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The Bell’s theorem stands as an insuperable roadblock in the path to a very de-

sired intuitive solution of the Einstein-Podolsky-Rosen paradox and, hence, it lies at

the core of the current lack of a clear interpretation of the quantum formalism. The

theorem states through an experimentally testable inequality that the predictions

of quantum mechanics for the Bell’s polarization states of two entangled particles

cannot be reproduced by any statistical model of hidden variables that shares cer-

tain intuitive features. In this paper we show, however, that the proof of the Bell’s

inequality involves a subtle, though crucial, assumption that is not required by funda-

mental physical principles and, moreover, it might not be fulfilled in the experimental

setup that tests the inequality. In fact, this assumption can neither be properly im-

plemented within the framework of quantum mechanics. Namely, the proof of the

Bell’s theorem assumes that there exists an absolute preferred frame of reference,

supposedly provided by the lab, which enables to compare the orientation of the

polarization measurement devices for successive realizations of the experiment. The

need for this assumption can be readily checked by noticing that the theorem does

not hold when the orientation of one of the detectors is taken as a reference frame to

define the relative orientation of the second detector, in spite that this frame is an

absolutely legitimate choice according to Galileo’s principle of relativity. We further

notice that the absolute frame of reference required by the proof of the Bell’s theorem

cannot exist in models in which the hidden configuration of the pair of entangled

particles has a randomly set preferred direction that spontaneously breaks the global

rotational symmetry. In fact, following this observation we build an explicit local

model of hidden variables that reproduces the predictions of quantum mechanics for

the Bell’s states.
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I. INTRODUCTION

The Bell’s theorem is one of the fundamental theorems upon which relies the widespread

belief that quantum mechanics is the ultimate mathematical framework within which the hy-

pothetical final theory of the fundamental building blocks of Nature and their interactions

should be formulated. The theorem states through an experimentally testable inequality

(the Bell’s inequality) that local statistical models of hidden variables that share certain

intuitive features cannot reproduce the predictions of quantum mechanics for the entan-

gled polarization states of two particles (Bell’s states) [1, 2]. These predictions have been

confirmed beyond doubt by very carefully designed experiments [3–6].

In these experimental tests a source emits pairs of particles whose polarizations are ar-

ranged in a Bell’s entangled state:

|ΨΦ〉 =
1√
2

(
| ↑〉(A) | ↓〉(B) − eiΦ | ↓〉(A) | ↑〉(B)

)
, (1)

where {| ↑〉, | ↓〉}(A,B) are eigenstates of Pauli operators σ
(A,B)
Z along locally defined Z-

axes for each one of the two particles. The two emitted particles travel off the source

in opposite directions towards two widely separated detectors, which test their polariza-

tions. The orientation of each one of the detectors can be freely and independently set

along any arbitrary direction in the XY-plane perpendicular to the locally defined Z-axis.

Upon detection each particle causes a binary response of its detector, either +1 or −1.

Thus, each pair of entangled particles produces an outcome in the space of possible events

{(−1,−1), (−1,+1), (+1,−1), (+1,+1)}. We refer to each detected pair as a single realiza-

tion of the experiment.

Quantum mechanics predicts that the statistical correlation between the outcomes of the

two detectors in a long sequence of realizations of the experiment is given by:

E(∆,Φ) = − cos(∆− Φ), (2)

where ∆ is the relative angle between the orientations of the two detectors. In particular,

when ∆− Φ = 0 we get that E = −1, so that all outcomes in the sequence must be either

(−1,+1) or (+1,−1).

The Bell’s theorem states that prediction (2) cannot be reproduced by any model of

hidden variables that shares certain intuitive features. In particular, the CHSH version of
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the theorem states that for said generic models of hidden variables the following inequality

is fulfilled for any set of values (∆1,∆2, δ) [7]:

|E(∆1) + E(∆2) + E(∆1 − δ)− E(∆2 − δ)| ≤ 2. (3)

On the other hand, according to quantum mechanics the magnitude in the left hand side

of the inequality reaches a maximum value of 2
√

2, known as Tsirelson’s bound [8], for

certain values of ∆1, ∆2 and δ. As it was noted above, carefully designed experiments have

confirmed that the CHSH inequality is violated according to the predictions of quantum

mechanics and, therefore, have ruled out all said generic local models of hidden variables.

In this paper we show, however, that the generic models of hidden variables considered

by the Bell’s theorem all share a subtle crucial feature that is not required by fundamental

physical principles and, in fact, it is at odds with the fundamental principle of relativity.

Hence, this feature might not hold for the experimental setup that tests the Bell’s inequality

and, indeed, it either cannot be properly implemented within the framework of quantum

mechanics. We further show that local models of hidden variables that are not required to

share this unjustified feature are not constrained by the Bell’s inequality. In fact, follow-

ing this observation, we explicitly build a local model of hidden variables that reproduces

the predictions of quantum mechanics for the Bell’s polarization states of two entangled

particles.

II. RESULTS

A. Outline

Any local statistical model of hidden variables that aims to describe the Bell’s experiment

consists of some space S of possible hidden configurations for the pair of entangled particles

labelled as λ ∈ S, together with a well-defined (density of) probability ρ(λ) for each one of

them to occur in every single realization. The model must also specify well-defined binary

values s
(A)
ΩA

(λ) = ±1, s
(B)
ΩB

(λ) = ±1 to describe the outcomes that would be obtained at

detectors A and B when the pair of entangled particles occurs in the hidden configuration

λ ∈ S and their polarizations are tested along directions ΩA and ΩB, respectively.

The proof of the CHSH inequality involves two well-defined possible orientations ΩA and

Ω′A for the polarization test of particle A and two well-defined possible orientations ΩB
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and Ω′B for the polarization test of particle B, and assumes that the considered model of

hidden variables assigns to each possible hidden configuration λ ∈ S a 4-tuple of binary

values
(
s

(A)
ΩA

(λ), s
(A)
Ω′

A
(λ), s

(B)
ΩB

(λ), s
(B)
Ω′

B
(λ)

)
∈ {−1,+1}4 to describe the outcomes that would

be obtained in each one of the two detectors in case that it would be set along each one of

its two available orientations. Hence, it is straightforward to obtain that for any λ ∈ S,

s
(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)
Ω′

B
(λ)

)
+ s

(A)
Ω′

A
(λ) ·

(
s

(B)
ΩB

(λ)− s(B)
Ω′

B
(λ)

)
= ±2, (4)

since the first term is non-zero only when s
(B)
ΩB

(λ) and s
(B)
Ω′

B
(λ) have the same sign, while the

second term is non-zero only when they have opposite signs. The CHSH inequality (3) is

then obtained by averaging (4) over the whole space S of all possible hidden configurations.

In this argument the involved directions ΩA, Ω′A, ΩB and Ω′B seem to be fixed with respect

to some external frame of reference provided by the lab. Nonetheless, the data collected

in such an experimental setup could be alternatively analyzed with respect to frames of

reference aligned, for example, with the magnetic axis of the Sun or the rotational axis of

the Galaxy, with respect to which the orientations of the detectors for different realizations

of the experiment are not fixed anymore. Obviously, the conclusions of the analysis must

remain the same, independently of the lab frame chosen. Indeed, the proof of the CHSH

inequality actually requires only three well-defined angles, ∆1 ≡ 6 (ΩB,ΩA), ∆2 ≡ 6 (Ω′B,ΩA)

and δ ≡ 6 (Ω′A,ΩA), which correspond, respectively, to the relative orientations of ΩB, Ω′B

and Ω′A with respect to ΩA, which serves as a reference direction. The reference direction

ΩA serves also to define the hidden configuration λ ∈ S of the pair of entangled particles

in every single realization of the experiment, since the description of a physical state must

necessarily be done with respect to a reference frame. Otherwise, the global orientation of

this reference direction for different single realizations of the Bell’s experiment with respect

to any external lab frame, either the optical table or the stars in the sky, is absolutely

irrelevant: it is an spurious gauge degree of freedom, which can be set to zero (see Fig. 1).

The main claim of this paper is that the above proof of the CHSH inequality (as well as

of all other versions of the Bell’s inequality) involves a subtle, though crucial, implicit as-

sumption that cannot be derived from fundamental physical principles and, indeed, it might

not be fulfilled in the actual experimental setup that tests the inequality. Namely, in each

realization of a Bell’s experiment the polarization of each one of the two entangled particles

is tested along a single direction. Hence, the relative orientation ∆ of the two measurement
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devices in each single realization of the experiment is a properly defined physical magnitude,

which can be set to values ∆1, ∆2 or any other desired value. On the contrary, the definition

of the angle δ that appears in the proof of the CHSH inequality requires a comparison of

the global orientation of the measurement devices for different realizations of the Bell’s ex-

periment and, thus, it requires the existence of an absolute preferred frame of reference with

respect to which the orientations of each one of the devices could be defined. Otherwise, we

could choose the orientation of, say, detector A as the reference direction for every single

realization of the experiment and define the orientation of the other detector with respect

to it, in which case, as we shall show below, the proof of the Bell’s theorem would not

hold. Obviously, such an absolute preferred frame of reference would not be needed if the

polarization of each one of the two entangled particles could be tested along two different

directions at once in every single realization of the experiment, but unfortunately this is

certainly not the case.

This absolute preferred frame of reference is supposed to be provided by the lab. How-

ever, the conditions that a reference frame must fulfill in order to qualify as the preferred

absolute frame are far from obvious. In fact, the existence of an absolute preferred frame of

reference is at odds with Galileo’s principle of relativity. In any case, the existence of such an

absolute frame is an assumption whose fulfillment has never been explored neither theoret-

ically or experimentally. Indeed, it is straightforward to show that this assumption cannot

be properly implemented within the framework of quantum mechanics. The Bell’s state (1)

that describes the pair of entangled particles is defined in terms of the bases {| ↑〉, | ↓〉}(A,B)

of eigenstates of the Pauli operators σ
(A,B)
Z along locally defined Z-axes for each one of the

particles. Since these eiegenstates are defined up to a global phase, the phase Φ in (1) would

not be properly defined. In order to properly define it we need to choose as a reference

an arbitrary setting of the two detectors that test the polarizations of the pair of entan-

gled particles. This reference setting defines parallel directions along the XY-planes at the

sites where each one of the two particles are detected. Then, the phase Φ of the entangled

state (1) can be properly defined with the help of the measured correlations between the

outcomes of the two detectors in this reference setting, E = − cos(Φ). Furthermore, we

can use this reference setting to properly define a relative rotation ∆ of the orientations of

the two measurement devices. On the other hand, since we are using an arbitrary setting

of the detectors as a reference, it is obvious that we cannot properly define their absolute
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orientation (see Fig. 1).

In fact, as we shall explicitly show below, such an absolute preferred frame of reference

cannot exist if the entanglement of the two particles spontaneously breaks the gauge sym-

metry of the system under global rigid rotations of the orientation of the two detectors. In

particular, this could be the case if the hidden configuration of the pair of entangled particles

has a randomly set preferred direction. It is obvious from (2) that the entanglement of the

two particles explicitly breaks the symmetry of the system under relative rotations of the

orientation of the two detectors. Therefore, we should consider as a feasible possibility that

the entanglement of the two particles spontaneously breaks the gauge symmetry of the sys-

tem under global rigid rotations of the orientation of the two detectors. Indeed, the crucial

role of the angle δ in the proof of the CHSH inequality is a strong indication that, in order

to violate it, this gauge symmetry must be broken: in any model in which the symmetry is

not broken we can choose the global orientation of the detectors so that the proof holds.

A model of hidden variables in which the global gauge symmetry under rigid rotations

of the orientation of the two detectors is broken and the orientation of, say, detector A is

taken as a gauge-fixing reference direction only needs to specify the binary values for the

physical observables s
(A)
ΩA

(λ), s
(B)
ΩB

(λ), s
(B)
Ω′

B
(λ), s

(B)
Ω′′

B
(λ) and s

(B)
Ω′′′

B
(λ) for each possible hidden

configuration λ ∈ S of the pair of entangled particles, where 6 (ΩB,ΩA) = ∆1, 6 (Ω′B,ΩA) =

∆2, 6 (Ω′′B,ΩA) = ∆1 − δ, 6 (Ω′′′B ,ΩA) = ∆2 − δ are the relative orientations between the two

detectors in the four available settings. The reason is that in order to compare different

realizations of the experiment within the framework of such a model we need to choose a

common reference direction, which can be either the orientation of the hidden configuration

of the pair of entangled particles or, alternatively, the orientation of one of the detectors.

Since the former may not be directly experimentally accessible, we are left only with the

latter option. It is then straightforward to notice that the magnitude

s
(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)
Ω′

B
(λ) + s

(B)
Ω′′

B
(λ)− s(B)

Ω′′′
B

(λ)
)
, (5)

which comes instead of (4), can take values out of the interval [−2, 2]. Hence, these models

are not constrained by the CHSH inequality (3).
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FIG. 1: Two physically undistinguishable descriptions of the experimental setup required for testing

the Bell’s inequality. In the description above the lab frame is taken to be fixed, while in the

description below the orientation of detector A is taken to be fixed. The relative angle between

the two detectors is set at four possible values ∆1, ∆2, ∆1 − δ and ∆2 − δ.
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Outcome

Setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

A = +1

B = +1
p1 0 0 1− p1

A = +1

B = −1
p2 0 0 1− p2

A = −1

B = +1
p3 0 0 1− p3

A = −1

B = −1
0 p4 1− p4 0

Table 1. Conditional probabilities for a toy model with two binary inputs and two binary

outcomes that cannot be reproduced by a realistic and local underlying theory [9].

These arguments can be stated in more abstract terms as follows. Quantum predic-

tions for the Bell’s experiment are commonly described as a set of conditional probabilities

p(a, b|A,B), where a = ±1 and b = ±1 are the two possible outcomes at each one of the two

detectors and A = ±1 and B = ±1 describe two possible choices for the setting of each one of

the two detectors. It is then proven that these conditional probabilities cannot be obtained

in terms of a local model of hidden variables, defined by its configuration space λ ∈ S, its

density of probability ρ(λ) and its local response functions a = f(λ,A), b = f(λ,B) [2].

This statement can clearly illustrated with the help of the toy model described in Table 1

[9], where conditional probabilities for each one of the four possible results of an experiment

with two binary outcomes a, b = ±1 (columns) are given for each one of four possible settings,

defined by two independent binary inputs A,B = ±1 (rows). For these probabilities to be

properly defined we require that p1, p2, p3, p4 ∈ [0, 1]. It can be readily checked that for each

set of input values (rows) the sum of the probabilities for all possible results of the experiment

(columns) equals 1. These conditional probabilities, however, cannot be obtained within the

framework of an underlying local model of hidden variables: the conditional probabilities

listed in the first three rows would imply a = b, that is, the outcomes of the two detectors in

any of their four possible settings must have the same sign, which is obviously inconsistent
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with the conditional probabilities listed in the fourth row.

Nonetheless, it is straightforward to identify in this abstract reformulation of the Bell’s

theorem the same unjustified implicit assumption that we have noticed above, namely, that

there are two well-defined choices for the setting of each one of the detectors. We have

noticed above that we can properly define and measure only the conditional probabilities

p(a, b|D), where a = ±1 and b = ±1 are, as before, the outcomes at each one of the two

detectors and D = 1, 2, 3, 4 defines four possible relative orientations between them. We

did notice also that quantum mechanics as well makes theoretical predictions only for these

conditional probabilities p(a, b|D). Under these looser constraints the Bell’s theorem does

not necessarily hold:

Consider, for example, the toy model described in Table 2. The conditional probabilities

are identical to those described in Table 1 for each one of the four possible results of

the experiment, but the setting of the measurement devices is now described by a single

parameter D = 1, 2, 3, 4. Each input value corresponds to a given relative orientation of the

two devices. The new model simply states that when the devices are set at D = 1, 2, 3 their

outcomes must have the same sign, and when they are set at D = 4 their outcomes must

have opposite signs. Obviously, this latter model is not necessarily in contradiction with an

underlying local model of hidden variables.

Outcome

Setting

a = +1

b = +1

a = +1

b = −1

a = −1

b = +1

a = −1

b = −1

D = 1 p1 0 0 1− p1

D = 2 p2 0 0 1− p2

D = 3 p3 0 0 1− p3

D = 4 0 p4 1− p4 0

Table 2. Conditional probabilities for a toy model with a single input with four possible

values and two binary outcomes. They can be reproduced by an underlying theory.
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π

FIG. 2: Plot of the transformation law λ → λ′ = L(λ; ∆) for ∆ = π/3 (solid line), compared to

the corresponding linear transformation (dotted line).

B. The statistical model

We shall now build and discuss in detail an explicitly local statistical model of hidden

variables that is not constrained by the Bell’s inequality. In fact, the model reproduces the

predictions of quantum mechanics for the Bell’s states (1). Further aspects of the model are

discussed in [14]. The crux of the model is the spontaneous breaking by the hidden configu-

rations of the pair of entangled particles of the gauge symmetry of the experimental setting

under global rigid rotations of the orientation of the detectors, so that there cannot exist an

absolute preferred frame to which we can refer in order to compare different realizations of

the experiment other than the orientation of one of the detectors.

The symmetry is spontaneously broken because the hidden configuration of the pair of

entangled particles has a preferred direction randomly oriented over a unit circle S. Each one

of the two detectors defines a frame of reference with its own set of associated coordinates

over this circle S, λ ∈ [−π,+π) for detector A and λ′ ∈ [−π,+π) for detector B. Since

the two sets of coordinates parameterize the same space S they must be related by some

transformation law:

λ′ = −L(λ; ∆− Φ). (6)
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This transformation law states that a hidden configuration whose preferred direction is

oriented along an angle λ with respect to detector A is oriented along an angle λ′ with

respect to detector B, where ∆ is the relative angle between the two detectors and Φ is the

phase that characterizes the source of entangled particles as defined above.

The transformation law (6) does not necessarily violate neither locality nor causality: it

may well be a fundamental law of Nature. Indeed, the notions of locality and causality

in special relativity stem from a similar relationship v′ = T (v; V ) beween the velocities v

and v′ of a point particle with respect to two different inertial frames moving with relative

velocity V . Indeed, (6) is only a generalization of the euclidean linear relationship that

states that given two classical detectors whose orientations form an angle ∆, then a pointer

oriented along an angle λ with respect to one of them is oriented along an angle λ′ = λ−∆

with respect to the other.

In order to reproduce the predictions of quantum mechanics we define the transformation

law (6) as follows:

• If ∆ ∈ [0, π),

L(λ; ∆) =



q(λ) · acos (− cos(∆)− cos(λ)− 1) ,

if − π ≤ λ < ∆− π,

q(λ) · acos (+ cos(∆) + cos(λ)− 1) ,

if ∆− π ≤ λ < 0,

q(λ) · acos (+ cos(∆)− cos(λ) + 1) ,

if 0 ≤ λ < ∆,

q(λ) · acos (− cos(∆) + cos(λ) + 1) ,

if ∆ ≤ λ < +π,

(7)
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• If ∆ ∈ [−π, 0),

L(λ; ∆) =



q(λ) · acos (− cos(∆) + cos(λ) + 1) ,

if − π ≤ λ < ∆,

q(λ) · acos (+ cos(∆)− cos(λ) + 1) ,

if ∆ ≤ λ < 0,

q(λ) · acos (+ cos(∆) + cos(λ)− 1) ,

if 0 ≤ λ < ∆ + π,

q(λ) · acos (− cos(∆)− cos(λ)− 1) ,

if ∆ + π ≤ λ < +π,

(8)

where, for the sake of compactness, we have denoted the difference ∆− Φ simply as ∆,

q(λ) = sign((λ−∆)mod([−π, π))),

and the function y = acos(x) is defined in its main branch, such that y ∈ [0, π] while

x ∈ [−1,+1]. In Fig. 2 the transformation L(λ; ∆) is graphically shown for the particular

case ∆ = π/3. It is straightforward to check that the transformation law (6) fulfills the

differential relationship

|d (cos(λ′)| = dλ′ |sin(λ′)| = dλ |sin(λ)| = |d (cos(λ)| , (9)

and the parameter ∆ plays the role of an the integration constant.

Locality is explicitly enforced in our model by requiring that the outcome of each one

of the detectors in reponse to the hidden configuration of the entangled particles depends

only on their relative orientation, that is, s(A)(λ) = ζ(λ) = ±1 for detector A and s(B)(λ) =

ζ(λ′) = ±1 for detector B, where λ′ is related to λ by relationship (6) and ζ(l) is the binary

response function of the detectors, which for the sake of simplicity we define as

ζ(l) =

 +1, if l ∈ [0,+π)

−1, if l ∈ [−π, 0).
(10)

In order to complete our statistical model we need to specify also the (density of) prob-

ability ρ(l) of each hidden configuration l ∈ S over the space S to occur in every single

realization of the pair of entangled particles. By symmetry considerations this density of
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probability must be functionally identical from the point of view of both detectors, indepen-

dently of their relative orientation. Moreover, the condition of ’free-will’ demands that the

probability of each hidden configuration to occur in any single realization of the experiment

cannot depend on the parameterizations of the space S associated to each one of the two

detectors. This condition can be precisely stated as:

dλ ρ(λ) = dλ′ ρ(λ′). (11)

It is straightforward to show from (9) that this condition is fulfilled if the probability density

ρ(l) is given by:

ρ(l) =
1

4
|sin(l)| . (12)

We can now compute within the framework of this model the statistical correlations

expected between the outcomes of the two detectors as a function of their relative orientation.

The binary outcomes of each one of the two detectors define a partition of the phase space

of all the possible hidden configurations into four coarse subsets,

(s(A) = +1; s(B) = +1) ⇐⇒ l ∈ [0,∆− Φ)

(s(A) = +1; s(B) = −1) ⇐⇒ l ∈ [∆− Φ, π)

(s(A) = −1; s(B) = +1) ⇐⇒ l ∈ [∆− Φ− π, 0)

(s(A) = −1; s(B) = −1) ⇐⇒ l ∈ [−π,∆− Φ− π),

where we have assumed without any loss of generality that ∆ − Φ ∈ [0, π). Each one of

these four coarse subsets happen with a probability given by:

p (+1,+1) =
∫∆−Φ

0 ρ(l) dl = 1
4

(1− cos(∆− Φ)) ,

p (+1,−1) =
∫ π

∆−Φ ρ(l) dl = 1
4

(1 + cos(∆− Φ)) ,

p (−1,+1) =
∫ 0

∆−Φ−π ρ(l) dl = 1
4

(1 + cos(∆− Φ)) ,

p (−1,−1) =
∫∆−Φ−π
−π ρ(l) dl = 1

4
(1− cos(∆− Φ)) .

These conditional probabilities reproduce the predictions of quantum mechanics (2):

E(∆,Φ) = p (+1,+1) + p (−1,−1)− p (+1,−1)− p (−1,+1) = − cos(∆− Φ).
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Finally, we notice that in spite of the non-trivial transformation law (6) our model comply

with the trivial demand that a relative rotation of the measurement apparatus by an angle

∆ followed by a second rotation by an angle ∆′ results into a final rotation by an angle

∆ + ∆′. Consider, for example, an initial reference setting T0 in which the outcomes of

the two measurement apparatus are correlated by an amount E = − cos(Φ). The angular

coordinates of the hidden configurations with respect to each one of the two measurement

devices, λ and λ′, would be related in this reference setting by the relationship:

λ′ = −L(λ;−Φ). (13)

We now define a new measurement setting T1 obtained from the initial setting T0 by

rotating the relative orientation of the two apparatus by an angle ∆. The angular coordinates

λ and λ′′ defined with respect to this new setting would be related by:

λ′′ = −L(λ; ∆− Φ). (14)

A third measurement setting T2 is obtained from the intermediate setting T1 by rotating

the relative orientation of the two apparatus by an additional angle ∆′. In the intermediate

setting T1, which is now taken as reference to define the second rotation, the pair of particles

appears to be in a polarization state characterized by a phase Φ′ = −∆ + Φ. Hence, the

angular coordinates λ and λ′′′ defined with respect to the setting T2 would be related by the

transformation law:

λ′′′ = −L(λ; ∆′ − Φ′) = −L(λ; ∆′ + ∆− Φ). (15)

By comparison of the transformation law (13) for the initial setting T0 and the transformation

law (15) for the setting T2, we realize that the latter has been obtained from the initial setting

by rotating the apparatus by an angle ∆′ + ∆, as we had demanded.

In order to complete the description of the Bell’s experiment we define two new settings

T3 and T4, which are obtained, respectively, from T1 and T2 by cancelling the phase Φ in the

reference setting T0. Hence, in these settings the angular coordinates of the hidden configu-

rations with respect to the two measurement apparatus are related by the relationships:

λ′′′′ = −L(λ; ∆). (16)
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and

λ′′′′′ = −L(λ; ∆′ + ∆), (17)

respectively.

The phase Φ, which characterizes the quantum source with respect to the reference setting

of the detectors, plays an obvious crucial role in this last argument. Indeed, the argument

would not work for a classical source without this degree of freedom. Therefore, a few further

clarifications about it may be helpful.

First, it is important to notice that the phase Φ is not introduced ’ad hoc’ in the statistical

model of hidden variables discussed above. This phase describes an actual physical magni-

tude: for a given reference setting of the two measuring devices there exists a continuous

infinite family of different sources of pairs of entangled particles, parameterized by the angle

Φ ∈ [0, 2π), each one of which produces a different correlation E = − cos(Φ) between the

binary outcomes of the two devices. These different sources are described by the different

quantum states |ΨΦ〉 described by eq. (1). However, as explained in eq. (13,14,15,16,17)

and in subsection 2.1, it is crucial to notice that the phase Φ that characterizes the quantum

state of the source of entangled particles can only be properly defined with respect to a

setting of the measuring devices chosen as reference, and with respect to which any relative

rotation of the devices ∆ performed later on is referred. In other words, the phase Φ is a

physical degree of freedom just like the angle ∆ is, and they both can be properly defined

only with respect to a reference setting of the measuring devices. In fact, the statistical

correlation between the outcomes of the two devices in a Bell’s experiment depends only

on the angle ∆− Φ, which is independent of the setting of the devices chosen as reference.

Indeed, experimentalists use this freedom in order to fix their set-up: given an actual source

of entangled particles they calibrate the orientations of the two measuring devices in order to

get full anti-correlation between their outcomes and, with respect to this calibrated reference

setting, they set Φ = 0 for the source and, later on, define a relative rotation ∆ between the

orientation of the devices.

In the model of hidden variables considered in this paper the phase Φ appears as a result

of the spontaneous breaking of the symmetry of the system under global rigid rotations of

the orientation of the two detectors. The symmetry is spontaneously broken by the hidden

configuration of the pair of entangled particles, which sets a preferred direction. In partic-

ular, as explained through the paper, when the global rotational symmetry is broken the
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orientations of each one of the measuring devices, ΩA and ΩB, cannot be defined separately

with respect to an external lab frame, but only with respect to the preferred direction set

by the hidden configuration of the particles (which, nonetheless, is not directly accessible).

Hence, only the relative orientation between the devices can be properly defined. The appar-

ently disappeared degree of freedom actually corresponds to the phase Φ that characterizes

the source (which would be the Goldstone degree of freedom associated to the spontaneously

broken rotational symmetry). Or said in other words: the phase space (ΩA,ΩB,Φ) contains

an spurious unphysical gauge degree of freedom that cannot be properly defined either the-

oretically nor experimentally. The actual physical phase space (∆,Φ) of possible settings

for a Bell’s experiment is obtained from the space (ΩA,ΩB,Φ) as the quotient set under the

equivalence relation defined by the gauge transformation, so that setting the orientation of

one of the detectors as a reference direction must be understood as a gauge fixing condition.

Thus, the two degrees of freedom (ΩA,ΩB) that would be needed to describe an experimen-

tal set-up for a classical source of pairs of particles correpond to the two degrees of freedom

(∆,Φ) that describe the experimental set-up for a quantum source of entangled particles

that break the global rotational symmetry. Therefore, when we substitute the coherent

source of pairs of entangled particles (1) by the incoherent classical source

µ̂ =
∫

2π
dΦ |ΨΦ〉〈ΨΦ| = | ↑〉〈↑ |(A) ⊗ | ↓〉〈↓ |(B) + | ↓〉〈↓ |(A) ⊗ | ↑〉〈↑ |(B),

the broken symmetries are statistically restored and the outcomes of the two measurement

devices become uncorrelated for all settings. Thus, only for the classical source we can

safely assume the existence of an absolute external frame of reference with respect to which

we can define independently the orientations of each one of the two measuring devices and

describe the phase space of its possible settings as (ΩA,ΩB). This is not possible for a

quantum source of entangled particles, for which the phase space of possible settings must

be described by the angles (∆,Φ).
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III. DISCUSSION

In this paper we have shown that the proof of the Bell’s theorem requires the existence

of an absolute frame of reference, supposedly provided by the lab, with respect to which the

orientations of each one of the two measurement devices can be independently defined for

each single realization of the experiment. On the other hand, we have shown that such an

absolute frame does not exist if the hidden configurations of the pair of entangled particles

spontaneously break the rotational symmetry of the system. In such a case, in order to

compare different realizations of the experiment we must pick the orientation of one of the

detectors as a common reference direction with respect to which the relative orientation of

the second detector is defined and, hence, the Bell’s theorem does not necessarily hold (see

Table 2).

Following these ideas we have explicitly built a model of hidden variables for the Bell’s

states of two entangled particles that reproduces the predictions of quantum mechanics.

Further details of the model are discussed in [14]. In two additional accompanying papers

we have used these same ideas to build explicit local models of hidden variables for the GHZ

state of three entangled particles [15] and also for the qutrit [16].

These models, thus, open a window to a very desired realistic interpretation of the quan-

tum formalism and, maybe, also to unexplored fundamental physics underlying the principles

of quantum mechanics.

We find very intringuing that the solution presented here of the Einstein-Podolsky-Rosen

paradox [10] is intrinsically related to the symmetries and metrics of space and wonder if

this solution could open a window through which quantum mechanics and Einstein’s general

relativity theory of gravitation could be put together.
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