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The Bell theorem stands as an insuperable roadblock in the path to a very desired

intuitive solution of the EPR paradox and, hence, it lies at the core of the current

lack of a clear interpretation of the quantum formalism. The theorem states through

an experimentally testable inequality that the predictions of quantum mechanics

for the Bell polarization states of two entangled particles cannot be reproduced by

any statistical model of hidden variables that shares certain intuitive features. In

this paper we show, however, that the proof of the Bell theorem involves a subtle,

though crucial, assumption that is not required by fundamental physical principles

and, hence, it is not necessarily fulfilled in the experimental setup that tests the

inequality. Indeed, this assumption can neither be properly implemented within

the standard framework of quantum mechanics. Namely, the proof of the theorem

assumes that there exists a preferred absolute frame of reference, supposedly provided

by the lab, which enables to compare the orientation of the polarization measurement

devices for successive realizations of the experiment and, hence, to define jointly

their response functions over the space of hypothetical hidden configurations for

all their possible alternative settings. We notice, however, that only the relative

orientation between the two measurement devices in every single realization of the

experiment is a properly defined physical degree of freedom, while their global rigid

orientation is a spurious gauge degree of freedom. Hence, the preferred frame of

reference required by the proof of the Bell theorem does not necessarily exist. In

fact, it cannot exist in models in which the gauge symmetry of the experimental

setup under global rigid rotations of the two detectors is spontaneously broken by

the hidden configurations of the pair of entangled particles and a non-zero geometric

phase appears under some cyclic gauge symmetry transformations. Following this

observation, we build an explicitly local model of hidden variables that reproduces

the predictions of quantum mechanics for the Bell states.
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I. INTRODUCTION

The Bell theorem is one of the fundamental theorems upon which relies the widespread

belief that quantum mechanics is the ultimate mathematical framework within which the hy-

pothetical final theory of the fundamental building blocks of Nature and their interactions

should be formulated. The theorem states through an experimentally testable inequality

(the Bell inequality) that statistical models of hidden variables that share certain intuitive

features cannot reproduce the predictions of quantum mechanics for the entangled polariza-

tion states of two particles (the Bell states) [1, 2]. These predictions have been confirmed

beyond doubt by very carefully designed experiments [3–12].

In these experiments a source emits pairs of particles whose polarizations are arranged

in a Bell entangled state:

|ΨΦ〉 =
1√
2

(
| ↑〉(A) | ↓〉(B) − eiΦ | ↓〉(A) | ↑〉(B)

)
, (1)

where {| ↑〉, | ↓〉}(A,B) are eigenstates of Pauli operators σ
(A,B)
Z along locally defined Z-

axes for each one of the two particles. The two emitted particles travel off the source

in opposite directions towards two widely separated detectors, which test their polariza-

tions. The orientation of each one of the detectors can be freely and independently set

along any arbitrary direction in the XY-plane perpendicular to the locally defined Z-axis.

Upon detection each particle causes a binary response of its detector, either +1 or −1.

Thus, each pair of entangled particles produces an outcome in the space of possible events

P ≡ {(−1,−1), (−1,+1), (+1,−1), (+1,+1)}. We refer to each detected pair as a single

realization of the experiment.

Quantum mechanics predicts that the statistical correlation between the binary outcomes

of the two detectors in a long sequence of realizations of the experiment is given by:

E(∆,Φ) = − cos(∆− Φ), (2)

where ∆ is the relative angle between the orientations of the two detectors. In particular,

when ∆− Φ = 0 we get that E = −1, so that all outcomes in the sequence must be either

(−1,+1) or (+1,−1).

The Bell theorem states that prediction (2) cannot be reproduced by any model of hidden

variables that shares certain intuitive features. In particular, the CHSH version of the
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theorem states that for the said generic models of hidden variables the following inequality

is fulfilled for any set of values (∆1,∆2, δ) [13]:

|E(∆1) + E(∆2) + E(∆1 − δ)− E(∆2 − δ)| ≤ 2. (3)

On the other hand, according to quantum mechanics the magnitude in the left hand side

of the inequality reaches a maximum value of 2
√

2, known as Tsirelson’s bound [14], for

certain values of ∆1, ∆2 and δ - e.g, ∆1 = −∆2 = 1
2
δ = π

4
. As it was noted above, carefully

designed experiments have confirmed that the CHSH inequality is violated according to the

predictions of quantum mechanics and, therefore, have ruled out all the generic models of

hidden variables constrained by the Bell inequality (3).

In this paper we show, however, that the generic models of hidden variables constrained

by the Bell theorem all share a subtle crucial feature that is not necessarily fulfilled in the

actual experimental tests of the Bell inequality. Indeed, the considered feature cannot be

derived from fundamental physical principles and may even be at odds with the fundamental

principle of relativity. Moreover, this feature neither can be properly implemented within

the standard framework of quantum mechanics. We follow this observation to explicitly

build a local model of hidden variables that does not share the disputed feature and, thus,

it is capable to reproduce the predictions of quantum mechanics for the Bell polarization

states of two entangled particles.

Our model puts forward for consideration the possibility that quantum mechanics might

not be the ultimate mathematical framework of fundamental physics. In fact, it is interest-

ing to notice that the way how our model solves the apparent ’non-locality’ associated to

entanglement in the standard quantum formalism is very similar to the way how General

Relativity solves the ’non-locality’ of Newton’s theory of gravitation: in our model quantum

entanglement is the result of a curved metric in the space in which the hypothetical hidden

variables live.

II. OUTLINE

Any local statistical model of hidden variables that aims to describe the Bell experiment

consists of some space S of possible hidden configurations for the pair of entangled particles,

labelled here as λ ∈ S, together with a well-defined (density of) probability ρ(λ) for each one
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of them to occur in every single realization. The model must also specify well-defined binary

functions s
(A)
ΩA

(λ) = ±1, s
(B)
ΩB

(λ) = ±1 to describe the outcomes that would be obtained at

detectors A and B when the pair of entangled particles occurs in the hidden configuration

λ ∈ S and their polarizations are tested along directions ΩA and ΩB, respectively.

The proof of the CHSH inequality (3) involves two well-defined possible orientations ΩA

and Ω′A for the polarization test of particle A and two well-defined possible orientations ΩB

and Ω′B for the polarization test of particle B, and assumes that the considered model of

hidden variables assigns to each possible hidden configuration λ ∈ S a 4-tuple of binary

values
(
s

(A)
ΩA

(λ), s
(A)

Ω′
A

(λ), s
(B)
ΩB

(λ), s
(B)

Ω′
B

(λ)
)
∈ {−1,+1}4 to describe the outcomes that would

be obtained in each one of the two detectors in case that it would be set along each one of

its two available orientations. Hence, it is straightforward to obtain that for any λ ∈ S,

s
(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)

Ω′
B

(λ)
)

+ s
(A)

Ω′
A

(λ) ·
(
s

(B)
ΩB

(λ)− s(B)

Ω′
B

(λ)
)

= ±2, (4)

since the first term is non-zero only when s
(B)
ΩB

(λ) and s
(B)

Ω′
B

(λ) have the same sign, while the

second term is non-zero only when they have opposite signs. The CHSH inequality (3) is

then obtained by averaging (4) over the whole space S of all possible hidden configurations,

since∣∣∣∣∫ dλ ρ(λ)
{
s

(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)

Ω′
B

(λ)
)

+ s
(A)

Ω′
A

(λ) ·
(
s

(B)
ΩB

(λ)− s(B)

Ω′
B

(λ)
)}∣∣∣∣ ≤ 2, (5)

while ∫
dλ ρ(λ) s

(A)
ΩA

(λ) · s(B)
ΩB

(λ) = E(∆1), (6)∫
dλ ρ(λ) s

(A)
ΩA

(λ) · s(B)

Ω′
B

(λ) = E(∆2), (7)∫
dλ ρ(λ) s

(A)

Ω′
A

(λ) · s(B)
ΩB

(λ) = E(∆1 − δ), (8)∫
dλ ρ(λ) s

(A)

Ω′
A

(λ) · s(B)

Ω′
B

(λ) = E(∆2 − δ). (9)

In this argument the orientations ΩA, Ω′A, ΩB and Ω′B seem to be fixed with respect to

some external frame of reference supposedly provided by the labs. Nonetheless, the data

collected in such an experimental setup could be alternatively analyzed within frames of

reference aligned, for example, with the magnetic axis of the Sun or the rotational axis of the

Galaxy, with respect to which the orientations of the detectors for different realizations of the

experiment are not fixed anymore. Obviously, the conclusions of the analysis must remain
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the same, independently of the chosen lab frame. Indeed, the proof of the CHSH inequality

actually requires only three well-defined angles, ∆1 ≡ ∠(ΩB,ΩA), ∆2 ≡ ∠(Ω′B,ΩA) and

δ ≡ ∠(Ω′A,ΩA), which correspond, respectively, to the relative orientations of ΩB, Ω′B and

Ω′A with respect to ΩA, which serves as a reference direction. The reference direction ΩA

serves also to define the hidden configuration λ ∈ S of the pair of entangled particles in every

single realization of the experiment, since the description of a physical state must necessarily

be done with respect to a reference frame. Otherwise, the orientation with respect to any

external lab frame, either the optical table or the stars in the sky, of this reference direction

ΩA at different single realizations of the Bell experiment is absolutely irrelevant: it is an

spurious gauge degree of freedom, which can be set to zero (see Fig. 1).

The proof of the CHSH inequality, thus, seems straightforward and unovaidable. Nonethe-

less, the main claim of this paper is that this proof, as well as the proofs of all other versions

of the Bell inequality, involve a subtle, though crucial, implicit assumption that cannot be

derived from fundamental physical principles and, indeed, it might not be fulfilled in the

actual experimental setup that tests the inequality. Namely, in each realization of a Bell

experiment the polarization of each one of the two entangled particles is tested along a single

direction. Hence, the relative orientation ∆ of the two measurement devices in each single

realization of the experiment is a properly defined physical magnitude, which can be set to

values ∆1, ∆2 or any other desired value. On the other hand, the definition of the angle δ

that appears in the proof of the CHSH inequality requires a comparison of the global rigid

orientation of the measurement devices for different realizations of the Bell experiment and,

thus, it requires the existence of an absolute preferred frame of reference with respect to

which this global orientation could be defined. Otherwise, we could choose the orientation

of, say, detector A as the reference direction for every single realization of the experiment

and define the orientation of the other detector with respect to it, in which case the proof of

the Bell theorem does not necessarily hold as we shall show later. Obviously, such an abso-

lute preferred frame of reference would not be needed if the polarization of each one of the

two entangled particles could be tested along two different directions at once in every single

realization of the experiment, but this is certainly not the case. Similar concerns regarding

the way how different settings of the detectors are compared within the framework of the

Bell theorem and the crucial role that this comparison plays in the proof of the inequality

are also raised by K. Hess in [15, 16], and much earlier in a different but related context in
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FIG. 1: The orientation of the reference direction ΩA with respect to the chosen lab frame is a

spurious gauge degree of freedom.

[17–19].

The said preferred frame of reference needed to prove the Bell theorem is supposedly

provided by the lab. However, the conditions that a reference frame must fulfill in order to

qualify as a preferred absolute frame are far from obvious and, in any case, its existence is

an overbold assumption whose fulfillment has never been explored neither theoretically or

experimentally. In fact, the existence of an absolute preferred frame of reference would be

clearly at odds with Galileo’s principle of relativity. Moreover, it is straightforward to show

that this assumption cannot be properly implemented within the standard framework of

quantum mechanics either. The argument goes as follows. The Bell state (1) that describes

the pair of entangled particles is defined in terms of the bases {| ↑〉, | ↓〉}(A,B) of eigenstates

of the Pauli operators σ
(A,B)
Z along locally defined Z-axes for each one of the particles. Since
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these eiegenstates are defined up to a global phase, the phase Φ in expression (1) cannot

be properly defined with respect to a lab frame. In order to properly define it we need to

choose an arbitrary setting of the two detectors that test the polarizations of the pair of

entangled particles as a reference. This reference setting defines parallel directions along

the XY-planes at the sites where each one of the two particles are detected. Then, the

phase Φ of the entangled state (1) can be properly defined with respect to this reference

setting with the help of the measured correlations between the outcomes of the two detectors,

E = − cos(Φ). Furthermore, we can use this reference setting to properly define a relative

rotation ∆ of the orientations of the two measurement devices. On the other hand, since

we must use an arbitrary setting of the detectors as a reference, their absolute orientation

is an unphysical gauge degree of freedom (see Fig. 2). In summary, in order to describe

the setting of the measurement devices in a Bell experiment within the standard framework

of quantum mechanics we need to specify both Φ and ∆ with respect to some otherwise

arbitrary reference setting of the detectors. Nonetheless, only their difference ∆ − Φ is

independent of the chosen reference setting and, hence, the correlation between the outcomes

of the two devices can only depend on this difference (2).

In the absence of an absolute preferred frame of reference the global rigid orientation of

the two detectors is, as we have already noticed before, an spurious (unphysical) gauge degree

of freedom and, hence, the proof of the CHSH inequality (as well as of all other versions of

the Bell inequality) holds only for models in which the considered hidden configurations are

symmetrically invariant under a rigid rotation of the two measuring devices. On the other

hand, we shall show below that the proof of the inequality does not necessarily hold when this

symmetry is (spontaneously) broken by the hidden configuration of the entangled particles,

since then a non-zero geometric phase may appear under cyclic gauge transformations.

Indeed, the crucial role of the angle δ in the proof of the CHSH inequality is an obvious

indication that in order to violate it the gauge symmetry under a rigid rotation of the two

detectors must be spontaneously broken.

In fact, it is obvious from the correlation (2) that the entanglement of the two particles

explicitly breaks the symmetry of the system under a rotation of the relative orientation of

the two detectors. Since a reference direction is needed for this symmetry to get broken,

the gauge symmetry under a rigid rotation of the two detectors must be also spontaneously

broken. From this perspective the phase Φ that appears in the description of the source (1)
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seems to play the role of a Goldstone mode associated to the spontaneously broken gauge

symmetry, that is, the phase Φ appears instead of the spurious gauge degree of freedom δ that

would describe the global rigid orientation of the two detectors. Under these circumstances,

it is not possible to compare different settings of the detectors with respect to an external

lab frame of reference: they can only be compared with respect to a frame in which they all

share the same preferred direction, e.g. the reference frame set by the orientation of one of

the detectors. This requirement can be explained as follows.

In the proof of the CHSH inequality it is implicitly assumed, as we have already noticed

above, that there exists a preferred frame of reference, which defines a set of coordinates

λ ∈ S over the space S of all possible hidden configurations that can be used to describe

the response function of each one of the two detectors in each one of its two available

orientations (defined with respect to the said preferred frame). Above we denoted these

response functions as s
(A)
ΩA

(λ), s
(A)

Ω′
A

(λ), s
(B)
ΩB

(λ), s
(B)

Ω′
B

(λ). Nonetheless, in general, we should

allow for each one of the two detectors to define its proper set of coordinates over the space

S. Thus, for a given setting of the detectors we shall denote as λA and λB the sets of

coordinates associated to detector A and detector B, respectively, so that their responses

would be given as s(λA) and s(λB) by some universal function s(·) of the locally defined

coordinate of the hidden configuration. Since these two sets of coordinates parameterize the

same space of hidden configurations S there must exist some invertible transformation that

relates them:

λB = −L(λA; ∆− Φ), (10)

which may depend parametrically on the relative orientation ∆−Φ between the two detec-

tors. This transformation must fulfill the constraint

dλA ρ(λA) = dλB ρ(λB), (11)

in order to guarantee that the probability of every hidden configuration to occur remains

invariant under a change of coordinates, while the (density of) probability ρ(·) is functionally

invariant for both sets of coordinates. However, these constraints do not forbid the possibility

that the set of coordinates accumulates a non-zero geometric phase α 6= 0 through certain

cyclic gauge transformations:
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(−L∆̄2
) ◦
(
−L∆̄2−δ̄

)
◦
(
−L∆̄1−δ̄

)
◦ (−L∆̄1

) 6= I, (12)

In such a case there does not exist a single set of coordinates that can be used to define the

response functions of each one of the two detectors in its two available orientations (defined

with respect to an external frame), as required by the proof of the inequality (3). Therefore,

in order to compare the four different experiments involved in the CHSH inequality we must

choose the orientation of one of the detectors as a reference direction, as we do below in

(13), so that they all may be described within a common set of coordinates. The appearence

of a non-zero geometric phase under a cyclic transformation is a well-known phenomena in

physical models involving gauge symmetries [20] and, therefore, we should not rule out the

possibility that it also occurs in models of hidden variables for the Bell states. The Bell

theorem, however, cannot account for such models.

Following these observations we were able to explicitly build a local model of hidden

variables that reproduces the predictions of quantum mechanics for the Bell polarization

states. In our model the hidden configurations of the pair of entangled particles are described

by a pointer, which sets an arbitrarily oriented preferred direction and, thus, spontaneously

breaks the symmetry of the setup under rigid rotations of the two detectors. As we have just

noticed, and we shall show later on in further detail, in order to compare different realizations

of the experiment within the framework of such a model we must choose a common reference

direction, which can be either the orientation of the hidden configuration of the pair of

entangled particles or, alternatively, the orientation of one of the detectors, say, detector A.

Since the former may not be directly experimentally accessible, we are left only with the

latter option. Thus, in such a model we only need to specify the binary values for s(λA),

s(λB), s(λ′B), s(λ′′B) and s(λ′′′B) for each possible hidden configuration λA ∈ S of the pair

of entangled particles, where λB = −L(λA; ∆1), λ′B = −L(λA; ∆2), λ′′B = −L(λA; ∆1 − δ),

λ′′′B = −L(λA; ∆2 − δ). It is then straightforward to notice that the magnitude

s(λA) · (s(λB) + s(λ′B) + s(λ′′B) − s(λ′′′B)) , (13)

which comes instead of (4), can take values out of the interval [−2, 2]. Hence, these models

are not constrained by the CHSH inequality (3). A simplified version of these arguments is

presented in Fig. 3 with the help of a toy model.
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FIG. 2: Two descriptions of the experimental setup required for testing the Bell inequality. In the

description above the lab frame is taken to be fixed, while in the description below the orientation

of detector A is taken to be fixed. The relative angle between the two detectors is set at four

possible values ∆1, ∆2, ∆1 − δ and ∆2 − δ. When considering models in which the hypothetical

hidden configurations of the pairs of entangled particles spontaneously break the symmetry under

rigid rotations of the orientations of the two measurement devices, only the latter choice allows to

properly compare the four different settings.
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FIG. 3: Two closely related, though intrinsically different, random games: the game on the

left hand side is constrained by the Bell inequality, while the one on the right hand side is not

necessarily constrained by the inequality. In both games we have reference unit vectors, labelled

respectively as ~a, ~b and ~c, drawn at each one of the vertices, labelled as A, B and C, of a triangle.

In the game on the left the triangle is drawn on a plane surface and the reference unit vectors are

contained within the plane, while in the game on the right the ’triangle’ is defined on the surface

of a sphere by segments of three great circles and the three reference unit vectors lay within the

corresponding tangent planes. Two copies of a randomly oriented unit vector ~λ are generated at

random at the center of one of the three segments of the triangle with density of probability ρ(~λ),

and detected, respectively, at the two detectors located at the ends of the segment. In the game

on the left the vector ~λ is contained within the plane surface, while in the game on the right the

vector ~λ is tangent to the sphere. The binary responses of the detectors are locally defined by

parallely transporting the unit vector ~λ along the segment of the triangle to its end, and comparing

its orientation to the orientation of the corresponding reference unit vector: A(~a,~λ) = sign(~a · ~λ),

B(~b, ~λ) = sign(~b ·~λ) , C(~c, ~λ) = sign(~c ·~λ). It is then straighforward to prove the Bell inequality for

the game on the left, since for any settings ~a,~b,~c and any random vector ~λ the following equality

holds:
∣∣∣A(~a,~λ) ·B(~b, ~λ) +A(~a,~λ) · C(~c, ~λ)

∣∣∣ = 1 + B(~b, ~λ) · C(~c, ~λ). Therefore, after integrating

over the whole space of possible hidden configurations:∣∣∣∫ d~λ ρ(~λ)
[
A(~a,~λ) ·B(~b, ~λ) +A(~a,~λ) · C(~c, ~λ)

]∣∣∣ ≤ ∫ d~λ ρ(~λ)
∣∣∣A(~a,~λ) ·B(~b, ~λ) +A(~a,~λ) · C(~c, ~λ)

∣∣∣ =∫
d~λ ρ(~λ)

∣∣∣A(~a,~λ) ·B(~b, ~λ) +A(~a,~λ) ·B(~b, ~λ) ·B(~b, ~λ) · C(~c, ~λ)
∣∣∣ = 1 +

∫
d~λ ρ(~λ) B(~b, ~λ) · C(~c, ~λ),

and therefore,
∣∣∣EA,B(~a,~b) + EA,C(~a,~c)

∣∣∣ ≤ 1 + EB,C(~b,~c). This proof, nonetheless, does not

hold for the random game on the right hand side, since the orientation of a vector ~λ parallelly

transported along the closed contour of the triangle ABC gets rotated by a geometric phase α due

to the curvature of the sphere. In fact, in the game on the right the three bipartite correlations are

constrained by the inequality
∣∣∣EA,B(~a,~b) + EA,C(~a,~c)

∣∣∣ ≤ 1 + EB,C(~b, R̂α~c), where R̂α~c denotes

the rotation of vector ~c by an angle α.
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Outcome

Setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

A = +1

B = +1
p1 0 0 1− p1

A = +1

B = −1
p2 0 0 1− p2

A = −1

B = +1
p3 0 0 1− p3

A = −1

B = −1
0 p4 1− p4 0

Table 1. Conditional probabilities for a toy model with two binary inputs and two binary

outcomes that cannot be reproduced by a realistic and local underlying theory [21].

These arguments can be stated in more abstract terms as follows. Quantum predictions

for the Bell experiment are commonly described as a set of conditional probabilities

p(a, b|A,B), where a = ±1 and b = ±1 are the two possible outcomes at each one of the

two detectors and A = ±1 and B = ±1 describe two possible choices for the setting of

each one of the two detectors. It is then proven that these conditional probabilities cannot

be obtained in terms of a local model of hidden variables, defined by its configuration

space λ ∈ S, its density of probability ρ(λ) and its local response functions a = f(λ,A),

b = f(λ,B) [2].

This statement can be clearly illustrated with the help of the toy model described in

Table 1 [21], where conditional probabilities for each one of the four possible results of an

experiment with two binary outcomes a, b = ±1 (columns) are given for each one of four

possible settings, defined by two independent binary inputs A,B = ±1 (rows). For these

probabilities to be properly defined we require that p1, p2, p3, p4 ∈ [0, 1]. It can be readily

checked that for each set of input values (rows) the sum of the probabilities for all possible

results of the experiment (columns) equals 1. These conditional probabilities, however,

cannot be obtained within the framework of an underlying local model of hidden variables:
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the conditional probabilities listed in the first three rows would imply a = b, that is, the

outcomes of the two detectors in any of their four possible settings must have the same sign,

which is obviously inconsistent with the conditional probabilities listed in the fourth row.

Nonetheless, it is straightforward to identify in this abstract reformulation of the Bell

theorem the same unjustified implicit assumption that we have noticed above, namely, that

there are two well-defined choices for the setting of each one of the detectors. We have

noticed above that we can properly define and measure only the conditional probabilities

p(a, b|D), where a = ±1 and b = ±1 are, as before, the outcomes at each one of the two

detectors and D = 1, 2, 3, 4 defines four possible relative orientations between them. We

did notice also that quantum mechanics as well makes theoretical predictions only for these

conditional probabilities p(a, b|D). Under these looser constraints the Bell theorem does not

necessarily hold.

Consider, for example, the toy model described in Table 2. The conditional probabilities

are identical to those described in Table 1 for each one of the four possible results of

the experiment, but the setting of the measurement devices is now described by a single

parameter D = 1, 2, 3, 4. Each input value corresponds to a given relative orientation of the

two devices. The new model simply states that when the devices are set at D = 1, 2, 3 their

outcomes must have the same sign, and when they are set at D = 4 their outcomes must

have opposite signs. Obviously, this latter model is not necessarily in contradiction with an

underlying local model of hidden variables.

A straightforward proof of the inequalities that constraint the correlations that can be

obtained in any model of hidden variables with two binary inputs and two binary outcomes

is presented in [22] using only Boolean logic. The analysis relies on the observation that

any such model makes a prediction for the correlations 〈AB〉, 〈AB′〉, 〈A′B〉 and 〈A′B′〉, and

also for the correlations 〈AA′〉 and 〈BB′〉 that would be obtained in the hypothetical case

that the polarization of each one of the two entangled particles could be tested along two

different orientations at once. It can be immediately noticed that these constraints do not

hold for the model of hidden variables discussed in this paper, for which the correlations

〈AA′〉 and 〈BB′〉 cannot be jointly bounded.
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Outcome

Setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

D = 1 p1 0 0 1− p1

D = 2 p2 0 0 1− p2

D = 3 p3 0 0 1− p3

D = 4 0 p4 1− p4 0

Table 2. Conditional probabilities for a toy model with a single input with four possible

values and two binary outcomes. They can be reproduced by an underlying theory.

III. THE MODEL

We shall now build an explicitly local statistical model of hidden variables that reproduces

the predictions of quantum mechanics for the Bell states (1) and, hence, it is not constrained

by the Bell inequality (3). The fundamental ideas of the model were first discussed in [30].

As we have already noticed above, the crux of the model is the spontaneous breaking of the

gauge symmetry of the experimental setup under global rigid rotations of the orientation of

the detectors. The symmetry is broken by the hidden configuration of the pair of entangled

particles. Furthermore, we allow for a non-zero geometric phase (12) to accumulate through

cyclic gauge transformations. Under these circumstances there does not exist an absolute

preferred frame, other than the orientation of one of the detectors, to which we can refer in

order to compare different realizations of the experiment (see Fig. 3).

The gauge symmetry is spontaneously broken because in the considered model the hidden

configuration of the pair of entangled particles has a preferred direction randomly oriented

over a unit circle S in the XY-plane. This orientation is carried by each one of the particles

of the entangled pair. Each one of the two detectors defines over this circle S a frame

of reference with its own set of associated coordinates, which we shall denote as λA ∈

[−π,+π) for detector A and λB ∈ [−π,+π) for detector B. Since the two sets of coordinates

parameterize the same space S, they must be related by some transformation law:
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λ/π

λ
′ /
π

FIG. 4: Plot of the transformation law λ → λ′ = L(λ; ∆) for ∆ = π/3 (solid line), compared to

the corresponding linear transformation (dotted line).

λB = −L(λA; ∆− Φ), (14)

where ∆ is the relative angle between the two detectors and Φ is the phase that characterizes

the source of entangled particles as defined above. This transformation law states that a

hidden configuration whose preferred direction is oriented along an angle λA with respect to

detector A, it is oriented along an angle λB with respect to detector B.

The transformation law (14) does not violate neither locality nor causality: it may well

be a fundamental law of Nature. Indeed, the notions of locality and causality in special

relativity stem from a similar relationship v′ = T (v; V ) beween the velocities v and v′ of

a point particle with respect to two different inertial frames moving with relative velocity

V . Moreover, (14) is only a generalization of the euclidean linear relationship that states

that in a flat space given two detectors whose orientations form an angle ∆, then a pointer

oriented along an angle ω with respect to one of them is oriented along an angle ω−∆ with

respect to the other detector.

In order to reproduce the predictions of quantum mechanics we define the transformation

law (14) as follows:
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• If ∆̄ ∈ [0, π),

L(λ; ∆̄) =



q(λ− ∆̄) · arccos
(
− cos(∆̄)− cos(λ)− 1

)
,

if − π ≤ λ < ∆̄− π,

q(λ− ∆̄) · arccos
(
+ cos(∆̄) + cos(λ)− 1

)
,

if ∆̄− π ≤ λ < 0,

q(λ− ∆̄) · arccos
(
+ cos(∆̄)− cos(λ) + 1

)
,

if 0 ≤ λ < ∆̄,

q(λ− ∆̄) · arccos
(
− cos(∆̄) + cos(λ) + 1

)
,

if ∆̄ ≤ λ < +π,

(15)

• If ∆̄ ∈ [−π, 0),

L(λ; ∆̄) =



q(λ− ∆̄) · arccos
(
− cos(∆̄) + cos(λ) + 1

)
,

if − π ≤ λ < ∆̄,

q(λ− ∆̄) · arccos
(
+ cos(∆̄)− cos(λ) + 1

)
,

if ∆̄ ≤ λ < 0,

q(λ− ∆̄) · arccos
(
+ cos(∆̄) + cos(λ)− 1

)
,

if 0 ≤ λ < ∆̄ + π,

q(λ− ∆̄) · arccos
(
− cos(∆̄)− cos(λ)− 1

)
,

if ∆̄ + π ≤ λ < +π,

(16)

where

q(λ− ∆̄) = sign((λ− ∆̄)mod([−π, π))),

∆̄ = ∆−Φ and the function y = arccos(x) is defined in its main branch, such that y ∈ [0, π]

while x ∈ [−1,+1]. In Fig. 4 the transformation L(λ; ∆̄) is graphically shown for the

particular case ∆̄ = π/3. It is straightforward to check that the transformation law (14) is

strictly monotonic and fulfills the differential relationship

|d (cos(λB))| = dλB |sin(λB)| = dλA |sin(λA)| = |d (cos(λA))| , (17)

while the parameter ∆̄ plays the role of an the integration constant.

Locality is explicitly enforced in our model by requiring that the outcome of each one

of the detectors in reponse to the hidden configuration of the pair of entangled particles
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depends only on its locally defined orientation, that is, s(λA) = ±1 for detector A and

s(λB) = ±1 for detector B, where λB and λA are related by relationship (14) and s(·) is the

binary response function of the detectors, which for the sake of simplicity we define here as

s(l) =

 +1, if l ∈ [0,+π),

−1, if l ∈ [−π, 0).
(18)

In order to complete our statistical model we need to specify also the (density of) prob-

ability ρ(l) of each hidden configuration l ∈ S over the space S to occur in every single

realization of the pair of entangled particles. By symmetry considerations this density of

probability must be functionally identical from the point of view of both detectors, indepen-

dently of their relative orientation. Moreover, the condition of ’free-will’ demands that the

probability of each hidden configuration to occur in any single realization of the experiment

cannot depend on the parameterizations of the space S associated to each one of the two

detectors. This condition can be precisely stated as:

dλA ρ(λA) = dλB ρ(λB). (19)

It is straightforward to show from (17) that this condition is fulfilled if and only if the

probability density ρ(l) is given by:

ρ(l) =
1

4
|sin(l)| . (20)

We can now compute within the framework of this model the statistical correlations

expected between the outcomes of the two detectors as a function of their relative orientation.

The binary outcomes of each one of the two detectors define a partition of the phase space

S of all the possible hidden configurations into four coarse subsets,

(s(A) = +1; s(B) = +1) ⇐⇒ λA ∈ [0,∆− Φ)

(s(A) = +1; s(B) = −1) ⇐⇒ λA ∈ [∆− Φ, π)

(s(A) = −1; s(B) = +1) ⇐⇒ λA ∈ [∆− Φ− π, 0)

(s(A) = −1; s(B) = −1) ⇐⇒ λA ∈ [−π,∆− Φ− π),

where we have assumed without any loss of generality that ∆ − Φ ∈ [0, π). Each one of
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these four coarse subsets happen with a probability given by:

p (+1,+1) =
∫ ∆−Φ

0
ρ(λA) dλA = 1

4
(1− cos(∆− Φ)) ,

p (+1,−1) =
∫ π

∆−Φ
ρ(λA) dλA = 1

4
(1 + cos(∆− Φ)) ,

p (−1,+1) =
∫ 0

∆−Φ−π ρ(λA) dλA = 1
4

(1 + cos(∆− Φ)) ,

p (−1,−1) =
∫ ∆−Φ−π
−π ρ(λA) dλA = 1

4
(1− cos(∆− Φ)) .

These conditional probabilities reproduce the predictions of quantum mechanics (2):

E(∆,Φ) = p (+1,+1) + p (−1,−1)− p (+1,−1)− p (−1,+1) = − cos(∆− Φ).

Finally, we notice that in spite of the non-trivial transformation law (14) our model

complies with the trivial demand that a relative rotation of the measurement apparatus by

an angle ∆ followed by a second relative rotation by an angle ∆′ results into a final rotation by

an angle ∆+∆′. Consider, for example, an initial reference setting T0 in which the outcomes

of the two measurement apparatus are correlated by an amount E = − cos(Φ). The angular

coordinates of the hidden configurations with respect to each one of the two measurement

devices, λA and λB, would be related in this reference setting by the relationship:

λB = −L(λA;−Φ). (21)

We now define a new measurement setting T1 obtained from the initial setting T0 by

rotating the relative orientation of the two apparatus by an angle ∆. The angular coordinates

λA and λ′B defined with respect to this new setting would be related by:

λ′B = −L(λA; ∆− Φ). (22)

A third measurement setting T2 is obtained from the intermediate setting T1 by rotating

the relative orientation of the two apparatus by an additional angle ∆′. In the intermediate

setting T1, which is now taken as reference to define the second rotation, the pair of particles

appears to be in a polarization state characterized by a phase Φ′ = −∆ + Φ. Hence, the

angular coordinates λA and λ′′B defined with respect to the setting T2 would be related by

the transformation law:



19

λ′′B = −L(λA; ∆′ − Φ′) = −L(λA; ∆′ + ∆− Φ). (23)

By comparison of the transformation law (21) for the initial setting T0 and the transformation

law (23) for the setting T2, we realize that the latter has been obtained from the initial setting

by rotating the apparatus by an angle ∆′ + ∆, as we had demanded.

In order to complete the description of the Bell experiment we define two new settings

T3 and T4, which are obtained, respectively, from T1 and T2 by cancelling the phase Φ in the

reference setting T0. Hence, in these settings the angular coordinates of the hidden configu-

rations with respect to the two measurement apparatus are related by the relationships:

λ′′′B = −L(λA; ∆). (24)

and

λ′′′′B = −L(λA; ∆′ + ∆), (25)

respectively. Thus, we could intuitively think about the four settings of the detectors in-

volved in a Bell experiment as corresponding to two possible values for the relative angle ∆

and two possible values for the phase Φ, while they all four share the orientation of one the

two detectors, say detector A, taken as reference.

Finally, let us notice that when we substitute the coherent source of pairs of entangled

particles (1) by the incoherent classical source (where all the mixed coherent sources are

defined with respect to the same arbitrary setting of the two detectors):

µ̂ =

∫
2π

dΦ |ΨΦ〉〈ΨΦ| = | ↑〉〈↑ |(A) ⊗ | ↓〉〈↓ |(B) + | ↓〉〈↓ |(A) ⊗ | ↑〉〈↑ |(B), (26)

the broken rotational symmetries are statistically restored and the outcomes of the two

measurement devices become uncorrelated for all settings. Only then, when the rotational

symmetries are restored, we can safely define separately the orientations of each one of the

measurement devices with respect to some external reference frame and, thus, describe the

phase space of its possible settings with the help of these two angles (ΩA,ΩB).
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IV. A PROPOSAL FOR AN EXPERIMENTAL TEST

The statistical model of hidden configurations described in the previous section repro-

duces the quantum mechanical prediction for the correlation (2) between the binary out-

comes of projective polarization measurements performed on each one of the two particles

of every entangled pair, as a function of the angular parameter ∆−Φ that characterizes the

experimental setting. However, with the help of additional weak polarization mesurements

the predictions of this statistical model can still be experimentally distinguished from those

of the standard framework of quantum mechanics.

Let us consider as before a source of pairs of entangled particles prepared in a Bell

state (1) and a pair of measuring devices that test their polarizations through projective

measurements at a relative angle ∆−Φ = π/4, so that the correlation between their binary

outcomes is EA1,B2 = E(π/4) = −1/
√

2. For reasons that will be immediately clear we

denote this correlation as EA1,B2 . This correlation is only very slightly modified if we perform

on particle B a very weak polarization measurement before the projective polarization test

[23, 24]. If we design the weak measurement on particle B so that it is oriented along a

relative angle ∆ − Φ = −π/4 with respect to the projective polarization measurement on

particle A, the correlation between their outcomes in a long sequence of repetitions will be

given by EA1,B1 = E(−π/4) = −1/
√

2.

We can now ask ourselves what would be the correlation EB1,B2 between the outcomes of

the weak measurement performed on particle B and the projective measurement performed

on the same particle later on. According to quantum mechanics their correlation should be

EQM
B1,B2 = cos(π/2) = 0, (27)

while in the statistical model presented in the previous section their correlation would be

[33]

ESM
B1,B2 = 4

(∫ π/2

π/4

ρ(λ) dλ −
∫ π/4

0

ρ(λ) dλ

)
=

=

∫ π/2

π/4

|sin(λ)| dλ −
∫ π/4

0

|sin(λ)| dλ =

= − cos(0) + cos(π/4)− cos(π/2) + cos(π/4) =

=
√

2− 1 ' 0.41 6= EQM
B1,B2. (28)
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V. DISCUSSION

The Bell theorem is one of the pillars upon which relies the widely accepted belief that

quantum mechanics is the ultimate mathematical framework within which the hypothetical

final theory of the fundamental building blocks of Nature and their interactions must be

formulated. The theorem proves through an experimentally testable inequality (the Bell

inequality) that the predictions of quantum mechanics for the Bell polarization states of two

entangled particles cannot be reproduced by any underlying theory of hidden variables that

shares certain intuitive features.

In this paper we have shown, however, that these intuitive features include a subtle,

though crucial, assumption that is not required by fundamental physical principles and,

hence, it is not necessarily fulfilled in the actual experimental setup that tests the inequality.

In fact, the disputed assumption cannot be implemented within the framework of standard

quantum mechanics either.

Namely, the proof of the Bell theorem requires the existence of a preferred frame of

reference, supposedly provided by a lab, with respect to which the orientations of each one

of the two measurement devices can be independently defined for every single realization

of the experiment. This preferred frame is required in order to compare the orientations of

the detectors in a sequence of repetitions of the experiment, since in every realization each

particle’s polarization can be tested along a single orientation.

Notwithstanding, the existence of a preferred frame of reference is at odds with Galileo’s

fundamental principle of relativity and, indeed, it cannot exist when the hidden configu-

rations of the pair of entangled particles spontaneously break the rotational symmetry of

the experimental setup under rigid rotations of the two detectors and a non-zero geometric

phase accumulates through cyclic gauge transformations. In such a case, in order to compare

different realizations of the experiment, we must pick the orientation of one of the detectors

as a common reference direction, with respect to which the relative orientation of the second

detector is defined. Under these conditions the Bell theorem does not necessarily hold, see

(13), Fig. 2 and Fig. 3.

Following these ideas we explicitly built a model of hidden variables for the Bell states

of two entangled particles that reproduces the predictions of quantum mechanics. Further

details of the model are discussed in [30]. In two additional accompanying papers we have
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used these same ideas to build explicit local models of hidden variables for the GHZ state

of three entangled particles [31] and also for the qutrit [32].

The derivation of a model of local hidden variables for the entangled states of two or

more qubits means that entanglement, the quintessential quantum phenomenon, can be fully

described without the quantum formalism. Indeed, the model shows that entanglement can

be described in terms of classical statistical concepts, with the help of the well-understood

classical notions of curved spaces and gauge degrees of freedom. Thus, the model proves that

there are not mysterious fundamental differences between classical and quantum correlations.

Furthermore, the model of hidden variables presented here opens the window to the

possible existence of an unexplored physical reality that might underlay the laws of quantum

mechanics [25] and, thus, it might lead to a whole new area of research in physics in quest

for the fundamental laws of this underlying reality. The existence of such a reality was first

suggested 85 years ago by Einstein, Podolsky and Rosen through their famous EPR paradox

[26, 27], but following Bell’s arguments it had been thought that an underlying reality was

incompatible with quantum mechanics [28, 29].

Finally, we wish to notice that our model of hidden variables is built upon fundamen-

tal physical concepts shared by the formalism of General Relativity and, thus, it might

eventually lead to a unified description of quantum phenomena and gravitation.
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