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The Bell’s theorem stands as an insuperable roadblock in the path to a very desired intuitive
solution of the Einstein-Podolsky-Rosen paradox and, hence, it lies at the core of the current lack
of a clear interpretation of the quantum formalism. The theorem states through an experimentally
testable inequality that the predictions of quantum mechanics for the Bell’s polarization states of
two entangled particles cannot be reproduced by any statistical model of hidden variables that shares
certain intuitive features. In this paper we show, however, that the proof of the Bell’s inequality
involves a subtle, though crucial, assumption that is not required by fundamental physical principles
and, in fact, it is not fulfilled in the experimental setup that tests the inequality. Indeed, this
assumption is at odds with the principle of relativity and, thus, it cannot be properly implemented
within the framework of quantum mechanics either. Furthermore, we show that local models of
hidden variables that do not comply with this unjustified assumption are not necessarily constrained
by the Bell’s inequality and can reproduce the predictions of quantum mechanics for the Bell’s states.

Bell’s theorem is one of the fundamental theorems
upon which relies the widespread belief that quan-
tum mechanics is the ultimate mathematical framework
within which the hypothetical final theory of the funda-
mental building blocks of Nature and their interactions
should be formulated. The theorem states through an
experimentally testable inequality (the Bell’s inequality)
that local statistical models of hidden variables that share
certain intuitive features cannot reproduce the predic-
tions of quantum mechanics for the entangled polariza-
tion states of two particles (Bell’s states) [1, 2]. These
predictions have been confirmed beyond doubt by very
carefully designed experiments [3–6].

In these experimental tests a source emits pairs of par-
ticles whose polarizations are arranged in a Bell’s entan-
gled state:

|Ψ〉 =
1√
2

(
| ↑〉(A) | ↓〉(B) − eiΦ | ↓〉(A) | ↑〉(B)

)
, (1)

where {| ↑〉, | ↓〉}(A,B)
are eigenstates of Pauli operators

σ
(A,B)
Z along locally defined Z-axes for each one of the two

particles. The two emitted particles travel off the source
in opposite directions towards two widely separated de-
tectors, which test their polarizations. The orientation
of each one of the detectors can be freely and indepen-
dently set along any arbitrary direction in the XY-plane
perpendicular to the locally defined Z-axis. Upon de-
tection each particle causes a binary response of its de-
tector, either +1 or −1. Thus, each pair of entangled
particles produces an outcome in the space of possible
events {(−1,−1), (−1,+1), (+1,−1), (+1,+1)}. We re-
fer to each detected pair as a single realization of the
experiment.

Quantum mechanics predicts that the statistical cor-
relation between the outcomes of the two detectors in a
long sequence of realizations of the experiment is given
by:

E(∆,Φ) = − cos(∆− Φ), (2)

where ∆ is the relative angle between the orientations of
the two detectors. In particular, when ∆−Φ = 0 we get
that E = −1, so that all outcomes in the sequence must
be either (−1,+1) or (+1,−1).

The Bell’s theorem states that prediction (2) cannot be
reproduced by any model of hidden variables that shares
certain intuitive features. In particular, the CHSH ver-
sion of the theorem states that for all these generic mod-
els of hidden variables the following inequality is fulfilled
for any set of values (∆1,∆2,∆) [7]:

|E(∆1) + E(∆2) + E(∆1 −∆)− E(∆2 −∆)| ≤ 2. (3)

On the other hand, according to quantum mechanics the
magnitude in the left hand side of the inequality reaches a
maximum value of 2

√
2, known as Tsirelson’s bound [8].

As it was noted above, carefully designed experiments
have confirmed that the CHSH inequality is violated ac-
cording to the predictions of quantum mechanics and,
therefore, have ruled out all said generic local models of
hidden variables.

Any local statistical model of hidden variables that
aims to describe the Bell’s experiment consists of some
space S of possible hidden configurations λ ∈ S for the
pair of entangled particles, together with a well-defined
(density of) probability ρ(λ) for each one of them to occur
in every single realization. The model must also specify

well-defined binary values s
(A)
ΩA

(λ) = ±1, s
(B)
ΩB

(λ) = ±1 to
describe the outcomes that would be obtained at detec-
tors A and B when the pair of entangled particles occurs
in the hidden configuration λ ∈ S and their polarizations
are tested along directions ΩA and ΩB , respectively.

The proof of the CHSH inequality involves two well-
defined possible orientations ΩA and Ω′A for the polariza-
tion test of particle A and two well-defined possible orien-
tations ΩB and Ω′B for the polarization test of particle B,
and assumes that the model of hidden variables assigns
to each possible hidden configuration λ ∈ S a 4-tuple
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of binary values
(
s

(A)
ΩA

(λ), s
(A)
Ω′

A
(λ), s

(B)
ΩB

(λ), s
(B)
Ω′

B
(λ)

)
∈

{−1,+1}4 to describe the outcomes that would be ob-
tained in each one of the two detectors in case that it
would be set along each one of its two available orienta-
tions. Hence, it is straightforward to obtain that for any
λ ∈ S,

s
(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)
Ω′

B
(λ)

)
+

+s
(A)
Ω′

A
(λ) ·

(
s

(B)
ΩB

(λ)− s(B)
Ω′

B
(λ)

)
= ±2, (4)

since the first term is non-zero only when s
(B)
ΩB

(λ) and

s
(B)
Ω′

B
(λ) have the same sign, while the second term is non-

zero only when they have opposite signs. The CHSH
inequality (3) is then obtained by averaging (4) over the
whole space S of all possible hidden configurations.

The proof of the CHSH inequality, thus, requires three
well-defined angles, ∆1 ≡ 6 (ΩB ,ΩA), ∆2 ≡ 6 (Ω′B ,ΩA)
and δ ≡ 6 (Ω′A,ΩA), which correspond, respectively, to
the relative orientations of ΩB , Ω′B and Ω′A with respect
to ΩA, which serves as a reference direction. This refer-
ence direction serves also to define the hidden configura-
tion λ ∈ S of the pair of entangled particles, since the
description of a physical state must necessarily be done
with respect to a reference frame. The orientation of this
reference direction is an spurious/irrelevant gauge degree
of freedom, which according to the principle of relativity
can be set to zero for every single realization of the Bell’s
experiment.

In order to stress the meaning of this last observation
let us consider an experimental setup in which the four
directions ΩA, Ω′A, ΩB and Ω′B are fixed with respect
to, say, the optical table on which we perform the ex-
periments. The collected experimental data can be an-
alyzed with respect to this lab frame or with respect to
lab frames located at, for example, the center of the Sun
or the center of the Galaxy or the center of the local su-
percluster, in which the four possible orientations of the
two detectors are not fixed anymore for different single
realizations of the experiment. Obviously, the proof of
the Bell’s theorem remains valid for any choice of the
lab frame: it only requires that the three relative angles
∆1, ∆2 and δ will be well-defined, while the global ori-
entation of the reference direction ΩA in the lab frame is
absolutely irrelevant.

This apparently trivial observation leads us directly to
the main claim of this paper, namely, that the proof of
the CHSH inequality relies on a subtle, though crucial,
unjustified assumption, which is not required by funda-
mental physical principles and, in fact, it is not fulfilled
in the actual experimental setup designed to test the in-
equality. Indeed, the disputed assumption is at odds with
the principle of relativity. Unfortunately, this assumption
appears in the proof of all versions of the Bell’s theorem.

In the actual setup of a Bell’s experiment the angles ∆1

and ∆2, which describe two different relative orientations
of detectors A and B, can always be properly defined.
But how can we properly define the angle δ between two
possible orientations of detector A, if we are using it as a
reference direction ? As we have noted above, according
to the principle of relativity we can choose the orientation
of detector A as a reference direction for every single
realization of the experiment and, hence, arbitrarily set
it to zero.

We could properly define the angle δ if the experimen-
tal setup would enable us to test the polarization of each
one of the particles of every single pair along two differ-
ent directions at once. Notwithstanding, this is not the
case: each particle of every pair can be tested along a sin-
gle direction. Therefore, in order to properly define the
angle δ there should exist an absolute preferred frame of
reference with respect to which we could define the global
orientation of the detectors. Notwithstanding, this is not
the case either: such an absolute preferred frame would
clash with the principle of relativity. In other words,
while the relative orientation between the two detectors
is a properly defined physical feature of the experimen-
tal setup, their global orientation is an spurious gauge
degree of freedom (see Fig. 1).

It is straightforward to show that the global orienta-
tion of the experimental setup cannot be properly de-
fined within the standard framework of quantum mechan-
ics either. The Bell’s state (1) that describes the pair
of entangled particles is defined in terms of the bases
{| ↑〉, | ↓〉}(A,B) of eigenstates of the Pauli operators

σ
(A,B)
Z . Since these eiegenstates are defined up to a global

phase, the phase Φ in (1) would not be properly defined.
In order to properly define it we need to choose an ar-
bitrary setting of the two detectors as a reference. This
setting defines parallel directions at the sites of the two
particles. Then, the phase Φ of the entangled state (1)
can be properly defined with the help of the measured
correlations between the outcomes of the two detectors
E = − cos(Φ). Furthermore, we can use this reference
setting to properly define a relative rotation ∆ of the
orientations of the two apparatus (see Fig. 2). Neverthe-
less, we cannot define their absolute orientation δ with-
out referring to an inexisting preferred absolute frame of
reference.

We can take advantadge of this gauge symmetry in or-
der to build an explicitly local statistical model of hidden
variables that is not constrained by the Bell’s inequality
and, indeed, reproduces the predictions of quantum me-
chanics and the experimental data. The details of the
model are discussed in [9]. Here we briefly outline its
most relevant features.

We notice that a statistical model of hidden variables
that aims to describe the Bell’s experiment, in which the
orientation of, say, detector A is taken as a gauge-fixing
reference direction, only needs to specify the binary val-
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FIG. 1. According to the principle of relativity a global rota-
tion of the detectors while keeping the pencil/lab-frame fixed
cannot be distinguished in any sense from a rotation of the
pencil/lab-frame while keeping the global orientation of the
detectors fixed, which is obviously irrelevant for the outcome
of the Bell’s experiment, unless we imagine an inexisting ab-
solute preferred frame of reference.
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FIG. 2. Only with respect to a reference setting of the two
detectors (solid arrows), which serves as a definition of par-
allel directions, it is possible to properly define the phase Φ
that characterizes the source and rotations of the relative ori-
entation ∆ between the two detectors (dashed arrow).

ues for the physical observables s
(A)
ΩA

(λ), s
(B)
ΩB

(λ), s
(B)
Ω′

B
(λ),

s
(B)
Ω′′

B
(λ) and s

(B)
Ω′′′

B
(λ) for each possible hidden configura-

tion λ ∈ S, where 6 (ΩB ,ΩA) = ∆1, 6 (Ω′B ,ΩA) = ∆2,
6 (Ω′′B ,ΩA) = ∆1−δ, 6 (Ω′′′B ,ΩA) = ∆2−δ are the relative
orientations between the two detectors in four available
settings. It is then straightforward to notice that the
magnitude

s
(A)
ΩA

(λ) ·
(
s

(B)
ΩB

(λ) + s
(B)
Ω′

B
(λ) + s

(B)
Ω′′

B
(λ)− s(B)

Ω′′′
B

(λ)
)
, (5)

can take values out of the interval [−2, 2] and, therefore,
these models are not constrained by the CHSH inequality
(3). That is, the proof of the inequality (4) does not hold
for these gauge models because it involves adding terms
defined under different gauge-fixing conditions [13].

The notion of locality can be precisely defined within
this framework in a way that is explicitly consistent with
the principle or relativity. First, we notice that that each
one of the two detectors defines a frame of reference with
its own set of associated coordinates, λ ∈ S for detector A
and λ′ ∈ S for detector B, over the space S of all possible
hidden configurations. Since the two sets of coordinates
parameterize the same space S they must be related by
some transformation law:

λ′ = L(λ; ∆− Φ). (6)

This transformation law states that a hidden configura-
tion oriented along direction λ with respect to detector
A is oriented along direction λ′ with respect to detector
B, when the two detectors are related by a relative angle
∆ and the source by a phase Φ. This transformation law
does not violate locality or causality: it may well be a
fundamental law of Nature. Indeed, the notion of local-
ity and causality in special relativity stems from a similar
relationship v′ = T (v; V ) beween the velocities v and v′

of a point particle with respect to two different inertial
frames moving with relative velocity V .

Locality simply demands that the outcome of each one
of the detectors in reponse to a hidden configuration of
the entangled particles shall depend only on their relative
orientation, that is, s(A) = ζ(λ) = ±1 for detector A
and s(B) = ζ(λ′) = ±1 for detector B, where ζ(·) is the
response function of the detector.

Moreover, the condition of ’free-will’ demands that the
probability of each hidden configuration to happen in a
single realization of the experiment cannot depend on the
chosen parameterization of the space S. This condition
can be precisely stated as:

dλ ρ(λ) = dλ′ ρ(λ′), (7)

where ρ(·) is the density of probability over the space S,
which by symmetry considerations must be functionally
identical from the point of view of all detectors. This
density of probability fixes, through condition (7), the
transformation law (6) that relates the two sets of coor-
dinates, which in turn fixes, together with the response
function, the statistical correlation between the outcomes
of the two detectors.

We have used these same ideas to build explicit local
models of hidden variables for the Bell’s states of two
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FIG. 3. Two physically undistinguishable descriptions of the
experimental setup required for testing the Bell’s inequality.
In the description above the lab frame is taken to be fixed,
while in the description below the orientation of detector A is
taken to be fixed. The relative angle between the two detec-
tors is set at four possible values ∆1, ∆2, ∆1 − δ and ∆2 − δ.

entangled particles [9], the GHZ state of three entan-
gled particles [10] and also for the qutrit [11]. We find
very intringuing that the solution presented here of the
Einstein-Podolsky-Rosen paradox [12] is intrinsically re-
lated to the symmetries and metrics of space and wonder
if this solution opens the window to bringing together
quantum mechanics and Einstein’s general relativity the-
ory of gravitation.

In summary, we have shown in this paper that the
proof of the Bell’s theorem involves an unjustified as-
sumption, which is not required by fundamental physical
principles. In fact, this assumption is not fulfilled in the
experimental setup designed to test the Bell’s inequality
and neither it can be properly implemented within the
framework of quantum mechanics. Indeed, the said as-
sumption does violate the principle of relativity since it
implies the existence of an absolute preferred frame of
reference with respect to which the orientations of the
two detectors, as well as the orientation of the possible
hidden configurations of the entangled particles, are de-
fined.

I wish to thank Dr. Paz London for very useful dis-
cussions on the ideas contained in this paper and for his
valuable help to make the presentation clearer.
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