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Toward nonlinear tracking and rejection using LPV control

Gérard Scorletti, Vincent Fromion and Safta de Hillerin

Abstract— (Quasi) LPV control and more generally L2 gain
control methods, referred to as nonlinear H∞ control ones,
are usually applied in order to ensure reference tracking and
disturbance rejection. In this paper, we exhibit a counterexample
that reveals that these specifications can not be ensured by these
methods. We then propose a new LPV based approach in order
to a priori ensure these specifications by combining the LPV
method with the incremental L2 gain analysis of nonlinear
performance. Its benefit is illustrated on the counterexample.

I. INTRODUCTION

The gain-scheduling approach is a classical and widespread
but heuristic nonlinear control approach. The underlying idea
is to design at one or more operating points LTI controllers
using the linearised plant models associated to the operating
points. The nonlinear control law is then obtained by inter-
polating (or scheduling) these LTI controllers as a function
of the operating point, see e.g. [1] and references therein.
Despite its widespread application, up to recently, there was
no systematic gain scheduling controller design method which
ensures the desired specifications to the closed loop system.

Two alternatives to the traditional gain-scheduling approach
are based on the Linear Parameter-Varying (LPV) methods.
They were initially developed as an extension of the H∞ con-
trol problem to the case of LPV systems [2]–[4], that is, linear
systems whose state space matrices depend on time-varying
parameters. The first alternative is actually an improvement of
the traditional gain-scheduling approach where the operating
points Linear Time Invariant (LTI) controllers are computed
in one shot as a single LPV controller. As pointed out in [1],
“Typically, stability can be assured only locally and in a
“slow-variation” setting, and typically there are no perfor-
mance guarantees.” In order to offer the potential of both
stability and performance guarantees [1], an alternative ap-
proach, referred to as the quasi-LPV one, proposes to embed
the nonlinear system into an LPV model. An LPV controller
can be computed using convex optimization involving Linear
Matrix Inequality (LMI) constraints in order to ensure an
upper bound on the L2 gain of the closed loop system, see e.g.
[3]–[7]. A nonlinear controller is then deduced from this LPV
controller which ensures L2 gain stability and performance
for the closed loop nonlinear system.

Since the quasi-LPV approach seems seducing, it was
largely applied for tracking and disturbance rejection, see e.g.
[8], [9]. Nevertheless, beyond the L2 gain performance, it
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is necessary to question the actual rigorous guarantees on
usual tracking and rejection specifications. In section III, we
reveal that there are none using an illustrative example. This
example emphasizes that in contrast with the LTI closed loop
systems, it is not possible to ensure tracking and rejection
specifications using the L2 gain stability and performance
concepts, in the case of LPV or nonlinear closed loop systems.
For these usual specifications, the quasi-LPV approach does
not actually introduce performance guarantees, as in the gain-
scheduling one. The theoretical explanation of this fact can
be found in our longstanding investigations on the nonlinear
system performance, see e.g. [10]–[12]. As the final objective
is to ensure tracking and rejection specifications for a nonlin-
ear system, the question is how to test these specifications
on a nonlinear system. In [11], [12], it was pointed out
that L2 gain stability and performance fail to ensure these
specifications. It was proved that these properties can be
ensured by incremental L2 gain stability and performance.
As the two LPV approaches fail to ensure incremental L2

gain stability and performance, in Section IV, we pave the
way to a third LPV approach whose objective is to compute
a nonlinear controller which ensures incremental L2 gain
stability and performance and which is able to ensure tracking
and rejection specifications. A first solution in a special but
important case is discussed here based on the results proposed
in [13]. Some previous works propose an LPV approach for
the nonlinear tracking and rejection [14]. Nevertheless, in
contrast with our global tracking and rejection problem, they
focus on a local rejection problem, for small disturbances.

Notations Identity (zero) matrix of Rn×n is denoted In (0n×m)
with the subscripts omitted when obvious from the context. For
two matrices A and B, diag(A,B) denotes

[
A 0

0 B

]
. For a full-rank

matrix U , U⊥ is an orthogonal complement of U , i.e., UU⊥ = 0 and[
UT U⊥

]
is of maximal rank. For a square matrix M , M > 0

(M ≥ 0) mean positive (semi-positive) definiteness. The symbol
⋆ denotes the Redheffer star product [15]. L2 is the space of R

n

square integrable valued functions defined on R, where the norm is
defined by �f�2 = (

∫
�f(t)�2dt)1/2. The causal truncation PT f is

defined by PT f(t) = f(t) for t ≤ T and 0 otherwise. The extended
space Le

2 is the space of R
n valued functions defined on R whose

causal truncations belong to L2. For a system G, respectively the
H∞ norm, the L2 gain and the incremental norm, if they exist, are
respectively denoted ||G||∞, ||G||i,2 and ||G||∆, see e.g. [11], [12].

II. AN ILLUSTRATIVE CONTROL PROBLEM

Let GNL be the nonlinear plant defined by y = GNL(u)
with the following state space representation:





ẋ1(t) = −100ϕ(x1(t))− 70x2(t) + 300u(t)

ẋ2(t) = 70x1(t)− 14x2(t)

y(t) = x1(t)

(1)
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scheduling one. The theoretical explanation of this fact can
be found in our longstanding investigations on the nonlinear
system performance, see e.g. [10]–[12]. As the final objective
is to ensure tracking and rejection specifications for a nonlin-
ear system, the question is how to test these specifications
on a nonlinear system. In [11], [12], it was pointed out
that L2 gain stability and performance fail to ensure these
specifications. It was proved that these properties can be
ensured by incremental L2 gain stability and performance.
As the two LPV approaches fail to ensure incremental L2

gain stability and performance, in Section IV, we pave the
way to a third LPV approach whose objective is to compute
a nonlinear controller which ensures incremental L2 gain
stability and performance and which is able to ensure tracking
and rejection specifications. A first solution in a special but
important case is discussed here based on the results proposed
in [13]. Some previous works propose an LPV approach for
the nonlinear tracking and rejection [14]. Nevertheless, in
contrast with our global tracking and rejection problem, they
focus on a local rejection problem, for small disturbances.

Notations Identity (zero) matrix of Rn×n is denoted In (0n×m)
with the subscripts omitted when obvious from the context. For
two matrices A and B, diag(A,B) denotes

[
A 0

0 B

]
. For a full-rank

matrix U , U⊥ is an orthogonal complement of U , i.e., UU⊥ = 0 and[
UT U⊥

]
is of maximal rank. For a square matrix M , M > 0

(M ≥ 0) mean positive (semi-positive) definiteness. The symbol
⋆ denotes the Redheffer star product [15]. L2 is the space of R

n

square integrable valued functions defined on R, where the norm is
defined by �f�2 = (

∫
�f(t)�2dt)1/2. The causal truncation PT f is

defined by PT f(t) = f(t) for t ≤ T and 0 otherwise. The extended
space Le

2 is the space of R
n valued functions defined on R whose

causal truncations belong to L2. For a system G, respectively the
H∞ norm, the L2 gain and the incremental norm, if they exist, are
respectively denoted ||G||∞, ||G||i,2 and ||G||∆, see e.g. [11], [12].

II. AN ILLUSTRATIVE CONTROL PROBLEM

Let GNL be the nonlinear plant defined by y = GNL(u)
with the following state space representation:





ẋ1(t) = −100ϕ(x1(t))− 70x2(t) + 300u(t)

ẋ2(t) = 70x1(t)− 14x2(t)

y(t) = x1(t)

(1)
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Toward nonlinear tracking and rejection using LPV control

Gérard Scorletti, Vincent Fromion and Safta de Hillerin

Abstract— (Quasi) LPV control and more generally L2 gain
control methods, referred to as nonlinear H∞ control ones,
are usually applied in order to ensure reference tracking and
disturbance rejection. In this paper, we exhibit a counterexample
that reveals that these specifications can not be ensured by these
methods. We then propose a new LPV based approach in order
to a priori ensure these specifications by combining the LPV
method with the incremental L2 gain analysis of nonlinear
performance. Its benefit is illustrated on the counterexample.

I. INTRODUCTION

The gain-scheduling approach is a classical and widespread
but heuristic nonlinear control approach. The underlying idea
is to design at one or more operating points LTI controllers
using the linearised plant models associated to the operating
points. The nonlinear control law is then obtained by inter-
polating (or scheduling) these LTI controllers as a function
of the operating point, see e.g. [1] and references therein.
Despite its widespread application, up to recently, there was
no systematic gain scheduling controller design method which
ensures the desired specifications to the closed loop system.

Two alternatives to the traditional gain-scheduling approach
are based on the Linear Parameter-Varying (LPV) methods.
They were initially developed as an extension of the H∞ con-
trol problem to the case of LPV systems [2]–[4], that is, linear
systems whose state space matrices depend on time-varying
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in one shot as a single LPV controller. As pointed out in [1],
“Typically, stability can be assured only locally and in a
“slow-variation” setting, and typically there are no perfor-
mance guarantees.” In order to offer the potential of both
stability and performance guarantees [1], an alternative ap-
proach, referred to as the quasi-LPV one, proposes to embed
the nonlinear system into an LPV model. An LPV controller
can be computed using convex optimization involving Linear
Matrix Inequality (LMI) constraints in order to ensure an
upper bound on the L2 gain of the closed loop system, see e.g.
[3]–[7]. A nonlinear controller is then deduced from this LPV
controller which ensures L2 gain stability and performance
for the closed loop nonlinear system.

Since the quasi-LPV approach seems seducing, it was
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gerard.scorletti@ec-lyon.fr
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is necessary to question the actual rigorous guarantees on
usual tracking and rejection specifications. In section III, we
reveal that there are none using an illustrative example. This
example emphasizes that in contrast with the LTI closed loop
systems, it is not possible to ensure tracking and rejection
specifications using the L2 gain stability and performance
concepts, in the case of LPV or nonlinear closed loop systems.
For these usual specifications, the quasi-LPV approach does
not actually introduce performance guarantees, as in the gain-
scheduling one. The theoretical explanation of this fact can
be found in our longstanding investigations on the nonlinear
system performance, see e.g. [10]–[12]. As the final objective
is to ensure tracking and rejection specifications for a nonlin-
ear system, the question is how to test these specifications
on a nonlinear system. In [11], [12], it was pointed out
that L2 gain stability and performance fail to ensure these
specifications. It was proved that these properties can be
ensured by incremental L2 gain stability and performance.
As the two LPV approaches fail to ensure incremental L2

gain stability and performance, in Section IV, we pave the
way to a third LPV approach whose objective is to compute
a nonlinear controller which ensures incremental L2 gain
stability and performance and which is able to ensure tracking
and rejection specifications. A first solution in a special but
important case is discussed here based on the results proposed
in [13]. Some previous works propose an LPV approach for
the nonlinear tracking and rejection [14]. Nevertheless, in
contrast with our global tracking and rejection problem, they
focus on a local rejection problem, for small disturbances.
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with the subscripts omitted when obvious from the context. For
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. For a full-rank

matrix U , U⊥ is an orthogonal complement of U , i.e., UU⊥ = 0 and[
UT U⊥

]
is of maximal rank. For a square matrix M , M > 0
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⋆ denotes the Redheffer star product [15]. L2 is the space of R
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square integrable valued functions defined on R, where the norm is
defined by �f�2 = (
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�f(t)�2dt)1/2. The causal truncation PT f is

defined by PT f(t) = f(t) for t ≤ T and 0 otherwise. The extended
space Le

2 is the space of R
n valued functions defined on R whose

causal truncations belong to L2. For a system G, respectively the
H∞ norm, the L2 gain and the incremental norm, if they exist, are
respectively denoted ||G||∞, ||G||i,2 and ||G||∆, see e.g. [11], [12].

II. AN ILLUSTRATIVE CONTROL PROBLEM

Let GNL be the nonlinear plant defined by y = GNL(u)
with the following state space representation:





ẋ1(t) = −100ϕ(x1(t))− 70x2(t) + 300u(t)

ẋ2(t) = 70x1(t)− 14x2(t)

y(t) = x1(t)
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where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu the
input, y(t) ∈ R

ny the measured to-be-controlled output. The
function ϕ is defined as follows:





for |x| < 5
3 ϕ(x) = 0.9x3 − 2|x|x+ 1.2x

for x ≥ 5
3 ϕ(x) = 2x− 2.72

for x ≤ − 5
3 ϕ(x) = 2x+ 2.72

The purpose is to design an output feedback controller u =
KNL(r, y) where r denotes the reference signal such that
the closed loop system satisfies the following typical control
specifications: (i) tracking of step references with a null static
error and a response time less than 0.1 s; (ii) rejection of step
disturbances at the plant input; (iii) limited control energy.

III. NONLINEAR CONTROL USING LPV CONTROL

A. LPV control

A Linear Parameter Varying (LPV) system is a linear sys-
tem whose dynamics (e.g. defined by a state space represen-
tation) depend on time-varying exogenous parameters whose
trajectories are a priori unknown [2]–[4], [6]. Nevertheless,
some information is available, in particular the intervals the
parameters belong to. An LPV system GLPV is usually
defined by state-space equations of the form: y = GLPV (u)
with




ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t)

y(t) = C(θ(t))x(t) + D(θ(t))w(t)

x(0) = x0

, θ(.) ∈ Θ (2)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

nw the input,
z(t) ∈ R

nz the output, Θ is a set of measurable functions
from R

+ to R
r such that for all θ(.) ∈ Θ, for all t ≥ 0, θ(t)

belongs to an hyper rectangle Θt, usually [−1, 1] × · · · ×
[−1, 1] the state space matrix functions are continuous real
rational, defined on Θt.

The different LPV control problem can be expressed as
follows. Given the (generalized) plant PLPV defined as:

�
z

y

�
= PLPV

��
w

u

��

with




ẋ(t) = A(θ(t))x(t) + Bw(θ(t))w(t) + Bu(θ(t))u(t)
z(t) = Cz(θ(t))x(t) + Dzw(θ(t))w(t) + Dzu(θ(t))u(t)
y(t) = Cy(θ(t))x(t) + Dyw(θ(t))w(t)
x(0) = x0 θ(.) ∈ Θ

,

(3)
where x(t) ∈ R

n is the state vector, u(t) ∈ R
nu the

command input, y(t) ∈ R
ny the measured output, z(t) ∈ R

nz

the controlled output, w(t) ∈ R
nw the disturbance input,

with the time-varying exogenous parameters θ(t) measured
on-line, find a controller defined as: u = KLPV (y) with

�
ẋK(t) = AK(θ(t))xK(t) + BK(θ(t))y(t)

u(t) = CK(θ(t))xK(t) + DK(θ(t))y(t)
(4)

where xK(t) ∈ R
n, such that the closed-loop LPV system

PLPV ⋆ KLPV is asymptotically stable (for null input) with
an L2 gain less than a given γ. In the case when the rate
of variation of θ(t) is possibly unbounded, solutions to the
LPV control problem are based on a (parameter independent)

quadratic Lyapunov function V (x) = xTPx, see e.g. [3],
[4], [6], [7], [16]. The solutions usually rely on convex
optimization involving LMI constraints, an important class
of problems for which there exist efficient solvers [17].

B. Application of the LPV approach to nonlinear control

Roughly speaking, from a technical point of view, the LPV
L2 gain control problem was developed as an extension of the
LTI H∞ control problem to LPV systems. On the other hand,
a strong motivation for the introduction of LPV systems was
the development of computationally efficient methods for the
control of nonlinear systems. Different approaches exist. In
the most popular one, referred to as quasi-LPV, the purpose
is to compute a nonlinear controller KNL such that the closed
loop system PNL ⋆ KNL has an L2 gain less than a given γ

where the (augmented) nonlinear plant

�
z

y

�
= PNL

��
w

u

��

is defined by the state-space representation:




ẋ(t) = f(x(t), w(t), u(t))

z(t) = g(x(t), w(t), u(t))

y(t) = h(x(t), w(t))

x(0) = x0

(5)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu the command
input, y(t) ∈ R

ny the measured output, z(t) ∈ R
nz the

controlled output, w(t) ∈ R
nw the disturbance input. The

functions f and h are assumed uniformly Lipschitz and C1

and such that f(x0, 0) = 0 and h(x0, 0) = 0. When PNL

and KNL are LTI, this problem reduces to the H∞ control
problem.

To this purpose, an LPV augmented plant is obtained
from the nonlinear plant by including the nonlinear terms in
newly defined time-varying parameters. It is an embedding
approach, that is, the LPV system is selected such that
the trajectories of the nonlinear system are trajectories of
the LPV system, that is, with the following sets defined
on L2, ΩNL =

��
x z y w u

�
| (5)

�
and ΩLPV =��

x z y w u
�

| (3)
�

, we have

ΩNL ⊂ ΩLPV . (6)

In this approach, the components of the θ(t) are computed
from the measurement of components of the state space
vector, see e.g. [18]. The objective of the quasi-LPV approach
is then to compute a nonlinear controller on the LPV model
using a quadratic Lyapunov function, in order to ensure
the stability of the closed loop nonlinear system and the
performance evaluated by an upper bound on the L2 gain
of the closed loop system.

C. Application to the illustrative control problem

The quasi LPV approach is applied to the illustrative
control problem introduced section II using a quite typical
approach. To this purpose, an augmented plant presented
Fig. 1 which corresponds to the four- block L2 gain criterion
is proposed. This is the nonlinear counterpart of the usual
four-block H∞ criterion [19], modified in order to introduce
a pure integrator in the controller. It is a well-known fact
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✲KLPV

�

W1

✻

✲

✲✲

z1(t)

✲
✻

✲ ✲r(t) y(t)u(t)ǫ(t)
−
+

✻
W2

✲z2(t)

W3

❄
GLPV

✛

Fig. 1. Augmented plant corresponding to a modified four-block L2 gain
criterion

that for LTI closed loop systems, integral control ensures the
tracking of step reference signals and the rejection of step
disturbances, with a null static error.

The first step is to derive an LPV model GLPV associated
to the plant GNL (1) such that the inclusion (6) holds. A
simple LPV model is defined as: y = GLPV (u) with





ẋ(t) = AG(θ(t))x(t) +

�
300
0

�
u(t)

y(t) =
�
1 0

�
x(t)

, θ(t) ∈ [0, 2]

where

θ(t) =
ϕ(x1(t))

x1(t)
(7)

and

AG(θ(t)) =

�
0 −70
70 −14

�
+ θ(t)

�
−100 0
0 0

�
(8)

Since the measured signal y is equal to x1, the parameter
θ can be computed on-line using (7). The augmented LPV
plant PLPV is then obtained from Fig. 1 where the weighting
transfer functions, selected following the usual H∞ approach
as in [4], are defined by: (i) W1 = 50 in order to ensure
a time response of the reference tracking less than 0.1 s;
(ii) W3 = 0.1 in order to ensure a time response of the
disturbance rejection larger than for the reference tracking

one; (iii) W2(s) = 0.1
s
10 + 1
s

1000 + 1
in order to limit the

controller bandwith. The LPV controller is then computed
using the approach presented in [6] in order to minimize
an upper bound γ on the L2 gain of the augmented closed
loop system PLPV ⋆KLPV . The obtained value of γ is 0.89.
In order to evaluate the possible conservatism of this upper
bound, θ(t) is set to a constant values θi ∈ [0, 2]: in this
case, the augmented closed loop system is LTI and its L2 gain
boils down to the H∞ norm which can be easily computed.
By computing the maximum value of the H∞ norm when θi
goes from 0 to 2 by step of 0.01, a lower bound on the actual
L2 gain is obtained: 0.85. The true value of the L2 gain is then
between 0.85 and 0.89: in this example, the use of a quadratic
Lyapunov function is not so conservative. Let us now evaluate
the time domain performance with the following scenario: (i)
tracking of square periodic reference whose mean value is 0.4
with amplitude 0.35 and frequency 0.1 Hz; (ii) rejection of
a step disturbance of amplitude 1.75 at time 4s.

The first simulation is performed on PLPV ⋆ KLPV with
θ(t) which is set to a constant, 2 (see Fig. 2). We observe
that on this LTI system the specifications are satisfied.

3 3.5 4 4.5 5 5.5 6
−1

0.05

0.75

2

Fig. 2. Simulation of the LTI closed loop system with θ = 2

Now, let us simulate the LPV closed loop system with
θ(t) ∈ [0, 2] defined Fig. 3 (top): the output y is represented
Fig. 3 (bottom). Note that even if the reference input is

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

3 3.5 4 4.5 5 5.5 6
−1

0.05

0.75

2

Fig. 3. Simulation of the LPV closed loop system with time varying θ(t)
(top), output y(t) (bottom)

constant, the output is oscillating and the oscillations are
not damped. This result seems to be quite surprising since
the closed loop system is (L2 gain) stable. It reveals that, in
contrast with the case of LTI systems, in the case of Linear
Time Varying (LTV) systems, (exponential or asymptotic)
stability does not ensure that for constant inputs, the internal
signals and the output signals of the system tend to a constant.
As a consequence, even if the closed loop system is (L2 gain)
stable, integral control is unable to ensure the tracking of step
reference with a null static error. Nevertheless, if the control
specifications are not satisfied, it does not mean that the
closed loop system behaviour does not have nice properties.
Due to asymptotic stability, with the same time function θ,
zero inputs but different initial conditions, the system output
converges to the same steady state, see Fig. 4.

From the LPV controller KLPV , a nonlinear controller is
obtained by replacing θ(t) by ϕ(y(t))

y(t) in (4), thanks to (7). Let
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−5
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5
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Fig. 4. Simulation of the LPV closed loop system with time varying θ(t),
zero input and different initial conditions

us simulate the behavior of this controller on the nonlinear
plant GNL defined by (1), see Fig. 5. Note that if the dis-
turbance is rejected, the tracking of step references strongly
depends on the actual value of the step. If the tracking is
satisfying for reference close to 0, it is no longer true for
constant input close to 0.75. This fact is in accordance with
the result proved in [20] that for the zero input, the L2 gain
control solution reduces to the H∞ control one. As in the
LTV case, in the case of nonlinear systems, in contrast with
the case of LTI systems, even if the closed loop system is (L2

gain) stable, integral control is unable to ensure the tracking
of step reference with a null static error. The behaviour is

3 3.5 4 4.5 5 5.5 6
−1

0.05

0.75

2

3

Fig. 5. Simulation of the non linear closed loop system, ouput y(t)

actually worse than it seems. Actually, the linearisations of the
closed-loop system defined by constant inputs could be not
unique with some of them unstable. This is another drawback
of the general L2 gain approach. For L2 gain stable systems,
the stability of the linearisations defined by constant input is
not sufficient for ensuring the good behaviour of the system:
resonance due to jumps can occur, see [21].

IV. NONLINEAR INCREMENTAL CONTROL USING LPV

In [11], [12], it was revealed that reference tracking and
disturbance rejections can be achieved for a nonlinear closed-
loop system if the nonlinear controller is computed such that
a suitable augmented plant (5) is incrementally L2 stable with
its incremental L2 gain less than 1. In order to compute such
a controller, we propose a new approach, based on the LPV
control. One of the key ingredients of this approach is the
generalized version of the mean value theorem which is now
recalled (see [22] for the details).

Theorem 4.1: Let G̃ be a dynamical system defined from
Le
2 into Le

2 such that its Gâteaux derivative (time varying
linearisation), D �G[ur] exists for any ur ∈ Le

2. Then � �G�∆ ≤
η if and only if �D �G[ur]�i2 ≤ η for any ur ∈ L2.

This theorem is applied to G̃ = PNL ⋆ KNL as fol-
lows. For any input wr, ur belonging to Le

2, the Gâteaux

derivative of PNL at ur exists and is defined by

�
z

y

�
=

DPNL[wr, ur]

��
w

u

��
with





ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t)
z(t) = Cz(t)x(t) + Dzw(t)w(t) + Dzu(t)u(t)
y(t) = Cy(t)x(t) + Dyw(t)w(t) + Dyu(t)u(t)
x(0) = 0,

(9)

with A(t) =
∂f

∂x
(x0(t), wr(t), ur(t)), · · · , Dyu(t) =

∂h

∂u
(x0(t), wr(t), ur(t)) where x0(t) is the solution of (5)

under inputs wr(t), ur(t).
In order to compute a nonlinear controller KNL such that

the closed loop system PNL ⋆ KNL has an incremental L2

gain less than a given γ where PNL is defined by (5), we first
compute the time varying linearisations (Gâteaux derivative)
DKNL[yr] of the nonlinear controller KNL such that the
closed loop system DPNL[ur, wr] ⋆ DKNL[yr] has an L2

gain less than a given γ for any wr ∈ Le
2. The second step is

to compute KNL such that DKNL[yr] are the time varying
linearisation of KNL at yr.

We propose to realize the first step (computation of
DKNL[yr] for any yr) by applying the LPV control method.
An LPV (augmented) plant (3) is obtained such that the
trajectories of the time varying linearisations (9) of the
nonlinear plant (5) are trajectories of the LPV system, that
is, with the sets of L2, ΩDNL =

��
x z y w u

�
| (9)

�
and

ΩLPV =
��

x z y w u
�

| (3)
�

, we have ΩDNL ⊂ ΩLPV .
The LPV controller is then computed such that the L2 gain of
the closed loop LPV system is less than γ. Since the obtained
LPV controller has to correspond to the linearisations of
the nonlinear controller, the question is how to enforce this
property during the synthesis, that is, how to compute the
LPV controller such that there exists a nonlinear controller
which can be obtained such that the trajectories of its time-
varying linearisations are trajectories of the LPV controller.
To our best knowledge, this problem is still open in the
general case. In the sequel, we nevertheless exhibit a special
class of nonlinear control problems, referred to as “filtered
cancellation control” problems for which this problem can
be solved.

A. Filtered cancellation control problem

Let us consider the particular class of (generalized) non-
linear plants (5) denoted in the sequel �PNL and defined by
the state-space representation:





ẋ(t) = Ax(t) + B1w(t) + B2u(t) + �f(x(t))
z(t) = C1x(t) + D11w(t) + D12u(t) + �g(x(t))
y(t) = C2x(t) + D21w(t) + D22u(t) + �h(x(t))
x(0) = x0

(10)
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with 


�f(x(t))
�g(x(t))
�h(x(t))


 =




B0

D10

D20


 p(t) (11)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

nu the command
input, y(t) ∈ R

ny the measured output, z(t) ∈ R
nz the

controlled output, w(t) ∈ R
nw the disturbance input, p(t) is

either measured on-line or constructed when the components
of x(t), w(t) and u(t) necessary for the computation of p(t)
are measured, that is, there exists a function β such that
p(t) = β(x(t), w(t), u(t)). The nonlinear controller will be

defined as follows: u = �Kp

��
y

p

��
with

�
ẋK(t) = AKxK(t) +BKy

y(t) +BKp
p(t)

u(t) = CKxK(t) +DKy
y(t) +DKp

p(t)
(12)

In the case when p(t) is computed from the measure of
components of x(t), w(t) and u(t) a nonlinear state space

representation is obtained: u = �Kxwu





y

x

w




 with

�
ẋK(t) = AKxK(t) +BKy

y(t) +BKp
β(x(t), w(t), u(t))

u(t) = CKxK(t) +DKy
y(t) +DKp

β(x(t), w(t), u(t))
(13)

The incremental gain control problem Given γ > 0 and
the generalized plant �PNL (10), find a controller (13) such
that the closed loop system has an incremental gain less than
γ. A solution is now proposed using an LPV system whose
state space matrices are rational functions of θ(t).

B. LPV filtered cancellation control

When the state space matrices of the (generalized) LPV
plant (3) are rational functions of θ(t), the latter can be
modeled by a Linear Fractional Transformation (LFT) on a
parameter block diagonal structure [6]:






ẋ(t)
z(t)
y(t)


 =




A B0 B1 B2

C1 D10 D11 D12

C2 D20 D21 0







x(t)
p(t)
w(t)
u(t)




p(t) = Θ(t) (I −D00Θ(t))−1 (C0x(t) +D01w(t) +D02u(t))
(14)

where Θ(t) = diag(θ1(t)Im1
, · · · , θr(t)Imr

). The signal
p(t) is now assumed to be measured on-line, instead of θ(t).
The LPV filtered cancellation control problem Given
γ > 0 and the LPV generalized plant (14), find a filtered
cancellation controller u = Kcancel(y, p) of the form:

�
ẋK(t) = AKxk(t) + BKy

y(t) + BKp
p(t)

u(t) = CKxK(t) + DKuy
y(t) + DKup

p(t)
(15)

such that the closed loop system is asymptotically stable (for
null input) with an L2 gain less than γ.

In the papers [4], [6], convex optimization approaches,
involving LMI constraints, were proposed in order to compute
an LPV controller of the form (4) in the case when the
generalized plant is defined by an LFT representation (14).
The LPV controller has also an LFT representation with the
same Θ(t) than in (14). In [13], we reveal that in the case
when in addition to y(t), some components of the vector

p(t) are measured on-line, the size of Θ(t) block of the
controller can be reduced. If these results are applied to the
case when all the components of p(t) are measured then the
state space matrices of the “LPV” controller can be chosen
independent of θ(t), that is, the controller has a state-space
representation (15). In this case, a similar result can be found
in [23]. This result is very nice since, in the general case
(that is, no component of p(t) is measured), if a reduced size
is enforced for the Θ(t) block of the controller then a non
convex constraint is introduced in the optimization problem.

Theorem 4.2: The LPV filtered cancellation control prob-
lem has a solution when Θt = [−1, 1] × · · · × [−1, 1] if
there exist matrices P = PT , Q = QT ∈ R

n×n, T ∈ R
k×k

such that:

N
T























AT P + PA PB1

�

CT
0

CT
1

�

BT
1

P −γI
�

DT
01

DT
11

�

�

C0
C1

� �

D01
D11

�

−

�

T 0

0 γI

�























N < 0 (16)

M
T



















AQ + QAT + · · ·

+B0TBT
0

+ γ−1B1BT
1

QCT
0

+ D00TBT
0

+

· · · + γ−1D01BT
1

C0Q + B0TDT
00

+

· · · + γ−1B1DT
01

D00TDT
00

+

+γ−1D01DT
01

+

· · · −

�

T 0

0 γI

�



















M < 0 (17)

�

P I

I Q

�

> 0 and T > 0. (18)

with N =

�

�

C2 D21

�⊥ 0

0 Inz+k

�

and M =
�

BT
2

DT
02

�

⊥

Proof: The proof is a direct application of Theorem 3.2
presented in [13].

For a given γ > 0, find P , Q, T such that (16), (17) and
(18) is a (feasibility) convex optimization problem involving
LMI constraints. If this optimization problem has a solution
then the state space matrices of the cancellation controller
can be computed, see [13] for the details.

V. APPLICATION TO THE NONLINEAR PERFORMANCE

CONTROL

A. A filtered cancellation control solution to the incremental
gain control problem

The major interest of the LPV filtered cancellation control
problem is that its solution allows to obtain a solution to the
incremental gain control problem. Indeed, the time-varying
linearization D �PNL of (10) are defined by:




˙̄x(t) = Ax̄(t) + B1w̄(t) + B2ū(t) +
∂ �f
∂x

(x0(t))x̄(t)

z̄(t) = C1x̄(t) + D11w̄(t) + D12ū(t) +
∂�g
∂x

(x0(t))x̄(t)

ȳ(t) = C2x̄(t) + D21w̄(t) + D22ū(t) + ∂�h
∂x

(x0(t))x̄(t)

x̄(0) = 0
(19)

Let us introduce the vector p̄(t) such as

�
∂ �f
∂x

(x0(t))
T ∂�g

∂x
(x0(t))

T ∂�h
∂x

(x0(t))
T

�T
=




B0

D10

D20


 p̄(t)

A solution to the incremental gain control problem can be
obtained in several steps.

1) Compute an LPV system for the time-varying lineariza-
tion of the nonlinear generalized plant (19) such that for
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KLPV

�

W1

✻

✲

✲✲

z1(t)

✲
✻

✲ ✲r(t) y(t)u(t)
..

ǫ(t)
−
+

✻
W2

✲z2(t)
W3

✲❄

✛

G

θ

✲
✛

✻
p(t)

Fig. 6. Augmented plant corresponding to a modified four-block L2 gain
criterion

any p̄(t), there exists a θ ∈ Θ, matrices C0, D00, D01
and D02 such that ∀t p̄(t) is defined by

Θ(t) (I −D00Θ(t))−1 (C0x̄(t) +D01w̄(t) +D02ū(t)) .

2) Solve the following (feasibility) convex optimization
problem involving LMI constraints: find P , Q, T such
that (16), (17) and (18).

3) If the problem is feasible, compute the state space
matrices of the linearization of the controller (12)

using [13], that is: ū = D �Kp

�
y0
p0

���
ȳ

p̄

��
with

�
˙̄xK(t) = AK x̄K(t) +BKy

ȳ(t) +BKp
p̄(t)

ū(t) = CK x̄K(t) +DKy
ȳ(t) +DKp

p̄(t)

The corresponding nonlinear controller is then given

by: u = �Kp

��
y

p

��
defined by (12) and (11).

B. Application to the illustrative control problem

We first compute an LPV system which embeds the time-
varying linearization DGNL[ur]:




˙̄x(t) = AG(θ(t))x̄(t) +

�
300
0

�
ū(t)

ȳ(t) =
�
1 0

�
x̄(t)

, θ(t) ∈ [−0.3, 4] .

The time-varying linearization of the nonlinear generalized
plant (19) is then obtained from Fig. 6. The resolution of the
LMI optimization problem (Theorem 4.2) allows to obtain
a controller (that is, the matrices AK , BK , CK and DK )
for γ ≈ 1. The simulation is performed on the nonlinear
plant using the nonlinear controller of the form (13), see
Fig. 7. Note that the tracking and disturbance rejection
specifications are satisfied. Since for any constant input, the
internal signal of an incremental L2 gain stable system goes
to a constant [10] when t goes to ∞, necessarily the input
ǫ(t) of the integrator Fig. 6 goes to zero when t goes to ∞, in
order to ensure that the integrator output goes to a constant.
The static error is then well-defined and equal to 0.
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