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ATOMIC DECOMPOSITION OF CHARACTERS AND CRYSTALS

CÉDRIC LECOUVEY AND CRISTIAN LENART

Abstract. Lascoux stated that the type A Kostka-Foulkes polynomials Kλ,µ(t) expand positively
in terms of so-called atomic polynomials. For any semisimple Lie algebra, the former polynomial is
a t-analogue of the multiplicity of the dominant weight µ in the irreducible representation of highest
weight λ. We formulate the atomic decomposition in arbitrary type, and view it as a strengthening
of the monotonicity of Kλ,µ(t). We also define a combinatorial version of the atomic decomposition,
as a decomposition of a modified crystal graph. We prove that this stronger version holds in type A
(which provides a new, conceptual approach to Lascoux’s statement), in types C and D in a stable
range for t = 1, as well as in some other cases, while we conjecture that it holds more generally.
Another conjecture stemming from our work leads to an efficient computation of Kλ,µ(t). We also
give a geometric interpretation.

1. Introduction

The starting point of this paper is a result of Lascoux on the (type A) Kostka-Foulkes polyno-
mials Kλ,µ(t), which are well-known t-analogues of the Kostka numbers Kλ,µ, i.e., the number of
semistandard Young tableaux of shape λ and content µ. Lascoux [15] stated the decomposition of
the Kostka-Foulkes polynomials into so-called atomic polynomials. Some arguments of the proof
in [15] remained elusive, and it was not until the work of Shimozono [33] that the type A atomic
decomposition was completely accepted, this time in larger generality (for the so-called generalized
Kostka-Foulkes polynomials). However, the latter proof involves several intricate combinatorial
arguments and related concepts, such as plactic monoid, cyclage, and catabolism. The main goal of
this paper is to provide a simpler, more conceptual approach, which has the additional advantage
of extending beyond type A.

Lusztig defined a remarkable t-analogue Kλ,µ(t) of the multiplicity of a weight µ in the irreducible
representation with highest weight λ of a seimisimple Lie algebra [23]. For dominant weights µ,
these polynomials generalize the type A ones mentioned above, and are therefore also called Kostka-
Foulkes polynomials. They have remarkable properties:

• they are essentially affine Kazhdan-Lusztig polynomials [13];
• they record the Brylinski filtration of weight spaces [5];
• they are the coefficients in the expansion of an irreducible character in terms of Hall-

Littllewood polynomials;
• they are related to the energy function coming from solvable lattice models [21, 26].

In classical Lie types, when the rank increases, these polynomials exhibit a stabilization property,
so they have stable versions [19]. We refer to [27, 35] for more information on Kostka-Foulkes
polynomials.

There are two combinatorial formulas for type A Kostka-Foulkes polynomials: one due to
Lascoux-Schützenberger, in terms of the charge statistic on semistandard Young tableaux [14],
and one in terms of the corresponding Kashiwara crystal graphs [9, 11, 12], due to Lascoux-Leclerc-
Thibon [16]. Similar partial combinatorial descriptions in types B−D, in terms of the corresponding
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2 C. LECOUVEY AND C. LENART

Kashiwara-Nakashima tableaux [9], and a conjectured charge statistic in type C were constructed
by the first author in [17, 18]. In our previous paper [20], we prove the first general formula beyond
type A, namely a formula for Kλ,0(t) of type C. This extends the Lascoux-Leclerc-Thibon formula
by using a simpler approach, and can be expressed in terms of King tableaux.

In Section 2.2, following Lascoux [15], we formulate the t-atomic decomposition property in arbi-
trary Lie type as a nonnegative expansion for both a Kostka-Foulkes polynomial, and a t-analogue
χ+
λ (t) of the dominant part of an irreducible character (defined in terms of Kostka-Foulkes polyno-

mials). Here a character expansion is in terms of so-called layer sum polynomials, which record all
weights of some irreducible representation with multiplicity 1. The t-atomic decomposition prop-
erty is a strengthening of the monotonicity of Kostka-Foulkes polynomials, which holds in the full
generality of affine Kazhdan-Lusztig polynomials [1, Corollary 3.7].

For t = 1, the atomic decomposition was also considered from a purely algebraic point of view
in [7, 29, 31]. Some partial results were given, for instance for the inverse expansion (of layer sum
polynomials in terms of characters). However, the atomic decomposition itself is less understood,
even for t = 1; for instance, it does not always exist, in the sense that the mentioned character
expansion sometimes fails to be nonnegative, contrary to what was claimed in Theorem 2.2 of [31]
(see Example 2.4). Nevertheless, these failures seem to be mild.

As opposed to the algebraic approach mentioned above, in Section 2.3 we define a stronger
t-atomic decomposition property, at the combinatorial level of the highest weight crystal B(λ).
This property involves a partition of the dominant part B(λ)+ of B(λ), and a statistic c( · ) on
B(λ)+. The combinatorial t-atomic decomposition leads to combinatorial formulas for both the
Kostka-Foulkes polynomials and the atomic polynomials (into which the former decompose).

In Section 3, we consider the case when λ goes to infinity, in types An−1, Bn, Cn, Dn, and G2.
We introduce the notion of a t-atomic decomposition of the crystal B(∞), and discuss how it can
be realized.

Next we introduce the two main ingredients for constructing a t-atomic decomposition of a
finite highest weight crystal: the partial order on dominant weights, and a modified crystal graph
structure. The natural poset structure on dominant weights is discussed in Section 4, by recalling
some important properties which hold in arbitrary Lie type [34]. We need extra information about
this poset, namely the structure of its small intervals, which was only known in type A [4]. The
second ingredient, namely a modified crystal graph structure on B(λ)+, is discussed in Section 5.1;
this structure can also be viewed as a poset, with covers corresponding to the modified crystal edges.
The associated modified crystal operators are obtained by conjugating the ordinary Kashiwara
operator f̃1 under the crystal action of the Weyl group. There are two main differences between
the original and the modified crystal operators: (1) the latter are indexed by arbitrary positive roots;
(2) the original B(λ) is a connected graph/poset, whereas the modified crystal graph on B(λ)+ is
disconnected in general. An interesting question is whether the modified crystal operators for λ
become those for B(∞) in Section 3 when λ goes to infinity.

In Section 6, we start by showing that type A crystals admit a t-atomic decomposition, thus
realizing combinatorially the classical result, while also providing a relatively simple and conceptual
proof of it. Here the desired partition of the modified crystal posetB(λ)+ is given by its components,
which are shown to admit unique minimal and maximal vertices. The relevant statistic c( · ) is the
Lascoux-Schützenberger charge [14]. Similarly, given a fixed dominant weight λ of type C or D,
and assuming a large enough rank (depending on λ), we show that the corresponding modified
crystal graph B(λ)+ gives an atomic decomposition (i.e., in the case t = 1).

In Section 7 we conjecture that the latter decomposition is, in fact, a t-atomic decomposition, for
appropriate choices of the statistic c( · ), which are related to the results in [17, 18] and [20]. We also
explain how to obtain a t-atomic decomposition of the crystal B(α̃)+ of the adjoint representation
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of g in any type. This is useful because it clarifies the type and rank restrictions we considered in
Section 6: they are needed to ensure that the covering relations in the posetB(λ)+ make only appear
roots in the orbit of the simple root α1. Under this assumption, we are indeed able to establish fine
commutation relations satisfied by the modified crystal operators, which are required to derive the
atomic decomposition of crystals (notably, the existence of unique maximal and minimal vertices).
For the simply laced types D (with no large rank assumption) and E, the atomic decomposition
of the characters can only hold with some restrictions on the dominant weights considered, but we
expect that it can be derived similarly from the same modified crystal operators and a detailed
analysis of the corresponding dominant weight poset. In the non-simply laced case of general rank,
the situation becomes more complicated, but it is certainly possible to again derive relevant atomic
decompositions of crystals by using modified crystal operators; this time, they would be defined
using the Weyl group conjugation of two ordinary crystal operators, associated to one simple root
of each length. We will address the mentioned problems in future work.

A geometric interpretation of Lascoux’s atomic decomposition of the type A Kostka-Foulkes
polynomial was given in [3] in terms of nilpotent orbit varieties. In Section 8, we provide a different,
type-independent interpretation of an atomic decomposition of χ+

λ , in terms of the geometric Satake
correspondence.

Acknowledgments: The second author gratefully acknowledges the partial support from the NSF
grant DMS–1362627. He thanks Institut des Hautes Études Scientifiques (IHÉS) for its hospitality
during July-August 2018, when this work was completed. Both authors are grateful to Arthur
Lubovsky and Adam Schultze for the computer tests (based on the Sage [30] system) related to
this work; they also received support from the NSF grant mentioned above.

2. The atomic decomposition: background, definitions, and basic facts

2.1. Characters and t-deformations. Let g be a simple Lie algebra over C of rank r with
triangular decomposition

g =
⊕
α∈R+

gα ⊕ h⊕
⊕
α∈R+

g−α ,

so that h is the Cartan subalgebra of g and R+ its set of positive roots. The root system R =
R+ t (−R+) of g is realized in a real Euclidean space E of dimension n with inner product 〈 · , · 〉.
For any α ∈ R, we write α∨ = 2α

〈α,α〉 for its coroot. Let S ⊂ R+ be the subset of simple roots and Q+

the Z+-cone generated by S. The set P of integral weights for g consists of elements β satisfying
〈β, α∨〉 ∈ Z for any α ∈ R. We write P+ = {β ∈ P | 〈β, α∨〉 ≥ 0 for any α ∈ S} for the cone
of dominant weights of g, and denote by ω1, . . . , ωr its fundamental weights. Let W be the Weyl
group of g generated by the reflections sα with α ∈ S, and write `( · ) for the corresponding length
function. The dominance order ≤ on P+ is defined by α < β if and only if β − α decomposes as
a sum of positive roots (or equivalently, simple roots) with nonnegative integer coefficients. Many
interesting properties of this order were studied in [34], and some of them will be used in this paper;
for instance, each component of this poset is a lattice.

Let χg
λ be the Weyl character associated to the finite-dimensional irreducible representation V (λ)

of g with highest weight λ, namely

χg
λ =

∑
γ∈P

Kg
λ,γ e

γ ,

where Kg
λ,γ is the dimension of the weight space γ in V (λ). For simplicity, we remove the superscript

g when the context makes it clear. By the Weyl character formula we have

(1) χλ =

∑
w∈W (−1)`(w)ew(λ+ρ)−ρ∏

α∈R+(1− e−α)
.
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This formula expresses the weight multiplicities Kλ,γ as follows:

Kλ,γ =
∑
w∈W

(−1)`(w)P(w(λ+ ρ)− (γ + ρ)) ,

where ρ is the half sum of positive roots, and P ( · ) is the Kostant partition function, defined by∏
α∈R+

1

1− eα
=
∑
β∈Q+

P(β) eβ .

When γ = µ is dominant, the multiplicity Kλ,µ has an interesting t-analogue Kλ,µ(t), also known
as a Kostka-Foulkes polynomial. This was introduced by Lusztig [23], who defined

(2) Kλ,µ(t) :=
∑
w∈W

(−1)`(w)Pt(w(λ+ ρ)− (µ+ ρ)) ;

here the t-analogue of the Kostant partition function Pt( · ) is given by∏
α∈R+

1

1− teα
=
∑
β∈Q+

Pt(β) eβ .

We have Kλ,µ(1) = Kλ,µ. Moreover, Kλ,µ(t) is essentially an affine Kazhdan-Lusztig polynomial,
which implies that it has nonnegative integer coefficients. More precisely, we have

(3) Kλ,µ(t) = t〈λ−µ,ρ
∨〉Pwµ,wλ(t−1) ,

where wλ denotes the longest element of WtλW , and tλ is the translation by λ in the extended
affine Weyl group [13] (see also [35, Section 4]); note that 〈λ−µ, ρ∨〉 is the number of simple roots
in the decomposition of λ− µ, counted with multiplicity. Based on (3), we let

(4) K̃λ,µ(t) := t〈λ−µ,ρ
∨〉Kλ,µ(t−1) , so K̃λ,µ(t) = Pwµ,wλ(t) .

To each irreducible representation V (λ) is associated an abstract Kashiwara crystal B(λ) (see
[9, 11, 12] for background on crystals), and we have

(5) χλ =
∑

b∈B(λ)

ewt(b) ,

where wt(b) is the weight of the vertex b ∈ B(λ). The crystal B(∞) is defined as the direct limit of
the crystal B(λ) when λ goes to infinity in the interior of the Weyl chamber. It corresponds to the
crystal of the positive part of the quantum group Uq(g) associated to g. One can then prove that

(6) charB(∞) =
∑

b∈B(∞)

ewt(b) =
∏
α∈R+

1

1− e−α
.

2.2. The definition of the atomic decomposition. Let us denote by P (λ) the set of weights
of V (λ), i.e., the set of γ such that Kλ,γ > 0. Also set P+(λ) = P (λ) ∩ P+. Recall we have in fact
P+(λ) = {µ ∈ P+ | µ ≤ λ}. Since we have Kλ,γ = Kλ,w(γ) for any w ∈ W , the character χλ is
completely determined by its dominant part

χ+
λ :=

∑
µ∈P+(λ)

Kλ,µ e
µ .

We also define the t-analogue of χ+
λ by

(7) χ+
λ (t) :=

∑
µ∈P+(λ)

Kλ,µ(t) eµ .
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For any dominant weight µ, define the layer sum polynomials by

(8) wµ :=
∑

γ∈P (µ)

eγ and w+
µ :=

∑
ν∈P+(µ)

eν =
∑
ν≤µ

eν .

Observe that we have
wµ =

∑
ν∈P+(µ)

mν , where mν =
∑
γ∈Wν

eγ .

Similarly, define

(9) w+
µ (t) :=

∑
ν∈P+(µ)

t〈µ−ν,ρ
∨〉eν =

∑
ν≤µ

t〈µ−ν,ρ
∨〉eν .

There exists a Weyl-type formula for the polynomials wµ, which follows from Brion’s formula
[2] counting the cardinality of the intersection between a convex polygon and a lattice, see [28,
Theorem 4.3]; this formula was rederived in [31] from the axioms of root systems. It is stated as
follows:

(10) wµ =
∑
w∈W

ew(µ)∏
α∈S(1− e−w(α))

;

here, for any simple root α and any Weyl group element w, we set

1

1− e−w(α)
=

+∞∑
k=0

ekw(α) if w(α) ∈ R+ , and

1

1− e−w(α)
= − ew(α)

1− ew(α)
= −

+∞∑
k=0

e(k+1)w(α) if w(α) ∈ −R+ .

Observe w+
µ (t) coincides with the dominant part in the expansion

eµ∏
α∈S(1− te−α)

.

Definition 2.1. The character χλ admits an atomic decomposition if there exist nonnegative in-
teger coefficients Aλ,µ such that

(11) χλ =
∑

µ∈P+(λ)

Aλ,µwµ , or equivalently χ+
λ =

∑
µ∈P+(λ)

Aλ,µw
+
µ .

Similarly, we say that χ+
λ (t) admits a t-atomic decomposition if there exist polynomials Aλ,µ(t) ∈

Z≥0[t], called atomic polynomials, such that

(12) χ+
λ (t) =

∑
µ∈P+(λ)

Aλ,µ(t)w+
µ (t) .

We will list several properties equivalent to (12). To this end, by analogy with (7) and using (4),
we define

χ̃+
λ (t) :=

∑
µ∈P+(λ)

K̃λ,µ(t) eµ .

Proposition 2.2. The following are equivalent.

(1) χ+
λ (t) admits a t-atomic decomposition in terms of Aλ,µ(t), cf. (12).

(2) There exist polynomials Aλ,µ(t) ∈ Z≥0[t] such that

Kλ,ν(t) =
∑

ν≤µ≤λ
t〈µ−ν,ρ

∨〉Aλ,µ(t) .
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(3) There exist polynomials Ãλ,µ(t) ∈ Z≥0[t] such that

χ̃+
λ (t) =

∑
µ∈P+(λ)

Ãλ,µ(t)w+
µ ,

where we recall that w+
µ := w+

µ (1).

(4) There exist polynomials Ãλ,µ(t) ∈ Z≥0[t] such that

K̃λ,ν(t) =
∑

ν≤µ≤λ
Ãλ,µ(t) .

In addition, the polynomials Aλ,µ(t) in (1)-(2) and Ãλ,µ(t) in (3)-(4) satisfy

Ãλ,µ(t) = t〈λ−µ,ρ
∨〉Aλ,µ(t−1) .

Proof. The t-atomic decomposition (12) can be written

χ+
λ (t) =

∑
µ∈P+(λ)

Aλ,µ(t)

∑
ν≤µ

t〈µ−ν,ρ
∨〉eν


=
∑
ν≤λ

 ∑
ν≤µ≤λ

t〈µ−ν,ρ
∨〉Aλ,µ(t)

 eν .

By comparing with (7), we can see that (1) and (2) are equivalent. A completely similar reasoning
proves the equivalence of (3) and (4).

The equivalence of (2) and (4), as well as the last statement in the proposition, can be seen in
the following way:

K̃λ,ν(t) = t〈λ−ν,ρ
∨〉Kλ,ν(t−1) = t〈λ−ν,ρ

∨〉
∑

ν≤µ≤λ
t〈ν−µ,ρ

∨〉Aλ,µ(t−1)

=
∑

ν≤µ≤λ
t〈λ−µ,ρ

∨〉Aλ,µ(t−1) =
∑

ν≤µ≤λ
Ãλ,µ(t) .

�

Remarks 2.3. (1) Lascoux [15] made a statement very closely related to the one in Proposi-

tion 2.2 (4), for type A. The slight difference consists in the definition of K̃λ,µ(t), for given partitions

λ, µ, namely K̃λ,µ(t) := tn(µ)Kλ,µ(t−1), where n(µ) :=
∑

i(i− 1)µi.

(2) The t-atomic decomposition, as stated in Proposition 2.2 (4), implies the monotonicity of
the Kostka-Foulkes polynomials, which holds in the full generality of Kazhdan-Lusztig polynomials
for finite and affine Weyl groups [1, Corollary 3.7]. Indeed, the latter says that, for x ≤ y ≤ z
in such a Weyl group, the difference of Kazhdan-Lusztig polynomials Px,z(t)− Py,z(t) is in Z≥0[t].
For z = wλ, y = wµ, and x = wν , with ν ≤ µ ≤ λ, this follows based on (4) and the fact that

the atomic polynomials in the decomposition of K̃λ,µ(t) are among those in the decomposition of

K̃λ,ν(t).

(3) We shall see that the t-atomic decomposition is always true in type A, as mentioned in
Section 1. On another hand, the expansions in Definition 2.1 always exist, and we have Aλ,λ =
Aλ,λ(1) = 1. However, even the atomic decomposition (i.e., the positivity in (11)) might fail beyond
type A, unlike it was claimed in [31, Theorem 2.2]. The smallest counterexample we found is in type
D4, and is given in Example 2.4 below. However, a slight increase in rank corrects this problem,
and in fact we will see that this is a general phenomenon.
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Example 2.4. Consider λ := 2ω1 + 2ω2 in type D4. For simplicity, we let wabcd := wµ for
µ := aω1 + bω2 + cω3 + dω4. With this notation, we have:

χλ = wλ + w4000 + w1111 + w2002 + w0022 + w2020 + 2w2100 + w0200+

+ 4w1011 + 5w0002 + 5w0020 + 11w2000 − 3w0100 + 17w0000 .

However, for the same λ we obtain a positive expansion in type D5.

Set ti := e−αi ∈]0, 1[, for i = 1, . . . , r, and consider a sequence (λ(k))k≥0 of dominant weights

such that lim
k→+∞

〈λ(k), αi〉 = +∞, for any i = 1, . . . , r. We shall then write λ→ +∞ for short.

Proposition 2.5. Under the previous assumption we have

lim
λ→+∞

e−λ χλ =
∏
α∈R+

1

1− e−α
and lim

λ→+∞
e−λwλ =

∏
α∈S

1

1− e−α
.

Proof. We have by the Weyl character formula

e−λ
(k)
χλ(k) =

∑
w∈W (−1)`(w)ew(λ

(k)+ρ)−ρ−λ(k)∏
α∈R+(1− e−α)

.

Let t = max(t1, . . . , tr) ∈]0, 1[. Since w(λ(k) + ρ)− ρ− λ(k) ∈ −Q+, we can set

w(λ(k) + ρ)− ρ− λ(k) = −
r∑
i=1

ai(λ
(k))αi ,

where ai(λ
(k)) ∈ Z≥0 for any i = 1, . . . , r. The hypothesis lim

k→+∞
〈λ(k), αi〉 = +∞ for any i = 1, . . . , r

implies that lim
k→+∞

∑r
i=1 ai(λ

(k)) = +∞ for any w ∈W such that w 6= 1. So we get for any such w

lim
k→+∞

ew(λ
(k)+ρ)−ρ−λ(k) ≤ lim

k→+∞
t
∑r
i=1 ai(λ

(k)) = 0 .

Since for w = 1 we have (−1)`(w)ew(λ
(k)+ρ)−ρ−λ(k) = 1, we get our first limit.

From (10), we can write

e−λ
(k)
wλ(k) =

∑
w∈W

ew(λ
(k))−λ(k)∏

α∈S(1− e−w(λ))

and by using similar arguments, only w = 1 contributes when we consider the limit. �

Now set ∏
α∈R+\S

1

1− te−α
=
∑
β∈Q+

Mt(β) e−β .

In particular, M1(β) is the number of decompositions of β as a sum of nonsimple positive roots.
We get

(13)
∏
α∈R+

1

1− te−α
=
∑
β∈Q+

Mt(β)
∏
α∈S

e−β

1− te−α
.

Proposition 2.5 suggests to consider (13) as a t-analogue of (11) when λ→ +∞.
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2.3. Atomic decomposition of finite crystals. Let B(λ)+ be the subset of B(λ) of vertices
with dominant weights.

Definition 2.6. The crystal B(λ) has an atomic decomposition if there exists a subset H(λ) ⊂
B(λ)+ and a partition

(14) B(λ)+ =
⊔

h∈H(λ)

B(λ, h)

such that h ∈ B(λ, h) is a distinguished vertex, and each component B(λ, h) consists of exactly one
vertex of weight ν for each ν ≤ wt(h).

Observe that the cardinality of B(λ, h) is then independent of λ, and if wt(h) = µ we have

(15) w+
µ =

∑
b∈B(λ,h)

ewt(b) .

If B(λ) has an atomic decomposition, then clearly χ+
λ has the atomic decomposition (11), where

Aλ,µ is the number of vertices of weight µ in H(λ).

Definition 2.7. The crystal B(λ) admits a t-atomic decomposition if it admits an atomic decom-
position and there exists a statistic c : H(λ)→ Z≥0 such that the polynomials

(16) Aλ,µ(t) =
∑

h∈H(λ)

wt(h)=µ

tc(h)

satisfy (12).

As we can see, the t-atomic decomposition property of χ+
λ (t) is part of Definition 2.7. Assuming

that B(λ) has a t-atomic decomposition, one can extend the statistic c to B(λ)+ by setting

(17) c(b) := c(h) + 〈wt(h)− wt(b), ρ∨〉 , for any b ∈ B(λ, h) .

The t-analogues of the combinatorial formulas (15) and (7) immediately follow from Definition 2.7:

w+
µ (t) =

∑
b∈B(λ,h)

tc(b)−c(h)ewt(b) ,(18)

χ+
λ (t) =

∑
b∈B(λ)+

tc(b)ewt(b) .(19)

Moreover, by comparing (19) with (7), we obtain the following combinatorial formula for Kostka-
Foulkes polynomials:

(20) Kλ,µ(t) =
∑

b∈B(λ)

wt(b)=µ

tc(b) .

To summarize, the existence of a t-atomic decomposition of a crystal is highly desirable because:
(i) it implies the t-atomic decomposition of χ+

λ (t) and of the Kostka-Foulkes polynomials Kλ,µ(t),
which are now realized combinatorially; (ii) it leads to combinatorial formulas for both Kλ,µ(t) and
the atomic polynomials Aλ,µ(t), namely (20) and (16), respectively.

3. Atomic decomposition of the crystal B(∞)

In this section we assume that the Lie algebra g is of type An−1, Bn, Cn, Dn, and G2. Let r be
the rank of g.
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3.1. Marginally large tableaux. Marginally large tableaux were introduced by Hong and Lee
[10] in order to describe the crystal B(∞) associated to g. Recall that they can be regarded as
g-tableaux (that is, of type An−1, Bn, Cn, Dn, or G2) with d rows such that

d = n in types Bn, Cn , d = n− 1 in types An−1, Dn , and d = 2 in type G2 ;

furthermore, for any i = 1, . . . , d − 1, the number of boxes in row i containing i is equal to 1 plus
the number of boxes in row i + 1 (see the example below). Write T (∞) for the set of marginally
large tableaux associated to g. Since marginally large tableaux are special cases of tableaux for
each type considered, the set T (∞) comes with a crystal action which is essentially the same as
in the finite crystal up to renormalization of rows, in order to insure that the obtained tableau is
marginally large. This renormalization is defined as follows. Consider a marginally large g-tableau
T , and let T ′ be a g-tableau obtained from T by modifying a letter in row i. If T ′ is not marginally
large, this means that we have modified the rightmost letter i in row i. Then the renormalization

of T̂ ′ is the marginally large tableau obtained from T ′ by adding a letter k in each row k between
1 and i, the others rows remaining unchanged. One can then define crystal operators F̃1, . . . , F̃r on
T (∞) by setting

F̃i(T ) = ̂̃fi(T ) ,

where f̃i is the ordinary Kashiwara crystal operator on the g-tableau T . It was established in [10]
that the crystal structure on T (∞) obtained in this way is isomorphic to B(∞).

Example 3.1. If g is of type A3, then

T =
1 1 1 1 1 1 1 3 5 5
2 2 2 3 3 4
3 5

is a marginally large tableau, and

f̃2(T ) =
1 1 1 1 1 1 1 1 3 5 5
2 2 2 3 3 3 4
3 5

.

We define a multisegment as a multiset of positive roots. We can write a multisegment m as

m =
∑
α∈R+

mα α ,

which means that the multiset m contains mα times the positive root α. Let M be the set of
g-multisegments. In [22, Proposition 3.7], a bijection Ξ1 is given from T (∞) to M. This bijection
depends on the type considered. For example, in type An−1, for any positive root αij = εi−εj with
1 ≤ i < j ≤ n and any marginally large tableau T , the integer mαi,j is equal to the number of letters
j in the i-th row of T . For any T ∈ T (∞) such that Ξ(T ) =

∑
α∈R+ mα α, write |T | =

∑
α∈R+ mα.

Example 3.2. Resuming the previous example, we get

Ξ(T ) = α1,3 + 2α1,5 + 2α2,3 + α2,4 + α3,5

and |T | = 7.

1As far as we are aware, such a bijection is not known in types E6, E7, E8, and F4.
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3.2. Modified crystal operators and atomic decomposition of B(∞). We refer to [22] for a
complete description of the bijection Ξ in each case. In the sequel, we only need the following two
properties of the map Ξ.

(1) Starting from any marginally large tableau T and any simple root αi, i = 1, . . . , r, there is
a unique marginally large tableau T ′ such that

Ξ(T ′) = Ξ(T ) + αi .

We then set T ′ = Fi(T ).
(2) For any marginally large tableau T ′ and any i = 1, . . . , n such that Ξ(T ′) =

∑
α∈R+ mα α

with mαi > 0, there exists a (unique) marginally large tableau T such that T ′ = Fi(T ).

More precisely, the construction of T ′ from T is as follows.

• For any i = 1, . . . , r − 1, T ′ is obtained from T by replacing the rightmost letter i located
in row i by a letter i+ 1 and then by renormalizing if needed.
• For i = 2 in type G2, T

′ is obtained from T by replacing the rightmost letter 2 located in
row 2 by a letter 3.
• For i = n in type Cn, T ′ is obtained from T by replacing the rightmost letter n located in

row n by a letter n.
• For i = n in type Dn, T ′ is obtained from T by replacing the rightmost letter n− 1 located

in row n− 1 by a letter n.
• For i = n in type Bn, the rows of T can only contain one letter 0. Then we have:

- if 0 belongs to row n, T ′ is obtained from T by replacing this letter 0 by a letter n;
- if 0 does not belong to row n, T ′ is obtained from T by replacing the rightmost letter
n located in row n by a letter 0.

Observe that Fi(T ) is a marginally large tableau for any i = 1, . . . , n and any T ∈ T (∞). We
also define the operators Ei, i = 1, . . . , n, such that Ei(T1) = T2 if there exists T2 ∈ T (∞) satisfying
Fi(T2) = T1, and Ei(T1) = 0 otherwise. The operators Fi and Ei, i = 1, . . . , n, are the modified

crystal operators. We have Fi(T ) 6= F̃i(T ) and Ei(T ) 6= F̃i(T ) in general. Furthermore, by property
(2), we have Ei(T ) 6= 0 for any T such that mαi > 0. Now we can endow T (∞) with a new colored

directed graph structure B(∞) such that T
i
99K T ′ if and only if T ′ = Fi(T ). A source vertex for

this structure is a marginally large tableau T such that Ei(T ) = 0 for any i = 1, . . . , r. Let us
denote by ST (∞) the set of source vertices in T (∞).

Theorem 3.3.

(1) We have S ∈ ST (∞) if and only if Ξ(T ) =
∑

α∈R+\Smα α, that is, when mαi = 0 for any
i = 1, . . . , r.

(2) Each connected component B of the graph B(∞) contains a unique source vertex S. We
then write B = B(S), and say that B(S) is an atom of B(∞).

(3) For any S ∈ ST (∞), the vertices of B(S) have different weights, and

(21)
∑

T∈B(S)

t|T |ewt(T ) =
t|S|ewt(S)∏

α∈S(1− te−α)
.

Proof. The first part follows from the fact that

Ξ(Ei(T )) = Ξ(T )− αi ,

for any i = 1, . . . , r. For the second part, we observe that, for any marginally large tableau T and
for any i 6= j in {1, . . . , r}, we have EiEj(T ) 6= 0 and EiEj(T ) 6= 0 if and only if mαi > 0 and
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mαj > 0; in this case, we have EiEj(T ) = EiEj(T ). Thus

S =
r∏
i=1

E
mαi
i (T )

is the unique source vertex of the connected component corresponding to T , and does not depend
on the order in which the operators Ei are applied in the right hand side. For the third part,
observe we have

B(S) =

{
r∏
i=1

F
mαi
i (S) | mαi ∈ Z≥0

}
,

where the operators Fi, i = 1, . . . , r commute. Since we have

wt

(
r∏
i=1

F
mαi
i (S)

)
= wt(S)−

r∑
i=1

mαiαi ,

the weights of the vertices in B(S) are all distinct. This also yields the desired equality (21). �

Corollary 3.4. The partition

B(∞) =
⊔

S∈ST (∞)

B(S)

is a t-atomic decomposition of B(∞); in other words, we have∏
α∈R+

1

1− te−α
=
∑
β∈Q+

Mt(β)
∏
α∈S

e−β

1− te−α
,

where

Mt(β) =
∑

S∈ST (∞)

wt(S)=β

t|S| .

4. The partial order on dominant weights

Before we consider the atomic decomposition of finite crystals, we need some information about
the partial order on dominant weights that was defined in Section 2.1. In full generality, this poset
was first studied in [34], so we will recall some results from this paper.

The components of the dominant weight poset are lattices. Each cocover is of the form µmµ−α,
where α is a positive root, so we can represent it as a downward edge in the Hasse diagram labeled
by α. The cocovers were completely described in [34, Theorem 2.8]. Fixing a dominant weight λ,
we will be interested in the lower order ideal determined by λ. This is known to be an interval
[0̂, λ], with 0̂ a minimal element of the dominant weight poset.

4.1. Type An−1. Now λ is a partition (λ1 ≥ . . . ≥ λn−1 ≥ 0), and let N = |λ| :=
∑

i λi. We
identify partitions with their Young diagrams, and we denote a partition with p parts a, q parts b
(a ≥ b) etc. by (apbq . . .). As explained below, the interval [0̂, λ] mentioned above can be identified
with the similar interval in the poset of partitions of N with the dominance order; the latter is

defined by (µ1, µ2, . . .) ≤ (ν1, ν2, . . .) if and only if
∑j

i=1 µi ≤
∑j

i=1 νj , for any j. As a partition of

N , the element 0̂ is the partition with bN/nc columns of height n, and the last column of height

p := N mod n; as an element of the dominant weight poset, 0̂ is the fundamental weight ωp. We
identify a partition of N with the partition obtained from it by removing all columns of height n
(if a partition of N is greater or equal to 0̂, then it has no columns of height larger than n).
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The dominance order on partitions of N was first studied in [4], so we recall some results in
this paper. Conjugation of partitions is an antiautomorphism. The cocovers µ m µ − αij , where
αij = εi − εj is a positive root (i.e., i < j), are labeled by (i, j). It turns out that there are only
two types of cocovers, namely:

(22) (. . . ab . . .) m (. . . (a− 1)(b+ 1) . . .) , and (. . . (a+ 1)ap(a− 1) . . .) m (. . . ap+2 . . .) ,

where in the first case a ≥ b + 2 and the cocover is labeled by a simple root. These types are
referred to as (*) and (**), respectively, while a cocover of type (**) which is not of type (*) is
called proper.

An important result in [4] concerns the structure of short intervals in the dominance order. To
state it, we need some more definitions. Consider two distinct cocovers µmν and µmπ of a partition
µ, which are labeled (i, j) and (k, l), where we assume i < k. These cocovers can only have one of
the following relative positions (in terms of their labels): (i) nonoverlapping if j < k; (ii) partially
overlapping if j = k; (iii) fully overlapping if k = j−1. By [4, Proposition 3.2], the interval [ν∧π, µ]
can only have one of the following structures; the two cocovers above are shown in the diagrams
below in bold.

Case A1: cocovers which are (a) nonoverlapping; (b) partially overlapping and both of type
(*); (c) fully overlapping and both proper of type (**). As subcase (a) is easy, only subcases (b)
and (c) are represented in the diagrams below.

In subcase (b), we have a ≥ c+ 2 and c ≥ e+ 2, while i is the position of a in the partition µ.

. . . ace . . .
(i,i+1)

tt

(i+1,i+2)

**tt tt ** **
. . . (a− 1)(c+ 1)e . . .

(i+1,i+2) **

. . . a(c− 1)(e+ 1) . . .

(i,i+1)tt
. . . (a− 1)c(e+ 1) . . .

In subcase (c), we have b = a − 1, c = b − 1, d = c − 1, p, q ≥ 1, while i is the position of a,
j = i+ p+ 1 is the position of the first c, and k = j + q is the position of d.

. . . abpcqd . . .
(i,j)

uu

(j−1,k)

))uu uu )) ))
. . . bp+2cq−1d . . .

(j,k) ))

. . . abp−1cq+2 . . .

(i,j−1)uu
. . . bp+1cq+1 . . .

Case A2: partially overlapping cocovers, where (a) the first is of type (*) and the second proper
of type (**); (b) vice versa.
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In subcase (a), we have a ≥ c+ 2, d = c− 1, e = d− 1, p ≥ 1, while i is the position of a in the
partition µ and j = i+ p+ 2 is the position of e.

. . . acdpe . . .
(i,i+1)

tt (i+1,j)

##

tt tt

## ##

. . . (a− 1)(c+ 1)dpe . . .

(i+1,i+2)

��

. . . adp+2 . . .

(i,i+1)

||

. . . (a− 1)c2dp−1e . . .

(i+2,j) **
. . . (a− 1)cdp+1 . . .

In subcase (b), we have b = a − 1, c = b − 1, c ≥ e + 2, p ≥ 1, while i is the position of a and
j = i+ p+ 1 is the position of c.

. . . abpce . . .

(i,j)

||

(j,j+1)

**

|| ||

** **
. . . abp(c− 1)(e+ 1) . . .

(j−1,j)

��

. . . bp+2e . . .

(j,j+1)

""

. . . abp−1c2(e+ 1) . . .

(i,j−1)tt
. . . bp+1c(e+ 1) . . .

Case A3: partially overlapping cocovers, both proper of type (**). Here b = a − 1, c = b − 1,
d = c − 1, e = d − 1, p, q ≥ 1, while i is the position of a in the partition µ, j = i + p + 1 is the
position of c, and k = j + q + 1 is the position of e.

. . . abpcdqe . . .

(j−1,j+1)
��

(i,j)

tt

(j,k)

**tt tt ** **
. . . bp+2dqe . . .

(j,j+1)
��

. . . abp−1c3dq−1e . . .

(i,j−1)tt (j+1,k) **

. . . abpdq+2 . . .

(j−1,j)
��

. . . bp+1c2dq−1e . . .

(j+1,k) **

. . . abp−1c2dq+1 . . .

(i,j−1)tt
. . . bp+1cdq+1 . . .

Due to the conjugation automorphism of the dominance order, given two distinct covers µ l ν
and µl π of µ, the isomorphism type of the interval [µ, ν ∨ π] is always given by one of the above
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graphs turned upside down. So we have the corresponding Cases A1′−A3′. In fact, the structure of
the intervals in Cases A1′ and A2′ is identical with that in Cases A1 and A2, respectively; however,
Case A3 leads to the different structure shown below; the two covers above are again shown in
bold.

Case A3′. Here a ≥ c+ 1, d = c− 1, d ≥ f + 1, while i is the position of a in the partition µ at
the bottom.

. . . (a+ 1)cd(f − 1) . . .
(i+2,i+3)

tt

(i,i+1)

**
. . . (a+ 1)c(d− 1)f . . .

(i+1,i+2)
��

(i,i+1)

**

. . . a(c+ 1)d(f − 1) . . .
(i+2,i+3)

tt
(i+1,i+2)
��

. . . (a+ 1)d2f . . .

(i,i+1) ** ** **

. . . a(c+ 1)(d− 1)f . . .

(i+1,i+2)

��

. . . ac2(f − 1) . . .

(i+2,i+3)tt tt tt
. . . acdf . . .

4.2. Type Cn. Now λ is a partition (λ1 ≥ . . . ≥ λn ≥ 0), and we use the same notation as in

Section 4.1. It is easy to see that the minimal element 0̂ mentioned above (i.e., the unique minimal
element below λ) is either 0 or ω1 = (10n−1), depending on |λ| being even or odd, respectively. By
[34, Theorem 2.8], a cocover in the corresponding partial order on dominant weights is either of
the same form (22) as in type A, or has one of the following three forms:

(23) (. . . 120n−k−1) m (. . . 0n−k+1) , (. . . 21) m (. . . 10) , (. . . (a+ 2)) m (. . . a) ,

where 1 ≤ k ≤ n− 1; these three cocovers are labeled by the roots εk + εk+1, εn−1 + εn, and 2εn,
respectively. For simplicity, we denote a root εi + εj by αi or (i, ). In the sequel, we will see that
it is desirable for the last cover in (23) never to appear; the reason is that αn is a long root, and
hence does not appear in the W -orbit of α1. In fact, there is an easy condition which simplifies the
setup even more.

Proposition 4.1. If n > (|λ|+1)/2, then the first cocover in (23) is the only one which can appear

in the Hasse diagram of the interval [0̂, λ] beside the type A cocovers in (22).

Proof. Assume that a partition µ ≤ λ has the form (. . . 21) or (. . . 2). Then we must have µ1 =
. . . = µn−1 ≥ 2. Combining this with the fact that |λ| ≥ |µ|, we obtain |λ| ≥ 2n − 1 or |λ| ≥ 2n,
respectively. But this contradicts the condition in the proposition. �

From now on, we work under the assumption of Proposition 4.1, and we call this the type C
stable range.

To the authors’ knowledge, an analogue of the classification of short intervals that was described
above is not available beyond type A. In order to address this problem in type Cn, in the stable
range, we focus on the new cases involving a pair of cocovers and covers.

Given distinct cocovers µ m ν and µ m π of a partition µ, we can assume that they are labeled
(i, j) and (k, k + 1), where necessarily i < k. It is easy to see that these cocovers can only have
one of the following relative positions (in terms of their labels): (i) nonoverlapping if j < k; (ii)
partially overlapping if j = k; (iii) fully overlapping if j = k + 2. We are led to Cases C1−C3
below; the two cocovers above are shown in the diagrams below in bold, and for simplicity we omit
the trailing 0’s in a partition. Thus, we proved the following result.

Proposition 4.2. A lower bound of ν and π is always obtained as in one of the Cases C1−C3.
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Furthermore, we claim that the structure of the interval [ν ∧ π, µ] is always given by one of
the diagrams below. The proof is completely similar to that of [4, Proposition 3.2], which was
mentioned above. However, Proposition 4.2 suffices for our purposes.

Case C1: cocovers which are (a) nonoverlapping; (b) fully overlapping, with (i, j) proper of
type (**). As subcase (a) is easy, only subcase (b) is represented in the diagram below.

In subcase (b), we have p ≥ 2, while i is the position of (the shown) 2 in the partition µ, and
j = i+ p+ 1 is the position of the first 0.

. . . 21p

(i,j)

yy

(j−2,j−1)

&&yy yy && &&
. . . 1p+2

(j−1,) %%

. . . 21p−2

(i,j−2)xx
. . . 1p

Case C2: partially overlapping cocovers, with (i, j) of type (*), so j = i + 1. We have a ≥ 2,
while i is the position of a in the partition µ.

. . . a12

(i,i+1)

ww (i+1,i+2)

��

ww ww

�� ��

. . . (a− 1)21

(i+1,i+3)

��

. . . a

(i,i+1)

��

. . . (a− 1)13

(i+2,i+3) ''
. . . (a− 1)1

Case C3: partially overlapping cocovers, with (i, j) proper of type (**). Here p ≥ 1, while i is
the position of (the shown) 3 in the partition µ, and j = i+ p+ 1 is the position of the first 1.

. . . 32p12

(j−1,j+2)
��

(i,j)

uu

(j,j+1)

))uu uu )) ))
. . . 2p+21

(j,j+2)
��

. . . 32p−114

(i,j−1)uu (j+1,j+2) ))

. . . 32p

(j−1,j)
��

. . . 2p+113

(j+1,j+2) ))

. . . 32p−112

(i,j−1)uu
. . . 2p+11

Now consider two distinct covers µl ν and µl π of µ, labeled (i, j) and (k, k + 1), respectively.

Proposition 4.3. An upper bound of ν and π is always obtained as in one of the Cases C1−C2.
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Proof. We have µk = µk+1 = 0 and πk = πk+1 = 1. Clearly, we must have j < k and µk−1 > 0.
If j < k − 1, or j = k − 1 and µk−1 > 1, we are in Case C1 (a). Otherwise, when j = k − 1 and
µk−1 = 1, we have either i < j − 1 or i = j − 1; but these are precisely Cases C1 (b) and C2,
respectively. �

Furthermore, we claim that the structure of the interval [µ, ν∨π] is always given by the diagrams
in Cases C1 or C2. The proof is again completely similar to that of [4, Proposition 3.2]. However,
Proposition 4.3 suffices for our purposes.

4.3. Type Dn. Now λ is a sequence (λ1 ≥ . . . ≥ λn) with λi ∈ 1
2Z, all congruent mod Z, such that

λn−1 + λn ≥ 0. By [34, Theorem 2.8], a cocover in the corresponding partial order on dominant
weights is either of the same form (22) as in type A (with entries in 1

2Z now allowed), or has one
of the following three forms:

(. . . 120n−k−1) m (. . . 0n−k+1) , (. . . (a+ 1)an−l−1(−a+ 1)) m (. . . an−l(−a)) ,(24)

(. . . (a+ 1)(b+ 1)) m (. . . ab) ,

where 1 ≤ k, l ≤ n − 1 and a ≥ 1
2 ; these cocovers are labeled by the roots εk + εk+1, εl + εn, and

εn−1 + εn, respectively.

We will now assume that λi ∈ Z. This implies that the interval [0̂, λ] only contains weights
µ = (µ1 ≥ . . . ≥ µn) with µi ∈ Z. Note that, in this case, there are the same possibilities for the

minimal element 0̂ as in type C, see Section 4.2.

Proposition 4.4. If n > |λ|, then the first cocover in (24) is the only one which can appear in the

Hasse diagram of the interval [0̂, λ] beside the type A cocovers in (22).

Proof. Assume that the statement fails. Then there is µ ≤ λ with µn−2 ≥ 1, µ1 ≥ 2, and µn−1+µn ≥
1. Combining this with the fact that |λ| ≥ |µ|, we obtain |λ| ≥ n. But this contradicts the condition
in the proposition. �

From now on, we work under the assumption of Proposition 4.4, and we call this the type D
stable range. Clearly, all the results about the type C stable range in Section 4.2 apply to the type
D one.

5. Modified crystal operators on finite crystals

We now assume that g is a simple Lie algebra over C of rank r which satisfies the following
condition: we can (and will) label the Dynkin diagram of g with the integers 1, . . . , r such that the
parabolic Dynkin diagram obtained by removing the node r is of type Ar−1. In other words, the
only excluded Lie type is the one of type F4.

5.1. Definition of the modified crystal operators. For any w ∈W , define the modified crystal
operator kw on B(λ) as the conjugation kw := wf̃1w

−1 of the ordinary crystal operator f̃1 by the

Kashiwara action of w on B(λ) [11]2. This means that kw(b) = 0 precisely when f̃1 applied to
w−1(b) is 0. For any b ∈ B(λ), we have

wt(kw(b)) = wt(b)− α , where α = w(α1) .

2These operators were considered in [11, Remark 7.4.2], and it was observed there that they do not coincide with
the ordinary ones, but to the authors’ knowledge they were not studied further.
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When α is a positive root, we set fw := kw. When w′ ∈ W is such that w′(α1) = −α is a negative
root, set w := w′s1, so that we have w(α1) = α and

(25) kw′ = ws1f̃1s1w
−1 = wẽ1w

−1 .

It is then convenient to write ew := kw′ . In the sequel, we will only consider operators fw and ew
with w(α1) ∈ R+. Assume moreover that w1 and w2 are two elements of W such that w1(α1) =
w2(α1) = α ∈ R+. Then w−12 w1(α1) = α1, and therefore w−12 w1 belongs to the parabolic subgroup

of W generated by the simple reflections s3, . . . , sn. It follows that the actions of f̃1 and w−12 w1

(respectively, ẽ1 and w−12 w1) commute. We thus have fw1 = fw2 and ew1 = ew2 . Therefore, given
any positive root α in the orbit of α1

3, it makes sense to define

fα := fw and eα := ew ,

where w is any element in W such that w(α1) = α. When α = αi is a simple root, we simply write

fi := fαi and ei := eαi . We clearly have f1 = f̃1, but fi 6= f̃i in general, and similarly for e1.

We endow the vertices of B(λ) with the structure of a colored directed graph B(λ) with edges

b
α
99K b′ when b′ = fα(b). As noted above, the graph B(λ) is different from the Kashiwara crystal

B(λ), and in fact, unlike the latter, the former is not connected in general.

5.2. First properties of the modified crystal operators. Let w◦ be the maximal length ele-
ment of the Weyl group W . Recall that w◦ induces an involution ∗ on the set of positive roots of
g such that w◦(α) = −α∗.

Lemma 5.1. For any b, b′ ∈ B(λ), we have

b′ = fα(b) ⇐⇒ w◦(b
′) = eα∗(w◦(b)) .

Proof. Indeed, let w ∈W be such that w(α1) = α. The first equality is equivalent to

w◦(b
′) = w◦wf̃1w

−1w−1◦ (w◦(b)) .

Now observe that w◦w(α1) = −α∗ and thus, by (25), the right-hand side of the above equality is
eα∗(w◦(b)), as desired. �

Lemma 5.2. Consider b ∈ B(λ) and a positive root α ∈Wα1.

(1) If 〈wt(b), α〉 > 0, then fα(b) 6= 0. In particular, if wt(b) − α is dominant, where α ∈ R+,
then fα(b) 6= 0.

(2) If 〈wt(b), α〉 < 0, then eα(b) 6= 0.

Proof. Choose w ∈ W such that w(α1) = α. If 〈wt(b), α〉 > 0, then 〈w−1wt(b), w−1(α)〉 =

〈wt(w−1(b)), α1〉 > 0, which implies that f̃1(w
−1(b)) 6= 0. But this is equivalent to fα(b) 6= 0.

For the second part of (1), let µ := wt(b), and observe that 〈µ, α∨〉 = 〈µ − α, α∨〉 + 2 ≥ 2; so we
can apply the first part. Then we deduce (2) from (1) by using Lemma 5.1. �

Theorem 5.3. Assume the root system considered is of classical type. Consider two positive roots
α and β in Wα1 and a vertex b in B(λ) such that 〈wt(b), α〉 > 0 and 〈wt(b), β〉 > 0.

(1) If α+ β ∈ R+, then fαfβ(b) = fβfα(b) = fα+β(b) 6= 0 .
(2) If 〈α, β〉 = 0, then fαfβ(b) = fβfα(b) 6= 0 .

We first reduce our theorem to an equivalent simpler statement. Its two parts will be proved in
Sections 5.4 and 5.5, respectively.

Lemma 5.4. Theorem 5.3 is true if and only the following two statements hold.

3Observe that the orbit Wα1 coincides with the set of all roots only for simply laced root systems.
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(1) For any b such that 〈wt(b), α1〉 > 0 and 〈wt(b), α2〉 > 0, we have

f1f2(b) = f2f1(b) = fα1+α2(b) 6= 0 .

(2) For any b such that 〈wt(b), α1〉 > 0 and 〈wt(b), α3〉 > 0, we have

f1f3(b) = f3f1(b) 6= 0 .

Proof. The group W acts on the set D = {{α, β} | α 6= β, α, β ∈ Wα1} by w(α, β) = (w(α), w(β))
for any w ∈ W . When 〈α, β〉 = 0, we must have r ≥ 3 and 〈(w(α), w(β)〉 = 0 for any w ∈ W .
There thus exists w ∈W such that w(α) = α1 and w(α) = α3. We then obtain

fαfβ(b) = fβfα(b) ⇐⇒ (wfαw
−1)(wfβw

−1)(w(b)) = (wfβw
−1)(wfαw

−1)(w(b))

⇐⇒ f1f3(w(b)) = f3f1(w(b)) .

When α+ β > 0, we must have r ≥ 3 in types Br,and Cr
4. By using that α and β belong to Wα1,

one checks by considering the set of positive roots in each type Ar, Br, Cr and Dr that there always
exists w in the Weyl group W such that w(α) = α1 and w(β) = α2, or w(α) = α2 and w(β) = α1.
In the first case, one gets

fαfβ(b) = fβfα(b) = fα+β(b)

⇐⇒ (wfαw
−1)(wfβw

−1)(w(b)) = (wfβw
−1)(wfαw

−1)(w(b)) = wfα+βw
−1(w(b))

⇐⇒ f1f2(w(b)) = f2f1(w(b)) = fα1+α2(w(b)) .

The second case is similar. �

We have an analogous result to Theorem 5.3 for the e· operators.

Theorem 5.5. Assume the root system considered is of classical type. Consider two positive roots
α and β in Wα1 and a vertex b in B(λ) such that 〈wt(b), α〉 ≥ 0 and 〈wt(b), β〉 ≥ 0. Assume also
that eα(b) 6= 0 and eβ(b) 6= 0.

(1) If α+ β ∈ R+, then eαeβ(b) = eβeα(b) = eα+β(b) 6= 0 .
(2) Assume that 〈α, β〉 = 0, and that there is a positive root γ such that the triple (α, γ, β)

belongs to the W -orbit of the triple of simple roots (α1, α2, α3) in a subsystem of type A3.
If we also have 〈wt(b), γ〉 > 0, then eαeβ(b) = eβeα(b) 6= 0.

By analogy with Theorem 5.3, the above result is proved based on the following reduction. In
turn, the two parts of Lemma 5.6 are proved in the same way as those of Lemma 5.4, also in
Sections 5.4 and 5.5, respectively.

Lemma 5.6. Theorem 5.5 is true if and only the following two statements hold.

(1) For any b such that 〈wt(b), α1〉 ≥ 0, 〈wt(b), α2〉 ≥ 0, e1(b) 6= 0, and e2(b) 6= 0, we have

e1e2(b) = e2e1(b) = eα1+α2(b) 6= 0 .

(2) For any b such that 〈wt(b), α1〉 ≥ 0, 〈wt(b), α2〉 > 0, 〈wt(b), α3〉 ≥ 0, e1(b) 6= 0 and
e3(b) 6= 0, we have

e1e3(b) = e3e1(b) 6= 0 .

Proof. The proof of Assertion 1 is similar to that of Lemma 5.4. To prove Assertion 2, we can
assume with no loss of generality that α = εi−εj and β = εk− tεl with i < j < k < l and t ∈ {±1}.
Let w ∈ W be such that w(α) = α1 and w(β) = α3. We have w−1(i) = 1, w−1(2) = j, w−1(3) = k
and w−1(4) = tl. Then γ = w−1(α2) = εj − εk is the unique positive root such that 〈α, γ〉 =

4In type G2, there are two short positive roots α and β such that α + β is short. Thus the lemma does not hold
since α2 is a long root.
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〈γ, β〉 = −1. We get 〈wt(b
′
), α1〉 ≥ 0, 〈wt(b′), α2〉 > 0, 〈wt(b′), α3〉 ≥ 0, e1(b

′) 6= 0 and e3(b
′) 6= 0

with b′ = w(b). �

As mentioned, we start with a direct proof of the first parts of Lemmas 5.4 and 5.6; these are
based on the description of the actions of f2 and fα1+α2 on semistandard tableaux. We then prove
the second parts by using the cyclage of Lascoux and Schützenberger (which can also be used to
reprove the first parts).

5.3. Cyclage, charge and the modified crystal operators. Given a semistandard tableau T ,
write C(T ) = x ↪→ T [ where x ↪→ T [ is the semistandard tableau obtained after the row-insertion
of the south-west letter x of T in the tableau T \ {x}. The combinatorial procedure T → C(T )
is called the cyclage of the tableau T . It is known (see [16]) that the sequence of cyclages applied
to T will eventually lead to the unique row-tableau Rµ where µ = wt(T ) is the weight of T . The
number co(T ) of cyclage operations used in this sequence is called the cocharge of T . The charge

of T is then defined as c(T ) = ‖µ‖ − co(T ) where ‖µ‖ =
∑n−1

i=1 (i− 1)µi.

Example 5.7. For T =
1 1 4
2 2
3

we get

T1 = C(T ) =
1 1 3
2 2 4

, T2 = C2(T ) =
1 1 2
2 3
4

, T3 = C3(T ) =
1 1 2 4
2 3

T4 = C4(T ) =
1 1 2 2
3 4

, T5 = C5(T ) =
1 1 2 2 3
4

T6 = C6(T ) = 1 1 2 2 3 4 .

Therefore co(T ) = 6 and c(T ) = 7− 6 = 1.

We can endow the set Tabµ of semistandard tableaux of weight µ with the structure of an oriented
graph with an oriented edge T  T ′ when T ′ = C(T ). We then have a unique sink vertex in Tabµ
which is the row tableau of evaluation µ. Given µ and ν two weights, we write ν ≤ µ when µ − ν
can be written as a linear combination of simple roots εi − εi+1, i = 1, . . . , n− 1 with nonnegative
integral coefficients. We refer to [16] for a proof of the following theorem.

Theorem 5.8.

(1) For any σ ∈ Sn the Kashiwara action T 7−→ σ(T ) gives an isomorphism of oriented graphs
from Tabµ to Tabσ(µ).

(2) Assume µ1 > µ2. Then the action of the Kashiwara crystal operator f̃1 yields an embedding
of oriented graphs from Tabµ to Tabµ−α1.

(3) If C(T ) = C(T ′) where T and T ′ are two tableaux with the same shape, then T = T ′. Thus
the embedding in (2) is the unique which preserves the shape of the tableaux.

Corollary 5.9. Consider a tableau T and a positive root α such that fα(T ) 6= 0. Then fα(C(T )) =
C(fα(T )) 6= 0.5

It is well-know that the charge statistic yields a combinatorial description of the Kostka polyno-
mials in type A.

5Nevertheless, there are tableaux T such that fα(c(T )) 6= 0 but fα(T ) = 0.
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Theorem 5.10. For any partitions λ and µ we have

Kλ,µ(t) =
∑

T∈Tab(λ)µ

tc(T )

where Tab(λ)µ is the set of semistandard tableaux of shape λ and evaluation µ.

The following proposition is a consequence of Theorems 5.8 and 5.10. It shows how the charge
and cocharge statistics are modified when a modified crystal operator is applied to a tableau T of
shape λ (regarded as a vertex of the crystal B(λ)). For any positive root α, let |α| be the height
of α, that is the number of simple roots appearing in the decomposition of α as a sum of simple
roots.

Proposition 5.11. Let T be a vertex of B(λ) of weight µ and α a positive root such that fα(T ) 6= 0.
Then

co(fα(T )) = co(T ) and c(fα(T )) = c(T ) + |α| .

Proof. Since fα is obtained by conjugation of the action of f̃1, we get the equality co(fα(T )) = co(T )
from Assertion 1 and 2 of Theorem 5.8. Write α = εi − εi with 1 < i < j < n. Then fα(T ) has
weight µ− α. Since co(fα(T )) = co(T ), we have

c(fα(T ))− c(T ) = ‖µ− α‖ − ‖µ‖
= (i− 1)((µi − 1)− µi) + (j − 1)((µj + 1)− µj) = j − i = |α| .

�

5.4. Proof of Lemmas 5.4 (1) and 5.6 (1). Observe first that it suffices to prove Lemmas 5.4 (1)
and 5.6 (1) in type A2. To do this, we will use the tableau realization of the crystal B(λ). As
we restrict to type A2, we view λ as a partition λ = (λ1 ≥ λ2 ≥ 0), and we index the vertices of
B(λ) by semistandard tableaux of shape λ with the alphabet {1 < 2 < 3}. We adopt the English
notation for semistandard tableaux. The row reading of a semistandard tableau T is the word w(T )
obtained by reading its rows from right to left and top to bottom. The actions of f1, sα1 , and sα2

on B(λ) are computed by using the following well-know procedures.

For any i = 1, 2, write wi for the subword of w(T ) formed by the letters in {i, i + 1}. Let
wred
i = (i + 1)ris be the subword of wi obtained by recursively deleting factors i(i + 1). Now

consider wred
i as a subword of w(T ). If r > s, then sαi is obtained by replacing in w(T ) the r − s

rightmost letters i + 1 of wred
i with i. Otherwise, sαi is obtained by replacing in w(T ) the s − r

leftmost letters i of wred
i with i+ 1. Observe here that for each factorization wi = (i+ 1)auii

a, we
have si(wi) = (i+ 1)asi(ui)i

a.

The action of f1 on a tableau T is straightforward. If T does not contain any letter 1, then
f1(T ) = 0. Otherwise f1(T ) is obtained by replacing its rightmost letter 1 (always in its first row)
with 2.

Let us now describe the actions of fα1+α2 and f2 on a tableau T . Let m
(k)
i = m

(k)
i (T ) be the

number of letters i in the k-th row of T . Let µ = (µ1, µ2, µ3) be the content of T , i.e., µi is the
number of letters i in T .

Lemma 5.12. Assume µ1 > µ3.

(1) If T does not contains any letter 2, then fα1+α2(T ) is obtained by changing in T the rightmost
letter 1 into a letter 3.

(2) Otherwise fα1+α2(T ) is obtained by changing in T the rightmost letter 1 into a letter 2 and

• the rightmost letter 2 in its first row into a letter 3 when m
(2)
2 ≤ m

(1)
3 ,

• the rightmost letter 2 in its second row into a letter 3 when m
(2)
2 > m

(1)
3 .
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Proof. Recall that fα1+α2(T ) = sα2f1sα2(T ).

Let w(T ) = 3a2b1c3d2e. The assumption µ1 > µ3 is written c > a+d ≥ 0. Let m = min(a, e). By
the definition of the actions of sα2 and f1, the contributions of the m leftmost letters 2 in the second
row and that of the m rightmost letters 3 in the first row cancel. So, without loss of generality, we
have the following two cases, in which we show the successive actions of sα2 , f1, and sα2 ; the paired
entries when applying sα2 are underlined.

Case 1: a ≥ e = 0.

3a 2b 1c 3d = 3a 2max(b−d,0) 2min(b,d) 1c 3min(b,d) 3max(d−b,0) sα2−−→
sα2−−→ 3max(b−d,0) 2a 2min(b,d) 1c 3min(b,d) 2max(d−b,0) f1−→
f1−→ 3max(b−d,0) 2a+1 2min(b,d) 1c−1 3min(b,d) 2max(d−b,0) sα2−−→
sα2−−→ 3a+1 2max(b−d,0) 2min(b,d) 1c−1 3min(b,d) 3max(d−b,0) = 3a+1 2b 1c−1 3d .

Case 2: e > a = 0.

2b 1c 3d 2e = 2max(b−d,0) 2min(b,d) 1c 3min(b,d) 3max(d−b,0) 2e
sα2−−→

sα2−−→ 3max(b−d,0) 2min(b,d) 1c 3min(b,d) 3e 2max(d−b,0) f1−→
f1−→ 3max(b−d,0) 2min(b,d)+1 1c−1 3min(b,d)+1 3e−1 2max(d−b,0) sα2−−→
sα2−−→ 2max(b−d,0) 2min(b,d)+1 1c−1 3min(b,d)+1 3max(d−b,0)2e−1 = 2b+1 1c−1 3d+1 2e−1 .

�

Lemma 5.13. Assume µ2 > µ3. If m
(2)
2 ≤ m

(1)
3 (respectively m

(2)
2 > m

(1)
3 ), the tableau f2(T ) is

obtained by changing in T the rightmost letter 2 in the first (respectively second) row into a letter
3.

Proof. Recall that f2(T ) = s1fα1+α2s1(T ).

Let w(T ) = 3a2b1c3d2e, so we have c ≥ e. The assumption µ2 > µ3 is written b + e > a + d.
Based on Lemma 5.12, we consider the following two cases, in which we show the successive actions
of sα1 , fα1+α2 , and sα1 ; the paired entries when applying sα1 are underlined.

Case 1: a ≥ e. We have b+ e > a+ d ≥ d+ e, so b > d ≥ 0.

3a 2b 1c 3d 2e = 3a 2b 1c−e 1e 3d 2e
sα1−−→ 3a 2c−e 1b+e 3d 2e

fα1+α2−−−−→ 3a+1 2c−e 1b+e−1 3d 2e =

= 3a+1 2c−e 1b−1 1e 3d 2e
sα1−−→ 3a+1 2b−1 1c 3d 2e .

Case 2: e > a ≥ 0.

3a 2b 1c 3d 2e
sα1−−→ 3a 2c−e 1b+e 3d 2e

fα1+α2−−−−→ 3a 2c−e+1 1b+e−1 3d+1 2e−1 =

= 3a 2c−e+1 1b 1e−1 3d+1 2e−1
sα1−−→ 3a 2b 1c 3d+1 2e−1 .

�

Corollary 5.14. Consider a tableau T of weight (µ1, µ2, µ3) such that µ2 ≥ µ3. Then e2(T ) = 0 if

and only if m
(2)
2 ≥ m

(1)
3 and m

(2)
3 = 0.

Proof. Assume m
(2)
2 < m

(1)
3 . Since m

(1)
3 > 0, we can consider the tableau T ′ obtained by changing

the leftmost letter 3 in 2 in the first row of T . By the previous lemma, we have then e2(T ) = T ′ 6= 0.

Similarly, when m
(2)
2 ≥ m

(1)
3 and m

(2)
3 > 0, we also get e2(T ) 6= T ′ where T ′ is then obtained from
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T by changing the leftmost letter 3 in 2 in the second row. Conversely, when m
(2)
2 ≥ m

(1)
3 and

m
(2)
3 = 0, the tableau T ′ obtained from T by changing the leftmost letter 3 in 2 in the first row (if

any) does not satisfy f2(T
′) = T . Thus, we have e2(T ) = 0. �

The following lemma is a rephrasing of the statement in Lemma 5.4 (1). It is an easy consequence
of Lemmas 5.12 and 5.13.

Lemma 5.15. If the tableau T is such that µ1 > µ2 > µ3, then we have

f1f2(T ) = f2f1(T ) = fα1+α2(T ) 6= 0 .

Lemma 5.6 (1) is rephrased as follows.

Lemma 5.16. If the tableau T is such that µ1 ≥ µ2 ≥ µ3, e1(T ) 6= 0, and e2(T ) 6= 0, then we have

e1e2(T ) = e2e1(T ) = eα1+α2(T ) 6= 0 .

Proof. Let T ′ := e2(T ). We have 〈wt(T ′), α2〉 > 0. Therefore, the action of f2 on T ′, which produces
T , is described by Lemma 5.13. Thus, we have the following two cases, where we use the notation

m
(k)
i ( · ) introduced above.

Case 1: m
(2)
2 (T ′) ≤ m

(1)
3 (T ′). In this case, we have m

(1)
2 (T ) = m

(1)
2 (T ′) − 1. Since e1(T ) 6= 0,

we have m
(1)
2 (T ) > 0, which implies m

(1)
2 (T ′) > 0. It means that T ′′ := e1(T

′) 6= 0.

Case 2: m
(2)
2 (T ′) > m

(1)
3 (T ′). In this case, we have m

(1)
2 (T ) = m

(1)
2 (T ′). In the same way as in

Case 1, we deduce T ′′ := e1(T
′) 6= 0.

In both cases, we have wt(T ′′) = wt(T ) + α1 + α2. Therefore, the hypothesis of Lemma 5.15 is
satisfied for T ′′, and the proof is completed by applying this lemma. �

5.5. Proof of Lemmas 5.4 (2) and 5.6 (2). The difficulty is that the second parts of Lemmas 5.4
and 5.6 reduce to type A3, rather than type A2, like the first parts. The action of the modified
crystal operator f3 can also be described in the same spirit as in Lemma 5.13, but this requires
the enumeration of numerous configurations. Fortunately, in order to prove Lemmas 5.4 (2) and
5.6 (2), this can be avoided by using the “canonical” cyclage on semistandard tableaux.

Lemma 5.4 (2) is now rephrased as follows.

Lemma 5.17. If the tableau T is such that µ1 > µ2 and µ3 > µ4, then we have

f1f3(T ) = f3f1(T ) 6= 0 .

Proof. By Lemma 5.2, we have f1f3(T ) 6= 0 and f3f1(T ) 6= 0. We argue by induction on the cocharge.
When co(T ) = 0, the tableau T has row shape, and the equality is clear since f1f3(T ) = f3f1(T )
is the unique row of weight wt(T ) − α1 − α3. Assume that the lemma holds for any tableau with
cocharge k − 1, and consider T such that co(T ) = k. Set f1f3(T ) = U and f3f1(T ) = U ′. By
Theorem 5.8 (2), we get f1(C(T )) = C(f1(T )). Then f3f1(C(T )) = f3C(f1(T )). But the cyclage
operation also commutes with f3 (in fact with any modified crystal operator), because it commutes
with the actions of W and f1, by Theorem 5.8 (1), (2). So we have f3f1(C(T )) = C(f3f1(T )) = C(U).
We obtain similarly the equality f1f3(C(T )) = C(f1f3(T )) = C(U ′). By our induction hypothesis,
we thus deduce that C(U) = C(U ′). But since C(U) and C(U ′) have the same shape (i.e., that of
C(T )), Theorem 5.8 (3) implies the desired equality U = U ′. �

Lemma 5.6 (2) is rephrased as follows.
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Lemma 5.18. If the tableau T is such that µ1 ≥ µ2 > µ3 ≥ µ4, e1(T ) 6= 0 and e3(T ) 6= 0, then we
have

e1e3(T ) = e3e1(T ) 6= 0 .

We first prove a weaker version for two-row tableaux.

Lemma 5.19. Lemma 5.18 is true for any two-row tableau T .

Proof. Observe first we must have µ3 > 0. Otherwise µ3 = µ4 = 0 and we cannot have e3(T ) 6= 0
for this would give a tableau of evaluation (µ1, µ2, 1,−1). Set T ′ = e1(T ). When e3(T

′) 6= 0, the
tableau T ′′ = e3(T

′) has weight (µ1 + 1, µ2 − 1, µ3 + 1, µ4 − 1) and by applying Lemma 5.17 to T ′′

we get

T = f1f3(T
′′) = f3f1(T

′′) 6= 0 ,

which is equivalent to the desired equality.

We claim we cannot have e3(T
′) = 0. Indeed, assume e3(T

′) = 0. Recall we have e3 = s2s3e2s3s2.
We obtain e2s3s2(T

′) = 0 and e2s3s2(T ) 6= 0 because e3(T ) 6= 0. Set U = s3s2(T ) and U ′ = s3s2(T
′).

Then e2(U
′) = 0 and e2(U) 6= 0. Since T = f1(T

′) we can write

U = s3s2f1s2s3(U
′)⇐⇒ U = s3fε1−ε3s3(U

′) .

Moreover

wt(U ′) = (µ1 + 1, µ3, µ4, µ2 − 1) and wt(s3(U
′)) = (µ1 + 1, µ3, µ2 − 1, µ4) .

We shall need the two integers a = m
(2)
2 (U ′) (thus a ≤ µ3 for U ′ contains µ3 letters 2) and

b = m
(1)
4 (T ). We get m

(1)
3 (U ′) = µ4 and a ≥ µ4 by Corollary 5.14. In particular, there is no letter

3 in the second row of U ′. We shall discuss three cases.

Case 1: m
(2)
4 (U ′) ≤ m

(1)
3 (U ′) = µ4. During the computation of s3(U

′), all the letters 4 in the
second row of U ′ are paired with letters 3 of its first row. Since µ2−1−µ4 ≥ 0 because µ2 > µ3 ≥ µ4,
exactly µ2 − 1− µ4 letters 4 of the first row are changed in letters 3. We get m

(1)
3 (s3(U

′)) = µ2 − 1

and m
(2)
2 (s3(U

′)) = m
(2)
2 (U ′) = a. Thus m

(2)
2 (s3(U

′)) ≤ m
(1)
3 (s3(U

′)) (otherwise µ3 ≥ a ≥ µ2). By
Lemma 5.12, fε1−ε3(s3(U

′)) is thus obtained by changing a letter 1 in a letter 3 in the first row of
s3(U

′). We get U by applying s3 to fε1−ε3(s3(U
′)), that is by changing µ2−µ4 letters 3 in letters 4

in its first row. We see that U is obtained from U ′ by changing a letter 1 in a letter 4 in its first row

(up to reordering). Therefore U has no letter 2 in its second row and m
(2)
2 (U) = a ≥ µ4 = m

(1)
3 (U).

By Corollary 5.14 we derive the contradiction e2(U) = 0.

Case 2: m
(2)
4 (U ′) > m

(1)
3 (U ′) = µ4. During the computation of s3(U

′), all the letters 3 in the
first row of U ′ are paired with letters 4 of its second row. Then, all the remaining µ2 − 1 − µ4
letters 4 are changed into letters 3 in both rows. In particular, we get m

(1)
3 (s3(U

′)) = µ4 + b. We
shall consider two subcases.

Case 2.a: a = m
(2)
2 (U ′) ≤ m

(1)
3 (s3(U

′)) = µ4 + b. By Lemma 5.12, fε1−ε3(s3(U
′)) is then

obtained by changing a letter 1 in a letter 3 in the first row of s3(U
′) and we get a contraction

exactly as in Case 1.

Case 2.b: a = m
(2)
2 (U ′) > m

(1)
3 (s3(U

′)) = µ4 + b. By Lemma 5.12, fε1−ε3(s3(U
′)) is then

obtained from s3(U
′) by changing a letter 1 in a letter 2 in its first row and a letter 2 in a letter

3 in its second row. We get U by applying s3 to fε1−ε3(s3(U
′)), that is by changing in letters 4 all

the letters 3 unpaired with the letters 4 located in the second row. We see that U is obtained from
U ′ by changing a letter 1 in a letter 2 in its first row and a letter 2 in a letter 4 in its second row.

Thus, there is no letter 3 in the second row of U . Moreover m
(2)
2 (U) = m

(2)
2 (U ′)−1 = a−1. But by
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hypothesis, a > µ4 + b, thus a− 1 ≥ µ4 and m
(2)
2 (U) ≥ µ4 = m

(1)
3 (U). We yet get the contradiction

e2(U) = 0 by Corollary 5.14. �

We can now prove Lemma 5.18 by induction on the cocharge.

Proof. Observe first Lemma 5.18 is clearly true for row tableaux, that is for tableaux of cocharge 0.
Assume it holds for any tableau of cocharge k and the tableau T considered as cocharge k+ 1. If T
has two rows we are done by the previous lemma. So we can assume that T has at least 3 rows. Set
T ′ = e3(T ). By Corollary 5.9, we can apply our induction hypothesis to the tableau C(T ), we must
have e1(C(T ′)) 6= 0. We claim this implies that e1(T

′) 6= 0. Indeed, the conditions e1(C(T ′)) 6= 0
but e1(T

′) = 0 would imply that the letter of T ′ which is used in the cyclage operation is a 2 (any
other letter would not modify the locations of the letters 1 and 2 in T ′). But by definition of the
cyclage, 2 is then the leftmost letter of the shortest row of T ′, which is only possible if T ′ has two
rows contrary to the assumption we made. To terminate the proof it suffices to apply Lemma 5.17
to T ′′ = e1(T

′) = e1e3(T ). �

Remarks 5.20. (1) One can use a similar method to give alternative proofs of Lemmas 5.15 and 5.16,
that is, without making explicit the action of f2 and fα1+α2 . Note that only the basic properties of
cyclage mentioned in Section 5.3 are used to carry out the induction step, and no related combi-
natorics.

(2) On another hand, it would be interesting to prove Lemmas 5.17 and 5.18 in a similar way to
Lemmas 5.15 and 5.16, that is, by making explicit the action of f3. While such a proof would only
use the crystal structure (without referring to cyclage), we found it challenging because the Weyl
group action is not easy to express in any of the combinatorial models we considered, so we were
led to an unmanageable number of cases. Nevertheless, the special case considered in the proof of
Lemma 5.19 is manageable with the tableau model.

6. Proof of the atomic decomposition

Fix a dominant weight λ for a classical Lie algebra. Consider the subgraph of B(λ) consisting of

the vertices of dominant weight, and the edges b
α
99K fα(b) for which wt(b) m wt(fα(b)) is a cocover

in the dominant weight poset. This new colored directed graph on the vertices of B(λ)+ will be
denoted by B(λ)+. It can also be viewed as a poset (with cocovers given by the above edges), and

the weight function is a poset projection to the interval [0̂, λ] in the dominant weight poset. The
two points of view will be used interchangeably.

The main goal is to identify situations in which the components of the poset B(λ)+ define an
atomic, respectively t-atomic decomposition, cf. Definitions 2.6 and 2.7.

Remark 6.1. It is important to use the setup mentioned above, as we found that several other
variations fail, as explained below.

• If we consider all vertices ofB(λ), rather than just those of dominant weight, then Lemma 5.17
fails, for instance, in type A3, for λ = (4, 1, 1).
• In type An−1, we obtain the same results by defining the modified crystal operators based

on fn−1 rather than f1 (see Section 5.1), due to the symmetry of the Dynkin diagram.
However, if any other node of the Dynkin diagram is used, the connected components of
the corresponding B(λ) do not satisfy the properties in Theorem 6.5, which are needed for
the atomic decomposition. An example is λ = (4, 3) in type A3.
• The same complication arises if we do not remove the modified crystal edges which do not

correspond to cocovers in the dominant weight poset. An example is λ = (3, 1, 1) in type
C3.
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Lemma 5.2 (1) immediately gives the following result, which is a converse of the fact that every
edge in B(λ)+ projects to a cocover in the dominant weight poset (by definition).

Lemma 6.2. Given a vertex b in B(λ)+ of weight µ and a cocover µ m µ − α in the dominant

weight poset (with α ∈ R+), we have an edge b
α
99K fα(b) in B(λ)+.

6.1. Type An−1. We refer freely to Section 4.1.

Lemma 6.3. Consider two distinct edges b99Kb′ and b99Kb′′ in B(λ)+. The vertices b′ and b′′ have
a lower bound in this poset.

Proof. Let µ := wt(b), ν := wt(b′), and π := wt(b′′). We have cocovers µ m ν and µ m π, so the
interval [ν ∧ π, µ] has one of the structures in Cases A1−A3. Starting from the crystal vertex b,
we can apply the f· operators indexed by the labels in the corresponding diagrams, by Lemma 6.2.
It suffices to check that these diagrams commute, which follows by using Theorem 5.3 (1)-(2)
repeatedly. In fact, we apply this theorem to the corresponding triangles and diamonds, after we
verify its hypotheses by inspecting the diagrams. In the case of the pentagons, for instance in
Case A2 (a), we let fij := fαij , and calculate:

fi+2,jfi+1,i+2(fi,i+1(b)) = fi+1,jfi,i+1(b) = fi,i+1fi+1,j(b) ;

indeed, each of the two equalities follows from Theorem 5.3 (1). �

Lemma 6.4. Consider two distinct edges b′99Kb and b′′99Kb in B(λ)+. The vertices b′ and b′′ have
an upper bound in this poset.

Proof. The notation and related conditions are the same as in Section 4.1. Like in the proof of
Lemma 6.3, the goal is to lift the diagrams in Cases A1′−A3′ from the dominant weight poset to
B(λ)+. In fact, we will perform the lift along the edges of slightly modified diagrams (by starting
from the bottom) in the cases indicated below, while we use the same diagrams as in Section 4.1
in Cases A1′ (a) and A1′ (b).

Case A1′ (c).

. . . abpcqd . . .

(i,j)

ww

(j−1,k)

''

(j−1,j)
��

. . . abp−1cbcq−1d . . .

(i,j−1)ss (j,k) ++
. . . bp+2cq−1d . . .

(j,k) ++ ++ ++

. . . abp−1cq+2 . . .

(i,j−1)ss ss ss
. . . bp+1cq+1 . . .
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Case A2′ (a).

. . . acdpe . . .
(i,i+1)

tt
(i+1,i+2)

��
(i+1,j)

""

. . . (a− 1)(c+ 1)dpe . . .

(i+1,i+2)
��

. . . adcdp−1e . . .

(i,i+1)tt (i+2,j) ((
. . . (a− 1)c2dp−1e . . .

(i+2,j) ** ** **

. . . adp+2 . . .

(i,i+1)vv vv vv
. . . (a− 1)cdp+1 . . .

Case A2′ (b) is similar to Case A2′ (a).

Case A3′.

. . . (a+ 1)cd(f − 1) . . .

(i+1,i+2)

��

(i+2,i+3)

tt

(i,i+1)

**
. . . (a+ 1)c(d− 1)f . . .

(i+1,i+2)
��

. . . (a+ 1)dc(f − 1) . . .

(i+2,i+3)tt (i,i+1) **

. . . a(c+ 1)d(f − 1) . . .

(i+1,i+2)
��

. . . (a+ 1)d2f . . .

(i,i+1) ** ** **

. . . ac2(f − 1) . . .

(i+2,i+3)tt tt tt
. . . acdf . . .

In Cases A1′ (a) and A1′ (b), the lemma is a direct consequence of Theorem 5.5 (2) and (1),
respectively. Note that, in the first case, the extra condition in Theorem 5.5 (2) on the dominant
weight . . . a . . . c . . . e . . . g . . . at the bottom of the diagram amounts to c > e, where the two covers
of the mentioned weight are . . . a + 1 . . . c − 1 . . . e . . . g . . . and . . . a . . . c . . . e + 1 . . . g − 1 . . .; this
condition immediately follows from the fact that the covers are dominant weights themselves.

Thus, it suffices to focus on the three diagrams above. Their distinctive feature is that the
weight in the middle is not dominant, but a single pair of consecutive entries is in increasing order.
In each of the three cases, we start by applying Theorem 5.5 (2) to the diamond at the bottom
(the extra condition in the theorem is part of the assumptions corresponding to the mentioned
cases). Then we can apply the corresponding e· operator to the determined vertex of nondominant
weight, by Lemma 5.2 (2). Finally, starting from the determined top vertex, we can apply the
corresponding f· operators along all the remaining edges of the modified diagrams, by Lemma 6.2.
The commutativity of the remaining triangles and diamonds is checked by Theorem 5.3 (1); indeed,
in each case we verify the hypothesis by inspecting the corresponding diagram. This concludes the
proof. �

Theorem 6.5. The components of B(λ)+ define a t-atomic decomposition. Moreover, these com-

ponents are isomorphic to intervals of the form [0̂, µ] in the dominant weight poset via the weight
projection, and the distinguished vertex h ∈ H(λ) in each of them is chosen to be the corresponding
maximum.

Proof. By Lemma 6.2, the weight projection of a lower order ideal determined by a vertex of weight
µ is the interval [0̂, µ].
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Figure 1. Proof of Theo-
rem 6.5: C 6= ∅.
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Figure 2. Proof of Theo-
rem 6.5: C has a minimum.

Now fix a weakly connected component C of B(λ)+. As we saw, all of its minimal vertices have

weight 0̂. We will first prove the uniqueness of a minimal vertex. Assuming the contrary, let C
be the subposet of C consisting of vertices connected via directed paths to more than one minimal
vertex. Find an undirected path in C connecting two distinct minimal vertices, and consider its
local maxima and minima which are not endpoints. As noted above, there are directed paths
from the local minima to minimal vertices. By considering these paths, we can see that some
local maximum must be in C, so C 6= ∅; see Figure 1. Fixing a minimal vertex b in C, we must
have distinct edges b99Kb′ and b99Kb′′. By Lemma 6.3, b′ and b′′ have a lower bound b in C. By
considering a directed path from b to a minimal vertex, we can see that b′ or b′′ are in C, which
contradicts the minimality of b; see Figure 2. Therefore, C has a minimum bmin. The existence of
a maximum bmax is proved in a completely similar way, by using Lemma 6.4 instead.

We then need to show that there are no two vertices of the same weight in a component. Assume
for contradiction that b and b′ are such vertices, with wt(b) = wt(b′) = µ. Then we can find a

saturated decreasing chain from µ to 0̂ in the dominant weight poset. According to Lemma 6.2, by
applying to b and b′ the f· operators corresponding to the labels on the mentioned chain, we obtain
directed paths from these vertices to the minimum bmin in the considered component. However,
using the reverse sequence of labels and starting from bmin, it is clearly impossible to reach two
different vertices via the e· operators.

It is now clear that the components of B(λ)+ define an atomic decomposition, where in each
component we choose its maximum as the distinguished vertex h ∈ H(λ).

To get the t-atomic decomposition, we fist need, according to Definition 2.1, a statistic on H(λ).
One can use the realization of B(λ) in terms of semistandard tableaux. Obviously, the natural
candidate is the charge statisitcs c. For any dominant weight µ (i.e. for any partition with at most
n parts), we set

Aλ,µ =
∑

h∈H(λ)
wt(h)=µ

tc(h) .

We then have for any dominant weight ν

Kλ,ν(t) =
∑

T∈B(λ)ν

tc(T ) =
∑

ν≤µ≤λ

∑
h∈H(λ)
wt(h)=µ

∑
T∈B(λ)ν∩B(λ,h)

tc(T ) .

Now by Proposition 5.11, we obtain the equality c(T ) = c(h) + 〈µ − ν, ρ∨〉 for any T ∈ B(λ)ν ∩
B(λ, h). Indeed we have wt(h)−wt(T ) = µ−ν and T can be obtained from h by applying modified
crystal operators fα, each of them increasing the charge by 〈α, ρ∨〉. Also, the set B(λ)ν ∩ B(λ, h)
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Figure 3. The modified crystal graph B(λ)+ in Example 6.6.

is reduced to a singleton because the connected component B(λ, h) of B(λ)+ contains exactly one
vertex of weight ν ≤ λ. Thus we can write

Kλ,ν(t) =
∑

ν≤µ≤λ
t〈µ−ν,ρ

∨〉
∑

h∈H(λ)
wt(h)=µ

tc(h) =
∑

ν≤µ≤λ
t〈µ−ν,ρ

∨〉Aλ,µ(t) ,

which is equivalent to the t-atomic decomposition by Proposition 2.2. �

Example 6.6. Consider λ = (3, 2, 1) in type A3. The modified crystal graph B(λ)+ is shown in
Figure 3. Its vertices are labeled by semistandard Young tableaux whose content is a partition, and
its edges are labeled as above. In particular, this graph gives the following atomic decomposition
of the character:

χλ = w(3,2,1) + w(2,2,2) + w(3,1,1,1) + w(2,2,1,1) .

6.2. Types Cn and Dn. This section refers to the stable ranges in types Cn and Dn, namely to a
corresponding graph/poset B(λ)+. We refer freely to Sections 4.2 and 4.3, and also to the results
in Section 6.1.

Lemma 6.7. Lemmas 6.3 and 6.4 hold in types Cn and Dn, in the corresponding stable ranges.

Proof. In addition to the cases considered in the proofs of Lemmas 6.3 and 6.4, we need to consider
the cases involving the new type of cover in the corresponding dominant weight poset, namely Cases
C1−C3 (for extending the first lemma, by Proposition 4.2) and Cases C1′−C2′ (for extending the
second one, by Proposition 4.3). The goal is the same: to lift the corresponding diagrams from the
dominant weight poset to B(λ)+. We use the same reasoning as in the mentioned lemmas, and give
more details below.

For instance, in order to prove Lemma 6.3 in Case C2, we let fi := fαi , and calculate:

fi+2,i+3fi+1,i+3(fi,i+1(b)) = fi+1,i+2fi,i+1(b) = fi,i+1fi+1,i+2(b) ;

indeed, each of the two equalities follows from Theorem 5.3 (1) after we verify its hypothesis by
inspecting the corresponding diagram.
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We now turn to Lemma 6.4. Like in the proof of its type A version, we will perform the lift along
the edges of slightly modified diagrams (by starting from the bottom) in the cases indicated below,
while we use the same diagram as in Section 4.2 in Case C1′ (a). The reasoning is completely
similar, based on repeatedly applying Theorems 5.5 (2) and 5.3 (1), after carefully verifying their
hypotheses each time. Note that the special condition in Theorem 5.5 (2) requires n > 4 in type
Dn, but this is clearly true in the stable range.

Case C1′ (b).

. . . 21p

(i,j)

ww

(j−2,j−1)

''

(j−2,j)
��

. . . 21p−2012

(i,j−2)ss (j−1,) ++
. . . 1p+2

(j−1,)
++ ++ ++

. . . 21p−2

(i,j−2)
ss ss ss

. . . 1p

Case C2′.
. . . a12

(i,i+1)

uu
(i+1,i+3)

��
(i+1,i+2)

  

. . . (a− 1)21

(i+1,i+3)
��

. . . a012

(i,i+1)uu (i+2,i+3)
''

. . . (a− 1)13

(i+2,i+3) )) )) ))

. . . a

(i,i+1)ww ww ww
. . . (a− 1)1

�

Theorem 6.8. The components of B(λ)+ define an atomic decomposition. Moreover, these com-

ponents are isomorphic to intervals of the form [0̂, µ] in the dominant weight poset via the weight
projection.

Proof. We use the same reasoning as in the first part of the proof of Theorem 6.5 (the one referring
to the atomic decomposition, as opposed to the t-atomic decomposition). The proof is based on
Lemma 6.7 instead. �

Example 6.9. Consider λ = (2, 1, 1) in type C3. The modified crystal graph B(λ)+ is shown in
Figure 4. Its vertices are labeled by Kashiwara-Nakashima tableaux of dominant weight, and its
edges are labeled as above. In particular, this graph gives the following atomic decomposition of
the character:

χλ = w(2,1,1) + 2w(1,1,0) + w(0,0,0) .

7. Additional facts and perspectives

7.1. The t-atomic decomposition for the adjoint representation. Let α̃ be the highest root
of the Lie algebra g. When the root system of g is simply laced, α̃ is the unique nonzero root which



30 C. LECOUVEY AND C. LENART

1 1
2
3

(2,3)
��

1 3
2

3

(1,2)
��

1 3
2
3

(1,2)
��

2 2
3

3

1 1
3

3

(1,2)

��

2 3
3

2

1 1
3

3

1 2
3

3

(1,2)
��

2 3

3
2

Figure 4. The modified crystal graph B(λ)+ in Example 6.9.

is also a dominant weight. Otherwise, there is another root α̂ which is dominant, and we have
0 ≤ α̂ ≤ α̃. More precisely, both α̂ and α̃− α̂ are short roots of R+. In the crystal B(α̃), there are
vertices bα of weight α, one for each root α of g and r vertices of weight 0.

Lemma 7.1. For any simple αi and any index j ∈ {1, . . . , r}, we have f̃j(bαi) 6= 0 if and only if
i = j.

Proof. Since αi 6= −α̃ the lowest weight in B(α̃), there is at least an index j such that fj(bαi) 6= 0.
If j 6= i, the vertex fj(bαi) has weight αi − αj = α ∈ R. When α ∈ R+ (resp. when −α ∈ R+), we
get a contradiction because αi = αj + α is not simple (resp. αj = αi + (−α) is not simple). �

It follows from the lemma that the vertices bi = f̃αi(bαi), i = 1, . . . , r, are the zero weight vertices
in B(α̃). Recall also that

Kα̃,0(t) =

r∑
i=1

tmi ,

where m1, . . . ,mr are the classical exponents of g. We can choose m1 = |α̃| since |α̃| is the greatest
exponent.

Assume first that α1 is short, that is, the root system is not of type Br or F4. In the simply
laced case, the highest root α̃ is in the orbit of α1 and, since 〈α̃, α̃〉 > 0, we derive by Lemma 5.2
that fα̃(α̃) 6= 0 is a vertex of zero weight in B(α̃). In fact, the previous lemma also implies that
fα̃(α̃) = b1, because fα(bi) = eα(bi) = 0 for any i 6= 1 and any positive root α. Indeed, each vertex

bi has zero weight and thus is fixed under the action of the Weyl group, while f̃1(bi) 6= 0 if and only
if i = 1. In the non-simply laced case (that is, in types Cr and G2 under our assumption), we get
similarly fα̃−α̂(α̃) = bα̂ (because 〈α̃, α̃− α̂〉 > 0) and fα̂(α̂) = b1. In all cases, the previous actions of
the modified operators correspond to coverings in the dominant weight poset. Therefore, with the
notation of Section 2.3, we have H(α̃) = {bα̃, b2, . . . , br}, with B(α̃, bi) = {bi} for any i = 2, . . . , r,
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and

B(α̃, α̃) :

 bα̃
α̃
99K b1 in the simply laced cases

bα̃
α̃−α̂
99K bα̃

α̂
99K b1 in types Cr and G2 .

Now define a statistic c on H(α̃) such that c(bα̃) = 0 and {c(b2), . . . , c(br)} = {m2, . . . ,mr}. We
can then extend it to B(α̃)+ by setting

c(b1) = c(bα̃) + 〈α̃, ρ∨〉 = |α̃| , and c(bα̂) = c(bα̃) + 〈α̃− α̂, ρ∨〉 = |α̃| − |α̂| .

We then get

Aα̃,α̃(t) =
∑

h∈H(α̃)
wt(h)=α̃

tc(h) = 1 and Aα̃,0(t) =
∑

h∈H(α̃)
wt(h)=0

tc(h) = tm2 + · · ·+ tmr .

For types Cr and G2, we also have

Aα̃,α̂(t) =
∑

h∈H(α̃)
wt(h)=α̂

tc(h) = 0 .

Finally, by Proposition 2.2, we get the desired t-atomic decomposition

Kα̃,0(t) =

{
t0Aα̃,0(t) + t|α̃|Aα̃,α̃(t) in the simply laced case

t0Aα̃,0(t) + t|α̃|−|α̂|Aα̃,α̂(t) + t|α̃|Aα̃,α̃(t) for types Cr and G2 .

Now it remains to consider types Br and F4 where α1 is a long root. Recall Stembridge’s result
[34] stating that any simple root gives a cover in dominant weight poset. Thus, we cannot define

the modified crystal operators based on f̃1, because this would not permit to get the covering
relations corresponding to short roots. Now, if we define the modified crystal operators by Weyl
group conjugation of an ordinary crystal operator f̃i with αi short root, this will not match the
coverings corresponding to long roots. Nevertheless, for the adjoint representation in type Br and
F4, the coverings we need only make the short roots appear. So we can choose any short simple root
αi0 (there is one in type Br and two in type F4) and define, for any short root α ∈ R+, the modified

operators fα = uαf̃i0u
−1
α , where uα ∈ W is such that u(αi0) = α. By using the same arguments as

above, we then also get a t-atomic decomposition for Kα̃,0(t), this time with B(α̃, bi) = {bi} for any
i 6= i0 and

B(α̃, α̃) : bα̃
α̃−α̂
99K bα̂

α̂
99K bi0 .

Remark 7.2. The example of the adjoint representation illustrates the restrictions we imposed
in this paper: the atomic decompositions we obtained are for types Ar, as well as for Cr and Dr

when the rank is sufficiently large, depending on the considered partition. This is because, in these
cases, the covering relations only make appear roots in the orbit of α1, and we can use the modified
operators defined based on f̃1; for them, we were able to prove simple commutation relations in
Theorems 5.3 and 5.5. We expect that these operators suffice to derive an atomic decomposition
of crystals in the simply laced cases with mild assumptions on the highest weight considered (as
in Example 2.4). In the non-simply laced cases, the situation is more involved; namely, atomic
decompositions of crystals will certainly require one to consider modified crystal operators defined
by the conjugation of two Kashiwara operators, one for each root length, while new commutation
relations will be needed.
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7.2. More about the charge. In Section 2.3, we defined the t-atomic decomposition of B(λ)
from a charge statistic on H(λ) which propagates on the vertices b of each component B(λ, h),
h ∈ H(λ), by the formula (17). When such an atomic decomposition exists, it yields a combinatorial
description of Kλ,µ(t) by (20). In type A, Theorem 6.5 gives a t-atomic decomposition of crystals,
where c is the Lascoux-Schützenberger charge statistic.

Conversely, if we fix ν ∈ P+ and assume that we have both a combinatorial description of the
Kostka polynomials Kλ,µ(t) with λ ≤ ν due to a statistic c defined on the crystals B(λ), λ ≤ ν, and
an atomic decomposition of each B(λ) in which (17) holds, we will obtain a t-atomic decomposition
of B(λ) based on c, exactly as in the proof of Theorem 6.5.

Now assume that ν is a partition and g is of type Cr with r sufficiently large. In [17] a statistic was
defined on Kashiwara-Nakashima tableaux which conjecturally gives a combinatorial description of
the Kostka-Foulkes polynomials. The definition of this statistic is involved, but we expect that it
satisfies (17) when the atomic decomposition of B(λ) based on the modified crystal operators is
used. In [20], we also defined a statistic on King tableaux of zero weight, and proved that it yields
a combinatorial description of the generalized exponents Kλ,0(t). It is then tempting to combine
the latter construction with the Sheats bijection between King and Kashiwara-Nakashima tableaux
[32], the atomic decomposition of the crystal B(λ) with λ a partition of even rank, and (17) in
order to define another statistic on the whole B(λ)+. Two interesting questions would then arise:
does the new statistic coincide with that of [17], and does it give a combinatorial description of the
Lusztig t-analogue? If the answers are affirmative, we would get, in type C: (1) a generalization of
the Lascoux-Schützenberger charge; (2) an efficient algorithm, based on crystal combinatorics, for
calculating Kλ,µ(t) starting from Kλ,0(t).

8. Geometric interpretation

We give such an interpretation in terms of the geometric Satake correspondence. For a reductive
group G, this important theory exhibits a geometric realization of the irreducible representation
V (λ) of highest weight λ of the Langlands dual group, as the intersection cohomology IH∗(Grλ) of
the Schubert variety denoted Grλ in the affine Grassmannian GrG for G; there is also a geometric
basis of MV-cycles [25]. However, it is hard to give concrete formulas for the MV cycles and
the action. We will show how one can understand the combinatorics of the geometric Satake
correspondence via our combinatorial atomic decomposition.

The Schubert variety Grλ in GrG has a Bott-Samelson desingularization Σ̂ → Grλ ↪→ GrG.
Thus, we have cohomology maps

(26) H∗(GrG)→ H∗(Grλ) ↪→ H∗(Σ̂) ' IH∗(Grλ)⊕ other summands .

The direct sum decomposition, as H∗(GrG)-modules, is given by the Decomposition Theorem, see
e.g. [6].

IH∗(Grλ) has the truncation filtration (or standard Grothendieck filtration), which gives the
Kostka-Foulkes polynomials when restricted to the weight spaces [8]. The degree 0 piece in this

filtration is the cohomology of the constant sheaf, i.e., H∗(Grλ). This has the basis of classes

of Schubert varieties inside Grλ, which are indexed by the weights of V (λ) considered without
multiplicity, as recorded in the layer sum polynomials. In this language, the atomic decomposition
decomposition in Definition 2.1 is expressing the fact that there is a refinement of the truncation
filtration (with the H∗(GrG)-action), whose successive quotients are isomorphic to H∗(Grµ) for
µ ∈ P+(λ). These quotients correspond precisely to the blocks of the partition in the combinatorial
atomic decomposition, see Definition 2.6.
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