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Using an effective σ/ f0(500) resonance, which describes the ππ → ππ and γ γ → ππ scattering data, 
we evaluate its contribution and the ones of the other scalar mesons to the hadronic light-by-light (HLbL) 
scattering component of the anomalous magnetic moment aμ of the muon. We obtain the conservative 
range of values: 

∑
S albl

μ |S � − (4.51 ± 4.12) × 10−11, which is dominated by the σ/ f0(500) contribution 
(50% ∼ 98%), and where the large error is due to the uncertainties on the parametrisation of the form 
factors. Considering our new result, we update the sum of the different theoretical contributions to aμ

within the standard model, which we then compare to experiment. This comparison gives (aexp
μ − aSM

μ ) =
+(312.1 ± 64.6) × 10−11, where the theoretical errors from HLbL are dominated by the scalar meson 
contributions.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The anomalous magnetic moments a� (� ≡ e, μ) of the light 
charged leptons, electron and muon, are among the most accu-
rately measured observables in particle physics. The relative pre-
cision achieved by the latest experiments to date is of 0.28 ppb 
in the case of the electron [1,2], and 0.54 ppm in the case of the 
muon [3]. An ongoing experiment at Fermilab [4–6], and a planned 
experiment at J-PARC [7], aim at reducing the experimental uncer-
tainty on aμ to the level of 0.14 ppm, and there is also room for 
future improvements on the precision of ae . The confrontation of 
these very accurate measurements with equally precise predictions 
from the standard model then provides a stringent test of the lat-
ter, and, as the experimental precision is further increasing, opens 
up the possibility of indirectly revealing physics degrees of free-
dom that even go beyond it.

From this last point of view, the present situation remains un-
conclusive in the case of the muon (in the case of the electron, the 
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measured value of ae agreed with the predicted value obtained 
from the measurement of the fine-structure constant of Ref. [8]; 
however, the more recent determination of α [9] now results in a 
tension at the level of 2.5 standard deviations between theory and 
experiment). Indeed, the latest standard model evaluations of aμ

(Ref. [10] provides a recent overview, as well as references to the 
literature; see also Section 10 at the end of this article) reveal a 
discrepancy between theory and experiment, which however is at 
the level of ∼ 3.5 standard deviations only. It is therefores manda-
tory, as the experimental precision increases, to also reduce the 
theoretical uncertainties in the evaluation of aμ .

Presently, the limitation in the theoretical precision of aμ is due 
to the contributions from the strong interactions, which are dom-
inated by the low-energy, non perturbative, regime of quantum 
chromodynamics (QCD). The present work is devoted to a hadronic 
contribution arising at order O(α3), and currently refered to as 
hadronic light-by-light (HLbL), see Fig. 1. More precisely, we will 
be concerned with a particular contribution to HLbL, due to the 
exchange of the 0++ scalar states σ/ f0(500), a0(980), f0(980), 
f0(1370), and f0(1500). In earlier evaluations of the HLbL part 
of aμ , some of these states were either treated in the frame-
work of the extended Nambu–Jona-Lasinio model [11,12], or they 
were simply omitted altogether [13,14]. More recently, in Ref. [15]
the contributions from the σ/ f0(500) and a0(980) scalars have 
been reconsidered in the framework of the linearized Nambu–
Jona-Lasinio model. In Ref. [16], the contribution from the a0(980), 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Fig. 1. Light-by-light Hadron scattering contribution to al . The wavy lines represent 
photon. The cross corresponds to the insertion of the electromagnetic current. The 
shaded box represents hadrons subgraphs.

Fig. 2. Scalar meson exchange (dotted lines) to Light-by-light scattering contribution 
to aμ . The wavy lines represent photon. The shaded blob represents form factors. 
The first and second diagrams contribute to the function T1, and the third to the 
function T2 defined in Eq. (3.11).

f0(980), f0(1370) states were evaluated as single-meson exchange 
terms with phenomenological form factors, see Fig. 2. Finally, the 
contribution from the lightest scalar, the σ/ f0(500) is contained 
in the dispersive evaluation of the contribution to HLbL from two-
pion intermediate states with ππ rescattering of Refs. [17,18].

The approach considered here for the treatment of the contri-
bution from scalar states to HLbL has, to some extent, overlaps 
with both of the last two of these more recent approaches. It 
rests on a set of coupled-channel dispersion relations for the pro-
cesses γ γ → ππ, K K̄ , where the strong S-matrix amplitudes for 
ππ → ππ, K K̄ are represented by an analytic K-matrix model, 
first introduced in Ref. [19], and gradually improved over time in 
Refs. [20–22], as more precise data on ππ scattering and on the 
reactions ππ → γ γ became available. The details of the model 
will not be discussed here, as they are amply documented in the 
quoted references. The interest for our present purposes of the 
analysis of the data within this K-matrix framework is twofold. 
First, it contributes to our knowledge of the two-photon widths 
of some of the scalar states, which we will need as input. Sec-
ond, through the fit to data of the K-matrix description of ππ
scattering, it provides information on the mass and the total 
hadronic width of the σ/ f0(500) resonance, which will also be 
needed.

The rest of this article is organized as follows. Section 2 briefly 
recalls the basic formalism describing the hadronic light-by-light 
contribution to the anomalous magnetic moment of a charged 
lepton. This is then specialized to the contribution due to the 
exchange of a narrow-width scalar state (Section 3). Some rele-
vant properties of the vertex function involved are discussed in 
Section 4, where a vector-meson-dominance (VMD) representa-
tion satisfying its leading short-distance behaviour is also given. 
Three sections are devoted to a review of the properties (mass 
and width) of the f0/σ scalar, coming either from sum rules (Sec-
tion 6) or from phenomenology (Section 7). In Section 7 we fur-
thermore describe how our formalism also allows to handle broad 
resonances like σ/ f0(500) or f0(1370). The values of the mass 
and of the width of the σ/ f0(500) retained for the present study 
are given in the last of these three sections (Section 8). The two-
photon widths of the remaining scalar mesons are discussed in 
Section 9. Our results concerning the contributions of the scalars 
to HLbL are presented and discussed in Section 10. Finally, we 
summarize the present experimental and theoretical situation con-
cerning the standard-model evaluation of the anomalous magnetic 
moment of the muon (Section 11) and end this article by giving 
our conclusions (Section 12).

2. Hadronic light-by-light contribution to al

The hadronic light-by-light contribution to the muon anoma-
lous magnetic moment, illustrated in Fig. 1, is equal to [24]:

albl
μ ≡ F2(k = 0)

= 1

48m
tr

{
(/p + m)[γ ρ,γ σ ](/p + m)�ρσ (p, p)

}
(2.1)

where k is the momentum of the external photon, while m and p
denote the muon mass and momentum. Furthermore [p′ = p + k]

�ρσ (p′, p) ≡ −ie6
∫

d4q1

(2π)4

∫
d4q2

(2π)4

1

q2
1 q2

2 (q1 + q2 − k)2

× 1

(p′ − q1)2 − m2

1

(p′ − q1 − q2)2 − m2

× γ μ(/p′ − /q1 + m)γ ν(/p′ − /q1 − /q2 + m)γ λ

× ∂

∂kρ
�μνλσ (q1,q2,k − q1 − q2) , (2.2)

with q1, q2, q3 the momenta or the virtual photons and

�μνλρ(q1,q2,q3) =
∫

d4x1

∫
d4x2

∫
d4x3 ei(q1·x1+q2·x2+q3·x3)

× 〈0 |T{ jμ(x1) jν(x2) jλ(x3) jρ(0)} |0 〉 (2.3)

the fourth-rank light quark vacuum polarization tensor, jμ the 
electromagnetic current and | 0 〉 the QCD vacuum.

In practice, the computation of albl
μ involves the limit k ≡ p′ −

p → 0 of an expression of the type:

F(p′, p) = −ie6
∫

d4q1

(2π)4

∫
d4q2

(2π)4
J μνρστ (p′, p;q1,q2)

×Fμνρστ (−q1,q2 + q1 + k,−q2,−k), (2.4)

where

J μνρστ (p′, p ;q1,q2)

= 1

(p′ + q1)2 − m2

1

(p − q2)2 − m2

1

q2
1 q2

2 (q1 + q2 + k)2

× 1

48m
tr[(/p + m)[γ σ ,γ τ ](/p′ + m)γ μ(/p′ + /q1 + m)

× γ ν(/p − /q2 + m)γ ρ ]. (2.5)

This tensor has the symmetry property J μνρστ (p′, p ; q1, q2) =
J ρνμτσ (p, p′; −q2, −q1), while, due to Lorentz invariance,
F(p′, p) depends on the momenta p and p′ through their invari-
ants only. For on-shell leptons, p2 = p ′2 = m2, this amounts to 
F(p′, p) ≡F(k2) =F(p, p′).

3. Scalar meson contributions to albl
μ

Let us focus on the contribution to albl
� due to the exchange 

of a 0++ scalar meson S . We first discuss the situation where 
the width of this scalar meson is small enough so that its ef-
fects can be neglected. As a look to Table 1 shows, this will be 
the case for S = a0(980), f0(980), f0(1500). The circumstances un-
der which the quite broad σ/ f0(500) resonance, and possibly also 
the f0(1370) state, can be treated in a similar manner will be ad-
dressed in due course.
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Table 1
The scalar states we consider together with the estimates or averages for the mass 
and width, as given by the 2018 Edition of the Review of Particle Physics [25]. In 
the cases of the σ/ f0(500) and f0(1370) states, the ranges represent the estimates 
of the Breit–Wigner masses and widths.

Scalar Mass [MeV] Width [MeV]

σ/ f0(500) 400–550 400–700
a0(980) 980(20) 50–100
f0(990) 990(20) 10–100
f0(1370) 1200–1500 200–500
a0(1450) 1474(19) 265(13)
f0(1500) 1504(6) 109(7)

The contribution �
(S)
μνρσ (q1, q2, q3) due to the exchange of 

a scalar one-particle state |S(pS)〉 to the fourth-order vacuum-
polarization tensor �μνρσ (q1, q2, q3) (see Fig. 1) is described by 
the Feynman diagrams shown in Fig. 2. It involves the form factors 
describing the photon–photon-scalar vertex function

�S
μν(q1;q2) ≡ i

∫
d4x e−iq1·x〈0|T { jμ(x) jν(0)}|S(pS)〉

= P(q2
1,q2

2)Pμν(q1,q2) +Q(q2
1,q2

2)Q μν(q1,q2),

(3.1)

where q2 ≡ pS − q1. This decomposition of �S
μν(q1; q2) follows 

from Lorentz invariance, invariance under parity, and the conser-
vation of the current jμ(x). The tensors

Pμν(q1,q2) = q1,νq2,μ − ημν(q1 · q2),

Q μν(q1,q2) = q2
2q1,μq1,ν + q2

1q2,μq2,ν

− (q1 · q2)q1,μq2,ν − q2
1q2

2ημν, (3.2)

are transverse,

qμ,ν
1,2 Pμν(q1,q2) = 0, qμ,ν

1,2 Q μν(q1,q2) = 0, (3.3)

and symmetric under the simultaneous exchanges of the momenta 
q1 and q2 and of the Lorentz indices μ and ν . The two off-
shell scalar-photon–photon transition form factors P(q1, q2) and 
Q(q1, q2) depend only on the two independent invariants q2

1 and 
q2

2, and, are symmetric under permutation of the momenta q1 and 
q2. It is important to point out that the amplitude for the decay 
S → γ γ , which is proportional to P(0, 0)M2

S(ε1 · ε2) [εi denote 
the respective photon polarization vectors, which are transverse, 
qi · ε j = 0], provides information on P(0, 0) only.

In order to simplify subsequent formulas, we will use the fol-
lowing short-hand notation:

Pμν(qi,q j) ≡ P (i, j)
μν , Q μν(qi,q j) ≡ Q (i, j)

μν , (3.4)

and

P(q2
i ,q2

j ) ≡ P(i, j) ; P[q2
i , (q j + qk)

2] ≡ P(i, jk) ,

Q(q2
i ,q2

j ) ≡ Q(i, j) ; Q[q2
i , (q j + qk)

2] ≡ Q(i, jk) ,

P(q2
i ,0) ≡ P(i,0) ; Q(q2

i ,0) ≡ Q(i,0) . (3.5)

The contribution albl
μ |S to albl

μ from the exchange of the scalar S
is then obtained upon replacing, in the general formula (2.3), the 
tensor �μνρσ (q1, q2, q3, q4) by

i�(S)
μνρσ (q1,q2,q3,q4)

= D(1,2)
S

[
P(1,2) P (1,2)

μν +Q(1,2) Q (1,2)
μν

]
×

[
P(3,4) P (3,4)

ρσ +Q(3,4) Q (3,4)
ρσ

]

+D(1,3)
S

[
P(1,3) P (1,3)

μρ +Q(1,3) Q (1,3)
μρ

]
×

[
P(2,4) P (2,4)

νσ +Q(2,4) Q (2,4)
νσ

]
+D(1,4)

S

[
P(1,4) P (1,4)

μσ +Q(1,4) Q (1,4)
μσ

]
×

[
P(2,3) P (2,3)

νρ +Q(2,3) Q (2,3)
νρ

]
≡ i

{
�

(S;P P )
μνρσ + �

(S;P Q )
μνρσ + �

(S;Q Q )
μνρσ

}
, (3.6)

where qμ
4 ≡ −(q1 + q2 + q3)

μ . The scalar-meson propagator in the 
Narrow Width Approximation (NWA) reads

D(i)
S ≡ 1

q2
i − M2

S

; D(i, j)
S ≡ 1

(qi + q j)
2 − M2

S

, (3.7)

with i, j = 1, ..4. In the last line, the first (third) term collects all 
the contributions quadratic in the form factor P (Q), while the 
second term collects all the contributions involving the products 
PQ of the two kinds of form factors. Correspondingly, we perform 
the decomposition albl

μ |S = albl
μ |P P

S + albl
μ |P Q

S + albl
μ |Q Q

S .
Starting from the representation (3.6), it is a straightforward 

exercise to insert it into the general expression in Eq. (2.3), and 
then to compute the projection on the Pauli form factor as defined 
in Eq. (2.1). For further use, we introduce the tensor Fμαβ(q) =
ημβqα − ημαqβ , and the amplitude

A P P
S (q1,q2,q3,q4) ≡ D(1,2)

S P(1,2)P(3,4), (3.8)

and similarly for other products of form factors P Q , Q Q .
The part of the scalar-exchange term that involves the form fac-

tor P alone then reads

albl
μ |P P

S = −e6
∫

d4q1

(2π)4

∫
d4q2

(2π)4
J μνρστ (p, p ;q1,q2)

×
{

2A P P
S (−q1,q1 + q2,−q2,0)Fμνα(q1)(q1 + q2)

α

×Fρστ (q2) + A P P
S (−q1,−q2,q1 + q2,0)

×Fμρα(q1)q
α
2 Fνστ (q1 + q2)

}
, (3.9)

where the symmetry properties of the integrand, and of the ampli-
tude A S(q1, q2, q3, q4), as well as Fρστ (q) = −Fρτσ (q) have been 
used. Noticing that Q μν(q, k) is quadratic in the components of 
the momentum kμ , one sees that all of �

(S;Q Q )
μνρσ (q1, q2, q3) and 

half of the terms in �(S;P Q )
μνρσ (q1, q2, q3) will not contribute to the 

Pauli form factor at vanishing momentum transfer. The part of the 
scalar-exchange term that involves both form factors P and Q thus 
reduces to

albl
μ |P Q

S = −e6
∫

d4q1

(2π)4

∫
d4q2

(2π)4
J μνρστ (p, p ;q1,q2)

×
{

2A P Q
S (−q2,0,−q1,q1 + q2)Fρστ (−q2)

× Q μν(q1,q1 + q2) + A P Q
S (q1 + q2,0,q1,q2)

×Fνστ (q1 + q2)Q μρ(q1,q2)

}
, (3.10)

whereas albl
μ |Q Q

S = 0. The trace calculation3 leads to the final ex-
pression

3 The corresponding Dirac traces have been computed using the FeynCalc pack-
age [26,27].
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albl
μ |S = −e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4
×

1

q2
1 q2

2 (q1 + q2)2

1

(p + q1)2 − m2

1

(p − q2)2 − m2{
D(2)

S

[
P(1,12)P(2) T P P

1,S +P(2)Q(1,12) T P Q
1,S

]
+D(1,2)

S

[
P(1,2)P(12,0) T P P

2,S +P(12,0)Q(12,0) T P Q
2,S

]}
,

(3.11)

where the amplitudes Ti,S are given in Table 2 and the func-
tions P(i, j) and Q(i, j) in Eq. (3.5). Let us simply note here that 
T (P P )

1 (q1, q2) and T (P Q )
1 (q1, q2) come from the sum of the two di-

agrams (a) and (b) of Fig. 2 (they give identical contributions), 
while T (P P )

2 (q1, q2) and T (P Q )
2 (q1, q2) represent the contributions 

from diagram (c). Apart from the presence of two form factors, 
the situation, at this level, is similar to the one encountered in 
the case of the exchange of a pseudoscalar meson, see for instance 
Ref. [28].

4. �S
μν at short distance and vector meson dominance

In order to proceed, some information about the vertex function 
�S

μν(q, pS − q) is required. In particular, the question about the 
relative sizes of the contributions to albl

μ |S coming from the two 
form factors involved in the description of the matrix element (3.1)
needs to be answered. In order to briefly address this issue, one 
first notices that at short distances the vertex function �S

μν(q, pS −
q) has the following behaviour (in the present discussion qμ is a 
spacelike momentum):

lim
λ→∞�S

μν(λq, pS − λq) = 1

λ2

(
1

q2

)2

�S;∞
μν (q, pS) +O

(
1

λ2

)3

,

(4.1)

with

�S;∞
μν (q, pS) = (qμqν − q2ημν)A + [

(q · pS)qμpS,ν (4.2)

− q2 pS,μpS,ν + (q · pS)(qν pS,μ − q · pSημν)
]

B.

The structure of �
S;∞
μν (q, pS) follows from the requirements

qμ�
S;∞
μν (q, pS) = 0, qν�

S;∞
μν (q, pS) = 0, and the coefficients A and 

B are combinations of the four independent “decay constants” 
which describe the matrix elements

〈0| : Dρψ̄ Q 2γσ ψ : (0)|S(pS)〉, 〈0| : ψ̄ Q 2Mψ : (0)|S(pS)〉,
〈0| : Ga

μνGa
ρσ : (0)|S(pS)〉, (4.3)

of the three gauge invariant local operators of dimension four that 
can couple to the 0++ scalar states. Here Q = diag(2/3, −1/3,

−1/3) denotes the charge matrix of the light quarks, whereas 
M = diag(mu, md, ms) stands for their mass matrix. The third ma-
trix element, involving the gluonic operator : Ga

μν Ga
ρσ :, only occurs 

to the extent that the scalar state possesses a singlet component. 
For a pure octet state, and in the chiral limit, only one “decay 
constant”, coming from the first operator, remains, and one has 
A/B = −M2

S/2. The asymptotic behaviour in Eq. (4.2) leads to the 
suppression of Q(q1, q2) with respect to P(q1, q2) at high (space-
like) photon virtualities (Q 2

i = −q2
i ):

Q(q1,q2) � −2P(q1,q2)

Q 2 + Q 2
. (4.4)
1 2
This short-distance behaviour can be reproduced by a simple vec-
tor meson dominance (VMD)-type representation,

PVMD(q1,q2) = −1

2

B(q2
1 + q2

2) + (2A + M2
S B)

(q2
1 − M2

V )(q2
2 − M2

V )
,

QVMD(q1,q2) = − B

(q2
1 − M2

V )(q2
2 − M2

V )
, (4.5)

which leads to:

κS ≡ − M2
SQVMD(0,0)

PVMD(0,0)
= − 2BM2

S

BM2
S + 2A

. (4.6)

Incidentally, similar statements can also be inferred from Ref. [29], 
where the octet vector–vector-scalar three-point function 〈V V S〉
was studied in the chiral limit. From the expressions given there, 
one obtains

M2
SQ(q1,q2)

P(q1,q2)
= −

[
9

5

M4
V

F 2
π (M2

K − M2
π )

c̃ − 1

2
+ Q 2

1 + Q 2
2

2M2
S

]−1

� − 2M2
S

2M2
S + Q 2

1 + Q 2
2

, (4.7)

with [30]

c̃ = 5

16πα2

[
�ρ→e+e−

Mρ
− 3

�ω→e+e−

Mω
− 3

�φ→e+e−

Mφ

]
� (4.6 ± 0.8) · 10−3. (4.8)

Numerically, this would correspond to A/B = −2M2
S (κS = 1), 

rather than to A/B = −M2
S/2, which, as mentioned above, should 

hold precisely for the conditions under which the analysis carried 
out in Ref. [29] is valid. This discrepancy illustrates the well-known 
[31,32] limitation of the simple saturation by a single resonance 
in each channel, which in general cannot simultaneously accom-
modate the correct short-distance behaviour of a given correlator 
and of the various related vertex functions. Let us also point out 
that A/B = −M2

S/2 corresponds to P(0, 0) = 0, i.e. to a vanish-
ing two-photon width. This either means that scalars without a 
singlet component decay into two photons through quark-mass 
and/or through isospin-violating effects, or, more likely, shows the 
limitation of the VMD picture, which provides, in this case, a too 
simplistic description of a more involved situation. The second 
alternative would then require to go beyond a single-resonance 
description, as described, for instance, in Ref. [32] for the photon-
transition form factor of the pseudoscalar mesons. Following this 
path would, however, lead us too far astray, and in the present 
study we will keep the discussion within the framework set by the 
VMD description of the two form factors P(q1, q2) and Q(q1, q2). 
For later use, like for instance the derivation of Eq. (5.4) below, it 
is also of interest to parameterize the VMD form factors directly 
in terms of P(0, 0), which gives the two-photon width, and the 
parameter κS as defined by the first equality in Eq. (4.6):

PV M D(q1,q2) = P(0,0)

[
1 − κS

2

q2
1 + q2

2

M2
S

]

× M4
V

(q2
1 − M2

V )(q2
2 − M2

V )
, (4.9)

QV M D(q1,q2) = −κS
P(0,0)

M2

M4
V

(q2 − M2 )(q2 − M2 )
.

S 1 V 2 V
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Table 2
Expressions, in Minkowski space, of the amplitudes defined in Eq. (3.11).

T P P
1,S (q1,q2) = 16

3

[
q2

2(p · q1)2 + q2
1(p · q2)2 − (q1 · q2)(p · q1)(p · q2) + (p · q1)(p · q2)q2

2 + (p · q1)(q1 · q2)q2
2 − (p · q2)(q1 · q2)2 − m2

�q2
1q2

2 − m2
� (q1 · q2)q2

2

]
+ 8(p · q1)q2

1q2
2 − 8q2

1(p · q2)(q1 · q2),

T P P
2,S (q1,q2) = 8

3

[
q2

2(p · q1)2 + q2
1(p · q2)2 − 2(q1 + q2)2(p · q1)(p · q2) + (p · q1)(p · q2)q2

1 + (p · q1)(p · q2)q2
2 + m2(q1 · q2)(q1 + q2)2

]
.

T P Q
1,S (q1,q2) = 16

3

[
(q1 · q2)(p · q1)(p · q2)(q2

1 + q2
2) + (p · q1)(p · q2)(q1 · q2)2 + (p · q2)(q1 · q2)q2

1q2
2 − q2

1q2
2(p · q1)2 −

q2
1q2

2(p · q2)2 − q2
2(q1 · q2)(p · q1)2 − q2

1(q1 · q2)(p · q2)2 − (p · q1)2q4
2 − (p · q2)2q4

1 − (p · q1)q2
1q4

2 −
(p · q1)(p · q2)q2

1q2
2 + m2

�q2
1q2

2(q1 + q2)2] − 40

3

[
(p · q1)(q1 · q2)q2

1q2
2 − (p · q2)(q1 · q2)2q2

1

]
+ 8q4

1

[
(p · q2)(q1 · q2) − q2

2(p · q1)
]
,

T P Q
2,S (q1,q2) = 4

3

[
2(q1 · q2)(p · q1)(p · q2)(q2

1 + q2
2) − q2

2(q1 + q2)2(p · q1)2 − q2
1(q1 + q2)2(p · q2)2 − q2

2(q2
1 + q2

2)(p · q1)2 − q2
1(q2

1 + q2
2)(p · q2)2 + 2m2

�q2
1q2

2(q1 + q2)2
]
.

We may draw two conclusions from the preceding analysis. First, 
that a sensible comparison to be made, for space-like photon vir-
tualities, is thus not between P(q1, q2) and Q(q1, q2), but rather 
between P(q1, q2) and, say, −(2M2

S + Q 2
1 + Q 2

2 )Q(q1, q2)/2. At 
high photon virtualities, their ratio tends to unity. Second, that 
|P(0, 0)| and M2

S |Q(0, 0)| may well be of comparable sizes. For 
instance, within VMD, we obtain

P(0,0) = −M2
SQ(0,0) (4.10)

from the analysis of Ref. [29].

5. Angular integrals

The next step consists in transforming the two-loop integral in 
Eq. (3.11) into an integration in Euclidian space through the re-
placement∫

d4qi −→ i(2π2)

∞∫
0

dQ i Q 3
i

∫ d�Q̂ i

2π2
, (5.1)

with Q 2
i = −q2

i , i = 1, 2, and

d�Q̂ i
= dφQ̂ i

dθ1Q̂ i
dθ2Q̂ i

sin(θ1Q̂ i
) sin2(θ2Q̂ i

),∫
d�Q̂ i

= 2π2, (5.2)

where the orientation of the four-vector Q μ in four-dimensional 
Euclidian space is given by the azymuthal angle φQ̂ and the two 
polar angles θ1Q̂ and θ2Q̂ . Since the anomalous magnetic moment 
is a Lorentz invariant, its value does not depend on the lepton’s 
four-momentum pμ beyond its mass-shell condition p2 = m2. One 
may thus average, in Euclidian space, over the directions of the 
four-vector P (the Euclidian counterpart of p, i.e. P 2 = −m2)

albl
μ |S = 1

2π2

∫
d� P̂ albl

μ |S . (5.3)

This allows to obtain a representation of albl
μ |P P+P Q

S as an integral 
over three variables, Q 1, Q 2, and the angle between the two Eu-
clidian loop momenta [33]. Actually, in the VMD representation of 
Eq. (4.5), the form factors belong to the general class discussed in 
Ref. [28], for which one can actually perform the angular integrals 
directly, without having to average over the direction of the lepton 
four-momentum first. Within this VMD approximation of the form 
factors, the anomalous magnetic moment then reads

albl
μ |VMD

S =
( α

π

)3 [P(0,0)]2

∞∫
dQ 1

∞∫
dQ 2
0 0
M4
V

(Q 2
1 + M2

V )(Q 2
2 + M2

V ){[
�w P P

1 (MV ) − �w P P
2 (MV )

]
+ κS

2

{
Q 2

1 + Q 2
2

M2
S

[
�w P P

1 (MV ) − �w P P
2 (MV )

]
− M2

V

M2
S

[
w P P

12 (MV ) − 2�w P Q
1 (MV ) − 2�w P Q

2 (MV )
]}

+ κ2
S

4

[
Q 2

1 Q 2
2

M4
S

�w P P
1 (MV ) − w̃ P P

12 (MV )

− 2
Q 2

2

M2
S

�w P Q
1 (MV ) − 2

Q 2
1 + Q 2

2

M2
S

�w P Q
2 (MV )

]}

≡
( α

π

)3 [P(0,0)]2
{
Ip + κSIpq + κ2

SIq

}
, (5.4)

where κS was defined in Eq. 4.6, and with

�w P P ,P Q
1,2 (M) ≡ w P P ,P Q

1,2 (M) − w P P ,P Q
1,2 (0), (5.5)

w P P
12 (MV ) = w P P

1 (MV ) − w P P
2 (MV ), (5.6)

w̃ P P
12 (MV ) = Q 2

2 M2
V

M4
S

w P P
1 (MV ) − Q 2

1 + Q 2
2

M2
S

M2
V

M2
S

w P P
2 (MV ).

The dimensionless densities (the overall sign has been chosen 
such that these densities are positive) occurring in these expres-
sions can be found in Table 3. They are obtained upon using the 
angular integrals given in [28]. Some of their combinations are 
plotted in Figs. 3, 4, and 5. Generically, they are peaked in a re-
gion around Q 1 ∼ Q 2 ∼ 500 MeV, and are suppressed for smaller 
or larger values of the Euclidian loop momenta.

6. I = 0 scalar mesons from gluonium sum rules

The evaluation of albl
μ |VMD

S as given in Eq. (5.4), requires as input 
values for the masses and the two-photon widths of the vari-
ous scalar resonances we want to include. For the narrow states, 
this information can be gathered from the review [25] or from 
other sources, which will be described in Section 9. In this sec-
tion, we review the information provided by various QCD spectral 
sum rules and some low-energy theorems on the mass, as well as 
on the hadronic and two-photon widths, of the lightest scalar me-
son σ/ f0(500), the f0(1350) and f0(1504) interpreted as gluonia 
states.

• I = 0 scalar mesons as gluonia candidates
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Fig. 3. The weight functions: a): �w P P
1 and b): �w P P

2 as function of Q 1 and Q 2. We have used MV = Mρ = 775 MeV and MS = 960 MeV.

Fig. 4. The same as in Fig. 3 but for PQ.

Fig. 5. The same as in Fig. 3 but for the combinations w P P
12 and w̃ P P

12 in Eq. (5.6).
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The nature of the isoscalar I = 0 scalar states remains unclear 
as it goes beyond the usual octet quark model description due 
to their U (1) component. A four-quark description of these states 
have been proposed within the bag model [34] and studied phe-
nomenologically in e.g. Refs. [35,36]. However, its singlet nature 
has also motivated their interpretation as gluonia candidates as 
initiated in Ref. [37] and continued in Refs. [38–42].4 Recent anal-
ysis of the ππ and γ γ scattering data indicates an eventual large 
gluon component of the σ/ f0(500) and f0(990) states [19–23]
while recent data analysis from central productions [47] shows the 
gluonium nature of the f0(1350) decaying into π+π− and into 
the specific 4π0 states via two virtual σ/ f0(500) states as ex-
pected if it is a gluonium [40,41]. The σ/ f0(500) are observed in 
the gluonia golden J/ψ and ϒ → ππγ radiative decays but often 
interpreted as S-wave backgrounds due to its large width (see e.g.
BESIII [48] and BABAR [49]). The glueball nature of the G(1.5 −1.6)

has been also found by GAMS few years ago [50] on its decay to 
η′η and on the value of the branching ratio η′η/ηη expected for a 
high-mass gluonium [40,41].

• The σ/ f0 mass from QCD spectral sum rules

The singlet nature of the σ/ f0 has motivated to consider that it 
may contain a large gluon component [39–41], which may explain 
its large mass compared to the pion. This property is encoded in 
the trace of the QCD energy momentum tensor:

θ
μ
μ = 1

4
β(αs)Ga

μνGμν
a + [

1 + γm(αs)
] ∑

u,d,s

mqψ̄qψq, (6.1)

where β(αs) ≡ β1(αs/π) + · · · and γm(αs) ≡ γ1(αs/π) + · · · are 
the QCD β-function and quark mass anomalous dimension: −β1 =
(1/2)(11 − 2n f /3), γ1 = 2 for SU (3)c × SU (n f ). A QCD spectral 
sum rule (QSSR) [51,52]5 analysis of the corresponding two-point 
correlator in the chiral limit (mq = 0):

ψg(q
2) = i

∫
d4x〈0|T θ

μ
μ (x)θμ

μ (0)|0〉 (6.2)

from the subtracted and unsubtracted Laplace sum rules:

L0(τ ) =
∞∫

0

dtetτ 1

π
Imψg(t)

L−1(τ ) = −ψg(0) +
∞∫

0

dt

t
etτ 1

π
Imψg(t) (6.3)

leads to the predictions

Mσ ≈ (0.95–1.10) GeV and MG ≈ (1.5–1.6) GeV (6.4)

for the masses of the σ/ f0 and scalar gluonium states.

• σ/ f0 hadronic width from vertex sum rules

The σ hadronic width can be estimated from the vertex func-
tion:

V
[
q2 ≡ (q1 − q2)

2] = 〈π |θμ
μ |π〉, (6.5)

which obeys a once subtracted dispersion relation [40,41]:

4 For recent reviews on the experimental searches and on the theoretical studies 
of gluonia, see e.g. Refs. [43–46].

5 For reviews, see the textbooks in Refs. [53,54] and reviews in Refs. [55,56].
V (q2) = V (0) + q2

∞∫
4m2

π

dt

t

1

t − q2 − iε

1

π
ImV (t) (6.6)

From the low-energy constraints:

V (0) = O(m2
π ) → 0, V ′(0) = 1, (6.7)

one can derive the low-energy sum rules :

1

4

∑
S≡σ ,...

gSππ

√
2 f S = 0,

1

4

∑
S≡σ ,...

gSππ

√
2 f S

M2
S

= 1, (6.8)

where f S is the scalar decay constant normalized as

〈0|4θ
μ
μ |S〉 = √

2 f S M2
S , (6.9)

with [41]:

fσ � 1 GeV, fσ ′ � 0.6 GeV, fG � 0.4 GeV, (6.10)

for Mσ � 1 GeV, Mσ ′ � 1.3 GeV and MG � 1.5 GeV. The first sum 
rule requires the existence of two resonances, σ/ f0 and its radial 
excitation σ ′ , coupled strongly to ππ .6 Solving the second sum 
rule gives, in the chiral limit,

|gσπ+π−| � |gσ K + K −| � (4–5) GeV, (6.11)

which suggests an universal coupling of the σ/ f0 to Goldstone 
boson pairs as confirmed from the ππ and K̄ K scatterings data 
analysis [22,23]. This result leads to the hadronic width:

�σ→ππ ≡ |gσπ+π−|2
16π Mσ

(
1 − 4m2

π

M2
σ

)1/2

≈ 0.7 GeV. (6.12)

This large width into ππ is a typical OZI-violation expected to be 
due to large non-perturbative effects in the region below 1 GeV. Its 
value compares quite well with the width of the so-called on-shell 
σ/ f0 mass obtained in Ref. [20–22] (see also the next subsection).

• σ/ f0 → γ γ width from some low-energy theorems

We introduce the gauge invariant scalar meson coupling to γ γ

through the interaction Lagrangian and related coupling:

Lint = gSγ γ

2
Fμν F μν , P(0,0) ≡ g̃Sγ γ =

(
2

e2

)
gSγ γ , (6.13)

where Fμν is the photon field strength. In momentum space, the 
corresponding interaction reads7

Lint = 2gSγ γ Pμν(q1q2) × ε
μ
1 εν

2 , (6.14)

where εμ
i are the photon polarizations. With this normalization, 

the decay width reads

� = |gSγ γ |2 M3
S

8π

(
1

2

)
= π

4
α2M3

S |g̃Sγ γ |2, (6.15)

where 1/2 is the statistical factor for the two-photon state. One 
can for instance estimate the σγ γ coupling by identifying the 

6 The G(1600) is found to couple weakly to ππ and might be identified with the 
gluonium state obtained in the lattice quenched approximation (for a recent review 
of different lattice results, see e.g. [43]).

7 We use the normalization and structure in [57] for on-shell photons. However, a 
more general expression is presented in [29] for off-shell photons. We plan to come 
back to this point in a future publication.
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Table 3
Expressions of the weight functions defined in Eq. (5.6) after angular integration in the Euclidian space [Dm1 ≡ (P + Q 1)2 + m2, Dm2 ≡ (P − Q 2)2 + m2].

w P P
1 (M) = −

∫
d�1

2π2

∫
d�2

2π2

π2 Q 1 Q 2

Dm1 Dm2

T S;P P
1E (Q 1, Q 2)

(Q 2
2 + M2

S )[(Q 1 + Q 2)2 + M2]

= − 2

3

π2 Q 1 Q 2

Q 2
2 + MS

2

[
1 + Q 2

2

2m2
l

+ Q 2
2
(

Q 1
2 − Q 2

2 − M2
)(

Q 1
2 − Q 2

2 − M2 − 4m2
l

)
I M
1 −

(
2Q 1

2 − Q 2
2 − M2 + Q 1

2 Q 2
2

2m2
l

) Rm1 − 1

2m2
l

− Q 2
2

(
2 + Q 2

2

2m2
l

)
Rm2 − 1

2m2
l

−
(

Q 1
2 − Q 2

2 + M2
)

I M
7 + Q 2

2
(

3Q 1
2 − Q 2

2 − M2 − 4m2
l + Q 1

2 Q 2
2

2m2
l

) Rm1 − 1

2m2
l

Rm2 − 1

2m2
l

+
(

Q 1
2 + Q 2

2 + M2
)(

2Q 1
2 − Q 2

2 − M2
) Rm1 − 1

2m2
l

I M
7 − 2Q 2

2
(

Q 1
2 − M2

) Rm2 − 1

2m2
l

I M
7

]
,

w P Q
1 (M) = −

∫
d�1

2π2

∫
d�2

2π2

π2 Q 1 Q 2

Dm1 Dm2

1

M2
S

T S;P Q
1E (Q 1, Q 2)

(Q 2
2 + M2

S )[(Q 1 + Q 2)2 + M2]

= − 1

3

π2 Q 1 Q 2

MS
2
(

Q 2
2 + MS

2
) [

Q 1
2 + Q 2

2 − M2 + 2
Q 1

2 Q 2
2

m2
l

− 4Q 1
2 Q 2

2 M2
(

Q 1
2 − 2Q 2

2 − M2 − 4m2
l

)
I M
1 − Q 1

2(
Q 1

2

− 3Q 2
2 − 5M2 + 2

Q 1
2 Q 2

2

m2
l

) Rm1 − 1

2m2
l

− 4Q 2
2

(
2Q 1

2 + Q 1
2 Q 2

2

2m2
l

)
Rm2 − 1

2m2
l

−
(

Q 1
2 − Q 2

2 + M2
)(

Q 1
2 − Q 2

2 − M2
)

I M
7

+ 4Q 1
2 Q 2

2

(
2Q 1

2 − Q 2
2 − M2 − 4m2

l + Q 1
2 Q 2

2

2m2
l

)
Rm1 − 1

2m2
l

Rm2 − 1

2m2
l

+ Q 1
2
((

Q 1
2 − Q 2

2
)2 − 4M2 Q 1

2 − 8Q 2
2 M2

− 5M4
) Rm1 − 1

2m2
l

I M
7 + 8M2 Q 1

2 Q 2
2 Rm2 − 1

2m2
l

I M
7

]
,

w P P
2 (M) = +

∫
d�1

2π2

∫
d�2

2π2

π2 Q 1 Q 2

Dm1 Dm2

T S;P P
2E (Q 1, Q 2)

[(Q 1 + Q 2)2 + M2
S ][(Q 1 + Q 2)2 + M2] ≡ w̃ P P

2 (M) − w̃ P P
2 (MS )

M2
S − M2

,

w P Q
2 (M) = −

∫
d�1

2π2

∫
d�2

2π2

π2 Q 1 Q 2

Dm1 Dm2

1

M2
S

T S;P Q
2E (Q 1, Q 2)

[(Q 1 + Q 2)2 + M2
S ][(Q 1 + Q 2)2 + M2] ≡ w̃ P Q

2 (M) − w̃ P Q
2 (MS )

M2
S (M2

S − M2)
,

with

w̃ P P
2 (M) = 2

3
π2 Q 1 Q 2

(
2M2(

Q 1
2 Q 2

2 + m2
l Q 1

2 + m2
l Q 2

2 + m2
l M2)

I M
1 + Q 1

2

2

Rm1 − 1

2m2
l

+ Q 2
2

2

Rm2 − 1

2m2
l

+ M2 I M
7

−
(

Q 1
2 Q 2

2 + 2m2
l M2

) Rm1 − 1

2m2
l

Rm2 − 1

2m2
l

− Q 1
2

2

(
Q 1

2 − Q 2
2 + 3M2

) Rm1 − 1

2m2
l

I M
7 − Q 2

2

2

(
Q 2

2 − Q 1
2 + 3M2

) Rm2 − 1

2m2
l

I M
7

)
,

w̃ P Q
2 (M) = − 1

3
π2 Q 1 Q 2

[
− M2 + 2M2 Q 1

2 Q 2
2(Q 1

2 + Q 2
2 + 4m2

l )I M
1 + Q 1

2

2

(
Q 1

2 + 3Q 2
2 + M2

) Rm1 − 1

2m2
l

+ Q 2
2

2
(Q 2

2 + 3Q 1
2 + M2)

Rm2 − 1

2m2
l

+ M2(Q 1
2 + Q 2

2 + M2)I M
7 − 2Q 1

2 Q 2
2
(

Q 1
2 + Q 2

2 + 4m2
l

) Rm1 − 1

2m2
l

Rm2 − 1

2m2
l

− Q 1
2

2

× (Q 1
4 − Q 2

4 + 2M2 Q 1
2 + 4M2 Q 2

2 + M4)
Rm1 − 1

2m2
l

I M
7 − Q 2

2

2
(Q 2

4 − Q 1
4 + 2M2 Q 2

2 + 4M2 Q 1
2 + M4)

Rm2 − 1

2m2
l

I M
7

]
,

and

I M
1 = 1

m2
l Q 2

1 Q 2
2

ln[1 − Z M
Q 1 Q 2

Zml
P Q 1

Zml
P Q 2

], I M
7 = Z M

Q 1 Q 2

Q 1 Q 2
, Rmi ≡

√√√√1 + 4m2
l

Q 2
i

, Zml
P Q i

= Q i

2P
(1 − Rmi),

(Zml
P Q i

)2 = Q i

P
Zml

P Q i
− 1, Zml

P Q 1
Zml

P Q 2
= − Q 1 Q 2

4m2
l

(Rm1 − 1)((Rm2 − 1)), Z M
K L = K 2 + L2 + M2 − √

(K 2 + L2 + M2)2 − 4K 2 L2

2K L
,

Euler–Heisenberg Lagrangian derived from gg → γ γ via a quark 
constituent loop with the interaction Lagrangian in Eq. (6.13). In 
this way, one deduces the constraint8:

gSγ γ � α

60

√
2 f S M2

S

(
π

−β1

) ∑
u,d,s

Q 2
q /M4

q , (6.16)

where Q q is the quark charge in units of e; Mu,d ≈ Mρ/2 and 
Mφ ≈ Mφ/2 are constituent quark masses. Then, one obtains:

gσγ γ ≈ gσ ′γ γ ≈ gGγ γ ≈ (0.4–0.7)α GeV−1, (6.17)

which leads, for Mσ � 1 GeV, to the γ γ width:

�σ→γ γ � (0.2–0.6) keV. (6.18)

A consistency check of the previous result can be obtained from 
the trace anomaly 〈0|θμ

μ |γ γ 〉 by matching the k2 dependence of 
its two sides which leads to [58–61]:

8 This sum rule has been originally used by [39] in the case of a charm quark 
loop for estimating the J/ψ → γ σ radiative decay.
1

4

∑
S=σ ···

gSγ γ

√
2 f S = αR

3π
, (6.19)

where R ≡ 3 
∑

Q 2
q .

7. σ/ f0(500) meson from ππ and γ γ scattering

The mass and the width of a broad resonance like the
σ/ f0(500) state in general turn out to be rather ambiguous quan-
tities. A non ambiguous definition is provided by the location of 
the pole of the S-matrix amplitude on the second Riemann sheet 
[62]. The difficulty then lies in relating this pole in the complex do-
main to the description, for instance in the form of a Breit–Wigner 
function, of the data on the positive real axis. This issue has been 
quite extensively discussed in the context of the line-shapes of the 
electroweak gauge and scalar bosons9 [63–69].

9 The issue was mainly centred around the necessity to define gauge-invariant 
observables and to correctly account for threshold effects.
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In this section, the information on the f0/σ resonance that 
can be obtained from data on ππ scattering or on γ γ →
π0π0, π+π− are reviewed. We then end this section by speci-
fying how the contribution to HLbL from a broad object like the 
σ/ f0(500) can be described by the formalism that we have set up 
in Section 3.

• σ/ f0 mass and width in the complex plane

The mass and width of the σ/ f0 meson play an important rôle 
in the present analysis. Their precise determinations in the com-
plex plane from γ γ → π0π0, π+π− scattering data in Ref. [20]
(one resonance ⊕ one channel) and in Refs. [21,22] (two reso-
nances ⊕ two channels and adding the Ke4 data), lead to the 
complex pole:

Mc
σ ≡ Mσ − i�σ /2,

� [
452(12) − i260(15)

]
MeV, (7.1)

which agrees with some other estimates from ππ scattering data 
for one channel [70–72]. Using the model of [19] for separating the 
direct and rescattering contributions, one obtains from γ γ → ππ

scatterings data [20–22]:

�
γγ
σ |dir � (0.16 ± 0.04) keV,

�
γ γ
σ |resc � (1.89 ± 0.81) keV,

�
γ γ
σ |tot � (3.08 ± 0.82) keV, (7.2)

corresponding respectively to the direct, rescattering contributions 
and their total sum. The rescattering contribution includes the ones 
of the Born term, the vector and axial-vector mesons in the 
t-channel and the I = 2 mesons.

• σ/ f0 Breit–Wigner on-shell mass and widths

However, an extrapolation of the previous result obtained in the 
complex plane to the real axis is not straightforward. Then, in the 
Breit–Wigner analysis for approximately reproducing the data, one 
may either introduce the on-shell mass and width defined in [68] for 
the Z -bozon and used [20,22,43] within the model of [19]:

Re D[(Mos
σ )2] = 0 =⇒ Mos

σ ≈ 0.92 GeV . (7.3)

It corresponds to the on-shell hadronic width evaluated at s =
(Mos

σ )2:

Mos
σ �ππ

σ |os � Im D
−Re D′ =⇒ �ππ

σ |os ≈ 1.04 GeV, (7.4)

where D is the inverse propagator and D′ its derivative. The corre-
sponding γ γ width can be extracted by evaluating Eq. (7.2) at the 
on-shell mass and gives by including the f0(980) in the fit analysis 
[22]:

�
γγ
σ |os � (1.2 ± 0.3) keV. (7.5)

A more recent fit of the data using the Breit–Wigner parametriza-
tion leads to [43]:

Mσ � 1000(100) MeV, �ππ
σ � 700(70) MeV , (7.6)

which are consistent with the above results, and with the sum 
rules results in Eq. (6.4). An earlier fit using K-matrix leads to the 
value [73]:

Mσ = 910 − 350 i MeV , (7.7)

quoted without errors.
Fig. 6. The function B̃W (s; MBW, �BW) (solid line) for MBW = 0.8 GeV and �BW =
0.7 GeV, as a function of s (in GeV2), compared, for negative values of s, to the func-
tion −1/(s − M2

BW) (dashed line), for the same value of MBW, and to the function 
−1/(s − M2

eff) (dotted line), with Meff = 1.2MBW, which gives a better description 
in the region around s ∼ (0.5 GeV)2.

• Breit–Wigner function in the space-like domain

Let us assume that the data on the real positive axis are de-
scribed in terms of a Breit–Wigner function BW (s; MBW, �BW) for 
some values of the Breit–Wigner mass MBW and width �BW. In 
order to extend this function on the whole real s-axis without in-
troducing any singularity besides the cut along the positive real 
axis, one considers the function [76,77]:

B̃W (s; MBW,�BW) = 1

π

∞∫
0

dx
Im BW (s; MBW,�BW)

x − s − iε
. (7.8)

For:

BW (s; MBW,�BW) = 1

s − M2
BW − i

√
s �BW

, (7.9)

one finds B̃W (s; MBW, �BW) = BW (s; MBW, �BW) for s > 0, and for 
s = −Q 2 < 0:

B̃W (−Q 2; MBW,�BW) = −1

Q 2 + M2
BW +

√
Q 2 �BW

. (7.10)

In the narrow-width approximation, this reduces to the usual Eu-
clidian version of the Feynman propagator. But the latter repre-
sents a good approximation even when the width becomes size-
able. This is illustrated in Fig. 6 for the case �BW ∼ MBW. One can 
also represent the function B̃W (s; MBW, �BW) in the space-like re-
gion by a propagator term −1/(s − M2

eff), with Meff adjusted, for 
instance, to give a more accurate description of B̃W (s; MBW, �BW)

in the region of values of Q 2 that matters most from the point of 
view of the weight functions displayed in Figs. 3 and 5. Given the 
large uncertainties in the mass of the σ/ f0(500), such refinements 
will actually not be necessary.

8. Adopted values of the σ/ f0(500) mass and widths

• σ/ f0(500) mass and hadronic width

Assuming that the relative errors in the fitting procedure of 
Ref. [73] are the same as the ones in Ref. [43] and taking the range 
of values spanned by the three different determinations including 
the sum rules results in Eq. (6.4), we adopt the values:

Mσ � (960 ± 96), MeV �ππ
σ � (700 ± 70) MeV, (8.1)
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which implicitly includes in its definition the large hadronic width 
of the σ -meson. One should notice that the three predictions for 
the widths agree each other and we have assumed a guessed error 
of 10%.

We compare the previous values with the range given by PDG 
[25] for a Breit–Wigner (BW) mass and hadronic width (in units of 
MeV):

Mσ � (400 − 550) , �ππ
σ � (400 − 700) , (8.2)

where we notice that our predictions for the BW mass are slightly 
higher.

• σ/ f0(500) → γ γ width

For the γ γ width, PDG does not provide any estimated range 
of values. Among the different estimates proposed in the literature 
which often refer to the total γ γ -width of the σ in the complex 
plane, we consider the most recent determinations in Eq. (7.2)
from [22] and the ones in Refs. [74,75]. Averaging these results 
with the one in Eq. (7.5) from [22], we obtain:

�
γγ
σ |tot

mean � (1.82 ± 0.32) keV (8.3)

where we have doubled the error for a conservative result. This 
total γ γ -width is larger than expected from a pure glueball state 
[40,41] indicating the complex dynamics for extracting the width 
from the data. The corresponding coupling is:

g̃σγ γ ≡
(

2

e2

)
gσγ γ � (0.24 ± 0.02) GeV−1. (8.4)

9. γ γ widths of other scalar mesons

• f0(1370) and G ≡ f0(1500) scalar mesons

Considering the f0(1370) and G ≡ f0(1500) as gluonium-like 
scalar mesons [40,41], their γ γ couplings are expected to be given 
by the sum rule in Eq. (6.17). Then, we take approximately these 
values to be:

g̃σ ′γ γ ≈ g̃Gγ γ � (0.09 ± 0.02) GeV−1. (9.1)

• f0(990) scalar meson

The true nature of the f0(990) is still unclear. However, the 
large ratio of its coupling |g f K + K −/g f π+π−| � (1.7–2.6) from ππ , 
K̄ K scatterings and J/ψ-decay data [22,23] does not favour its q̄q
interpretation but instead indicates some gluon or/and four-quark 
components. A fit of the γ γ scattering data leads to the direct 
width [22]:

�
γγ
f0

|dir � 0.28(1) keV, (9.2)

which has the same value as the one quoted by PDG [25]:

�
γγ
f0

|P DG = (0.29 ± 0.07) keV, (9.3)

from which we deduce the coupling from the direct width:

g̃ f0γ γ � (0.09 ± 0.02) GeV−1. (9.4)

One can notice that the rescattering contribution is large and acts 
with a destructive interference [22],

�
γγ |resc � (0.85 ± 0.05) keV. (9.5)
f0
The “sum” of the rescattering and direct contributions leads to the 
γ γ total width

�
γγ
f0

|tot � (0.16 ± 0.01) keV, (9.6)

which is smaller than the direct contribution in Eq. (9.3). One can 
consider that the value of the f0 → γ γ width is conservatively 
given by the range spanned by the direct and total widths

�
γγ
f0

= (0.22 ± 0.07) keV =⇒
g̃ f0γ γ � (0.07 ± 0.02) GeV−1, (9.7)

which is close to the one given in Eq. (9.3) by PDG. Then, in our 
analysis, we shall use the PDG value, which gives:

g̃ f0γ γ � (0.09 ± 0.01) GeV−1. (9.8)

• a0(980) scalar meson

We shall use the value quoted by PDG [25]:

�
γγ
a0

(
�

ηπ
a0

�tot
a0

)
=

(
0.21+0.07

−0.04

)
keV, (9.9)

where again the rescattering contribution is important [80]. We 
deduce:

g̃a0γ γ �
(

0.09+0.02
−0.01

)
GeV−1, (9.10)

where we have used : �ηπ
a0 /�tot

a0
� 0.82 [25].

• a0(1450) scalar meson

The origin of the γ γ width from Belle data on γ γ → π0η as 
quoted by the PDG [25] is quite uncertain. Its value is:

�
γγ
a0

(
�

ηπ
a0

�tot
a0

)
�

(
0.43+1.07

−0.26

)
keV. (9.11)

Using, �ηπ
a0 /�tot

a0
� 0.093 ± 0.020 and Ma0 = 1474 MeV, one de-

duces:

g̃a0γ γ � (0.26 ± 0.14) GeV−1 . (9.12)

10. albl
μ |S and comparison with some other evaluations

The scalar exchange contribution to the muon anomalous mag-
netic moment is given by Eq. (5.4). The integrals Ip , Ipq , Iq have 
been evaluated numerically, and their values are given in Table 4
versus the value of the scalar meson mass. Our results in Table 4, 
which are shown for different values of κS , are expected to take 
into account all S-waves contributions (direct ⊕ rescattering) as 
we have used the total γ γ widths for each meson. Before going 
over to the comparison of our results with some of those already 
available in the literature, let us make a few comments about the 
results shown in Table 4:

• As discussed at the end of Section 4, an analysis based only 
on the leading short-distance behaviour of the vertex function �S

μν
and on the VMD representation of the form factors does not prop-
erly account for the decay of pure isovector scalar states into two 
photons, whereas the analysis of Ref. [29] leads to the choice 
κS = 1 in this case. Due to the possible mixing of the isoscalar 
mesons with gluonium states, the corresponding value of κS can-
not be fixed without further knowledge on the matrix elements in 
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Table 4
Scalar mesons contributions to albl

μ |S versus their masses. The parameter κS is defined in Eq. (4.6). The errors in the sum have been added quadratically. The Is integrals 
with s ≡ p, pq, q are multiplied by 102. We use Mσ = (960 ± 96) MeV (see text) and MV ≡ Mρ = 775 MeV. For the other scalars, the masses are given (in MeV) between 
parentheses. The errrors on Ip,... are due to the meson masses. The errors have been added quadratically.

Scalar g̃Sγ γ [GeV−1] −Ip [GeV2] Ipq [GeV2] Iq [GeV2] albl
μ |S × 1011

κS = 0 κS = +1

f0/σ (960) (0.24 ± 0.02)
(

4.35−0.66
+0.84

) (
1.17−0.27

+0.39

) (
2.75−0.96

+1.63

)
−

(
3.14−0.72

+0.84

)
−

(
0.31+0.41

−0.82

)
a0(980) (0.09 ± 0.02) 4.20 1.11 2.51 −(0.43 ± 0.14) −(0.06 ± 0.03)

f0(990) (0.09 ± 0.01) 4.12 1.08 2.40 −(0.42 ± 0.09) −(0.07 ± 0.02)

f0(1350) (0.09 ± 0.02) 2.38 0.44 0.59 −(0.24 ± 0.11) −(0.14 ± 0.06)

a0(1474)
(

0.19+0.21
−0.08

)
2.03 0.34 0.39 −

(
0.92+3.15

−0.61

)
−

(
0.59+2.02

−0.39

)
f0(1504) (0.09 ± 0.02) 1.96 0.32 0.36 −(0.20 ± 0.09) −(0.13 ± 0.06)

Total −
(

5.35+3.27
−0.92

)
−

(
1.3+2.06

−0.91

)

Eq. (4.3), and will in general even be different for each scalar me-
son. In Table 4 we have considered two values of κS : κS = 0, i.e. 
no contribution from the form factor Q(q1, q2), and κS = 1, which 
follows from the analysis of Ref. [29].

• One can notice that the contributions from the σ/ f0(500) to 
albl
μ dominate over the other scalar contributions, independently of 

the value of κS . This dominance of the σ contribution over the 
other scalar mesons can be understood, on the one hand, from the 
behaviour of the weight functions defined in Table 3 and shown 
in Figs. 3, 4 and 5 versus Q 2

1 and Q 2
2 , which are more weighted, 

like in the case of the pion exchange [28], for the mesons of lower 
masses, and, on the other hand, by the fact that the γ γ couplings 
of higher states are much smaller than the one of the σ .

• The contributions of the higher-mass states f0(1370), a0(1450)

and f0(1500) are not suppressed as compared to the lighter states 
a0(980) and f0(990) as could naively be expected from a simple 
scaling argument of the masses. Another important parameter here 
is the two-photon width. The coupling of the heavier scalars to a 
photon pair turns out to be rather strong as compared to the light 
scalars.

• If we only consider the contribution from the Lorentz struc-
ture Pμν to the σγ γ form factor in Eq. (3.2), like often done in 
the current literature, one obtains [case Q(0, 0) = 0 in Table 4]:

albl
μ |σ = −

(
5.35+3.27

−0.92

)
× 10−11, (10.1)

where the σ contribution is comparable in size and sign with 
the resuls obtained by other authors [12,15] [the value given in 
Ref. [81] is the same as in Ref. [12], but with the uncertainty scaled 
to 100%], and with the one using ππ rescattering analysis [17]
quoted in Table 5, with which some connection can be established 
from the methodological point of view.

This brings us to a more direct comparison with the results ob-
tained by the authors of Ref. [16] on the one hand, and of Refs. [17,
18] on the other hand.

• The authors of Ref. [16] consider the contribution to HLbL 
coming from the scalar mesons f0(990), a0(980) and f0(1370) in 
the same NWA as considered here. They start from a different de-
composition of the vertex function �S

μν :

�S
μν = FT T Tμν +FLL Lμν, (10.2)

which describes the production of a scalar meson, for instance in 
e+e− → e+e− S (→ e+e−ππ), through either two transverse or 
two longitudinal photons [78]. The link with the decomposition 
in Eq. (3.1) is given by:

FT T (q1,q2) = −(q1 · q2)P(q1,q2) − q2
1q2

2Q(q1,q2),

FLL(q1,q2) = −(q1 · q2) [P(q1,q2) + (q1 · q2)Q(q1,q2)] . (10.3)
In their analysis, they assume that the contribution from the lon-
gitudinal part FLL(q1, q2) is suppressed [as compared to the one 
from FT T (q1, q2)] and thus they do not consider it. Moreover, 
they use, for the transverse form factor, a monopole representa-
tion, which is reproduced by the VMD representation used here 
when B = 0, i.e. κS = 0, a choice which then consistently also en-
tails that QVMD(q1, q2) = 0 (see Eq. (4.5)). As shown by the results 
in Table 4, the contribution from the form factor Q(q1, q2) is in 
general substantial.

• In Refs. [17,18], the ππ rescattering effects to HLbL are con-
sidered, with γ ∗γ ∗ → ππ helicity partial waves h J ;λ1λ2 [λi denote 
the photon helicities] constructed dispersively, using ππ phase 
shifts derived from the inverse amplitude method. The I = 0 part 
of this calculation, which gives:

aππ ;π−pole LHC
μ; J=0;I=0 = −9 · 10−11 (10.4)

with a precision of 10%, can be interpreted as the contribution 
from the σ/ f0(500) meson. The mention “π − pole LHC” means 
that the left-hand cut is provided by the Born term alone, i.e. 
single-pion exchange in the t channel. Instead of �S

μν , the start-
ing point is the matrix element:∫

d4x eiq1·x〈�|T { jμ(x) jν(0)}|πa(p1)π
b(p2)〉, (10.5)

where either a = b = 0, or a = +, b = −. These matrix element can 
be decomposed in terms of five independent invariant functions Ai

in the following way (see e.g. Ref. [79]):

−A1 Pμν(q1,q2) − A2 Q μν(q1,q2) +
∑

i=3,4,5

Ai T
i
μν(q1,q2),

(10.6)

where p1 + p2 = q1 + q2. The expressions of the remaining tensors 
T i
μν(q1, q2) for i = 3, 4, 5 are not needed here, and can be found 

in Ref. [79]. What matters is that, upon performing a partial wave 
decomposition, only A1 and A2 receive contributions from the S
wave. In the NWA, the vertex function �S

μν(q1, q2) arises as the 
residue of the pole as s ≡ (q1 + q2)

2 → M2
S , the correspondence 

being:

h0,++(s) → −1

4
FT T , h0,00(s) → −1

4

√
q2

1

√
q2

2

(q1 · q2)
FLL . (10.7)

In addition, the Born term in the π+π− channel only contributes 
to A1 and to A4, which in turn has no J = 0 component, but not 
to A2. There is therefore a relation between the Born term con-
tributions to h0,++ and to h0,00, which effectively amounts to the 
condition Q(q1, q2) = 0, i.e. κS = 0. The result we obtain for this 



122 M. Knecht et al. / Physics Letters B 787 (2018) 111–123
Table 5
Different estimates of the scalar meson contributions via LbL scattering at lowest 
order (LO). We use �γγ

σ = 1.62(42) keV in Eq. (8.4).

Scalar albl
μ |S × 1011 Refs.

This work

σ(960 ± 96) −
(

3.14+0.84
−0.72

)
≤ ... ≤ −

(
0.31+0.41

−0.82

)
This work∑

a0, f0,... −
(

2.21+3.16
−0.65

)
≤ ... ≤ −

(
0.99+2.02

−0.40

)
–

Total sum −
(

5.35+3.27
−0.92

)
≤ ... ≤ −

(
1.3+2.06

−0.91

)
–

Final result − (4.51 ± 4.12) This work
Others
σ(620) −(6.8 ± 2.0) ENJL [12]
σ(620) −(6.8 ± 6.8) ENJL [81]
σ(400 − 600) −(36 ∼ 7) [15]
ππ-rescattering −(7.8 ± 0.5) π pole [17]

Table 6
Recent determinations of the LO hadron vacuum polarization 
(HVP) in units of 10−11 from the data compared with some 
other models and lattice results. The tentative theoretical aver-
age is more weighted by the most precise determinations in 
[84,85]. The weighted averaged error is informative. Instead, 
one may use the one from the precise determinations which 
is about twice the averaged error.

Values Refs.

Data
6880.7±41.4 [82]
6931±34 [83]
6933±25 [84]
6922.4 ± 18.1 Data average

Models ⊕ Lattice data
6932±25 [85]
6818±31 [86]
6344±354 [87]

Lattice
6740±277 [88]
6670±134.2 [89]
7110±188.6 [90]
6540±388 [91]
7154±187 [92]
6830±180 [93]

Tentative theoretical average
6904.02±13.06

Table 7
Comparison of the different determinations of the pseudoscalar meson contribu-
tions in units of 10−11. We have taken the mean of the asymmetric errors in the 
average which is about 0.8 the one of the most precise error.

Values Approaches Refs

83.0±12.0 Vector Meson Dominance [28]
84.0+8.7

−8.1 Vector Meson Dominance [94]
89.9+9.7

−8.9 Lowest Meson Dominance ⊕ Vector [94]
84.7+5.3

−1.8 Resonance Chiral Theory [95]

85.0 ± 3.6 Average

value (see Table 4) is somewhat higher than the number quoted 
in Eq. (10.4), but this difference can possibly be understood by the 
absence of a more complete description of the left-hand cut in the 
analysis of Refs. [17,18].

11. Present experimental and theoretical status

We show in Table 6 the different estimates of ahvp
μ , where 

one may amazingly notice that the mean of the two recent phe-
nomenological determinations [83] and [84] coïncides with the 
one obtained in [85] within a theoretical model. Using our new 
Table 8
Comparison of the experimental measurement and theoretical determinations of aμ

within the Standard Model (SM) in units of 10−11. For HVP at LO, we take the ten-
tative theoretical average obtained in Table 6. For the pseudoscalars contributions to 
HLbL, we take the mean of the ones in Table 7. For the scalars, we take the mean 
of the errors quoted in the final result of this work in Table 5. The total errors of 
the sum in the present Table have been added quadratically.

Determinations Values Refs

Experiment 11 659 2091.0±63.0 [96]

Theory
QED at 5 loops 11 658 4718.85±0.36 [97,98]
Electroweak at 2 loops +(154.0 ± 1.0) [99,100]

HVP
LO +(6904.02 ± 13.06) Average
NLO −(99.34 ± 0.91) [82,101]
N2LO +(12.26 ± 0.12) [82]
Total HVP +(6816.94 ± 13.09)

HLbL at LO
Pseudoscalars + (85.0 ± 2.8) Average
Scalars − (4.51 ± 4.12) This work
Axial-vector +(7.5 ± 2.7) [16,82]
Tensor +(1.1 ± 0.1) [16]
Total HLbL +(88.0 ± 5.7)

aSM
μ 11 659 1778.9 ± 14.3 This work

aexp
μ − aSM

μ +(312.1 ± 64.6) This work

estimate of the scalar meson contributions to the Light-by-Light 
scattering to aμ , we show in Table 8 the present experimental and 
theoretical status on the determinations of aμ .

12. Conclusions

We have systematically studied the light scalar meson contri-
butions to the anomalous magnetic moment of the muon aμ from 
hadronic light-by-light scattering (HLbL). Our analysis also includes 
the somewhat heavier states, which however have couplings to 
two photons at least as strong as those of the a0(980) and the 
f0(990). Our results are summarized in Table 4 and compared with 
some other determinations in Table 5. We conclude that the HLbL 
contribution from the scalars is dominated by the σ/ f0 one, which 
one may understand from the Q 2-behaviour of the weight func-
tions entering into the analysis, and which are plotted in Figs. 3
to 5. Moreover, the uncertainties on the parametrisation of the 
form factors induce large errors in the results, which might be 
improved from a better control of these observables. In particu-
lar, our analysis draws the attention to the potentially important 
contribution from the second structure Qμν in the decomposi-
tion of the vertex function in Eq. (3.1), which could even lead to 
a change of sign in albl

μ |σ . For the isovector states, an estimate of 
its size could be obtained from the analysis of Ref. [29]. For the 
isoscalar states, mixing with glueball states and/or with s̄s states 
can lead to important contributions from the whole set of ma-
trix elements in Eq. (4.3). Knowledge of these matrix elements can 
possibly be obtained, for instance, either from phenomenology or 
from QCD spectral sum rules. We leave this matter for a future 
research. For a conservative result, we consider as a (provisional) 
final result the range of values spanned by the two possible values 
from 0 to 1 of Q(0, 0)/(M2

S g̃Sγ γ ) obtained in Table 4, which we 
compare in Table 5 with some other determinations. Finally, we 
present in Table 8 a new comparison of the data with theoretical 
predictions including our new results. The theoretical errors from 
HLbL are dominated by the ones due to the scalar meson contribu-
tions. Moreover, some other scalar meson contributions to aμ from 
radiative decays of vector mesons and virtual exchange have also 
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been considered in [102]. We plan to improve these results in a 
future work.
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