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Abstract

In recent years, data dimensionality has increasingly become a concern, leading

to many parameter and dimension reduction techniques being proposed in the litera-

ture. A parameter-wise co-clustering model, for data modelled via continuous random

variables, is presented. The proposed model, although allowing more flexibility, still

maintains the very high degree of parsimony achieved by traditional co-clustering. A

stochastic expectation-maximization (SEM) algorithm along with a Gibbs sampler is

used for parameter estimation and an integrated complete log-likelihood criterion is

used for model selection. Simulated and real datasets are used for illustration and

comparison with traditional co-clustering.

1 Introduction

Clustering is the process of finding and analyzing underlying group structure in heterogenous

data. With the emergence of big data, the number of variables in a dataset is constantly

increasing and in many areas of application it is not uncommon for the number of variables

to exceed the number of observations. In such situations, where the dimension of the data

is very high, traditional mixture modelling techniques for clustering oftentimes fail. Co-

clustering is a very useful method for dealing with such scenarios.

Co-clustering aims to define a partition in the rows of the data matrix for clustering

individuals, as well as a partition in the columns for clustering variables. The result is par-

titioning the data matrix into homogenous blocks, or co-clusters, based on both individuals

and variables. A key assumption for maintaining parsimony is that observations within each

block are realizations of independent and identically distributed random variables. Some

of the earliest work in co-clustering can be traced to Hartigan (1972). Since that time,
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model-based approaches have recently been shown to be effective for data treated as real-

izations of a continuous random variable (Nadif and Govaert, 2010), count data (Pledger

and Arnold, 2014) and ordinal data (Jacques and Biernacki, 2017), to name but a few. In

traditional co-clustering, added flexibility is often obtained by fitting more row-clusters and

column-clusters; however, this is not generally advisable for parsimony reasons. Herein, we

propose a parameter-wise co-clustering model that separately clusters columns according to

both means and variances using the Gaussian distribution.

The remainder of this paper is laid out as follows. Section 2 presents a detailed back-

ground on high dimensional clustering techniques as well as details on traditional co-clustering

using the Gaussian distribution. Section 3 presents the new model, parameter estimation,

model selection criterion, and a non-exhaustive search algorithm for model selection. In

Sections 4 and 5, synthetic and real datasets are considered for algorithm evaluation, clas-

sification performance, model selection performance, and comparison with traditional co-

clustering. We conclude with a discussion of the results (Section 6).

2 Gaussian-Based Clustering for High Dimensional Data

2.1 Model-Based Clustering

Consider a dataset x = (x′1,x
′
2, . . . ,x

′
n)′ with n individuals xi ∈ Rp. One common method

for clustering is model-based clustering, and generally makes use of a finite mixture model.

A finite mixture model assumes that a real random vector Xi of dimension p has probability

density function

f(xi|ϑ) =
G∑
g=1

πgf(xi|Θg),

where πg > 0 ∀ g and
∑G

g=1 πg = 1 are the mixing proportions, f(·|Θg) are the component

density functions parameterized by Θg, and ϑ = (π1, . . . , πG,Θ1, . . . ,ΘG) represents all the

mixture parameters.

Because of its mathematical tractability, the multivariate Gaussian mixture model is

widely studied in the literature. In this case, each of the component densities is a multivariate

Gaussian with density

f(xi|Θg) =
1

(2π)
p
2 |Σg|

1
2

exp

{
−1

2
(xi − µg)′Σ−1

g (xi − µg)
}
,

where Θg = (µg,Σg). The number of free parameters in a Gaussian mixture model is

#ParamsGaussMix = (G− 1) +Gp+Gp(p+ 1)/2. (1)
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Clearly, the number of free parameters in (1) is quadratic in the dimension of the data.

As a result, using this simple mixture of Gaussian distributions will usually fail when the

dimension p increases.

In traditional model-based clustering, the group membership for observation xi is usually

represented by the vector zi = (zi1, zi2, . . . , ziG), where zig = 1 if observation xi belongs

to group g and 0 otherwise. Moreover, zi is a realization of Zi ∼ multinomial(1;π) where

π = (π1, π2, . . . , πG). In addition, all couples (Xi,Zi) are usually assumed to be independent.

The use of a Gaussian mixture model for clustering can be traced back to Wolfe (1965).

Other early work on Gaussian mixture models can be found in Baum et al. (1970) and Scott

and Symons (1971). A detailed review of model-based clustering and classification is given

by McNicholas (2016), including related estimation and model selection procedures.

2.2 High Dimensional Clustering Techniques

Although the Gaussian mixture model is widely used, problems arise when the data dimen-

sionality p increases. The main contribution to the number of free parameters is through

the component covariance matrices Σg. Therefore, as a starting point, many methods try to

impose parsimonious constraints on Σg. A detailed background is presented by Bouveyron

and Brunet-Saumard (2014) and McNicholas (2016).

One particular example to note is the mixture of factor analyzers model. This model,

presented by Ghahramani and Hinton (1997), is a Gaussian mixture model with covariance

structure Σg = ΛgΛ
′
g + Ψ, where Λg is a p × q matrix of factor loadings with q < p and

Ψ = diag(ψ1, ψ2, . . . , ψp), ψj ∈ R+. Numerous extensions are proposed in the literature,

including McLachlan and Peel (2000), who utilize the more general structure Σg = ΛgΛ
′
g +

Ψg, and the closely-related mixture of probabilistic principal component analyzers with

Σg = ΛgΛ
′
g + ψgI (Tipping and Bishop, 1999). In addition to these minor extensions,

McNicholas and Murphy (2008) construct a family of eight parsimonious Gaussian models

by considering the constraint Λg = Λ in addition to Ψg = Ψ and Ψg = ψgI. For the fully

constrained model in McNicholas and Murphy (2008), there are

#ParamsMFA = (G− 1) +Gp+ pq − q(q − 1)/2 + 1 (2)

free parameters. It is clear that although the number of free parameters associated with

these models is linear in p, it is still nevertheless dependent on the dimension. Consequently,

these models are still not suitable for very high dimensional data. Moreover, these methods

may not be viable when n > p, which is common in applications such as gene expression

data, word processing data, single nucleotide polymorphism data, etc.
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Alternatively, Bouveyron et al. (2007) use the spectral decomposition of Σg

Σg = Dg∆gD
′
g,

where Dg is the orthogonal matrix of eigenvectors and ∆g is a diagonal matrix of correspond-

ing eigenvalues for which they impose the structure ∆g = diag(a1g, a2g, . . . , aqgg, bg, bg, . . . , bg),

where akg are the qg largest eigenvalues and bg is average of the remaining p− qg eigenvalues.

This also greatly reduces the number of free parameters, i.e.,

#ParamsBouveyron = (G− 1) +Gp+
G∑
g=1

qg[p− (qg + 1)/2] +
G∑
g=1

qg + 2G. (3)

Again, however, the number of free parameters is dependent on the dimensionality of the

data.

Finally, there are also variable selection procedures such as `1 penalization methods which

take advantage of sparsity to perform variable selection and parameter estimation simulta-

neously. The first such proposed method is presented by Pan and Shen (2007) who consider

equal, diagonal covariance matrices between groups and apply an `1 penalty to the mean

vectors. A lasso method is then used for parameter estimation. This is extended by Zhou

et al. (2009), who consider unconstrained covariance matrices and apply an `1 penalty for

both the mean and covariance parameters. Although these methods are useful for dealing

with the dimensionality problem, the `1 penalty shrinks the parameters, thus introducing

bias, as discussed by Meynet and Maugis-Rabusseau (2012). Moreover, the Bayesian infor-

mation criterion (BIC; Schwarz, 1978) may not be suitable for high-dimensional data. A

detailed review of each of these methods is given by Biernacki and Maugis (2017).

2.3 Co-Clustering and its Limitations

Co-Clustering is a very useful tool for analyzing high-dimensional data. This method con-

siders simultaneous partitions of rows and columns, which are then used to organize the data

into homogenous blocks. For traditional co-clustering, as in clustering, data are assumed to

come in the form of an n× p matrix x with rows represented by x′i. Each individual element

of xi is denoted by xij, so that xij is the observation in row i and column j.

In co-clustering, there is an unknown partition of the rows into G clusters, from this

point onwards referred to as row-clusters, represented by the indicator vector zi as defined

previously. Unlike traditional co-clustering, however, there is also a partition of the columns

into L clusters, referred to as column-clusters, represented by the indicator vector wj =

(wj1, wj2, . . . , wjL) ∼ multinomial(1;ρ), where wjl = 1 if column j belongs to column-cluster
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l and wjl = 0 otherwise, and ρ = (ρ1, ρ2, . . . , ρL). It is assumed that each data point xij is

independent once the zi and wj are fixed. If, in addition, all zi and wj are assumed indepen-

dent, and the latent block model is utilized in the same manner as Nadif and Govaert (2010),

then the joint density of x becomes f(x;ϑ) =
∑

z∈Z
∑

w∈W p(z;π)p(w;ρ)f(x|z,w; Θ),

where

p(z;π) =
n∏
i=1

G∏
g=1

πzigg , p(w;ρ) =

p∏
j=1

L∏
l=1

ρl
wjl , and

f(x|z,wµ,wΣ; Θ) =
n∏
i=1

G∏
g=1

d∏
j=1

L∏
l=1

[
1√

2πσgl
exp

{
− 1

2σ2
gl

(xij − µgl)2

}]zigwjl
,

where µgl and σ2
gl are the mean and variance, respectively, for row-cluster g and column-

cluster l, Θ is the set of all µgl and σ2
gl, and ϑ = (π,ρ,Θ). The total number of free

parameters in this traditional co-clustering model is

#Paramstrad coclust = G+ L+ 2(GL− 1). (4)

Note that (4) does not depend on the dimension, making it a very parsimonious model.

Moreover, co-clustering is still possible to perform when p > n.

There are two different ways that one can view co-clustering. The first is that the main

goal is the clustering of rows, and the clustering of columns is solely a way to solve the

problem of dimensionality. However, in certain applications, the clustering of the columns

might also be of interest.

Limitations of Co-Clustering Although co-clustering has advantages over other high

dimensional techniques (especially in the number of free parameters), the model is fairly

restrictive because all observations in a block are realizations of independent and identically

distributed Gaussian random variables with mean µgl and variance σ2
gl. More flexibility is

obtained by fitting more column-clusters and row-clusters, which is not always possible or

advisable. What we propose in the present work is a parameter-wise co-clustering method

by clustering columns according to both means and variances. This is the reason why we

adopt hereafter the denomination “parameter-wise” co-clustering, which is now presented in

detail.
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3 Parameter-Wise Gaussian Co-Clustering

3.1 A Model to Combine Two Latent Variables in Columns

Recall that traditional co-clustering aims to cluster data such that observations in the same

block have the same distribution. An extension of traditional co-clustering for data treated

as realizations of a Gaussian random variable is now considered. Similar to traditional co-

clustering, there is a partition in rows and columns. However, now there are two partitions

in the columns; specifically, a partition with respect to means and a partition with respect

to variances.

Recall also that the data, which are treated as realizations of a continuous random vari-

able, are represented as an n× p matrix, x = (xij)1≤i≤n,1≤j≤p. The partition in rows is again

represented by z = (z1, z2, . . . , zn).

Two Partitions in Columns The partition in columns by means is represented by wµ =

(wµ
1 ,w

µ
2 , . . . ,w

µ
p ), where

wµ
j = (wµj1, w

µ
j2, . . . , w

µ
jLµ) ∼ multinomial(1;ρµ)

with ρµ = (ρµ1 , ρ
µ
2 , . . . , ρ

µ
Lµ) and the partition in columns by variances is denoted by wΣ =

(wΣ
1 ,w

Σ
2 , . . . ,w

Σ
p ), where

wΣ
j = (wΣ

j1, w
Σ
j2, . . . , w

Σ
jLΣ) ∼ multinomial(1;ρΣ)

with ρΣ = (ρΣ
1 , ρ

Σ
2 , . . . , ρ

Σ
LΣ). These two partitions in the columns is where the main novelty

lies. Note that G,Lµ and LΣ are the number of row-clusters, column-clusters by means, and

column-clusters by variances, respectively.

Log-Likelihood Using a small extension of the latent block model the observed log-

likelihood is then

f(x;ϑ) =
∑
z∈Z

∑
wµ∈Wµ

∑
wΣ∈WΣ

p(z;π)p(wµ;ρµ)p(wΣ;ρΣ)f(x|z,wµ,wΣ;µ,Σ),

where

p(z;π) =
n∏
i=1

G∏
g=1

πzigg , p(wµ;ρµ) =

p∏
j=1

Lµ∏
lµ=1

(ρµlµ)w
µ
jlµ , p(wΣ;ρΣ) =

p∏
j=1

LΣ∏
lΣ=1

(ρΣ
lΣ)

wΣ
jlΣ , and

f(x|z,wµ,wΣ;µ,Σ) =
n∏
i=1

G∏
g=1

p∏
j=1

Lµ∏
lµ=1

LΣ∏
lΣ=1

[
1√

2πσglΣ
exp

{
− 1

2σ2
glΣ

(xij − µglµ)2

}]zigwµjlµwΣ
jlΣ

.
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In terms of notation, µ = (µ1,µ2, . . . ,µG), where µg = (µg1, µg2, . . . , µgLµ). Note that µglµ is

the mean for row-cluster g and column-cluster by means lµ. Likewise, Σ = (Σ1,Σ2, . . . ,ΣG),

where Σg = (σ2
g1, σ

2
g2, . . . , σ

2
gLΣ) and σ2

glΣ is the variance for row-cluster g and column-cluster

by variances lΣ. Finally, the complete-data log-likelihood is

p(x, z,wµ,wΣ;ϑ) = C +
n∑
i=1

G∑
g=1

zig log πg +

p∑
j=1

Lµ∑
lµ=1

wµjlµ log ρµlµ +

p∑
j=1

LΣ∑
lΣ=1

wΣ
jlΣ log ρΣ

lΣ

− 1

2

n∑
i=1

G∑
g=1

p∑
j=1

Lµ∑
lµ=1

LΣ∑
lΣ=1

zigw
µ
jlµw

Σ
jlΣ

[
log σ2

glΣ +
(xij − µglµ)2

σ2
glΣ

]
,

where C is a constant with respect to the parameters and ϑ = (π,ρµ,ρΣ,µ,Σ). From this

point on, we refer to this model as parameter-wise co-clustering.

Number of Free Parameters The number of free parameters in the parameter-wise

co-clustering model is

#Paramsnew coclust = G− 1 + Lµ − 1 + LΣ − 1 +GLµ +GLΣ

= G+ (Lµ + LΣ)(G+ 1)− 3.

There are a few comparisons with traditional co-clustering that are now discussed. First, sim-

ilar to traditional co-clustering, the number of free parameters for the proposed parameter-

wise method is independent of the dimension, meaning a high degree of parsimony is still

maintained. Before mentioning the second point, note that the column-clusters by means and

column-clusters by variances can be combined. For example, columns in column-cluster 1

by means and column-cluster 1 by variances can combined to form one column-cluster. In

general, columns in column-cluster lµ by means and column-cluster lΣ by variances can be

combined to form one column-cluster for any combination of lµ and lΣ, leading to a maximum

of LµLΣ column-clusters. There can, however, be fewer than LµLΣ combined column-clusters

because it is possible, for example, that no columns are clustered into column-cluster 3 by

means and column-cluster 2 by variances. Now, assuming G is equal for both parameter-wise

and traditional co-clustering, and Lµ = LΣ = L, then there are only an additional L − 1

free parameters when using the parameter-wise model. Although there are these additional

free parameters, there is the possibility of L2 combined column-clusters, allowing for a finer

partition of the columns and increased flexibility.

There is the also the possibility that the parameter-wise model has fewer free param-

eters than traditional co-clustering while still maintaining similar flexibility. For example,

if traditional co-clustering is considered with G = 4 and L = 5, then the total number of

free parameters is 47. In the parameter-wise case, if G = 4, Lµ = 3, LΣ = 3, then the
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total number of free parameters is 31. In this case, there is a possibility of a total of nine

column-clusters compared to five column-clusters when using traditional co-clustering.

3.2 Parameter Estimation Using the SEM Gibbs Algorithm

The SEM algorithm after initialization at iteration q proceeds as follows.

SE Step: Generate the row partition z(q+1) according to

P (zig = 1|x,wµ(q),wΣ(q)
;µ(q),Σ(q),π(q)) =

π
(q)
g f(xi|wµ(q),wΣ(q)

;µ
(q)
g ,Σ(q)

g )∑G
g′ π

(q)
g′ f(xi|wµ(q),wΣ(q);µ

(q)
g′ ,Σ

(q)
g′ )

,

where

f(xi|wµ(q),wΣ(q)
;µ(q)

g ,Σ(q)
g ) =

p∏
j=1

Lµ∏
lµ=1

LΣ∏
lΣ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]wµ(q)
jlµ

wΣ(q)

jlΣ

.

Generate the column partition by means wµ(q+1) according to

P (wµjlµ = 1|x, z(q+1),wΣ(q)
;µ(q),Σ(q),ρµ(q)) =

ρµ
(q)
lµ f(x·j|z(q+1),wΣ(q)

;µ
(q)
lµ ,Σ

(q))∑Lµ

lµ′ ρµ
(q)

lµ′f(x·j|z(q+1),wΣ(q);µ
(q)

lµ′ ,Σ
(q))

,

where x·j = (x1j, x2j, . . . , xnj), µ
(q)
lµ = (µ

(q)
1lµ , µ

(q)
2lµ , . . . , µ

(q)
Glµ), and

f(x·j|z(q+1),wΣ(q)
;µ

(q)
lµ ,Σ

(q)) =
n∏
i=1

G∏
g=1

LΣ∏
lΣ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]z(q+1)
ig wΣ(q)

jlΣ

.

Generate the column partition by variances wΣ(q+1)
according to

P (wΣ
jlΣ = 1|x, z(q+1),wµ(q+1);µ(q),Σ(q),ρΣ(q)

) =
ρΣ(q)

lΣ f(x·j|z(q+1),wµ(q+1);µ(q),Σ
(q)

lΣ
)∑LΣ

lΣ′ ρΣ(q)

lΣ′f(x·j|z(q+1),wµ(q+1);µ(q),Σ
(q)

lΣ′)
,

where Σ
(q)

lΣ
= (σ2(q)

1lΣ , σ
2(q)

2lΣ , . . . , σ
2(q)

GlΣ) and

f(x·j|z(q+1),wµ(q+1);µ(q),Σ
(q)

lΣ
) =

n∏
i=1

G∏
g=1

Lµ∏
lµ=1

[
1

√
2πσ

(q)

glΣ

exp

{
− 1

2σ2(q)

glΣ

(xij − µ(q)
glµ)2

}]z(q+1)
ig wµ

(q+1)
jlµ

.

M Step: Update the parameters according to

π(q+1)
g =

∑n
i=1 z

(q+1)
ig

n
, ρµlµ

(q+1) =

∑p
j=1w

µ
jlµ

(q+1)

p
, ρΣ

lΣ
(q+1)

=

∑p
j=1 w

Σ
jlΣ

(q+1)

p
,
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µ
(q+1)
glµ =

∑n
i=1

∑p
j=1

∑LΣ

lΣ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
xij∑n

i=1

∑p
j=1

∑LΣ

lΣ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
=

∑n
i=1

∑p
j=1 z

(q+1)
ig wµjlµ

(q+1)xij∑n
i=1

∑p
j=1 z

(q+1)
ig wµjlµ

(q+1)
,

σ2
glΣ

(q+1)
=

∑n
i=1

∑p
j=1

∑Lµ

lµ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
(xij − µ(q+1)

glµ )2∑n
i=1

∑p
j=1

∑Lµ

lµ=1 z
(q+1)
ig wµjlµ

(q+1)wΣ
jlΣ

(q+1)
.

After a burn-in period of the algorithm, the estimates of each of the parameters are just

the mean of the runs of the SEM algorithm (the number of runs are assessed experimentally

in Section 4). We denote these final estimates by ϑ̂ = (π̂, ρ̂µ, ρ̂Σ, µ̂, Σ̂). For the final

partition of rows, columns by means, and columns by variances, we fix the parameters at

their estimates and run more iterations of the SE step. We then assign each row to the

row-cluster to which it is assigned most often over these additional SE steps. Likewise, each

column is assigned to the column-cluster by means to which it is assigned most often over the

additional SE steps, and finally each column is assigned to the column-cluster by variances

to which it is assigned most often over the additional SE iterations. For our simulations and

real data analyses, we take 20 such runs to obtain the final partitions ẑ, ŵµ, and ŵΣ.

3.3 Model Selection

ICL–BIC As is the case in any clustering scenario, the number of row-clusters, column-

clusters by means, and column-clusters by variances are not known a priori and, therefore,

a model selection criterion is required. Similar to traditional co-clustering, the observed

log-likelihood is intractable and so the BIC cannot be used. Therefore, we propose using the

integrated complete log-likelihood (ICL; Biernacki et al., 2000), which relies on the complete

data log-likelihood instead of the observed log-likelihood. This criterion is called the ICL–

BIC, similar to that used by Jacques and Biernacki (2017) and is given by

ICL–BIC = p(x, ẑ, ŵµ, ŵΣ; ϑ̂)− G− 1

2
log n− Lµ + LΣ − 2

2
log p− G(Lµ + LΣ)

2
log np.

From the property proven by Brault et al. (2017), the BIC and ICL–BIC exhibit the same

behaviour for large values of n and/or p, thus the number of blocks chosen by this criterion

is consistent (under some conditions not mentioned here).

Search Algorithm Because an extra layer of complexity is introduced with the parameter-

wise model by considering two column partitions, it may take a very long time to perform

an exhaustive search of all possible combinations of G,Lµ and LΣ in a pre-defined range.

This has been discussed in the literature, specifically by Robert (2017), and a non-exhaustive

search algorithm for the parameter-wise model is now presented. Specifically, the algorithm
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begins with the parameters (G,Lµ, LΣ) = (G1, L
µ
1 , L

Σ
1 ). Three models with parameters

(G1 + 1, Lµ, LΣ), (G1, L
µ + 1, LΣ) and (G1, L

µ, LΣ + 1) are then fit. The set with the highest

ICL–BIC is retained and we obtain the set (G2, L
µ
2 , L

Σ
2 ). The procedure is then repeated

until a maximum threshold is reached for these parameters or the ICL–BIC no longer in-

creases. Although not as pertinent for traditional co-clustering, a similar non-exhaustive

search algorithm can be used for traditional co-clustering.

4 Numerical Experiments on Artificial Data

4.1 Algorithm and Parameter Estimation Evaluation

Two different simulations are performed to evaluate the algorithm, parameter estimation,

and classification performance.

Simulation 1

50 datasets are simulated according to the following parameters. n = 1000, p = 100, G = 3,

Lµ = 2, LΣ = 3,

µ =

 1 −1

2 −2

3 −3

 , Σ =

 1 0.5 0.75

2 1.75 0.25

1.5 2.25 2.5

 ,

and mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.4, 0.6), ρΣ = (0.3, 0.3, 0.4).

To clarify notation, the cell glµ in the matrix µ corresponds to the mean of an observation

from row-cluster g and column-cluster by means lµ, i.e., µglµ . Likewise, the cell glΣ in the

matrix Σ corresponds to the variance of an observation from row-cluster g and column-cluster

by variances lΣ, i.e., σ2
glΣ .

A burn-in of 20 iterations for the SEM-Gibbs algorithm is used, followed by 100 iterations,

followed by 20 iterations of the SE-step to obtain the final partitions.

The error in the mean estimates is calculated using

∆µ =
∑
g,lµ

|µ̂glµ − µglµ |.

The errors for the other parameters are calculated in a similar fashion and are denoted by

∆Σ, ∆π, ∆ρµ and ∆ρΣ, respectively. The averaged errors (and their standard deviations)
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over the 50 datasets are shown in Table 1. The average errors are low for all variables

indicating good parameter recovery.

The adjusted rand index (ARI; Hubert and Arabie, 1985) is used to assess classification

performance. This quantity compares two partitions, in this case the true partition to an

estimated partition, and has a value of 1 if there is perfect agreement, and an expected

value of 0 under random classification. Table 2 displays the average ARI, with standard

deviations, for the row, column by means, and column by variances partitions over the 50

simulated datasets. Notice that the classification is perfect for both partitions by columns

for all simulated datasets. Moreover, the average ARI for the rows is very high.

Table 1: Average error (and standard deviation) of the parameter estimates over the 50

datasets for Simulation 1.

∆µ ∆Σ ∆π ∆ρµ ∆ρΣ

0.14 (0.70) 0.24 (0.75) 0.012 (0.082) 1.44e-15 (5.61e-16) 1.33e-15 (4.59e-16)

Table 2: Average ARI (and standard deviation) for the row (ARIr), column by means

(ARIcµ), and column by variances (ARIcΣ) partitions over the 50 datasets for Simulation 1.

ARIr ARIcµ ARIcΣ

0.99 (0.068) 1.00 (0.00) 1.00 (0.00)

In Figure 1, the progression of the parameter estimates over the course of the SEM-Gibbs

algorithm is shown for one of the datasets (the other datasets exhibit similar behaviour).

From these plots, it is clear that a burn-in of 20 iterations is sufficient to obtain a stable

chain.

Finally, in Figure 2, the co-clustering results for one of the 50 datasets is displayed. Note,

in this case, the estimated co-clustering result is the same as the true co-clustering solution.

In the top left panel, a heatmap of the original data is displayed. In the co-clustering by

means panel (bottom left), the co-clustering results for the row-clusters and the column-

clusters by means is shown. The co-clustering by variances panel (bottom right) shows

the co-clustering results for the row-clusters and the column-clusters by variances. Finally,

the combined co-clustering (top right) displays the co-clustering solution with all combined

column-clusters. Specifically, going from left to right, the first combined column-cluster

consists of the columns partitioned into column-cluster 1 for the means and column-cluster

1 for the variances, the second combined column-cluster are the columns clustered into

column-cluster 2 for the means and column-cluster 1 for the variances and so on. Combining

11



0 20 40 60 80 100 120

−
3

−
2

−
1

0
1

2
3

a

Iteration

0 20 40 60 80 100 120

0.
5

1.
0

1.
5

2.
0

2.
5

b

Iteration

0 20 40 60 80 100 120

0.
20

0.
25

0.
30

0.
35

0.
40

c

Iteration

0 20 40 60 80 100 120

0.
35

0.
45

0.
55

0.
65

d

Iteration

0 20 40 60 80 100 120

0.
2

0.
3

0.
4

0.
5

e

Iteration

Figure 1: SEM algorithm parameter estimation progression for one dataset for (a) the mean

parameters µglµ , (b) the variance parameters σ2
glΣ , (c) the row mixing proportions πg, (d) the

column by means mixing proportions ρµlµ , and (e) the column by variances mixing proportions

ρΣ
lΣ for Simulation 1.

the column-clusters by means and variances in this manner results in a maximum of LµLΣ

combined column-clusters (as is the case here) thus allowing more flexibility. It is important

to note, however, that there may be cases, as we will see with the real dataset, when no

columns are clustered into a particular pair lµ and lΣ, and thus the combined co-clustering

result might have fewer than LµLΣ combined column-clusters but never more.

Simulation 2

In Simulation 2, less separation between groups is considered. A total of 50 datasets are

again considered with the parameters n = 200, p = 500, G = 3, Lµ = 3, LΣ = 2,

µ =

 1 1.25 0

2 1.2 1

1.5 1.9 0.5

 , Σ =

 1 0.5

2 1.75

1.5 2.25

 ,

and the mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.3, 0.5, 0.2), ρΣ = (0.4, 0.6).
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Figure 2: Estimated co-clustering solution for one of the fifty datasets from Simulation 1.

Table 3 shows the average error of the estimates over the 50 datasets, and the average ARI

values over the 50 datasets for each partition are shown in Table 4. Again, we obtain very

good classification performance for all three partitions. The progression of the parameter

estimates is shown in Figure 3. Similar to Simulation 1, a burn-in period of 20 iterations is

still sufficient to obtain a stable chain. Finally, Figure 4 displays the co-clustering solutions

for one of the 50 datasets. Unlike in the first simulation, there is very little spatial separation

between blocks.

Table 3: Average error (and standard deviation) of the estimates over the 50 datasets for

Simulation 2.

∆µ ∆Σ ∆π ∆ρµ ∆ρΣ

0.15 (0.50) 0.085 (0.046) 1.29e-15 (3.91e-16) 0.015 (0.088) 0.0079 (0.0054)
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Table 4: Average ARI (and standard deviation) for the row (ARIr), column by means

(ARIcµ), and column by variances (ARIcΣ) partitions over the 50 datasets for Simulation 2.

ARIr ARIcµ ARIcΣ

1.00 (0.00) 0.98 (0.080) 0.96 (0.018)

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

a

Iteration

0 20 40 60 80 100 120

0.
5

1.
0

1.
5

2.
0

b

Iteration

0 20 40 60 80 100 120

0.
25

0.
30

0.
35

0.
40

0.
45

c

Iteration

0 20 40 60 80 100 120

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

d

Iteration

0 20 40 60 80 100 120

0.
40

0.
45

0.
50

0.
55

0.
60

e

Iteration

Figure 3: Simulation 2 SEM algorithm parameter estimation progression for one dataset

for (a) the mean parameters µglµ , (b) the variance parameters σ2
glΣ , (c) the row mixing

proportions πg, (d) the column by means mixing proportions ρµlµ , and (e) the column by

variances mixing proportions ρΣ
lΣ .

4.2 Simulation 3

In this simulation, the performance of the ICL–BIC selection criterion is considered. Again,

50 datasets are simulated with n = 2000, p = 500, G = Lµ = LΣ = 3,

µ =

 1 1.25 0

2 1.2 1

1.5 1.9 0.5

 , Σ =

 1 0.5 0.25

2 1.75 0.5

1.5 2.25 1

 ,

and mixing proportions

π = (0.3, 0.3, 0.4), ρµ = (0.3, 0.4, 0.3), ρΣ = (0.4, 0.3, 0.3).
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Figure 4: Estimated co-clustering solution for one of the fifty datasets from Simulation 2.

An exhaustive search is performed considering each of combination of G,Lµ, LΣ ∈ {2, 3, 4}.
In Table 5, the number of times each value of G, Lµ and LΣ is chosen by the ICL–BIC is

displayed. For the vast majority of the datasets, the correct model is chosen by the ICL–BIC.

Table 5: Frequency of the number of row-clusters, column-clusters by means, and column-

clusters by variances chosen by the ICL–BIC over the 50 simulated datasets when using the

exhaustive search in Simulation 3.

2 3 4

G 0 49 1

Lµ 0 48 2

LΣ 0 48 2
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4.3 Simulation 4

In the last simulation, the performance of the non-exhaustive search algorithm described

in Section 3.3 is addressed. In all, 25 datasets are simulated according to the parameters

n = 100, p = 200, G = LΣ = 3, Lµ = 4,

µ =

 1 −0.25 0.3 −1

1.25 0 0.1 −0.3

0.5 −1 0 0.1

 , Σ =

 1 0.5 0.25

2 1.75 0.5

1.5 2.25 1

 ,

and

π = (0.3, 0.3, 0.4), ρµ = (0.2, 0.3, 0.25, 0.25), ρΣ = (0.5, 0.25, 0.25).

The initial values are taken to be (G1, L
µ
1 , L

Σ
1 ) = (1, 1, 1) and the maximum values for all

three are set to five. In Table 6, the number of times each value of G, Lµ and LΣ is chosen

by the ICL–BIC is shown. Notice that the procedure performs quite well for choosing the

correct model.

Table 6: Frequency of the number of row-clusters, column-clusters by means, and column-

clusters by variances chosen by the ICL–BIC over the 25 simulated datasets when using the

non-exhaustive search method for Simulation 4.

2 3 4

G 0 24 1

Lµ 0 0 25

LΣ 1 24 0

5 Real Data Analyses

5.1 Comparing Parameter-Wise and Traditional Co-Clustering Un-

der Similar Conditions

A subset of the Jester dataset used by Goldberg et al. (2001) is used to compare parameter-

wise co-clustering and traditional co-clustering. The data consist of 100 jokes rated on a

“continuous” scale from −10 to 10. A total of 7200 users rated all 100 jokes, and a random

sample of 2000 of these users is considered herein.

The non-exhaustive search algorithm is performed for traditional co-clustering with the

number of row-clusters ranging from one to 25 and the number of column-clusters ranging
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from one to seven. This results in choosing seven row-clusters and three column-clusters and

the resultant ICL–BIC is −569487. With these values for G and L, the total number of free

parameters is 50. In the next section, the non-exhaustive search algorithm is used for the

proposed parameter-wise method; however, it is interesting to consider the performance of

the parameter-wise method under similar conditions to the results obtained with traditional

co-clustering. Specifically, the parameter-wise method is performed on this dataset with

G = 7, Lµ = LΣ = 3. Under this model, the ICL–BIC is −569010.4, and the total number

of free parameters is 52. In Figure 5, the original data (left panel) and the traditional co-

clustering solution (right panel), are shown, and the co-clustering solutions for parameter-

wise co-clustering are displayed (Figure 6) in the same format as the simulations. Notice

that a total of seven combined column-clusters are obtained when using parameter-wise

co-clustering.

Figure 5: Traditional co-clustering results for the Jester data.

In Table, 7, we show a classification table comparing the column-clusters by means

and column-clusters by variances found using parameter-wise co-clustering and the column-

clusters found using traditional co-clustering. There is almost perfect agreement between

the column-clusters from traditional co-clustering and the column-clusters by means from

parameter-wise co-clustering. This, however, is not true for the column-clusters by vari-

ances. This result is somewhat perceptible in the images of the co-clustering solutions. In

Table 8, the classification table comparing row-clusters from traditional and parameter-wise

co-clustering is displayed. It is clear that the row-clusters found by both of these methods

are quite comparable — the ARI when comparing these two partitions is 0.86.
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Figure 6: Parameter-wise co-clustering results for the Jester dataset under similar conditions

to the traditional co-clustering solution.

5.2 Further Analysis with Parameter-Wise Co-Clustering

The non-exhaustive search algorithm is now performed for parameter-wise co-clustering.

The range of values was one to 25 row-clusters, and one to seven column-clusters by means

and column-clusters by variances resulting in the ICL–BIC choosing a model with 17 row-

clusters, six column-clusters by means, and four column-clusters by variances. The resulting

ICL–BIC is −561099 and a total of 15 combined column-clusters are obtained. In Figure 7,

we show the parameter-wise co-clustering solution. Because more row-clusters are obtained,

it is far more difficult to visualize the row-clusters. Moreover, the combined co-clustering

solution is very difficult to interpret in this scenario, which displays the benefit of visualizing

the column-clusters by means and column-clusters by variances separately.

Finally, the exhaustive search algorithm is performed for both traditional and parameter-

wise co-clustering. For each value of G ∈ {1, 2, . . . , 25}, the maximum ICL–BIC over all

values of L for traditional co-clustering, and Lµ and LΣ for parameter-wise co-clustering

is considered. In Figure 8, we display a plot of this maximum ICL–BIC against G. For

both traditional and parameter-wise co-clustering, the ICL–BIC begins to plateau around
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Table 7: Classification table comparing the column-clusters by means and column-clusters by

variances for parameter-wise co-clustering and column-clusters from traditional co-clustering

for the Jester dataset.

Means Variances

Traditional 1 2 3 1 2 3

1 43 0 1 28 14 2

2 2 30 0 4 28 0

3 0 0 24 11 0 13

Table 8: Classification table comparing row-clusters for parameter-wise and traditional co-

clustering.

Traditional

Parameter-Wise 1 2 3 4 5 6 7

1 427 10 1 0 3 0 16

2 0 350 0 9 0 0 11

3 18 0 180 0 16 0 0

4 0 0 0 216 0 0 3

5 10 11 0 0 241 1 0

6 0 5 0 0 0 103 0

7 2 3 0 4 0 0 360

G = 10. Moreover, the ICL–BIC for parameter-wise co-clustering is oftentimes, if only very

slightly, higher than traditional co-clustering. Finally, we note that it is very computationally

expensive to run the exhaustive search with parameter-wise co-clustering taking around 24

hours using 25 1200MHz cores running continuously.

6 Discussion

A parameter-wise co-clustering algorithm was developed for high-dimensional data. This

parameter-wise method allowed for two partitions of the columns based on both means and

variances, as well as a combined co-clustering solution. This, in essence, provides more

flexibility than traditional co-clustering, while maintaining the high degree of parsimony

inherent to traditional co-clustering. An SEM Gibbs algorithm was used for parameter

estimation, and evaluated by two simulations. An ICL–BIC criterion, as well as a non-

exhaustive search algorithm, were developed for model selection.
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Figure 7: Parameter-wise co-clustering results for the Jester data after performing the non-

exhaustive search algorithm.

A subset of the Jester dataset was considered for comparison purposes between tra-

ditional and parameter-wise co-clustering. After applying traditional co-clustering to the

data, parameter-wise co-clustering was performed using similar parameters, i.e., same G and

Lµ = LΣ = L. This resulted in similar row-clusters between the two methods. Furthermore,

the column-clusters by means using parameter-wise co-clustering were almost identical to

the column-clusters from traditional co-clustering. This was not true, however, when com-

paring the column-clusters by variances and the column-clusters obtained from traditional

co-clustering. Parameter-wise co-clustering also had a marginally higher ICL–BIC in this

case. Using the non-exhaustive search algorithm for parameter-wise co-clustering resulted in

far more row-clusters, and many more combined column-clusters, which displayed the utility

of considering the co-clustering by means, and co-clustering by variances separately from the

combined co-clustering solution.

Although this method only considered the use of the Gaussian distribution, it can be

extended in various ways. One example would be to use other continuous distributions with

more than one parameter. For example, one could consider the skew-t distribution and
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Figure 8: Maximum ICL–BIC over L for traditional co-clustering (turquoise), and Lµ and

LΣ for parameter-wise co-clustering (red) for each value of G, against G.

cluster columns based on location, scale, concentration and skewness. This could also be

extended to data that cannot be considered a realization of a continuous random variable

such as ordinal data where the columns could be partitioned according to mode and precision.

The number of free parameters in each of these cases will not depend on the dimensionality

of the data thus preserving the parsimony inherent to co-clustering.
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