞ ¼Ff½0 ::: yiðtÞ
3 ::: 0�Tg, (132)

where Ff�g is the Fourier transform.
Premultiplying Eq. (131) by the dynamic compliance matrix HðoÞ yields

YðoÞ ¼ HðoÞXðoÞ �HðoÞ
Xn

j¼1

AjðoÞZjðoÞ (133)

and,

YðoÞ ¼ ½HðoÞ HðoÞA1ðoÞ ::: HðoÞAnðoÞ�

XðoÞ

�Z1ðoÞ

..

.

�ZnðoÞ

2
666664

3
777775. (134)

If the external force XðoÞ and the system response YðoÞ are measured, the system described by Eq. (134)
may be solved at each frequency; this is carried out in a least-squares system of equations through averaging.
An estimation of the FRFs of the underlying linear system HðoÞ and the nonlinear coefficients AiðoÞ is
therefore available. As for the CRP method, the nonlinear coefficients are frequency dependent, but by
performing a spectral mean, the actual values of these coefficients should be retrieved.
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It is noted that Eq. (134) is not considered in its present form. A ‘PSD version’ of this equation is preferred,
which is obtained by using the same procedure as the one used for obtaining Eq. (120) from Eq. (119). The use
of PSDs reduces the degree to which linearly correlated terms corrupt the numerical conditioning of the data
matrices. An orthogonal least-squares solution (Strang, 1986 [425]) should also be used to reduce the level of
ill-conditioning.

7.2.2. Assessment

The NIFO technique is similar to the CRP method in several aspects; it is, therefore, an attractive method
for nonlinear system identification of MDOF structures. Unlike the CRP method, it is simple to implement,
and the estimation of the linear and nonlinear coefficients is carried out in a single step. A possible
disadvantage is that the NIFO method does not seem to guarantee the conditioning that is naturally present in
the CRP method, as reported in (Kerschen and Golinval, 2002a [426]). The correlation between the linear and
nonlinear terms may be an issue, and care must be taken to achieve a good conditioning of the data matrices
(e.g., using orthogonal least-squares procedures).

7.3. The nonlinear resonant decay method

7.3.1. Theory

Classical force appropriation methods (Williams et al., 1986 [256]; Wright et al., 1999 [257]) are used in the
identification of linear systems to determine the multi-point force vector that induces single-mode behaviour,
thus allowing each normal mode to be identified in isolation. For a proportionally damped linear structure,
the final model consists of a set of uncoupled SDOF oscillators in modal space.

An extension of the force appropriation approach to the identification of non-proportionally damped linear
systems, termed the resonant decay (RD) method, is presented in (Naylor et al., 2004 [427]). An appropriated
force pattern with a single sine wave is applied as a ‘burst’ to excite a given mode of interest. Once the
excitation ceases, the free decay of the system includes a response from any modes coupled by damping forces
to the mode being excited. A curve fit to a limited subset of modes can then be performed to yield any
significant damping terms which couple the corresponding SDOF oscillators.

A generalisation of this methodology for identification of nonlinear systems is described in this section. For
the analysis of large nonlinear structures with high modal density in a broad frequency range, an enormous
number of parameters is to be identified because the nonlinear modal restoring forces fmðu; _uÞ are potentially
functions of the many modal displacements uiðtÞ and/or velocities _uiðtÞ (in other words, the nonlinearity may
be responsible for many terms coupling the SDOF oscillators); this renders parameter estimation intractable.

The method developed in (Wright et al., 2001 [255]) offers a practical solution to this critical issue by
proposing a multi-stage identification of the linear modal space-based model in which the initial estimation
problem is replaced by a sequence of low-dimensional problems. At this point, we note that the selective

sensitivity approach developed in (Ben-Haim, 1993 [428]) also proposes to identify the entire system via a
sequence of low-dimensional estimation problems through the use of selective excitation. In (Wright et al.,
2001 [255]), the scale of the identification problem is reduced by classifying the modes5 into different
categories: (i) linear proportionally damped modes, well separated in frequency; (ii) linear proportionally
damped modes, very close in frequency; (iii) linear non-proportionally damped modes; (iv) modes influenced
by nonlinear effects with no significant nonlinear coupling to other modes; and (v) modes influenced by
nonlinear effects with significant nonlinear coupling to other modes. The set of uncoupled SDOF oscillators in
modal space is therefore enhanced by the inclusion of modal damping cross-coupling terms for non-
proportionally damped modes, ‘direct’ nonlinear terms f mðuj ; _ujÞ if the jth mode behaves nonlinearly and
nonlinear cross-coupling terms f mðui; _ui; uj ; _ujÞ if the ith and jth modes are nonlinearly coupled.

Modes of type (i) may be identified using classical curve-fitting methods. Modes of type (ii) may benefit
from identification using force appropriation. Force appropriation and the RD method are suitable for modes
of type (iii). Anticipating that only a relatively small portion of modes will actually behave in a nonlinear
fashion for most structures (this assumption implies that the method targets weakly nonlinear systems), two
5It is emphasised that a mode refers to the mode of the underlying linear system; the discussion does not refer to the NNMs.
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methodologies which enable the treatment of modes affected by nonlinearity (i.e., modes of type (iv) and (v))
individually or in small groups were developed:
�

6

the
The FANS method (Atkins et al., 2000 [258]) extends the classical linear force appropriation approach to
nonlinear systems through the use of a force pattern that includes higher harmonic terms. The parameters
are optimised such that the nonlinear coupling terms are counteracted, which prevents any response other
than the mode of interest. The direct linear and nonlinear terms for that mode may be estimated using a
classical SDOF RFS identification.

�
 The NLRD method (Wright et al., 2001 [255]) is an extension of the RD method to nonlinear systems and

enables small groups of modes to be excited. A classical appropriated force pattern with a single sine wave
is applied as a ‘burst’ to excite a given mode of interest ‘approximately’. If the mode is uncoupled
nonlinearly, then it should dominate the response in the steady state phase. If it is nonlinearly coupled,
other modes may also exhibit a significant response. During the decay, the presence of linear damping
couplings as well as nonlinear couplings between the modes is apparent. A ‘low-order’ regression analysis in
modal space using the RFS method is then carried out for identification of direct and cross-coupling terms.

The NLRD method is applied in (Wright et al., 2001 [255]) to a 5-DOF spring-mass system clamped at both
extremities and designed to be symmetric in its linear components. The system has a cubic stiffness
nonlinearity between the second and fourth DOFs. The system is linear in modes 1, 3 and 5; modes 2 and 4 are
nonlinear and coupled together. In order to illustrate the burst principle, a burst is applied to excite mode 5 as
shown in Fig. 34.6 Because mode 5 behaves linearly and the correct appropriated force vector is used, no
modal force is input to the other modes, and only mode 5 responds. Consider now a burst applied to mode 4
as shown in Fig. 35. There is only a modal force for mode 4 but now mode 2 responds due to the nonlinear
coupling. Modes 1, 3 and 5 are not excited because of the force appropriation. A curve fitting can then be
carried out for mode 4 using only the modal responses associated with modes 2 and 4; the scale of the
identification has been effectively reduced.

7.3.2. Assessment

Although this nonlinear system identification technique has not yet been applied to large continuous
structures, the authors believe that it paves the way for the analysis of practical systems with high modal
density. Because modes are treated individually or in small groups, the method has the inherent ability to
‘split’ the original and complex identification problem into a sequence of much simpler and smaller problems.
One may also account for non-proportional damping, which is another interesting feature of the method.

Imperfection force appropriation and modal matrix may reduce the accuracy of the identification as
discussed in (Wright et al., 2001 [255]). As a result, the number, location and pattern of excitation sources
should be determined in a judicious manner in order for this process to be successful; shaker–structure
interaction may also be an issue for light-weight structures.

7.4. Structural model updating

7.4.1. Theory

The structural model updating process is presented in diagram form in Fig. 36. It can be decomposed into
four steps: (1) experimental measurements and structural modeling; (2) feature extraction and correlation
study; (3) selection of the updating parameters and (4) minimisation of the objective function. The success of
model updating is conditional upon each step being properly carried out.

It is noted that the emphasis in the present section is put upon model updating using time-domain
measurements.

Experimental measurements and structural modeling: Experiment design (e.g, selection of excitation sources,
number and location of sensors) is a crucial step but, as stated in Section 1 of this paper, it is not discussed in
The results in Figs. 34 and 35 were obtained by Dr. Jan Wright and co-workers—the authors are very grateful for permission to use

m.
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Fig. 34. Modal forces and responses to burst excitation of mode 5 using perfect appropriation (Wright et al., 2001 [255]).
this overview. It is therefore assumed that vibration tests have been performed on the real structure; a matrix
YðtÞ containing m samples of the response (e.g., acceleration data) measured at n different locations on the
structure is formed

YðtÞ ¼ ½yðt1Þ � � � yðtmÞ� ¼

y1ðt1Þ � � � y1ðtmÞ

� � � � � � � � �

ynðt1Þ � � � ynðtmÞ

2
64

3
75. (135)

From the knowledge of the geometrical and mechanical properties of the structure, a structural model can
be created. By imposing in this model the same excitation conditions xðtÞ as for the real structure, the
structural response can be predicted using time-integration algorithms; the matrix ŶðtÞ is obtained. At this
stage, verification, i.e., ‘solving the equations correctly’ (Roache, 1998 [59]), is necessary, but its description
would take us too far afield.

Feature extraction and correlation study: Matrix ŶðtÞ generally differs from YðtÞ due to three sources of
errors, namely modeling errors (e.g, imperfect boundary conditions or assumption of proportional damping),
parameter errors (e.g., inaccuracy of Young’s modulus) and testing errors (e.g, noise during the measurement
process). However, estimating the predictive capability of a structural model based only on its ability to match
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Fig. 35. Modal forces and responses to burst excitation of mode 4 using perfect appropriation ((Wright et al., 2001 [255]).
measured time series may be hazardous. The comparison between experimental features f i and predicted
features f̂ i should be preferred. In linear dynamics, natural frequencies and mode shapes provide a sound basis
for ascertaining whether the prediction of the model will adequately represent the overall dynamic response of
the structure. Another well-established technique is to use data in the frequency domain because the effort of
experimental modal analysis is avoided, and averaging to reduce noise effects is straightforward.

When performing test–analysis correlation for nonlinear structures, the features commonly defined for
linear structures do no longer provide an accurate characterisation of the dynamics, as explained in the
tutorial section. The definition of features that enhance the effect of nonlinearity on the structural behaviour is
therefore necessary. NNMs provide a valuable theoretical tool for understanding dynamic phenomena such as
mode bifurcations and nonlinear mode localisation but it is a little early to tell if they will be of substantial
help for structural model updating. For this reason, other features have been considered in the technical
literature as discussed in Section 3.7.

Selection of the updating parameters: If correlation is not satisfactory, the structural model is to be updated.
The correction of the model begins with the selection of the updating parameters. Parameter selection is a
difficult and critical step, and the success of the model updating process is conditional upon the ability to
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Fig. 36. Model updating sequence of non-linear systems (OF: objective function).
identify the adequate parameters. For this purpose, error localisation techniques and sensitivity analysis may
be useful (Friswell and Mottershead, 1995 [312]; Link, 1999 [313]), but physical understanding of the
structural behaviour and engineering judgment play the key role (see for instance (Mares et al., 2003 [429])).

Minimisation of the objective function: New values of the updating parameters are computed through the
minimisation of an objective function J

minp J ¼ kRðpÞk2, (136)
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where vector p contains the updating parameters. The residue RðpÞ may simply be the norm of the difference
between the predicted and experimental features. The objective function is generally nonlinear with respect to
the updating parameters, and it is necessary to use optimisation algorithms to perform the minimisation.

7.4.2. Application example

Structural model updating was applied to the experimental system depicted in Fig. 1 in (Lenaerts et al., 2003
[264]). This structure was also investigated within the framework of the European COST Action F3 (Golinval
et al., 2003 [104]). An impulsive force was imparted to the cantilever beam using an impact hammer, and the
structural response was measured using seven accelerometers evenly spaced across the beam.

A structural model was created using the finite element method, and the effect of the geometric nonlinearity
was modeled with a grounded spring at the connection between the cantilever beam and the short beam. The
accelerations of the numerical model were computed using Newmark’s method.

The correlation study was performed by comparing experimental and predicted POMs. Although the POMs
do not have the theoretical foundations of the NNMs, they do provide a good characterisation of the
dynamics of a nonlinear system. Another advantage is that their computation is straightforward; it involves a
singular value decomposition of the response matrix YðtÞ

Y ¼ URVT, (137)

where each column of matrix U contains a POM. Matrix R gives information about the participation of the
POMs in the system response whereas their amplitude modulations are contained in matrix V. Insight into the
frequency of oscillation of the POMs is available by applying the wavelet transform to matrix V. For a
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Fig. 38. Wavelet transform of the amplitude modulation of the first POM. Top plot: experimental structure; bottom plot: updated finite

element model.
detailed description of the POD, the reader is invited to consult (Holmes et al., 1996 [430]), and an overview of
the POD for dynamical characterisation of nonlinear structures is available in (Kerschen et al., 2005c [431]).
Fig. 37 shows that the first two POMs predicted by the initial finite element model are not in close agreement
with those of the experimental structure. Because these two POMs account for more than 90% of the total
energy contained in the system response, the model must be improved.

Several parameters were not known precisely in the initial model, especially the stiffness of the bolted
connection between the two beams and the coefficient and exponent of the nonlinearity; they were thus
selected as updating parameters. After optimisation, the coefficient and exponent of the nonlinearity were
1:65	 109 N=m2:8 and 2.8, respectively, which is in good concordance with the estimates given by the CRP
method (see Section 7.1.2). There is now a satisfactory match between the experimental POMs and those
predicted by the updated finite element model as shown in Fig. 37. Fig. 38 displays the wavelet transform of
the amplitude modulation of the first POM; the dominant frequency component is around 50Hz, but
harmonics—a typical feature of nonlinear systems—can also clearly be observed. There is also a good
agreement between the experimental and numerical results in Fig. 38, which confirms that the updated model
has a good predictive accuracy.

7.4.3. Assessment

Structural model updating has the inherent ability to provide reliable models of more complex nonlinear
structures. For instance, numerical examples with a few hundred DOFs are investigated in (Hasselman et al.,
1998 [262]; Meyer and Link, 2002 [319]; Kerschen, 2003c [324]; Kerschen and Golinval, 2004a [325]), whereas
a fully integrated experimental system is considered in (Hemez and Doebling, 2001a [103]).

However, several crucial issues remain largely unresolved, and there is much research to be done:
�
 There are no universal features applicable to all types of nonlinearities; test–analysis correlation is still a
difficult process.

�
 It is generally assumed that the analyst has the ability to formulate an appropriate initial model and to

identify precisely the source and location of the erroneous parameters; these are extremely challenging tasks
when dealing with complex structures.

�
 Many of the error criteria formulations lead to objective functions with a highly nonlinear solution space;

multiple parameter sets may potentially yield equally good reproduction of the experimental measurements,
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especially when limited measurement data is available (We note that info-gap models may offer an elegant
solution to this problem (Hemez and Ben-Haim, 2004 [432])). In addition, the initial model cannot be
assumed to be close to the ‘actual’ model because a priori knowledge about nonlinearity is often limited; the
starting point of the optimisation may be far away from the sought minimum. For all these reasons,
objective function minimisation may be challenging and time consuming.

8. Summary and future research needs

This survey paper reviews the past and recent developments in nonlinear system identification, the objective
of which is to produce high fidelity models that may be used for purposes such as
�
 virtual prototyping; this encompasses the selection of optimal system parameters in order to meet specific
design goals, the prediction of the occurrence of undesirable instabilities and bifurcations (e.g., aeroelastic
instabilities), the impact of structural modifications and the study of the effects of structural, environmental
or other types of uncertainties on the robustness of operation;

�
 development of diagnostic and prognostic tools that enable simple, accurate, economic, and preferably on-

line detection of structural faults at an early stage of their developments before they become catastrophic
for the operation of the system;

�
 structural control, e.g, the control of mechatronic systems or of structural vibrations produced by

earthquake or wind.

There is a substantial body of literature on nonlinear system identification; it should be recalled that the
paper is inevitably biased toward those areas the authors are most familiar with. Some of the popular methods
in this research area were discussed, and numerical and experimental examples were presented to illustrate
their fundamental concepts but also their assets and limitations. The main differences between linear and
nonlinear oscillations were also detailed in a tutorial.

Because of the highly individualistic nature of nonlinear systems and because the basic principles that apply
to linear systems and that form the basis of modal analysis are no longer valid in the presence of nonlinearity,
one is forced to admit that there is no general analysis method that can be applied to all systems in all
instances. As a result, numerous methods for nonlinear system identification have been developed during the
last three decades. A large proportion of these methods were targeted to SDOF systems, but significant
progress in the identification of MDOF lumped parameter systems has been realised recently. To date, simple
continuous structures with localised nonlinearity are within reach.

For simple structures or approximate models of more complex structures, it is reasonable to estimate all the
model parameters. However, for the analysis of structures with a large number of DOFs and with a high
modal density in a broad frequency range, resorting to multi-parameter complex structural models is
inevitable. This critical issue begins to be resolved by several recent approaches among which we can cite:
�
 Frequency-domain methods such as the CRP and NIFO methods have, in principle, the capability of
identifying the dynamics of large structures. In addition to the nonlinear coefficients, they compute a FRF-
based model of the underlying linear structure directly from the experimental data, which facilitates the
identification process.

�
 The NLRD method proposes to classify the modes into different categories (i.e., influenced or not by

nonlinear effects, coupled or uncoupled in damping and/or nonlinearity), which enables the treatment of
modes individually or in small groups. This technique does not decrease the number of parameters to be
estimated, but it simplifies the parameter estimation process by targeting a multi-stage identification.

�
 Structural model updating techniques exploit the knowledge of the geometric and mechanical properties to

determine an initial model of the structure, many parameters of which are usually accurately computed and
do not have to be identified from experimental data.

All these methods have their own drawbacks, but they show promise in the challenging area of nonlinear
system identification.
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Besides rendering parameter estimation tractable, other important issues must be addressed adequately to
progress toward the development of accurate, robust, reliable and predictive models of large, three-
dimensional structures with multiple components and strong nonlinearities. The following discussion presents
some of the key aspects that, we believe, will drive the development of nonlinear system identification in the
years to come.
(i)
 We cannot stress enough the importance of having an accurate characterisation of the nonlinear elastic
and dissipative behaviour of the physical structure prior to parameter estimation. Without a precise
understanding of the nonlinear mechanisms involved, the identification process is bound to failure.
Characterisation is a very challenging step because nonlinearity may be caused by many different
mechanisms and may result in plethora of dynamic phenomena. Some ‘real-life’ nonlinear effects
only begin to be adequately modeled (e.g., the dynamics of structures with bolted joints (Gaul and Lenz,
1997 [376]; Hartwigsen et al., 2004 [377], Song et al., 2004 [301])); some are still far from being under-
stood (e.g, experiments reported in (Quinby and Feeny, 2004 [433]) showed that quasi-periodic responses
in a frictionally excited beam may involve very low frequencies at subharmonic orders of 20 to 130).
The lack of knowledge about nonlinearity is sometimes circumvented by nonlinear black-box models such
as those proposed in (Kosmatopoulos et al., 2001 [298]; Fan and Li, 2002 [303]; Peifer et al., 2003 [305]),
but, in our opinion, a priori information and physics-based models should not be superseded by any
‘blind’ methodology. Careful and systematic studies of nonlinear dynamical effects such as those
carried out in (Richards and Singh, 2001 [19]; Malatkar and Nayfeh, 2003c [354]; Caffrey et al., 2004
[434]) are strongly encouraged and are a necessary step toward the development of accurate nonlinear
structural models. Improving our knowledge and our modeling capabilities of the range of possible
nonlinear behaviours (this also reduces the level of uncertainty and increases our confidence in the
model; see (iii)) is therefore a crucial need, especially because structural dynamics is becoming
increasingly nonlinear, addressing multi-physics phenomena (Hammond, 2001 [435]; Hemez and
Doebling, 2001a [103]).
(ii)
 Most of the analytical techniques currently available are limited to the steady-state response of weakly
nonlinear oscillators. On the other hand, because strong nonlinearity is more and more encountered in
practical applications, new dynamical phenomena are observed that have to be accounted for. For
example, it is only recently that resonance capture phenomena which are mainly of a transient nature have
been reported in the structural dynamics literature (Quinn et al., 1995 [436]; Quinn, 1997 [95]; Vakakis
and Gendelman, 2001 [51]). As a result, there is the need for new analytical developments enabling the
study of the transient dynamics of strongly nonlinear oscillators. Such developments will provide better
insight into the dynamics of interest, thereby facilitating the characterisation of the nonlinear behaviour
discussed in (i).
(iii)
 The concept of NNM offers a solid theoretical and mathematical framework for analysing and
interpreting a wide class (but not the entirety!) of nonlinear dynamical phenomena, and yet it has a clear
and simple conceptual relation to the classical linear normal mode, with which practicing vibration
engineers are familiar. Viewed in this context, the concept of NNM can provide the appropriate
framework for closer collaboration and mutual understanding between Academia and Industry. To
formulate practical NNM-based nonlinear system identification techniques, advances in a number of
critical research areas need to be accomplished including
– the development of efficient computational algorithms for studying the NNMs of practical (multi-
DOF, flexible or large-scale) mechanical systems and their bifurcations;

– the study of possible exact or approximate (for example, asymptotic) NNM-based superposition
principles for expressing nonlinear responses as nonlinear superpositions of component responses;

– the study of possible exact or approximate (energy dependent) orthogonality relations satisfied by
NNMs that would permit their use as bases for order reduction of the nonlinear dynamics; we mention
at this point the computational studies of S. Shaw, C. Pierre and co-workers (Pesheck et al., 2001a,b,
2002a,b [254,437–439] and Apiwattanalunggarn et al., 2003 [440]) show that (ad hoc) NNM-based
Galerkin expansions lead to more accurate numerical computations of the responses of flexible
systems, compared to linear eigenfunction-based expansions;
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– the examination of the relation of NNMs to computational bases extracted by techniques such as
wavelet analysis and linear or nonlinear POD (some preliminary results on relation between NNMs
and POMs, and between NNMs and nonlinear POMs are reported in (Feeny and Kappagantu, 1998
[441]; Feeny, 2002 [442]; Kerschen and Golinval, 2002b [443]) and (Kerschen and Golinval, 2004b
[444]), respectively);

– the examination of the relation between NNMs and Volterra series expansions/HOFRFs; also, of the
relation of NNMs to already studied nonlinear superposition techniques for special classes of
dynamical systems.
(iv)
 All systems referenced in this paper are assumed to be deterministic. Because there will always be some
degree of uncertainty in the numerical models due to unknown physics, environmental variability,
economics of modeling for parameter estimation, uncertain inputs, manufacturing tolerances, assembly
procedures, idealisation errors, etc., the issues of uncertainty quantification and propagation, and of
numerical predictability are central questions when it comes to assessing whether a simulation is capable
of reproducing with acceptable accuracy the experiment it is supposed to replace. To this end,
fundamental questions such as the following need to be addressed (Hemez and Doebling, 2000 [102]):

1. Are the experiments and simulations consistent statistically speaking?
2. What is the degree of confidence associated with the first answer?
3. If additional data sets are available, by how much does the confidence increase?
Such questions are progressively being addressed in the structural dynamics community by considering
nonlinear system identification as an integral part of the V&V process (Hemez et al., 2005 [64]).
(v)
 Research should focus more on testing of practical structures in their own operating environment, rather
than on laboratory tests of representative structures. Algorithms for optimally deploying sensors and
exciters along the structure are not yet fully developed. The ability to use vibrations induced by ambient
environmental or operating loads is an area that merits further investigation; this will demand to reduce
the dependence upon measurable excitation forces, as attempted in (Yuen and Beck, 2003 [320]; Haroon
et al., 2005 [160]). On-line identification is also important for applications such as structural health
monitoring (Smyth et al., 2002 [445]; Yang and Lin, 2004a [446]).
To conclude this paper, it is fair to say that, even if one cannot foresee the arrival of a paradigm shift, it can
be safely predicted that during the next 10 years a ‘universal’ technique capable of addressing nonlinear
dynamical phenomena of every possible type in every possible structural configuration will not be developed.
It is therefore likely that nonlinear system identification will have to retain its current ‘toolbox’ philosophy,
with (hopefully) more powerful methodologies, techniques and algorithms of increased sophistication being
added. In the future, the stage will be (hopefully) reached, where attempts to unify and combine the most
powerful and reliable methods will be initiated.
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Appendix. List of acronyms
ARMA
 auto-regressive moving average

ARX
 auto-regressive with exogeneous inputs

BVP
 boundary value problem

COST
 cooperation in the field of scientific and technical research

CRP
 conditioned reverse path

DOF
 degree of freedom

DPE
 direct parameter estimation
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ECL
 ecole centrale de Lyon

FANS
 force appropriation of nonlinear systems

FFT
 fast Fourier transform

FRF
 frequency response function

FT
 Fourier transform

HOFRF
 higher-order frequency response function

IR
 internal resonance

IMF
 intrinsic mode function

mdof
 multi-degree-of-freedom

NARMAX
 nonlinear auto-regressive moving average with exogeneous inputs

NARX
 nonlinear auto-regressive with exogeneous inputs

NIFO
 nonlinear identification through feedback of the outputs

NLRD
 nonlinear resonant decay

NMSE
 normalised mean square error

NNM
 nonlinear normal mode

POD
 proper orthogonal decomposition

POM
 proper orthogonal mode

PSD
 power spectral density

RC
 resonance capture

RD
 resonant decay

RFS
 restoring force surface

RP
 rational polynomial

SDOF
 single-degree-of-freedom

SRC
 sustained resonance capture

TDNN
 time-delay neural network

TRC
 transient resonance capture

V & V
 verification and validation
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