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Abstract. This article studies the complexity of the word problem in
groups of automorphisms of subshifts. We show in particular that for
any Turing degree, there exists a subshift whose automorphism group
contains a subgroup whose word problem has exactly this degree.

Subshifts are sets of colorings of a group G avoiding some family of forbidden
patterns. The most commonly studied kind of subshifts are the subshifts of finite
type (SFTs), which when G = Z?2 correspond to sets of Wang tilings, up to a
recoding. They have been introduced independently as a way of discretizing dy-
namical systems on compact spaces and as a tool to study decidability questions.
They have also been used as models for complex systems.

An automorphism of a subshift X is a shift-invariant continuous bijection
from X to X, or equivalently a reversible cellular automaton on X. Little is
known about automorphism groups of subshifts in general, besides that they are
countable, for instance it is not known whether the automorphism groups of the
2-symbol full shift and of the 3-symbol full shift are isomorphic.

However some properties of the base subshift influence its automorphism
group: for instance when a multidimensional subshift has positive entropy it
contains every finite group [I], but this is not a necessary condition.

In dimensions d > 2, computability has played a central role in the study of
SFTs, sofic and effective shifts. From a computability point of view, it is known
that the word problem in the automorphism group of an SFT is computably
enumerable. Here we show that for any given computably enumerable degree,
one can construct an SE'T the automorphism group of which has a word problem
with this degree.



1 Preliminaries

By countable set, we mean injectable in IN. Let A denote the empty word. For
A a countable alphabet, we note A* := [ |, . A" the set of finite words over A.
We also note AS™ :=| | _ A" for r € N.

Let us note X¢ the complement of set X. W € X means that W C X and
W is finite. V U W means V U W assuming that V NW = 0.

1.1 Computability

Computability problems are naturally defined over N, but can easily be extended
through subsets of it, cartesian products or disjoint union (by canonically inject-
ing IN in sets of tuples). For example, if G C N, then the set G* of tuples admits
a simple injection into N. Let us fix a (computable) countable set I, that we can
identify to integers.

Definition 1. Let us define the following reducibilities, for X,Y C I:

1. X is Turing-reducible to Y, X <p Y, if: one can compute X with oracle Y.

2. X is enumeration-reducible to Y, X <. Y, if: from any x and any integer
1 € N, one can compute a finite set Y;(x) such that x € X if and only if
Jie N,Yi(z) CY.

3. X is positive-reducible to Y, X <, Y, if: from any x, one can compute
finitely many finite sets Yo(x),...,Yn_1(x) such that x € X if and only if
F<nYi(zr)CY.

4. X is many-one-reducible to Y, X <,, Y, if: from any z, one can compute
some ¢(x) such that x € X if and only if ¢(z) € Y.

5. X is one-one-reducible to Y, X <1 Y, if, X <,, Y and ¢ is one-to-one.

One-one reducibility implies many-one reducibility, which in turns implies positive-
reducibility, which implies both Turing-reducibility and enumeration-reducibility.

Each reducibility <, induces a notion of equivalence =,: A =, B iff A <, B
and B <, A. And each notion of equivalence =, induces a notion of degree deg,
the degree of a set A is its equivalence class for =,..

The join A ® B of A and B is the set C such that 2n+1 € C iff n € A and
2n € Ciff n € B. It has the property that A <, A® B and B <, A® B for any
reducibility <,. previously defined.

See [2] for a reference on computability-theoretical reductions.

1.2 Monoids and groups

We will deal with countable monoids M = G*/R, where G C N, G* is the
free monoid generated by symbols from G and R is a monoid congruenceﬁ. The
monoid is always implicitly endowed with its generating set G (later, some prob-
lems may depend on the presentation). Each element of the monoid is represented

5 We could deal in the same way with semigroups, by prohibiting the empty word.



by a word u € G*, but the representation is not one-to-one (except for the free
monoid itself). We note ¢ = j if 7(i) = 7(j) and 7 : G* — M is the natural
quotient map.

It is also clear that the concatenation map, which from any two words i, j €
G* outputs 7 - j, which is one representative of the corresponding product, is
computable. We say that M is an effective group if, additionnally, there is a
computable map 1 : G* — G* such that i - (i) = ¥(i) - i =m A

The equality problem of M, endowed with generating family G, is the set of
pairs { (i,7) € (G*)?|i = j}, endowed with a natural enumeration so that we
can consider it as a computability problem.

Remark 1.

1. Tt is clear that the word problem {i € G*|i =p A} is one-one-reducible to
the equality problem.

2. If M is an effective group, then the word problem is actually many-one-
equivalent to the equality problem.

3. The equality problems for IM endowed with two distinct finite generating
sets are one-one-equivalent.

4. If M’ is a submonoid of M endowed with a generating set which is included
in that of M, then the equality problem in M’ is one-one-reducible to that
of M.

5. In particular, the equality problem in any finitely generated submonoid is
one-one-reducible to that of M.

Nevertheless, there are countable groups whose word problem is computable
when endowed with one generating family, and uncomputable when endowed
with another one.

The word problem is known to be decidable if and only if the group is com-
putable (see [3] for a proof in the finitely generated case), that is, it can be seen
as a computable subset of N over which the composition rule is a computable
function (this implies that inversion is also a computable map).

1.3 Subshifts

Let A be a finite alphabet with at least two letters, and IM a group (most of the
following should be true if M is a cancellative monoid though). A finite pattern w
over A with support W = S(w) € G* is a map w = (w;);ew € A". Depending
on the context, note that, for g € S(w), w, may either be an element of A or a
subpattern with support {g}. If g € G* and w is a pattern, we will note o9 (w)
the pattern with support W - g such that o9(w);.,—1 = w; for all i € S(w).

We are interested in AM, which is a Cantor set, when endowed with the
prodiscrete topology, on which M acts continuously by (left) shift: we note
ol(x); = x;; for i,j € M and z € AM.

A subshift is a closed o-invariant subset X C AM. Equivalently, X can
be defined as the set Xz := {:v € AM’W e M,Vw € F,3j € S(w),z;.; # wj}
avoiding a language F C | |y eg- AW which is then called a (defining) forbidden



language. If F can be chosen finite, the subshift is called of finite type (SFT); if
it can be chosen computably enumerable, it is called effective.
The language with support W & G* of subshift X is the set Ly (X) :=
{(Iﬂ'(i))iGW’ z € X}; the language of X is L(X) = | |yeg- Lw(X), and its
colanguage is the complement of it. The latter is a possible defining forbidden lan-
guage. If u € Ly (X), we define the corresponding cylinder [u] = {33 € X‘ Vie W, xrq) = ul}

Remark 2. 7 induces a natural covering IT : AM — A9" by II(z); = Ty Its
image set IT(AM) is a subshift over the free monoid. One can note the following.

2. The colanguage of the full shift AM is the same as that of the subshift
IT(AM): the set

LA = || {wedV|3ij e Wi =n jows # w;}
weg*

of patterns that do not respect the monoid congruence.

Nevertheless, () is a forbidden language defining AM.

4. The colanguage of every subshift Xz C AM is the set of patterns w €
AV, W € G*, whose all extensions to configurations = € [u] involve as a

©w

subpattern a pattern of either F, or E(AM)C. In that case, by compactness,
at least one such subpattern appears within a finite support V' € G*, with
W C V, which depends only on W.

Remark 3. Let M be a monoid.

1. The equality problem in M is positive-equivalent (and one-one-reducible) to
the colanguage of the full shift.

2. The colanguage of any subshift X is enumeration-reducible to the join of
any defining forbidden language for X and the equality problem of M.

Proof.

1. one-one-reducibility: one can computably map each word (i,j) € (G*)? to
a unique pattern over {i,j} involving two different symbols. By Point 2] of
Remark 2 this pattern is in the colanguage of the full shift if and only if
T
positive-reducibility (with all ¥;s being singletons): from each pattern w €
A9, one can compute the set of pairs (4, ) € S(w)? such that w; # w;. By
Point 2] of Remark 2] w is in the colanguage if and only if one of these pairs
is an equality pair in M.

2. Consider the set Z of locally inadmissible patterns, that involve a subpattern
either from the forbidden language or from E(AM)C. From any pattern w,
one can enumerate all of its subpatterns and all of their shifts, i.e. all patterns
v such that there exists i € G* with S(v) -7 C S(w) and w,.; = v; for every
j € S(v). This shows that Z is enumeration-reducible to the join of the



forbidden language and L(A]M)C, the latter being equivalent to the equality
problem, by the previous point. It remains to show that the colanguage of
X is enumeration-reducible to Z.

From any pattern w € A9 and any i € N, one can compute some V; € G*
including S(w), in a way that Vi1 D V; and | J,;o Vi = G* (for example take
the union of S(w) with balls in the Cayley graph). Then, one can compute
the set Y; of extensions of w to V;, i.e. patterns with support V; whose
restriction over S(w) is w. By Point @] of Remark 2 w € £(X)€ if and only
if there exists V' € G* with V' O S(w) such that all extensions of w to V
are in Z; and in particular this should happen for some V;, which precisely
means that Y; C Z. O

It results that, in some sense, one expects most subshifts to have a colanguage
at least as complex as the equality problem in the underlying monoid.

1.4 Homomorphisms

Let X € AM and Y C BM be subshifts. Denote End(X,Y) the set of homo-
morphisms (continuous shift-commuting maps) from X to Y, and Aut(X,Y)
the set of bijective ones (conjugacies). We also note End(X) = End(X, X) the
monoid of endomorphisms of X, and Aut(X) = Aut(X,X) the group of its
automorphisms.

If M is finitely generated, then homomorphisms correspond to block maps (or
cellular automata), thanks to a variant of the Curtis-Hedlund-Lyndon theorem

M.

Theorem 1. Let M be finitely generated. A map @ from subshift X ¢ AM into
subshift Y C BM is a homomorphism if and only if there exist a radius r € N
and a block map ¢ : A9 5 B such that for every v € AM and i € G*,
D(2)r(iy = ¢(T|r(i.g<r)) (where the latter has to be understood with the obvious
reindexing of the argument).

Let us order the block maps ¢ : A9 5 B by increasing radius » € IN, and
then by lexicographic order, so that we have a natural bijective enumeration

<r

N = |]en BA” (because A, B and G are finite). This gives in particular a
surjective enumeration N — End(Ag* ) Bg*) and in general, a partial surjective
enumeration N’ € N — &nd(X,Y). In general, N’ # N. It is a nontrivial
problem to ask whether N’ is computable (this is the case for the full shift
when M = Z), but not the topic of the present paper. Obtaining a bijective
enumeration for End(A9",BY9") would be easily achieved by enumerating each
block map only for its smallest possible radius. Nevertheless, trying to achieve
a bijective enumeration in general for £nd(X,Y), or even for End(AM, BM),
is a process that would depend on the colanguage of the subshift (we want
to avoid two block maps that differ only over the colanguage), which may be
uncomputable.

Even when M is an effective group, Aut(X) need not be an effective group!



For the rest of the paper, let us assume that M is an effective group. More
precisely, all results could be interpreted as reductions to a join with a problem
representing the composition map of the group, and sometimes to an additional
join with a problem representing the inversion.

2 Equality problem is not too hard

Remark 4. Two distinct block maps ¢, : A9 5 A representing an endo-
morphism of X actually represent the same one if and only if for every pattern

we A9 pu) # (u) = u € L(X)C.
The equality problem is at most as complex as the language.

Theorem 2. The equality problem in End(X) is positive-reducible to E(X)C.

Proof. One can directly apply Remark ] by noting that it is easy to transform
each block map into an equivalent one, so that the resulting two block maps
have the same radius (the original maximal one, by ignoring extra symbols). 0O

Of course, this remains true for the equality problem in Aut(X). Since positive-
reducibility implies both Turing-reducibility and enumeration-reducibility, we
get the following for the lowest classes of the arithmetic hierarchy (which was
already known; see []).

Corollary 1.

1. The equality problem is decidable, in the endomorphism monoid of any sub-
shift with computable language (for instance 1D sofic subshift, 1D substitu-
tive subshift, minimal effective subshift, two-way space-time diagrams of a
surjective cellular automaton. .. ).

2. The equality problem is computably enumerable, in the endomorphism monoid
of any effective subshift (for instance multidimensional sofic subshift, substi-
tutive subshift, limit set of cellular automaton. .. ).

3 Automorphism groups with hard equality problem

The purpose of this section is to prove a partial converse to Theorem[2} a subshift
X for which the two problems involved are equivalent, however complex they
are.

Let X ¢ AM and Y ¢ BM be subshifts. For a : B — B and u € AM,
let us define the controlled map Cy o as the homomorphism over X x Y such
that Cy.o(x,v)o = (zo, a(yo)) if € [u]; (z0,yo) otherwise. Denote also 7 the
projection to the first component, and of the shift of the first component with
respect to element g € M: of(z,y)o = (x4, yo) for every (z,y) € X x Y.



Remark 5.

st Ou,a =T1.

If M is a group and g € M, then C,, = 0“17005,71@)70[
Cua € End(X x Y, X x BM).

Cu,« 1s injective if and only if « is a permutation.

Cua € End(X xY) it Y is (locally) a-permutable, i.e. for all y € Y, if we
define z by zo = a(yo), 2 = y; for i #0, then z € Y.

6. From Remark @ C, , is the identity over X x Y if and only if u ¢ £(X) or
« is the trivial permutation over letters appearing in Y.

-9
gy .
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Ezxample 1. Examples of a-permutable subshifts are the full shift on B or, if
B=BU{Ll}and a(Ll) = L, the B'-sunny-side-up defined by forbidding every
pattern which involves two occurences of B’. We have seen that the colanguage
of the former is positive-equivalent to the word problem in M. The language of
the latter can be easily proven to be many-one-equivalent to the word problem
in M (as essentially noted in [6] Prop 2.11]), hence yielding a kind of jump for
the colanguage.

If a,b,c € B, let us denote agup. the 3-cycle mapping a to b, b to ¢, ¢ to b,
and any other element to itself. The following lemma corresponds essentially to
[7, Lemma 18].

Lemma 1. Suppose B has at least 5 distinct elements a,b,c,d,e. Let u € AS™
be a pattern, g € S(u), and v = ws@n (g} - Then Cy o,y = (VP)?, where & =

oIC c 0! and W = Cy . C

Ug,Qxagde ~Ug,Xbad V,Q&pde ~V,Qchd *

Proof. If x4 = ug, then &(z,y)o = (z0,¢(yo)), where ¢ is the involution that
swaps a and b on the one hand, d and e on the other hand; otherwise ®(x,y)o =
(x0,y0). If x € [v], then ¥(x,y)o = (x0, ¥ (o)), where ¢ is the involution that
swaps b and ¢ on the one hand, d and e on the other hand; otherwise ¥ (z,y)o =
(w0,%0)- Since ¢? = ¥? = id, one can see that if = ¢ [u], then (¥®)?(x,y)o =
(20,90). Now if = € [u], then we see that ¥P(x,y)o = (z0, ¥ P(yo)), and ¢ =
Qqcb, SO that we get the stated result. O

Theorem 3. Let X C AM be a subshift and Y C BM an agpe-permutable sub-
shift for every a,b,c € B' C B, where |B'| > 5. Then L(X)C s one-one-reducible
to the word problem in the subgroup of automorphisms of X x Y generated by
of and Cyy.a,,, for g € G, a,b,c € B and ug € A.

Proof. From an induction and Lemma [II we know that this subgroup includes
every Cy a,,. for every a,b,c € B and u € A*. From Point [f] of Remark [, an
automorphism C,, o,,. is equal to the identity if and only if u ¢ £(X). O

Consequently, subshifts can have finitely generated groups with equality problem
as complex as their colanguage, as formalized by the following corollary. In that
case, the equality problem of the whole automorphism group is as complex also.



Corollary 2.

1. If X and Y are as in Theorem [3, then L(X)C is one-one-equivalent to the
word problem in (a finitely generated subgroup of ) Aut(X x Y).

2. For every subshift X over a finitely generated group M, there exists a countable-
to-one extension X x Y such that L(X)C is one-one-equivalent to the word
problem in (a finitely generated subgroup of ) Aut(X x Y).

3. For every subshift X over a finitely generated group M, there exists a full
extension X x BM such that E(X)C 15 one-one-equivalent to the word problem
in (a finitely generated subgroup of) Aut(X x BM).

4. Every X9 Turing degree contains the word problem in (a finitely generated
subgroup of ) Aut(X), for some 2D SFT X.

5. There exists a 2D SFT X for which the word problem in (a finitely generated
subgroup of ) Aut(X) is undecidable.

Point Bl answers [5, Problem 5].

Proof.

1. Just use Point [ of Remark [l For the converse reduction in the one-one-
equivalence, simply apply Theorem 2] and Point [I] of Remark [

2. We use Theorem [l with ¥ being the {0, 1,2, 3, 4}-sunny-side-up.

3. We use Theorem [ with ¥ = {0,1,2,3,4}™. Remark that £(X)° and
L(X x{0,1,2, 3,4}M)C are one-one-equivalent.

4. Every XY degree contains the colanguage of a 2D SFT, thanks to construc-
tions from [BI9]. Then its product with the full shift {0,1,2,3,4}%" is still
an SFT, and we conclude by the previous point.

5. Apply the previous point with any uncomputable ¥ degree. O

Note that the number of generators can be decreased if we want to reduce
only the language whose support is spanned by a subgroup. For instance 2D SFTs
are already known to have (arbitrarily X¢¥) uncomputable 1D language. Indeed,
our automorphisms do not alter the X layer, so that their parallel applications
to all traces with respect to a subgroup is still an automorphism.

Among the open questions, we could wonder whether there is a natural class
of SFT (irreducible, with uncomputable language, at least over Z?) whose colan-
guage could be proven reducible to the word problem in the automorphism group.
This could require to encode the whole cartesian product of Theorem [l inside
such subshifts. Another question would be to adapt our construction while con-
troling the automorphism group completely so that it is finitely generated.
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