M P B Gallaugher 
  
C Biernacki 
  
P D Mcnicholas 
  
Parameter-Wise Co-Clustering for High-Dimensional Data

In recent years, data dimensionality has increasingly become a concern, leading to many parameter and dimension reduction techniques being proposed in the literature.

A parameter-wise co-clustering model, for (possibly high-dimensional) data modelled via continuous random variables, is presented. The proposed model, although allowing more flexibility, still maintains the very high degree of parsimony and interpretability achieved by traditional co-clustering. More precisely, the keystone consists of dramatically increasing the number of column-clusters while expressing each as a combination of a limited number of mean-dependent and variance-dependent column-clusters. A stochastic expectation-maximization (SEM) algorithm along with a Gibbs sampler is used for parameter estimation and an integrated complete log-likelihood criterion is used for model selection. Simulated and real datasets are used for illustration and comparison with traditional co-clustering.

Introduction

Clustering is the process of finding and analyzing underlying group structure in heterogenous data. With the emergence of big data, the number of variables in a dataset is constantly increasing and in many areas of application it is not uncommon for the number of variables to exceed the number of observations. In such situations, where the dimension of the data is very high, traditional mixture modelling techniques for clustering oftentimes fail. Coclustering is a very useful method for dealing with such scenarios, thanks to its high degree of parsimony (the number of parameters no longer depends on the dimension of the data).

Co-clustering aims to define a partition in the rows of the data matrix for clustering individuals, as well as a partition in the columns for clustering variables. The result is partitioning the data matrix into homogenous blocks, or co-clusters, based on both individuals and variables. A key assumption for maintaining parsimony is that observations within each block are realizations of independent and identically distributed random variables. Some of the earliest work in co-clustering can be traced to [START_REF] Hartigan | Direct clustering of a data matrix[END_REF]. Since that time, modelbased approaches have recently been shown to be effective for data treated as realizations of a continuous random variable [START_REF] Nadif | Model-based co-clustering for continuous data[END_REF], count data [START_REF] Pledger | Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection[END_REF] and ordinal data [START_REF] Jacques | Model-based co-clustering for ordinal data[END_REF], to name but a few. In traditional co-clustering, added flexibility is often obtained by fitting more row-clusters and/or columnclusters; however, this is not generally advisable for parsimony reasons. Herein, we propose a parameter-wise co-clustering model that separately clusters columns according to both means and variances using the Gaussian distribution. In this way, the number of parameters remains independent of the dimension (as in traditional co-clustering) but, in addition, grows slowly when the number of column-clusters grows. Finally, interpretability is preserved as we still deal with the meaningful column-cluster concept.

The remainder of this paper is laid out as follows. Section 2 presents a detailed background on high dimensional clustering techniques as well as details on traditional co-clustering using the Gaussian distribution. Section 3 presents the new model, parameter estimation, model selection criterion, and a non-exhaustive search algorithm for model selection. In Sections 4 and 5, synthetic and real datasets are considered for algorithm evaluation, classification performance, model selection performance, and comparison with traditional coclustering. We conclude with a discussion of the results (Section 6).

2 Gaussian-Based Clustering for High Dimensional Data

Model-Based Clustering

Consider a dataset x = (x 1 , x 2 , . . . , x n ) with n individuals x i ∈ R p . One common method for clustering is model-based clustering, and generally makes use of a finite mixture model.

A finite mixture model assumes that a real random vector X i of dimension p has probability density function

f (x i |ϑ) = G g=1 π g f (x i |Θ g ),
where π g > 0 ∀ g and G g=1 π g = 1 are the mixing proportions, f (•|Θ g ) are the component density functions parameterized by Θ g , and ϑ = (π 1 , . . . , π G , Θ 1 , . . . , Θ G ) represents all the mixture parameters.

Because of its mathematical tractability, the multivariate Gaussian mixture model is widely studied in the literature. In this case, each of the component densities is a multivariate Gaussian with density

f (x i |Θ g ) = 1 (2π) p 2 |Σ g | 1 2 exp - 1 2 (x i -µ g ) Σ -1 g (x i -µ g ) ,
where Θ g = (µ g , Σ g ). The number of free parameters in a Gaussian mixture model is

#Params GaussMix = (G -1) + Gp + Gp(p + 1)/2. (1)
Clearly, the number of free parameters in (1) is quadratic in the dimension of the data.

As a result, using this simple mixture of Gaussian distributions will usually fail when the dimension p increases.

In traditional model-based clustering, the group membership for observation x i is usually represented by the vector z i = (z i1 , z i2 , . . . , z iG ), where z ig = 1 if observation x i belongs to group g and 0 otherwise. Moreover, z i is a realization of Z i ∼ multinomial(1; π) where π = (π 1 , π 2 , . . . , π G ). In addition, all couples (X i , Z i ) are usually assumed to be independent.

The use of a Gaussian mixture model for clustering can be traced back to [START_REF] Wolfe | A computer program for the maximum likelihood analysis of types[END_REF].

Other early work on Gaussian mixture models can be found in [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[END_REF]Scott andSymons (1971). A detailed review of model-based clustering and classification is given by [START_REF] Mcnicholas | Model-based clustering[END_REF], including related estimation and model selection procedures.

High Dimensional Clustering Techniques

Although the Gaussian mixture model is widely used, problems arise when the data dimensionality p increases. The main contribution to the number of free parameters is through the component covariance matrices Σ g . Therefore, as a starting point, many methods try to impose parsimonious constraints on Σ g . A detailed background is presented by [START_REF] Bouveyron | Model-based clustering of high-dimensional data: A review[END_REF] and [START_REF] Mcnicholas | Model-based clustering[END_REF].

One particular example to note is the mixture of factor analyzers model. This model, presented by [START_REF] Ghahramani | The EM algorithm for factor analyzers[END_REF], is a Gaussian mixture model with covariance structure Σ g = Λ g Λ g + Ψ, where Λ g is a p × q matrix of factor loadings with q < p and

Ψ = diag(ψ 1 , ψ 2 , . . . , ψ p ), ψ j ∈ R + .
Numerous extensions are proposed in the literature, including [START_REF] Mclachlan | Mixtures of factor analyzers[END_REF], who utilize the more general structure Σ g = Λ g Λ g + Ψ g , and the closely-related mixture of probabilistic principal component analyzers with [START_REF] Tipping | Mixtures of probabilistic principal component analysers[END_REF]. In addition to these minor extensions, [START_REF] Mcnicholas | Parsimonious Gaussian mixture models[END_REF] construct a family of eight parsimonious Gaussian models constrained model in [START_REF] Mcnicholas | Parsimonious Gaussian mixture models[END_REF], there are #Params MFA = (G -1) + Gp + pq -q(q -1)/2 + 1 (2) free parameters. It is clear that although the number of free parameters associated with these models is linear in p, it is still nevertheless dependent on the dimension. Consequently, these models are still not suitable for very high dimensional data. Moreover, these methods may not be viable when n > p, which is common in applications such as gene expression data, word processing data, single nucleotide polymorphism data, etc.

Σ g = Λ g Λ g + ψ g I (
Alternatively, [START_REF] Bouveyron | High-dimensional data clustering[END_REF] use the spectral decomposition of Σ g , i.e., Σ g = D g ∆ g D g , where D g is the orthogonal matrix of eigenvectors and ∆ g is a diagonal matrix of corresponding eigenvalues for which they impose the structure

∆ g = diag(a 1g , a 2g , . . . , a qgg , b g , b g , . . . , b g ),
where a kg are the q g largest eigenvalues and b g is average of the remaining p -q g eigenvalues.

This also greatly reduces the number of free parameters, i.e.,

#Params Bouveyron = (G -1) + Gp + G g=1 q g [p -(q g + 1)/2] + G g=1 q g + 2G. (3) 
Again, however, the number of free parameters is dependent on the dimensionality of the data.

Finally, there are also variable selection procedures such as 1 penalization methods which take advantage of sparsity to perform variable selection and parameter estimation simultaneously. The first such proposed method is presented by [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] who consider equal, diagonal covariance matrices between groups and apply an 1 penalty to the mean vectors. A lasso method is then used for parameter estimation. This is extended by [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF], who consider unconstrained covariance matrices and apply an 1 penalty for both the mean and covariance parameters. Although these methods are useful for dealing with the dimensionality problem, the 1 penalty shrinks the parameters, thus introducing bias, as discussed by [START_REF] Meynet | A sparse variable selection procedure in model-based clustering[END_REF]. Moreover, the Bayesian information criterion (BIC; [START_REF] Schwarz | Estimating the dimension of a model[END_REF] may not be suitable for high-dimensional data. A detailed review of each of these methods is given by [START_REF] Biernacki | High-dimensional clustering[END_REF].

Co-Clustering and its Limitations

Co-Clustering is a very useful tool for analyzing high-dimensional data. This method considers simultaneous partitions of rows and columns, which are then used to organize the data into homogenous blocks. For traditional co-clustering, as in clustering, data are assumed to come in the form of an n × p matrix x with rows represented by x i . Each individual element of x i is denoted by x ij , so that x ij is the observation in row i and column j.

In co-clustering, there is an unknown partition of the rows into G clusters, from this point onwards referred to as row-clusters, represented by the indicator vector z i as defined previously. Unlike traditional co-clustering, however, there is also a partition of the columns into L clusters, referred to as column-clusters, represented by the indicator vector w j = (w j1 , w j2 , . . . , w jL ) ∼ multinomial(1; ρ), where w jl = 1 if column j belongs to column-cluster l and w jl = 0 otherwise, and ρ = (ρ 1 , ρ 2 , . . . , ρ L ). It is assumed that each data point x ij is independent once the z i and w j are fixed. If, in addition, all z i and w j are assumed independent, and the latent block model is utilized in the same manner as [START_REF] Nadif | Model-based co-clustering for continuous data[END_REF], then the joint density of x becomes f (x; ϑ) = z∈Z w∈W p(z; π)p(w; ρ)f (x|z, w; Θ), where

p(z; π) = n i=1 G g=1 π z ig g , p(w; ρ) = p j=1 L l=1 ρ l w jl , and 
f (x|z, w µ , w Σ ; Θ) = n i=1 G g=1 d j=1 L l=1 1 √ 2πσ gl exp - 1 2σ 2 gl (x ij -µ gl ) 2 z ig w jl ,
where µ gl and σ 2 gl are the mean and variance, respectively, for row-cluster g and columncluster l, Θ is the set of all µ gl and σ 2 gl , and ϑ = (π, ρ, Θ). The total number of free parameters in this traditional co-clustering model is

#Params trad coclust = G + L + 2(GL -1).
(4)

Note that (4) does not depend on the dimension, making it a very parsimonious model. In particular, this core property allows co-clustering to be performed when p > n.

There are two different ways that one can view co-clustering. The first is that the main goal is the clustering of rows, and the clustering of columns is solely a way to solve the problem of dimensionality. However, in certain applications, the clustering of the columns might also be of interest.

Limitations of Co-Clustering

Although co-clustering has advantages over other high dimensional techniques (especially in the number of free parameters), the model is fairly restrictive because all observations in a block are realizations of independent and identically distributed Gaussian random variables with mean µ gl and variance σ 2 gl . More flexibility is obtained by fitting more column-clusters and row-clusters, which is not always possible or advisable for two reasons. First it can significantly increase the number of parameters, and second a high number of column-clusters limits the interpretability of the resulting model.

What we propose in the present work is a parameter-wise co-clustering method by clustering columns according to both means and variances. This is the reason why we adopt hereafter the denomination "parameter-wise" co-clustering, which is now presented in detail.

3 Parameter-Wise Gaussian Co-Clustering

A Model to Combine Two Latent Variables in Columns

Recall that traditional co-clustering aims to cluster data such that observations in the same block have the same distribution. An extension of traditional co-clustering for data treated as realizations of a Gaussian random variable is now considered. Similar to traditional coclustering, there is a partition in rows and columns. However, now there are two partitions in the columns; specifically, a partition with respect to means and a partition with respect to variances.

Recall also that the data, which are treated as realizations of a continuous random variable, are represented as an n × p matrix, x = (x ij ) 1≤i≤n,1≤j≤p . The partition in rows is again

represented by z = (z 1 , z 2 , . . . , z n ).

Two Partitions in Columns

The partition in columns by means is represented by w µ = (w µ 1 , w µ 2 , . . . , w µ p ), where

w µ j = (w µ j1 , w µ j2 , . . . , w µ jL µ ) ∼ multinomial(1; ρ µ ) with ρ µ = (ρ µ 1 , ρ µ 2 , . . . , ρ µ L µ
) and the partition in columns by variances is denoted by

w Σ = (w Σ 1 , w Σ 2 , . . . , w Σ p )
, where

w Σ j = (w Σ j1 , w Σ j2 , . . . , w Σ jL Σ ) ∼ multinomial(1; ρ Σ ) with ρ Σ = (ρ Σ 1 , ρ Σ 2 , . . . , ρ Σ L Σ
). These two partitions in the columns is where the main novelty lies. Note that G, L µ and L Σ are the number of row-clusters, column-clusters by means, and column-clusters by variances, respectively. Moreover, as will be important for interpretability that "traditional" column-clusters are obtained by combining column-clusters by means and variances, as will be discussed in detail later.

Log-Likelihood Using a small extension of the latent block model the observed loglikelihood is then

f (x; ϑ) = z∈Z w µ ∈W µ w Σ ∈W Σ p(z; π)p(w µ ; ρ µ )p(w Σ ; ρ Σ )f (x|z, w µ , w Σ ; µ, Σ), where p(z; π) = n i=1 G g=1 π z ig g , p(w µ ; ρ µ ) = p j=1 L µ l µ =1 (ρ µ l µ ) w µ jl µ , p(w Σ ; ρ Σ ) = p j=1 L Σ l Σ =1 (ρ Σ l Σ ) w Σ
jl Σ , and

f (x|z, w µ , w Σ ; µ, Σ) = n i=1 G g=1 p j=1 L µ l µ =1 L Σ l Σ =1 1 √ 2πσ gl Σ exp - 1 2σ 2 gl Σ (x ij -µ gl µ ) 2 z ig w µ jl µ w Σ jl Σ
.

In terms of notation, µ = (µ 1 , µ 2 , . . . , µ G ), where µ g = (µ g1 , µ g2 , . . . , µ gL µ ). Note that µ gl µ is the mean for row-cluster g and column-cluster by means l µ . Likewise,

Σ = (Σ 1 , Σ 2 , . . . , Σ G ),
where Σ g = (σ 2 g1 , σ 2 g2 , . . . , σ 2 gL Σ ) and σ 2 gl Σ is the variance for row-cluster g and column-cluster by variances l Σ . Finally, the complete-data log-likelihood is

p(x, z, w µ , w Σ ; ϑ) = C + n i=1 G g=1 z ig log π g + p j=1 L µ l µ =1 w µ jl µ log ρ µ l µ + p j=1 L Σ l Σ =1 w Σ jl Σ log ρ Σ l Σ - 1 2 n i=1 G g=1 p j=1 L µ l µ =1 L Σ l Σ =1 z ig w µ jl µ w Σ jl Σ log σ 2 gl Σ + (x ij -µ gl µ ) 2 σ 2 gl Σ ,
where C is a constant with respect to the parameters and ϑ = (π, ρ µ , ρ Σ , µ, Σ). From this point on, we refer to this model as parameter-wise co-clustering.

Number of Free Parameters

The number of free parameters in the parameter-wise co-clustering model is

#Params new coclust = G -1 + L µ -1 + L Σ -1 + GL µ + GL Σ = G + (L µ + L Σ )(G + 1) -3.
There are a few comparisons with traditional co-clustering that are now discussed. First, similar to traditional co-clustering, the number of free parameters for the proposed parameterwise method is independent of the dimension, meaning a high degree of parsimony is still maintained. Before mentioning the second point, note that the column-clusters by means and column-clusters by variances can be combined. For example, columns in column-cluster 1 by means and column-cluster 1 by variances can be combined to form one column-cluster. In general, columns in column-cluster l µ by means and column-cluster l Σ by variances can be combined to form one column-cluster for any combination of l µ and l Σ , leading to a maximum of L µ L Σ column-clusters. There can, however, be fewer than L µ L Σ combined column-clusters because it is possible, for example, that no columns are clustered into column-cluster 3 by means and column-cluster 2 by variances. Now, assuming G is equal for both parameter-wise and traditional co-clustering, and L µ = L Σ = L, then there are only an additional L -1 free parameters when using the parameter-wise model. Although there are these additional free parameters, there is the possibility of L 2 combined column-clusters, allowing for a finer partition of the columns and increased flexibility.

There is also the possibility that the parameter-wise model has fewer free parameters than traditional co-clustering while still maintaining similar flexibility. For example, if traditional co-clustering is considered with G = 4 and L = 5, then the total number of free parameters is 47. In the parameter-wise case, if G = 4, L µ = 3, L Σ = 3, then the total number of free parameters is 31. In this case, there is a possibility of a total of nine column-clusters compared to five column-clusters when using traditional co-clustering.

Interpretability Finally, note that even if the number of combined column-clusters can be quite high for our proposed parameter-wise model, interpretability is still preserved. Indeed, the interpretation of each column-cluster simply relies on the combination of its columncluster by means and variances.

Parameter Estimation Using the SEM Gibbs Algorithm

The SEM algorithm after initialization at iteration q proceeds as follows.

SE

Step: Generate the row partition z (q+1) according to P (z ig = 1|x, w µ(q) , w Σ (q) ; µ (q) , Σ (q) , π (q) ) = π (q)

g f (x i |w µ(q) , w Σ (q) ; µ

(q) g , Σ (q) g ) G g π (q)
g f (x i |w µ(q) , w Σ (q) ; µ

(q) g , Σ (q) 
g )

, where

f (x i |w µ(q) , w Σ (q) ; µ (q) g , Σ (q) g ) = p j=1 L µ l µ =1 L Σ l Σ =1 1 √ 2πσ (q) gl Σ exp - 1 2σ 2 (q) gl Σ (x ij -µ (q) gl µ ) 2 w µ (q) jl µ w Σ (q)
jl Σ

.

Generate the column partition by means w µ(q+1) according to

P (w µ jl µ = 1|x, z (q+1) , w Σ (q) ; µ (q) , Σ (q) , ρ µ(q) ) = ρ µ (q) l µ f (x •j |z (q+1) , w Σ (q) ; µ (q) l µ , Σ (q) ) L µ l µ ρ µ (q) l µ f (x •j |z (q+1) , w Σ (q) ; µ (q) l µ , Σ (q) )
,

where x •j = (x 1j , x 2j , . . . , x nj ), µ (q) 
l µ = (µ (q) 1l µ , µ (q) 2l µ , . . . , µ (q) 
Gl µ ), and

f (x •j |z (q+1) , w Σ (q) ; µ (q) l µ , Σ (q) ) = n i=1 G g=1 L Σ l Σ =1 1 √ 2πσ (q) gl Σ exp - 1 2σ 2 (q) gl Σ (x ij -µ (q) gl µ ) 2 z (q+1) ig w Σ (q)
jl Σ

.

Generate the column partition by variances w Σ (q+1) according to

P (w Σ jl Σ = 1|x, z (q+1) , w µ(q+1) ; µ (q) , Σ (q) , ρ Σ (q) ) = ρ Σ (q) l Σ f (x •j |z (q+1) , w µ(q+1) ; µ (q) , Σ (q) l Σ ) L Σ l Σ ρ Σ (q) l Σ f (x •j |z (q+1) , w µ(q+1) ; µ (q) , Σ (q) l Σ )
, From the property proven by [START_REF] Brault | Consistency and asymptotic normality of latent blocks model estimators[END_REF], the BIC and ICL-BIC exhibit the same behaviour for large values of n and/or p, thus the number of blocks chosen by this criterion is consistent (under some conditions not mentioned here). The model with the largest ICL-BIC is retained.

Search Algorithm Because an extra layer of complexity is introduced with the parameterwise model by considering two column partitions, it may take a very long time to perform an exhaustive search of all possible combinations of G, L µ and L Σ in a pre-defined range.

This has been discussed in the literature, specifically by [START_REF] Robert | Coclustering for the analysis of pharmacovigilance massive datasets[END_REF], and a non-exhaustive search algorithm for the parameter-wise model is now presented. Specifically, the algorithm begins with the parameters (G,

L µ , L Σ ) = (G 1 , L µ 1 , L Σ 1 )
. Three models with parameters (G 1 + 1, L µ , L Σ ), (G 1 , L µ + 1, L Σ ) and (G 1 , L µ , L Σ + 1) are then fit. The set with the highest ICL-BIC is retained and we obtain the set (G 2 , L µ 2 , L Σ 2 ). The procedure is then repeated until a maximum threshold is reached for these parameters or the ICL-BIC no longer increases. Although not as pertinent for traditional co-clustering, a similar non-exhaustive search algorithm can be used for traditional co-clustering.

Numerical Experiments on Artificial Data

Algorithm and Parameter Estimation Evaluation

Two different simulations are performed to evaluate the algorithm, parameter estimation, and classification performance.

Simulation 1 50 datasets are simulated according to the following parameters. n = 1000, p = 100, G = 3, To clarify notation, the cell gl µ in the matrix µ corresponds to the mean of an observation from row-cluster g and column-cluster by means l µ , i.e., µ gl µ . Likewise, the cell gl Σ in the matrix Σ corresponds to the variance of an observation from row-cluster g and column-cluster by variances l Σ , i.e., σ 2 gl Σ . A burn-in of 20 iterations for the SEM-Gibbs algorithm is used, followed by 100 iterations, followed by 20 iterations of the SE-step to obtain the final partitions.

L µ = 2, L Σ = 3, µ =    1 -1 2 -2 3 -3    , Σ =    1 
The error in the mean estimates is calculated using

∆µ = g,l µ |μ gl µ -µ gl µ |.
The errors for the other parameters are calculated in a similar fashion and are denoted by ∆Σ, ∆π, ∆ρ µ and ∆ρ Σ , respectively. The averaged errors (and their standard deviations) over the 50 datasets are shown in Table 1. The average errors are low for all variables indicating good parameter recovery.

The adjusted rand index (ARI; [START_REF] Hubert | Comparing partitions[END_REF] is used to assess classification performance. This quantity compares two partitions, in this case the true partition to an estimated partition, and has a value of 1 if there is perfect agreement, and an expected value of 0 under random classification. Table 2 displays the average ARI, with standard deviations, for the row, column by means, and column by variances partitions over the 50 simulated datasets. Notice that the classification is perfect for both partitions by columns for all simulated datasets. Moreover, the average ARI for the rows is very high. 0.99 (0.068) 1.00 (0.00) 1.00 (0.00)

In Figure 1, the progression of the parameter estimates over the course of the SEM-Gibbs algorithm is shown for one of the datasets (the other datasets exhibit similar behaviour).

From these plots, it is clear that a burn-in of 20 iterations is sufficient to obtain a stable chain.

Finally, in Figure 2, the co-clustering results for one of the 50 datasets is displayed. Note, in this case, the estimated co-clustering result is the same as the true co-clustering solution. combined column-clusters (as is the case here) thus allowing more flexibility. It is important to note, however, that there may be cases, as we will see with the real dataset, when no columns are clustered into a particular pair l µ and l Σ , and thus the combined co-clustering result might have fewer than L µ L Σ combined column-clusters but never more. 

Simulation 2

In Simulation 2, less separation between groups is considered. A total of 50 datasets are again considered with the parameters n = 200, p = 500, G = 3,

L µ = 3, L Σ = 2, µ =    1 1.25 0 2 1.2 1 1.5 1.9 0.5    , Σ =    1 0.5 2 1.75 1.5 2.25    ,
and the mixing proportions π = (0.3, 0.3, 0.4), ρ µ = (0.3, 0.5, 0.2), ρ Σ = (0.4, 0.6).

Table 3 shows the average error of the estimates over the 50 datasets, and the average ARI values over the 50 datasets for each partition are shown in Table 4. Again, we obtain very good classification performance for all three partitions. The progression of the parameter estimates is shown in Figure 3. Similar to Simulation 1, a burn-in period of 20 iterations is still sufficient to obtain a stable chain. Finally, Figure 4 displays the co-clustering solutions for one of the 50 datasets. Unlike in the first simulation, there is very little spatial separation between blocks. 

Simulation 3

In this simulation, the performance of the ICL-BIC selection criterion is considered. Again, 50 datasets are simulated with n = 2000, p = 500,

G = L µ = L Σ = 3, µ =    1 1.25 0 2 1.2 1 1.5 1.9 0.5    , Σ =    1 0.5 0.25 2 1.75 0.5 1.5 2.25 1    ,
and mixing proportions

π = (0.3, 0.3, 0.4), ρ µ = (0.3, 0.4, 0.3), ρ Σ = (0.4, 0.3, 0.3).
An exhaustive search is performed considering each of combination of G, L µ , L Σ ∈ {2, 3, 4}.

In Table 5, the number of times each value of G, L µ and L Σ is chosen by the ICL-BIC is displayed. For the vast majority of the datasets, the correct model is chosen by the ICL-BIC.

Table 5: Frequency of the number of row-clusters, column-clusters by means, and columnclusters by variances chosen by the ICL-BIC over the 50 simulated datasets when using the exhaustive search in Simulation 3.

2 3 4 G 0 49 1

L µ 0 48 2 L Σ 0 48 2

Simulation 4

In the last simulation, the performance of the non-exhaustive search algorithm described in Section 3.3 is addressed. In all, 25 datasets are simulated according to the parameters The initial values are taken to be (G 1 , L µ 1 , L Σ 1 ) = (1, 1, 1) and the maximum values for all three are set to five. In Table 6, the number of times each value of G, L µ and L Σ is chosen by the ICL-BIC is shown. Notice that the procedure performs quite well for choosing the correct model. Table 6: Frequency of the number of row-clusters, column-clusters by means, and columnclusters by variances chosen by the ICL-BIC over the 25 simulated datasets when using the non-exhaustive search method for Simulation 4. 5 Real Data Analyses

n = 100, p = 200, G = L Σ = 3, L µ = 4, µ =    1 -0.25 0.3 -1 1.25 0 0.1 -0.3 0.5 -1 0 0.1    , Σ =    1 
2 3 4 G 0 24 1 L µ 0 0 25 L Σ 1 24 0

Fashion MNIST Dataset

As mentioned previously, co-clustering may be viewed as a method for clustering rows and columns, where the column clusters are of interest in addition to the row clusters. However, it may also be viewed as a method to solely cluster or classify the rows of the data matrix with the column-clusters as a way to add parsimony to high-dimensional data. We therefore first look at row classification performance between traditional and parameter-wise co-clustering.

This will be assessed via the fashion MNIST dataset [START_REF] Xiao | Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms[END_REF]. This dataset considers numerous 28 × 28 greyscale training images of 10 different articles of clothing. For the purposes of this analysis, we consider taking 500 random training images from the t-shirt class and 500 from the sandal class and perform this for 25 different sampled datasets. We first take the pixel intensity matrices and vectorize them so for each dataset the data matrix is 1000 × 784. Furthermore, to avoid computational issues, for each value of 0 in the pixel intensity matrix, we add random normal noise with mean 0 and standard deviation 0.01.

For traditional co-clustering, the model is fitted for 3-8 column-clusters and for parameterwise co-clustering the model is fitted for 3-8 column-clusters by means and column-clusters by variance. For both traditional and parameter-wise co-clustering the number of row clusters are set to 2 and an exhaustive search is performed. We note that we keep the row clusters set to 2 to be fair to both models, as we are solely interested in the row-classification performance between the two methods. Table 7 displays the averages and standard deviations over the 25 datasets for the ARI, misclassification rate (MCR) and the number of parameters (Params).

It is clear that the parameter-wise method obtains better classification performance with an average ARI of 0.80 and and a misclassification rate about half that of traditional coclustering. Moreover, this increase in classification performance is obtained with only a small increase in the number of parameters.

Therefore, in addition to allowing for more flexibility in the number of columns, it is also possible that the parameter-wise co-clustering method may help improve classification performance for the rows.

Jester Dataset

Comparing Parameter-Wise and Traditional Co-Clustering Under Similar

Conditions

The Jester dataset used by [START_REF] Goldberg | Eigentaste: A constant time collaborative filtering algorithm[END_REF] is used to compare parameter-wise coclustering and traditional co-clustering. The data consist of 100 jokes rated on a "continuous" scale from -10 to 10. A total of 7200 users rated all 100 jokes so that our data matrix is 7200 by 100.

The non-exhaustive search algorithm is performed for traditional co-clustering with the number of row-clusters ranging from one to 25 and the number of column-clusters ranging from one to seven. This results in choosing 11 row-clusters and six column-clusters and the resultant ICL-BIC is -2029196. With these values for G and L, the total number of free parameters is 147. In the next section, the non-exhaustive search algorithm is used for the proposed parameter-wise method; however, it is interesting to consider the performance of the parameter-wise method under similar conditions to the results obtained with traditional co-clustering. Specifically, the parameter-wise method is performed on this dataset with G = 11, L µ = L Σ = 6. Under this model, the ICL-BIC is -2027419, and the total number of free parameters is 152. Note that the ICL-BIC values for both traditional and parameter-wise co-clustering are quite similar, with a slightly higher value obtained when using parameterwise co-clustering. In Figure 5 In Table 8, the classification table comparing row-clusters from traditional and parameterwise co-clustering is displayed. It is clear that there is little agreement between the rowclusters from the traditional and parameter-wise co-clustering methods, the resultant ARI between these two partitions is 0.33. This indicates that the parameter-wise method is able to detect a different row-cluster structure when compared to traditional co-clustering.

Further Analysis with Parameter-Wise Co-Clustering

The non-exhaustive search algorithm is now performed for parameter-wise co-clustering. The is able to reveal more information due to its trade-off between flexibility and parsimony. In 

Discussion

A parameter-wise co-clustering algorithm was developed for high-dimensional data. This parameter-wise method allowed for two partitions of the columns based on both means and variances, leading to a combined co-clustering solution. This, in essence, provides more flexibility than traditional co-clustering, while maintaining the high degree of parsimony and interpretability inherent to traditional co-clustering. An SEM Gibbs algorithm was used for parameter estimation, and evaluated by several simulations. An ICL-BIC criterion, as well as a non-exhaustive search algorithm, were developed for model selection. We note that the computational time for the parameter-wise co-clustering algorithm is longer than that for When analyzing the fashion MNIST data, the proposed parameter-wise co-clustering method performed better in terms of row classification when compared to traditional coclustering. This illustrates that in addition to the benefits of allowing for more flexibility while maintaining parsimony and interpretability, an increase in classification performance may be obtained over traditional co-clustering when the main goal is to classify the rows of the data matrix.

The Jester dataset was considered for comparison purposes between traditional and parameter-wise co-clustering. After applying traditional co-clustering to the data, parameterwise co-clustering was performed using similar parameters, i.e., same G and L µ = L Σ = L.

This resulted in a fairly different row cluster solution when compared to traditional coclustering. Parameter-wise co-clustering also had a marginally higher ICL-BIC in this case, thus suggesting the relevance of the obtained parameter-wise co-clustering solution. Finally, when performing the non-exhaustive search algorithm for parameter-wise co-clustering, a total of 11 combined column clusters were found, while reducing the total number of parameters. Moreover, we once again obtained a slightly higher ICL-BIC. The combined columnclusters in this case were fairly difficult to interpret which displayed the usefulness of considering the co-clustering solutions my means and variances separately.

Although this method only considered the use of the Gaussian distribution, it can be extended in various ways. One example would be to use other continuous distributions with more than one parameter. For example, one could consider the skew-t distribution and cluster columns based on location, scale, concentration and skewness. This could also be extended to data that cannot be considered a realization of a continuous random variable such as ordinal data where the columns could be partitioned according to mode and precision.

The number of free parameters in each of these cases will not depend on the dimensionality of the data thus preserving the parsimony inherent to co-clustering.

Figure 1 :

 1 Figure 1: SEM algorithm parameter estimation progression for one dataset for (a) the mean parameters µ gl µ , (b) the variance parameters σ 2 gl Σ , (c) the row mixing proportions π g , (d) the column by means mixing proportions ρ µ l µ , and (e) the column by variances mixing proportions ρ Σ l Σ for Simulation 1.

Figure 2 :

 2 Figure 2: Estimated co-clustering solution for one of the fifty datasets from Simulation 1.

Figure 3 :

 3 Figure 3: Simulation 2 SEM algorithm parameter estimation progression for one dataset for (a) the mean parameters µ gl µ , (b) the variance parameters σ 2 gl Σ , (c) the row mixing proportions π g , (d) the column by means mixing proportions ρ µ l µ , and (e) the column by variances mixing proportions ρ Σ l Σ .

Figure 4 :

 4 Figure 4: Estimated co-clustering solution for one of the fifty datasets from Simulation 2.

  , the original data (left panel) and the traditional co-clustering solution (right panel), are shown, and the co-clustering solutions for parameter-wise coclustering are displayed (Figure 6) in the same format as the simulations. Notice that a total of 17 combined column-clusters are obtained when using parameter-wise co-clustering.

Figure 5 :

 5 Figure 5: Traditional co-clustering results for the Jester data.

Figure 6 :

 6 Figure 6: Parameter-wise co-clustering results for the Jester dataset under similar conditions to the traditional co-clustering solution.

  range of values was one to 25 row-clusters, and one to seven column-clusters by means and column-clusters by variances resulting in the ICL-BIC choosing a model with 12 row-clusters, five column-clusters by means, and three column-clusters by variances. The resulting ICL-BIC is -2027378 and a total of 11 combined column-clusters are obtained. Notice that again there is slight improvement in the ICL-BIC in this case, as compared in particular to the result of the non-exhaustive search for traditional co-clustering. Thus the proposed method

Figure 7 ,

 7 Figure7, we show the parameter-wise co-clustering solution. Notice that, like when comparing parameter-wise co-clustering and traditional co-clustering under the same conditions, the combined co-clustering solution is very difficult to interpret in this scenario as there are a lot of column clusters, which displays the benefit of visualizing the column-clusters by means and column-clusters by variances separately. Finally, the total number of parameters in this case is only 113. Therefore, in addition to obtaining more combined column-clusters, we also have a reduction in the total number of parameters when compared to traditional co-clustering.

Figure 7 :

 7 Figure 7: Parameter-wise co-clustering results for the Jester data after performing the nonexhaustive search algorithm.

Table 1 :

 1 Average error (and standard deviation) of the parameter estimates over the 50

	datasets for Simulation 1.			
	∆µ	∆Σ	∆π	∆ρ µ	∆ρ Σ
	0.14 (0.70) 0.24 (0.75) 0.012 (0.082) 1.44e-15 (5.61e-16) 1.33e-15 (4.59e-16)

Table 2 :

 2 Average ARI (and standard deviation) for the row (ARI r ), column by means (ARI cµ ), and column by variances (ARI cΣ ) partitions over the 50 datasets for Simulation 1.

	ARI r	ARI cµ	ARI cΣ

Table 3 :

 3 Average error (and standard deviation) of the estimates over the 50 datasets for

	Simulation 2.				
	∆µ	∆Σ	∆π	∆ρ µ	∆ρ Σ
	0.15 (0.50) 0.085 (0.046) 1.29e-15 (3.91e-16) 0.015 (0.088) 0.0079 (0.0054)

Table 4 :

 4 Average ARI (and standard deviation) for the row (ARI r ), column by means (ARI cµ ), and column by variances (ARI cΣ ) partitions over the 50 datasets for Simulation 2.

	ARI r	ARI cµ	ARI cΣ
	1.00 (0.00) 0.98 (0.080) 0.96 (0.018)

Table 7 :

 7 Summary of co-clustering results for the fashion MNIST analysis.

	Method	ARI(s.d.)	MCR(s.d.) Params(s.d.)
	Traditional	0.62 (0.14) 0.11 (0.044)	38.6 (5.9)
	Parameter-Wise 0.80 (0.15) 0.056 (0.046)	44.4 (5.5)

Table 8 :

 8 Classification table comparing row-clusters for parameter-wise and traditional co-
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Step: Update the parameters according to

.

After a burn-in period of the algorithm, the estimates of each of the parameters are just the mean of the runs of the SEM algorithm (the number of runs are assessed experimentally in Section 4). We denote these final estimates by θ = ( π, ρµ , ρΣ , μ, Σ). For the final partition of rows, columns by means, and columns by variances, we fix the parameters at their estimates and run more iterations of the SE step. We then assign each row to the row-cluster to which it is assigned most often over these additional SE steps. Likewise, each column is assigned to the column-cluster by means to which it is assigned most often over the additional SE steps, and finally each column is assigned to the column-cluster by variances to which it is assigned most often over the additional SE iterations. For our simulations and real data analyses, we take 20 such runs to obtain the final partitions ẑ, ŵµ , and ŵΣ .

Model Selection

ICL-BIC As is the case in any clustering scenario, the number of row-clusters, columnclusters by means, and column-clusters by variances are not known a priori and, therefore, a model selection criterion is required. Similar to traditional co-clustering, the observed log-likelihood is intractable and so the BIC cannot be used. Therefore, we propose using the integrated complete log-likelihood (ICL; [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF], which relies on the complete data log-likelihood instead of the observed log-likelihood. This criterion is called the ICL-BIC, similar to that used by [START_REF] Jacques | Model-based co-clustering for ordinal data[END_REF] and is given by ICL-BIC = p(x, ẑ, ŵµ , ŵΣ ; θ) -G -1 2 log n -L µ + L Σ -2 2 log p -G(L µ + L Σ ) 2 log np.