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REMAINDER PADÉ APPROXIMANTS FOR THE HURWITZ ZETA
FUNCTION

MARC PRÉVOST

Abstract. Following our earlier research, we use the method introduced by the author
in [9] named Remainder Padé Approximant in [10], to construct approximations of the
Hurwitz zeta function. We prove that these approximations are convergent on the positive
real line. Applications to new rational approximations of ζ(2) and ζ(3) are provided.

1. Introduction

In [9], we gave a new proof of the irrationality of ζ(2) =
∑∞

k=1 1/k2 (and also of ζ(3) =∑∞
k=1 1/k3) based on an explicit construction of some Padé approximants of the remainder

term R2(1/n) =
∑∞

k=n 1/k2with

R2(z) =
∞∑
k=0

z2

(zk + 1)2
.

More precisely, we have ζ(2) =
∑n−1

k=1 1/k2 + R2(1/n) The function R2 is meromorphic in

C \ {0,−1,−1

2
,−1

3
, · · · } and so is not holomorphic at 0. However, R2 is C∞ at z = 0 and

may be expressed as a Taylor series R̂2(z) =
∑∞

k=0Bkz
k+1 with a zero radius of convergence,

Bk being the kth Bernoulli number.
The idea was to compute an explicit representation of diagonal Padé approximant

Pn(z)/Qn(z) = [n/n]R̂2
(z) ∈ Q(z) of the series R̂2(z) with a good estimation of the error

term En(z) = R2(z)− [n/n]R̂2
(z).

At last, we stated the relation ship

Qn(1/n)En(1/n) = Qn(1/n)ζ(2)−Qn(1/n)
n−1∑
k=1

1/k2 − Pn(1/n) = qnζ(2)− pn

providing a sequence of rational approximation pn/qn and proving the irrationality of ζ(2).
The surprise was to retrieve the sequences used by Apéry [1] for the same purpose.

The same method applied to the series ζ(3) =
∑∞

k=1 1/k3 provides also the Apéry num-
bers given in [1].

The term Remainder Padé Approximant (RPA) has been used later in a paper written
with T. Rivoal [10] for the exponential function.
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Key words and phrases. Padé approximants, Zeta function, Bernoulli numbers.

1



2 MARC PRÉVOST

In this paper, we apply the same method and we prove that some sequence of RPA for
Hurwitz zeta function is convergent on the real line.

For a ∈ C,<(a) > 0 , the Hurwitz zeta function is defined as

ζ(s, a) =
∞∑
k=0

1

(k + a)s
(1.1)

where the Dirichlet series on the right hand side of (1.1) is convergent for <(s) > 1 and
uniformly convergent in any finite region where <(s) ≥ 1 + δ, with δ > 0. It defines an
analytic function for <(s) > 1. The Riemann ζ function is ζ(s, 1).

An integral representation of ζ(s, a) is given by

ζ(s, a) =
1

Γ(s)

∫ ∞
0

xs−1e−ax

1− e−x
dx <(s) > 1,<(a) > 0, (1.2)

where Γ(s) =
∫∞

0
ys−1e−ydy is the gamma function.

If <(s) ≤ 1, the Hurwitz zeta function can be defined by the equation

ζ(s, a) = Γ(1− s) 1

2πi

∫
C

zs−1eaz

1− ez
dz,

where C is is a loop around the negative real axis; it starts at −∞, encircles the origin
once in the positive direction without enclosing any of the points z = ±2iπ,±4iπ,. . . , and
returns to −∞.

Thus ζ(s, a) can be continued meromorphically to the whole complex s-plane except for
a single pole at s = 1 with its residue 1.

If we write the formula (1.1) as :

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+
∞∑
k=0

1

(n+ a+ k)s
(1.3)

and set

Ψ(s, x) := t1−s
∞∑
k=0

(
t

1 + kt

)s
then

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+ (n+ a)1−sΨ

(
s,

1

n+ a

)
. (1.4)

Another expression of Ψ(s, t) is given in [13, chapt. XIII] by

Ψ(s, t) =
t1−s

Γ(s)

∫ ∞
0

us−1 e−u/t

1− e−u
du (1.5)

whose Taylor series is



REMAINDER PADÉ APPROXIMANTS FOR THE HURWITZ ZETA FUNCTION 3

Ψ(s, t) =
∞∑
k=0

Bk

k!
(s)k−1(−1)ktk, (1.6)

which is convergent only at t = 0, where (s)k is the Pochammer symbol ((s)p := s(s +
1)(s+ 2) · · · (s+ p− 1), (s)−1 = 1/(s− 1)).

For a given pair (m1,m2), let [m1/m2]Ψ(s,t) = Q̃m1(t)/P̃m2(t) be a Padé approximant to
the function Ψ.

Then by replacing the remainder term Ψ

(
s,

1

n+ a

)
in (1.4), by the Padé approximant

[m1/m2]Ψ(s,t), computed at t = 1/(n+ a), we obtain the RPA approximant

RPA(n,m1,m2) :=
n−1∑
k=0

1

(k + a)s
+ (n+ a)1−s Q̃m1(1/(n+ a))

P̃m2(1/(n+ a))
. (1.7)

The crucial point is the convergence of this sequence (RPA(n,m1,m2)) when one or
more of the parameters n,m1,m2 tends to infinity.
The convergence of Padé approximants is proved for many functions as meromorphic func-
tion, Stieltjes function,...[3]. In this paper,when s is a real positive number, we prove that
the function Ψ (s, t) is a Stieltjes function with respect to the variable t. First we need to
remind the definition and some properties of Padé approximants.

2. Padé approximants

Let f be a formal series whose Taylor expansion about t = 0 is

f(t) =
∞∑
i=0

cit
i.

The Padé approximant [m1/m2]f to f is a rational fraction Q̃m1/P̃m2 whose denominator
has degree m2 and whose numerator has degree m1 so that its expansion in ascending
powers of t coincides with the expansion of f up to the degree m1 +m2 , i.e.

P̃m2(t)f(t)− Q̃m1(t) = O(tm1+m2+1). (2.1)

The theory of Padé approximation is linked to the theory of orthogonal polynomials as
following [6].

Let us define the linear functionals c and c(p), p ∈ Z acting on P , space of polynomials
by

c : P → R (or C) (2.2)

xi → 〈c, xi〉 = ci i = 0, 1, 2, . . . (2.3)

and



4 MARC PRÉVOST

〈c(p), xi〉 := 〈c, xi+p〉 = ci+p, i = 0, 1, 2, . . . (ci = 0, i < 0). (2.4)

Then the denominators of the Padé approximants [m1/m2]f satisfy the following orthog-
onality property

〈c(m1−m2+1), xiPm2(x)〉 = 0 i = 0, 1, 2, . . . ,m2 − 1

where Pm2(x) = xm2P̃m2(x
−1) is the reversed polynomial.

Let us define the associated polynomials

Rm2−1(t) :=

〈
c(m1−m2+1),

Pm2(x)− Pm2(t)

x− t

〉
, Rm2−1 ∈ Pm2−1, (2.5)

where c(m1−m2+1) acts on the variable x . Then

Q̃m1(t) =

(
m2−m1∑
i=0

cit
i

)
P̃m2(t) + tm1−m2+1R̃m2−1(t) (2.6)

where R̃m2−1(t) = tm2−1Rm2−1(t−1) .
If c admits an integral representation with a non decreasing function α, with bounded

variation, such as

ci =

∫
L

xidα(x), (2.7)

then f is a Stieltjes function and the theory of Gaussian quadrature shows that the poly-
nomials Pn, orthogonal with respect to c, have all their roots in the support of the function
α.

Moreover, if f satisfies the Carleman’s criterion [3, p.240] then all paradiagonal sequences
of ([m+ J,m])m Padé approximants with J ≥ −1 converge to f .

The aim of the paper is to find, in the case of Hurwitz zeta function, the weight function
dα depending on s and to prove that it is a positive function.

The error is defined by

f(t)− [m1/m2]f (t) =
tm1+m2+1

P̃ 2
m2

(t)
c(m1−m2+1)

(
P 2
m2

(x)

1− xt

)
. (2.8)

The expression of the error above is understood as a formal one if c is only a formal
linear functional [6, chapt. 3], but if c admits the integral representation (2.7) then the
error rewrites as :

f(t)− [m1/m2]f (t) = f(t)− Q̃m1(t)

P̃m2(t)
=
tm1+m2+1

P̃ 2
m2

(t)

∫
L

xm1−m2+1P
2
m2

(x)

1− xt
dα(x). (2.9)
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In the particular case m1 = m2 − 1,

f(t)− [m2 − 1/m2]f (t) =
t2m2

P̃ 2
m2

(t)

∫
L

P 2
m2

(x)

1− xt
dα(x). (2.10)

Note that

[m2 + p/m2]f (t) = c0 + c1t+ · · ·+ cpt
p + tp+1[m2 − 1/m2]fp(t)

where

fp(t) =
∞∑
i=0

ci+p+1t
i.

3. Statements of the results

In this section, we will prove that it is possible to compute the weight function under-
lying the coefficients Bk

k!
(s)k−1(−1)k of the function Ψ(s, t) =

∑∞
k=0

Bk
k!

(s)k−1(−1)ktk. The
weight function ws will depend on s. For particular values of s (s > 0), ws is a positive
weight function and thus Ψ(s, t) is a Stieltjes function depending on the variable t and the
convergence of RPA will be proved for t = 1/(n+ a).

Theorem 1. For any complex numbers s, a, <(s) > 0,<(a) > 0 and any positive integer
m, m > <(s)− 1, then

ζ(s, a) =
1

as−1

(
1

s− 1
+

1

2a
+

∫ ∞
0

1

a2 + x2
ws(x)dx

)
(3.1)

where the weight ws is defined by

ws(x) :=
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s
dm

dtm

(
1

e2πt − 1

)
dt.

We will prove in the section 4 that this formula (3.1) is a consequence of Hermite’s
formula for the function ζ(s, a).

As proved by Touchard [12], Bernoulli numbers satisfy

Bk = −iπ
2

∫
L

xk
dx

sin2(πx)
,

where L is the line L := −1
2

+ iR and thus can be viewed as moments of order k ≥ 0

of the positive weight function 1/sin2(πx) on L. Therefore, for s = 2, the coefficients
Bk
k!

(s)k−1 = Bk of (1.6) are the moments of a positive weight. For s = 3, these coefficients

appear as their derivative (k + 1)Bk. The derivative of 1/sin2(πx) is a weight function,
symmetric around −1/2 whose support is also the line L. But for integer value of s greater
than 4, it is no more true for all k ≥ 0. A much more difficult case is the case when s is
real.
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Nevertheless, from the previous Theorem, we obtain an integral representation of
Bk

k!
(s)k−1

but for k ≥ 2.

Theorem 2. Integral representation of Bernoulli numbers.
If s is a complex number such that <(s) > 0, then for k ∈ N,

Bk+2
(s)k+1

(k + 2)!
=

{
(−1)k/2

∫ +∞
0

xkws(x)dx (if k even)
0 (if k odd)

(3.2)

with

ws(x) :=
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s
dm

dtm

(
1

e2πt − 1

)
dt (3.3)

where m is any integer satisfying m > <(s)− 1.

Proof We use the expansion of ζ(s, a) in terms of Bernoulli numbers [11, p.160]. We
have

ζ(s, a) = a−s +
n∑
k=0

(s)k−1
Bk

k!
a−k−s+1 +

1

Γ(s)

∫ ∞
0

(
1

et − 1
−

n∑
k=0

Bk

k!
tk−1

)
e−a t ts−1 dt

which is valid for <(s) > −2n+ 1,<(a) > 0 and n a positive integer.
By comparing this formula with (3.1), we get the formula (3.2).

Remark. The positivity of the weight function is important because it guarantees the
convergence of Padé approximants. In the case when s is a positive real number then ws
is positive on its support. This gives the following main theorem.

Theorem 3. For every positive real number s, s 6= 1, for every complex number a,<(a) >
0, for all integers n ≥ 0, p ≥ 1, the following sequence

RPA(n,m+ p,m) :=
n−1∑
k=0

1

(k + a)s
+ (n+ a)1−s[m+ p/m]Ψ(s,t) t=1/(n+a)

. (3.4)

converges to ζ(s, a) when m tends to ∞.

Theorems (1 and 3) will be proved in Section 4.

Remarks. For n ∈ N, p = −1, Theorem 3 is proved only for s = 2, 3 in [9]. RPA(n, n−1, n)
(resp. RPA(n, 2n− 1, 2n)) are the Apéry’s numbers for ζ(2) (resp. ζ(3)).

If n = 0, formula (3.4) yields

∀s > 0,∀a ∈ C,<(a) > 0,∀p ≥ 1, lim
m→∞

a1−s[m+ p/m]Ψ(s,t) t=1/a
= ζ(s, a).

Moreover, for the particular case n = 0, a = 1, RPA(0,m+ p,m) is a rational function
depending on the variable s and which converges to ζ(s, 1) = ζ(s) when m tends to∞ (by
Theorem 3).
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For example, for p = 1,

RPA(0, 2, 1) = (s+2)(s+3)
12(s−1)

,

RPA(0, 3, 2) =
(s+2)(s2+12s+31)
2(s−1)(s2+3s+62)

,

RPA(0, 4, 3) =
(s+2)(s+4)(3s2+88s+405)

120(s−1)(s2+7s+54)
,

RPA(0, 5, 4) =
(s+2)(s+4)(s5+124s4+2644s3+23730s2+92939s+122130)

2(s−1)(s6+101s5+1755s4+21415s3+153884s2+657564s+977040)

RPA(0, 6, 5) =
(s+2)(s+4)(s+6)(s5+746s4+28162s3+498112s2+3612925s+8457750)

84(s−1)(s6+429s5+10387s4+134511s3+1044772s2+4891020s+9666000)

If n ≥ 1 and a = 1, then RPA(n,m+p,m) is no more a rational fraction since it contains
powers of (n+ a) with s as exponent:

RPA(1, 2, 1) =
21−s(s2+11s+36)

48(s−1)
+ 1,

RPA(1, 3, 2) =
2−s−1(s3+26s2+231s+726)

(s−1)(s2+3s+242)
+ 1,

RPA(1, 4, 3) =
2−s−4(3s4+166s3+2937s2+22334s+64800)

15(s−1)(s2+7s+180)
+ 1,

RPA(2, 2, 1) =
31−s(s2+17s+90)

108(s−1)
+ 2−s + 1,

RPA(2, 3, 2) =
3−s(s3+38s2+527s+2710)

2(s−1)(s2+3s+542)
+ 2−s + 1.

Nevertheless, if s is an integer, a = 1 and p ≥ 1, we obtain a sequence of rational
approximations of ζ(s) by computing RPA(n,m + p,m), depending on the two integers
parameters n and m.

4. Proof of Theorems

4.1. Proof of Theorem 1. We start from Hermite’s formula for ζ(s, a),<(a) > 0, which
is a consequence of Plana’s summation formula ([11], p.158):

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+ 2

∫ ∞
0

(a2 + y2)−s/2 sin
(
s arctan

y

a

) dy

e2πy − 1
. (4.1)

Note that this integral converges for every complex number s 6= 1.
Let us define

Is :=

∫ t

0

xs(t− x)−s

a2 + x2
dx (t ≥ 0, 0 < <(s) < 1).

The proof is based on the formula [8, p. 142]:
we have for <(α) > 0 and <(β) > 0,∫ 1

0

uα−1(1− u)β−1

(u+ z)α+β
du = B (α, β) (1 + z)−αz−β (z ∈ C, |ph(z)| < π) (4.2)

where B (α, β) =
∫ 1

0
uα−1(1− u)β−1du =

Γ (α) Γ (β)

Γ (α + β)
.
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With the change of variable x = tu, we have

Is =

∫ 1

0

tus(1− u)−s

a2 + t2u2
du

=
i

2

∫ 1

0

us−1(1− u)−s
(

1

a+ itu
− 1

a− itu

)
du.

By applying formula (4.2) with α = s, β = 1− s and z = ± a
it

(|ph(z)| < π since <(a) > 0)

we get

Is = Γ(s)Γ(1− s)a
s−1

2i

(
(a− it)−s − (a+ it)−s

)
.

Let us set t = a tan θ. We obtain

Is = Γ(s)Γ(1− s)a−1 coss(θ) sin(sθ) = Γ(s)Γ(1− s)as−1(a2 + t2)−s/2 sin

(
s arctan

(
t

a

))
.

Thus, the following identity

1

Γ(s)Γ(1− s)

∫ t

0

xs(t− x)−s

a2 + x2
dx = as−1(a2 + t2)−s/2 sin

(
s arctan

(
t

a

))
(4.3)

holds for all real t ≥ 0 and complex s, 0 < <(s) < 1.
Now, for s complex satisfying <(s) > 0 and m an integer such that m > <(s) − 1, we

claim that the following formula,

sin(s arctan t/a)

(a2 + t2)s/2
=

a1−s

Γ(s)Γ(m+ 1− s)
dm

dtm

(∫ t

0

xs(t− x)m−s

1 + x2
dx

)
(4.4)

is satisfied.
First, it is true for m = 0 (4.3).
Let us assume that (4.4) is true for m then using

dm+1

dtm+1

(∫ t

0

xs(t− x)m+1−s

1 + x2
dx

)
=

dm

dtm
d

dt

(∫ t

0

xs(t− x)m+1−s

1 + x2
dx

)
=

dm

dtm

(∫ t

0

(m+ 1− s)x
s(t− x)m−s

1 + x2
dx

)
,

we obtain formula (4.4) by using the identity Γ(m+ 2− s) = (m+ 1− s)Γ(m+ 1− s).

To prove Theorem 1, we replace
sin(s arctan(t/a))

(a2 + t2)s/2
(formula 4.4) in Hermite’s formula

(4.1), and we apply integration by parts m times:
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ζ(s, a) =
a−s

2
+
a1−s

s−1
+

2 a1−s

Γ(s)Γ(m+1−s)

∫ ∞
0

dm

dtm

(∫ t

0

xs(t−x)m−s

a2 + x2
dx

)
dt

e2πt−1

=
a−s

2
+
a1−s

s−1
+

2(−1)ma1−s

Γ(s)Γ(m+1− s)

∫ ∞
0

(∫ t

0

xs(t−x)m−s

a2+x2
dx

)
dm

dtm

(
1

e2πt−1

)
dt

=
a−s

2
+
a1−s

s− 1
+

2(−1)ma1−s

Γ(s)Γ(m+1−s)

∫ ∞
0

xsdx

a2+x2

∫ ∞
x

(t−x)m−s
dm

dtm

(
1

e2πt−1

)
dt.

The permutation in the last integral is valid since the function∣∣ xs

a2+x2
(t− x)m−s d

m

dtm

(
1

e2πt−1

)∣∣ is less than tm

a2
dm

dtm

(
1

e2πt−1

)
which is integrable in [0,∞[.

Remark. If we consider a = 1, we get an integral representation of the Riemann zeta
function:

ζ(s) =
1

2
+

1

s− 1
+

∫ ∞
0

1

1 + x2
ws(x)dx (4.5)

with

ws(x) :=
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s
dm

dtm

(
1

e2πt − 1

)
dt (4.6)

where m is an integer satisfying m > <(s)− 1.
So, if s is an integer, we can consider m = s and

ζ(s) =
1

2
+

1

(s− 1)
+

2(−1)s−1

Γ(s)

∫ ∞
0

xs

1 + x2

ds−1

dxs−1

(
1

e2πx − 1

)
dx (4.7)

=
1

2
+

1

(s− 1)
+

2

Γ(s)

∫ ∞
0

1

e2πx − 1

ds−1

dxs−1

(
xs

1 + x2

)
dx (4.8)

which yields

ζ(2) =
3

2
+ π

∫ ∞
0

x2

1 + x2

1

sinh2 πx
dx =

3

2
+

∫ ∞
0

1

e2πx − 1

4x

(1 + x2)2
dx (4.9)

ζ(3) = 1 + π2

∫ ∞
0

x3

1 + x2

cosh πx

sinh3 πx
dx = 1−

∫ ∞
0

1

e2πy − 1

2x(x2 − 3)

(1 + x2)3
dx (4.10)

ζ(4) =
5

6
+
π3

3

∫ ∞
0

x4

1 + x2

2 + cosh(2πx)

sinh4 πx
dx =

5

6
−
∫ ∞

0

1

e2πx − 1

8x(x2−1)

(1 + x2)4
dx. (4.11)

4.2. Proof of Theorem 3. We consider the function Ψ(s, t) given in (1.6) written as

Ψ(s, t) =
B0

s− 1
−B1 t+ t2Ψ2(s, t) (4.12)
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where

Ψ2(s, t) :=
∞∑
k=0

Bk+2

(k + 2)!
(s)k+1(−1)ktk.

Thus the Padé approximant [m+ p/m]Ψ(s,t) satisfies

[m+ p/m]Ψ(s,t) =
B0

s− 1
−B1 t+ t2[m+ p− 2,m]Ψ2(s,t).

For s a positive real number, the weight ws is positive (Theorem 2) and so Ψ2(s, t) is a
Stieltjes function

Ψ2(s, t) =

∫ ∞
0

1

1 + x2t2
ws(x)dx.

Its coefficients ck :=
Bk+2

(k + 1)!
(s)k+1(−1)k are positive and satisfy the Carleman’s criterion,

i.e.
∞∑
k=0

c
−1/2k
k diverges.

Actually, the Bernoulli numbers of even index satisfy

|B2k| ∼ 4
√
πk

(
k

πe

)2k

and so

c
−1/4k
2k ∼

(
k

πe

)−1/2

which is the general term of a divergent series.(Bernoulli of odd index greater than 2 are
zero)

We now apply Theorem of [4, p.240] to conclude that for all integers p, p ≥ 1,

lim
m→∞

ts−1[m+ p/m]Ψ(s,t) = ts−1Ψ(s, t) = ζ(s, 1/t) for all complex numbers t,<(t) > 0

5. Particular case: s is an integer

For p = 1, s = 2 or p = 2, s = 3 , we will give in this section the formal expression of
RPA(n,m+ p,m) and the expression of the error. If a = 1, then the rational approxima-
tions RPA(n, rn+ 1, rn) to ζ(2) and RPA(n, rn+ 2, rn) to ζ(3) with some suitable value
of r lead to another proofs of the Apéry’s theorem.

The case for s ≥ 4 remains an open problem.



REMAINDER PADÉ APPROXIMANTS FOR THE HURWITZ ZETA FUNCTION 11

5.1. Case s = 2. In this case, the weight in the expression (3.1) is defined as

w2(x) := 2x2

∫ ∞
x

d2

dt2

(
1

e2πt − 1

)
dt =

πx2

sinh2(πx)
. (5.1)

Another expression of w2(x) is

w2(x) =
1

π
|Γ(1 + ix)Γ(1− ix)|2 .

Generalizing a result by Carlitz [7], Askey and Wilson [2] gave an explicit expression for
the orthogonal polynomial Pm with respect to the weight function w2 :

Pm(x) = (m+ 1)(m+ 2)3F2

 −m, m+ 3, 1− x
; 1

2, 2

 (5.2)

=
m∑
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)(
x− 1
k

)
, (5.3)

and

∫
iR
Pn(x)Pm(x)

πx2

sin2 πx
dx =

 0 (if n 6= m),
(−1)n2(n+ 1)(n+ 2)

2n+ 3
(if n = m).

The roots of the polynomials Pn are located on the imaginary axis since the weight
πx2

sin2 πx
is positive on this line (see 2.7).

The three-term recurrence relation is

Pm+1(x) =
2(2m+ 3)

(m+ 1)(m+ 2)
xPm(x) + Pm−1(x) (5.4)

with initial conditions: P−1(x) = 0, P0(x) = 2.
The Padé approximants are expressed with orthogonal polynomials and their associated

polynomials (see 2.5).
Before computing these associated polynomials, we need some suitable modified mo-

ments, i.e., the moments of the binomial

(
x− 1
k

)
.

Let us define the linear functional c(s) acting on the space of polynomials as〈
c(s), xj

〉
:=

Bj

j!
(s)j−1(−1)j, j ∈ N,

and x2c(s) by 〈
x2c(s), xj

〉
:=
〈
c(s), xj+2

〉
.

The following modified moments [9, p.228] satisfy〈
c(2),

(
x
k

)〉
=

(−1)k

k + 1
. (5.5)
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The identity x2

(
x− 1
k

)
= (k + 1)(k + 2)

(
x

k + 2

)
+ (k + 1)2

(
x

k + 1

)
leads to the

following formula for modified moments for the functional x2c(2):〈
x2c(2),

(
x− 1
k

)〉
=

(−1)k(k + 1)

(k + 2)(k + 3)
. (5.6)

The associated polynomials Rm−1 (2.5) are defined by

Rm−1(t) :=

〈
x2c(2),

Pm(x)− Pm(t)

x− t

〉
where the variable is x. From the expression (5.3) for Pm, we get the following formula for
Rm−1

Rm−1(t) =
m∑
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)〈
x2c(2),

(
x− 1
k

)
−
(
t− 1
k

)
x− t

〉
. (5.7)

Using the expression of the polynomial

(
x− 1
k

)
−
(
t− 1
k

)
x− t

on the Newton basis

with abscissæ {0, 1, 2 · · · , k − 1}(
x− 1
k

)
−
(
t− 1
k

)
x− t

=

(
t− 1
k

) k∑
i=1

(
x− 1
i− 1

)
i

(
t− 1
i

) ,
we can write a compact formula for Rm−1:

Rm−1(t) =
m∑
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)(
t− 1
k

) k∑
i=1

(−1)i−1(
t− 1
i

)
(i+ 1)(i+ 2)

.

So, we get the [m+ 1/m] Padé approximant to the function Ψ(2, t)

[m+ 1/m]ψ(2,t) = B0 −B1t+ t2
R̃m−1(t)

P̃m(t)
= B0 −B1t+ t

Rm−1(1/t)

Pm(1/t)

and also an approximation of ζ(2, a):

ζ(2, a) ≈
n−1∑
k=0

1

(k + a)2
+

1

n+ a
[m+ 1/m]Ψ(2,t)|t=1/(n+a)

=
n−1∑
k=0

1

(k + a)2
+

1

n+ a
+

1

2(n+ a)2
+

1

(n+ a)2
εm(a) =:

vn,m(a)

un,m(a)
= RPA(n,m+ 1,m)
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where

εm(a) =

∑m
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)∑k
i=1

n+ a− i− 1
k − i

(−1)i−1

k
i

(i+1)(i+2)

∑m
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)(
n+ a− 1

k

) .

Irrationality of ζ(2)
A consequence of the previous formula is another proof of the irrationality of ζ(2).
Indeed, if dk := LCM [1, 2, · · · , k], then [9, Lemma 3.1]

dk

i

(
k
i

) ∈ N.

Consequently, the numerator of εm(1) multiplied by d2
m+2 is an integer and for all integers

n,m, d2
m+2vn,m(1) ∈ N, d2

m+2un,m(1) ∈ N.
The error (formula (2.10)) applied to the function Ψ(2, t) rewrites as

Ψ(2, t)− [m+ 1/m]Ψ(2,t)(t) =
t2m

P̃ 2
m(t)

∫
iR

P 2
m(x)

1− xt
x2

sin2(πx)
dx

and the error term satisfies∣∣∣∣ζ(2)− vn,m(1)

un,m(1)

∣∣∣∣ ≤ 1

P 2
m(n+ 1)

∫
iR

∣∣∣∣ P 2
m(x)

1− x/(n+ 1)

∣∣∣∣ x2

sin2(πx)
dx (5.8)

≤ 1

P 2
m(n+ 1)

∫
iR

∣∣P 2
m(x)

∣∣ x2

sin2(πx)
dx (5.9)

≤ 1

P 2
m(n+ 1)

2(m+ 1)(m+ 2)

π(2m+ 3)
. (5.10)

Note that un,m(1) = Pm(n+ 1).
Now, we consider r ∈ Q such that m = rn ∈ N. Applying the Stirling formula to the

expression (5.3) for orthogonal polynomials Pn, we get

lim
n

(Prn(n+ 1)1/n = max
t∈[0,1]

(r + t)r+t

t3t(r − t)r−t(1− t)1−t

=
(r + σ(r))r

(1− σ(r))(r − σ(r))r
=: ρ(r) (5.11)

where σ(r) = −r2+
√
r4+4r2

2
is a zero of t2 + r2t− r2 = 0.

So, using the prime number theorem dn = en+o(n),
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lim sup
n

∣∣ζ(2)d2
rn+2un,rn(1)− d2

rn+2vn,rn(1)
∣∣1/n ≤ lim

n
(d2
rn+2un,rn(1))1/n lim

n

1

(Prn(n+ 1)2/n

= e2 max(r,1)/ρ(r).

The inequation e2 max(r,1)/ρ(r) < 1 is satisfied for r ∈]0.74, 1.53[.
The irrationality of ζ(2) follows from the following limit

lim
n

(
ζ(2)d2

rn+2un,rn(1)− d2
rn+2vn,rn(1)

)
= 0.

5.2. Case s = 3. For s = 3, the weight in the expression (3.1) is

w3(x) := −x
3

3

∫ ∞
x

d3

dt3

(
1

e2πt − 1

)
dt =

π2x3 cosh πx

3 sinh3(πx)
. (5.12)

Another expression of x2w3(x) is

x2w3(x) =
1

12π

|Γ(1 + ix)|8

|Γ(2ix)|2
.

This weight has been investigated by Wilson [14]. The orthogonal polynomial Pn satisfies:

Pm(x2) = (m+ 1)(m+ 2)4F3

 −m, m+ 3, 1− x, 1 + x
; 1

2, 2, 2

 (5.13)

=
m∑
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)(
x− 1
k

)(
x+ k
k

)
/(k + 1) (5.14)

and the orthonality relation is

∫
iR
Pn(x2)Pm(x2)

π2

3

x5 cos πx

sin3 πx
dx =

 0 (if n 6= m),
1

3

(−1)n(n+ 1)(n+ 2)

2n+ 3
(if n = m).

The weight
x5 cosπx

sin3 πx
is positive on the line iR thus, the roots of the polynomials Pn are

located on the imaginary axis.
We set Πm(x) := Pm(x2).
The three-term recurrence relation is

Πm+1(x) =

(
2(2m+ 3)

(m+ 1)(m+ 2)2
x2 +

2m+ 3

m+ 2

)
Πm(x)− m+ 1

m+ 2
Πm−1(x) (5.15)

with initial conditions: Π−1 = 0,Π0 = 2.
In the previous subsection, we have defined the linear functional c(s) acting on the space

of polynomials as 〈
c(s), xj

〉
:=

Bj

j!
(s)j−1(−1)j, j ∈ N,
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and x4c(s) by 〈
x4c(s), xj

〉
:=
〈
c(s), xj+4

〉
.

Before computing the associated polynomials, we need the moments of

(
x− 1
k

)(
x+ k
k

)
and

(
x− 1
k + 1

)(
x+ k
k

)
.

Lemma 1. Let us define the polynomials ν2j+1(x) and ν2j(x) by

ν2j+1(x) =

(
x− 1
j + 1

)(
x+ j
j

)
ν2j(x) =

(
x− 1
j

)(
x+ j
j

)
.

Then, 〈
x4c(3), ν2k+1(x)

〉
= (−1)k+1 (k + 1)2

2(k + 3)(k + 2)
(5.16)

〈
x4c(3), ν2k(x)

〉
= (−1)k

(k + 1)2

2(k + 3)(k + 2)
(5.17)

Proof. c(2) satisfies
〈
c(2), xj

〉
= Bj(−1)j. We denote c(2)′ by

〈
c(2)′ , xj

〉
:=
〈
c(2),−jxj−1

〉
.

From the definition of c(3),
〈
c(3), xj

〉
= 1

2
Bj(j + 1)(−1)j, we have

c(3) = −1

2
xc(2)′ .

In [9] p. 230, it is proved that
〈
−c(2)′ , N2k(x)

〉
= 0,

〈
−c(2)′ , N2k+1(x)

〉
= (−1)k

(k+1)2
where

N0(x) = 1, N2k(x) =

(
x
k

)(
x+ k
k

)
, N2k+1(x) =

(
x

k + 1

)(
x+ k
k

)
.

Now,
〈
x4c(3), ν2k+1(x)

〉
=
〈
−1

2
x5c(2)′ , ν2k+1(x)

〉
= 1

2

〈
−c(2)′ , x5ν2k+1(x)

〉
.

The proof of (5.16) follows from the expansion

x5ν2k+1(x) = αN2k+6(x) + βN2k+5(x) + γN2k+4(x) + δN2k+3(x) + µN2k+2(x)− 2µN2k+1(x),

with

α = (k + 1)(k + 2)2(k + 3)2,

β = −2(k + 1)(k + 2)3(k + 3),

γ = (k + 1)(k + 2)2(2k2 + 6k + 5),

δ = −(k + 1)(k + 2)(2k + 3)(2k2 + 6k + 5),

µ = (k + 1)5.
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For (5.17), we use the expansion

x5ν2k(x)=(k+1)2(k+2)2(k+3)N2k+5(x)+(k+1)2(k+2)(2k2+6k+5)N2k+3(x)+(k+1)5N2k+1(x).

�

Now, the associated polynomials Θm−1 (2.5) are defined as

Θm−1(t) :=

〈
x4c(3),

Πm(x)− Πm(t)

x− t

〉
where the variable is x. From the expression (5.14) for Πm, we get the following formula
for Θm−1 ∈ P2m−2 :

Θm−1(t)=
m∑
k=0

(
m+1
k+1

)(
m+k+2
k + 1

)
1

k + 1

〈
x4c(3),

(
x−1
k

)(
x+k
k

)
−
(
t−1
k

)(
t+k
k

)
x− t

〉
. (5.18)

Using the expression of the polynomial

(
x− 1
k

)(
x+ k
k

)
−
(
t− 1
k

)(
t+ k
k

)
x− t

on the New-

ton basis with abscissæ {0, 1,−1, 2,−2 · · · , k,−k} [9, formula 55], i.e.(
x− 1
k

)(
x+ k
k

)
−
(
t− 1
k

)(
t+ k
k

)
x− t

=
2k−1∑
j=0

ν2k(t)

νj+1(t)

νj(x)

[(j + 2)/2]
.

and Lemma 1,〈
x4c(3), ν2j+1(x)

〉
= −

〈
x4c(3), ν2j(x)

〉
= (−1)j

(j + 1)2

2(j + 3)(j + 2)
,

we can write a compact formula for Θm−1:

Θm−1(t)=
m∑
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)
1

k + 1

2k−1∑
j=0

ν2k(t)

νj+1(t)

〈
x4c(3), νj(x)

〉
=

m∑
k=0

(
m+1
k+1

)(
m+k+2
k+1

)
ν2k(t)

k+1

k∑
p=1

t(
t−1
p

)(
t+p
p

) (−1)p

2(p+1)(p+2)
.

So, for m ≥ 2, we get the [2m+ 2/2m] Padé approximant to the function Ψ(3, t)

[2m+ 2/2m]Ψ(3,t) =
B0

2
−B1t+

3

2
t2B2 + t5

Θ̃m−1(t)

Π̃m(t)
=
B0

2
−B1t+

3

2
t2B2 + t4

Θm−1(1/t)

Πm(1/t)
,

and an approximation of ζ(3, a) :

ζ(3, a) ≈
n−1∑
k=0

1

(k + a)3
+

1

2(n+ a)2
+

1

2(n+ a)3
+

1

4(n+ a)4
+

1

(n+ a)5
εm(a) =:

fn,m(a)

gn,m(a)
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where

εm(a) =
Θm−1(n+ a)

Πm(n+ a)

=

∑m
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)
n+a
k+1

∑k
p=1

n+ a− p− 1
k − p

n+ a+ k
k − p

(−1)p

k
p

2

2(p+1)(p+2)

∑m
k=0

(
m+ 1
k + 1

)(
m+ k + 2
k + 1

)(
n+ a− 1

k

)(
n+ a+ k

k

)
/(k + 1)

.

Irrationality of ζ(3)
The irrationality of ζ(3) has been proved by Apery in a celebrated paper [1]. A little later,

a particular straightforward and elegant proof of this irrationality was given by Beukers
[5]. The author gave another proof in [9] using the RPA. Actually, RPA(m, 2m − 1, 2m)
provides exactly the Apery’s numbers for ζ(3). In the following, we show that the previous
approximation also proves irrationality of ζ(3) with RPA’s depending on other parameters.

Actually,

∀n, a ∈ N, d3
m+1Θm−1(n+ a) ∈ Z, d3

m+1fn,m(n+ a) ∈ Zand d3
m+1gn,m(n+ a) ∈ Z.

Note that gn,m(n+a) = Πm(n+a). The proof is similar than in the previous subsection.
We consider the case a = 1.
The error (formula (2.10)) applied to the function Ψ(3, t) becomes

Ψ(3, t)− [2m+ 2/2m]Ψ(3,t) =
t2m

Π̃2
m(t)

∫
iR

Π2
m(x)

1− xt
π2x5 cos πx

3 sin3(πx)
dx

and the error term

ζ(3)− fn,m(1)

gn,m(1)

satisfies

∣∣∣∣ζ(3)− fn,m(1)

gn,m(1)

∣∣∣∣ ≤ 1

Π2
m(n+ 1)

∫
iR

Π2
m(x)

|1− x/(n+ 1)|
π2x5 cos πx

3 sin3(πx)
dx

≤ 1

Π2
m(n+ 1)

∫
iR

Π2
m(x)

π2x5 cosπx

3 sin3(πx)
dx

≤ 1

Π2
m(n+ 1)

1

3

(m+ 1)(m+ 2)

2m+ 3
.
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Now, we consider r ∈ Q such that m = rn ∈ N. Using the Stirling formula in the
expression of the orthogonal polynomials (5.14),

lim
n

(Πrn(n+ 1))1/n = max
t∈[0,1]

(r + t)r+t(1 + t)1+t

t3t(r − t)r−t(1− t)1−t

=
(1 + µ(r))(r + µ(r))r

(1− µ(r))(r − µ(r))r
=: η(r)

where µ(r) =
r√

1 + r2
is a zero of (1− t2)(r2 − t2) = t4.

So

lim sup
n

∣∣ζ(3)d3
rn+1gn,rn(1)− d3

rn+1fn,rn(1)
∣∣1/n ≤ lim

n
(d3
rn+1gn,rn(1))1/n lim

n

1

(gn,rn(1))2/n

= e3 max(r,1)/η(r)

The inequation e3 max(r,1)/η(r) < 1 is satisfied for r ∈]0.74, 1.36[.
The irrationality of ζ(3) then follows from the following limit

lim
n

(
ζ(3)d3

rn+1gn,rn(1)− d3
rn+1fn,rn(1)

)
= 0.

Conclusion
In section 3, for a = 1, we have proved that for all fixed integers n, p ≥ 1, and for each

s > 0, s 6= 1, then the sequence

(RPA(n,m+ p,m))m

converges to ζ(s).
If m and n are linked such that m = rn, then the convergence of

(RPA(n, rn+ p, rn))n

is proved for s = 2 and the rate of convergence is ρ(r) (see (5.11)):

lim sup
n

(|ζ(s)−RPA(n, rn+ p, rn))|1/n ≤ ρ(r).

Numerically, it seems that this property is valid for all s > 0, s 6= 1 and more generally
for all complex numbers s, s 6= 1.
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