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, to construct approximations of the Hurwitz zeta function. We prove that these approximations are convergent on the positive real line. Applications to new rational approximations of ζ(2) and ζ(3) are provided.

Introduction

In [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF], we gave a new proof of the irrationality of ζ(2) = ∞ k=1 1/k 2 (and also of ζ(3) = ∞ k=1 1/k 3 ) based on an explicit construction of some Padé approximants of the remainder term

R 2 (1/n) = ∞ k=n 1/k 2 with R 2 (z) = ∞ k=0 z 2 (zk + 1) 2 .
More precisely, we have

ζ(2) = n-1 k=1 1/k 2 + R 2 (1/n) The function R 2 is meromorphic in C \ {0, -1, - 1 2 , - 1 3 
, • • • } and so is not holomorphic at 0. However, R 2 is C ∞ at z = 0 and may be expressed as a Taylor series R2 (z) = ∞ k=0 B k z k+1 with a zero radius of convergence, B k being the kth Bernoulli number.

The idea was to compute an explicit representation of diagonal Padé approximant P n (z)/Q n (z) = [n/n] R2 (z) ∈ Q(z) of the series R2 (z) with a good estimation of the error term E n (z) = R 2 (z) -[n/n] R2 (z).

At last, we stated the relation ship

Q n (1/n)E n (1/n) = Q n (1/n)ζ(2) -Q n (1/n) n-1 k=1 1/k 2 -P n (1/n) = q n ζ(2) -p n
providing a sequence of rational approximation p n /q n and proving the irrationality of ζ(2).

The surprise was to retrieve the sequences used by Apéry [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF] for the same purpose.

The same method applied to the series ζ(3) = ∞ k=1 1/k 3 provides also the Apéry numbers given in [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF].

The term Remainder Padé Approximant (RPA) has been used later in a paper written with T. Rivoal [START_REF] Prévost | Remainder Padé approximants for the exponential function[END_REF] for the exponential function.

In this paper, we apply the same method and we prove that some sequence of RPA for Hurwitz zeta function is convergent on the real line.

For a ∈ C, (a) > 0 , the Hurwitz zeta function is defined as

ζ(s, a) = ∞ k=0 1 (k + a) s (1.1)
where the Dirichlet series on the right hand side of (1.1) is convergent for (s) > z s-1 e az 1 -e z dz, where C is is a loop around the negative real axis; it starts at -∞, encircles the origin once in the positive direction without enclosing any of the points z = ±2iπ, ±4iπ,. . . , and returns to -∞. Thus ζ(s, a) can be continued meromorphically to the whole complex s-plane except for a single pole at s = 1 with its residue 1.

If we write the formula (1.1) as :

ζ(s, a) = n-1 k=0 1 (k + a) s + ∞ k=0 1 (n + a + k) s (1.3)
and set

Ψ(s, x) := t 1-s ∞ k=0 t 1 + kt s then ζ(s, a) = n-1 k=0 1 (k + a) s + (n + a) 1-s Ψ s, 1 n + a . (1.4) Another expression of Ψ(s, t) is given in [13, chapt. XIII] by Ψ(s, t) = t 1-s Γ(s) ∞ 0 u s-1 e -u/t 1 -e -u du (1.5)
whose Taylor series is

Ψ(s, t) = ∞ k=0 B k k! (s) k-1 (-1) k t k , (1.6) 
which is convergent only at t = 0, where (s) k is the Pochammer symbol ((s 

) p := s(s + 1)(s + 2) • • • (s + p -1), (s) -1 = 1/(s -1)). For a given pair (m 1 , m 2 ), let [m 1 /m 2 ] Ψ(s,t) = Q m 1 (t
RP A(n, m 1 , m 2 ) := n-1 k=0 1 (k + a) s + (n + a) 1-s Q m 1 (1/(n + a)) P m 2 (1/(n + a)) . (1.7)
The crucial point is the convergence of this sequence (RP A(n, m 1 , m 2 )) when one or more of the parameters n, m 1 , m 2 tends to infinity. The convergence of Padé approximants is proved for many functions as meromorphic function, Stieltjes function,... [START_REF] Baker | Encyclopedia of Mathematics and its Applications[END_REF]. In this paper,when s is a real positive number, we prove that the function Ψ (s, t) is a Stieltjes function with respect to the variable t. First we need to remind the definition and some properties of Padé approximants.

Padé approximants

Let f be a formal series whose Taylor expansion about t = 0 is

f (t) = ∞ i=0 c i t i .
The Padé approximant [m 1 /m 2 ] f to f is a rational fraction Q m 1 / P m 2 whose denominator has degree m 2 and whose numerator has degree m 1 so that its expansion in ascending powers of t coincides with the expansion of f up to the degree m 1 + m 2 , i.e.

P m 2 (t)f (t) -Q m 1 (t) = O(t m 1 +m 2 +1 ).
(2.1)

The theory of Padé approximation is linked to the theory of orthogonal polynomials as following [START_REF] Brezinski | Padé-type approximation and general orthogonal polynomials[END_REF].

Let us define the linear functionals c and c (p) , p ∈ Z acting on P, space of polynomials by

c : P → R (or C) (2.2) x i → c, x i = c i i = 0, 1, 2, . . . (2.3) and c (p) , x i := c, x i+p = c i+p , i = 0, 1, 2, . . . (c i = 0, i < 0). (2.4)
Then the denominators of the Padé approximants [m 1 /m 2 ] f satisfy the following orthogonality property c (m 1 -m 2 +1) , x i P m 2 (x) = 0 i = 0, 1, 2, . . . , m 2 -1 where P m 2 (x) = x m 2 P m 2 (x -1 ) is the reversed polynomial.

Let us define the associated polynomials

R m 2 -1 (t) := c (m 1 -m 2 +1) , P m 2 (x) -P m 2 (t) x -t , R m 2 -1 ∈ P m 2 -1 , (2.5) 
where c (m 1 -m 2 +1) acts on the variable x . Then

Q m 1 (t) = m 2 -m 1 i=0 c i t i P m 2 (t) + t m 1 -m 2 +1 R m 2 -1 (t) (2.6)
where

R m 2 -1 (t) = t m 2 -1 R m 2 -1 (t -1 ) .
If c admits an integral representation with a non decreasing function α, with bounded variation, such as

c i = L x i dα(x), (2.7) 
then f is a Stieltjes function and the theory of Gaussian quadrature shows that the polynomials P n , orthogonal with respect to c, have all their roots in the support of the function α.

Moreover, if f satisfies the Carleman's criterion [3, p.240] then all paradiagonal sequences of ([m + J, m]) m Padé approximants with J ≥ -1 converge to f . The aim of the paper is to find, in the case of Hurwitz zeta function, the weight function dα depending on s and to prove that it is a positive function.

The error is defined by

f (t) -[m 1 /m 2 ] f (t) = t m 1 +m 2 +1 P 2 m 2 (t) c (m 1 -m 2 +1) P 2 m 2 (x) 1 -xt . (2.8)
The expression of the error above is understood as a formal one if c is only a formal linear functional [6, chapt. 3], but if c admits the integral representation (2.7) then the error rewrites as :

f (t) -[m 1 /m 2 ] f (t) = f (t) - Q m 1 (t) P m 2 (t) = t m 1 +m 2 +1 P 2 m 2 (t) L x m 1 -m 2 +1 P 2 m 2 (x) 1 -xt dα(x).
(2.9)

In the particular case m 1 = m 2 -1,

f (t) -[m 2 -1/m 2 ] f (t) = t 2m 2 P 2 m 2 (t) L P 2 m 2 (x) 1 -xt dα(x). (2.10) Note that [m 2 + p/m 2 ] f (t) = c 0 + c 1 t + • • • + c p t p + t p+1 [m 2 -1/m 2 ] fp (t) where f p (t) = ∞ i=0 c i+p+1 t i .

Statements of the results

In this section, we will prove that it is possible to compute the weight function underlying the coefficients

B k k! (s) k-1 (-1) k of the function Ψ(s, t) = ∞ k=0 B k k! (s) k-1 (-1) k t k .
The weight function w s will depend on s. For particular values of s (s > 0), w s is a positive weight function and thus Ψ(s, t) is a Stieltjes function depending on the variable t and the convergence of RPA will be proved for t = 1/(n + a). Theorem 1. For any complex numbers s, a, (s) > 0, (a) > 0 and any positive integer

m, m > (s) -1, then ζ(s, a) = 1 a s-1 1 s -1 + 1 2a + ∞ 0 1 a 2 + x 2 w s (x)dx (3.1)
where the weight w s is defined by

w s (x) := 2(-1) m x s Γ(s)Γ(m + 1 -s) ∞ x (t -x) m-s d m dt m 1 e 2πt -1
dt.

We will prove in the section 4 that this formula (3.1) is a consequence of Hermite's formula for the function ζ(s, a).

As proved by Touchard [START_REF] Touchard | Nombres exponentiels et nombres de Bernoulli[END_REF], Bernoulli numbers satisfy

B k = -i π 2 L x k dx sin 2 (πx) ,
where L is the line L := -1 2 + iR and thus can be viewed as moments of order k ≥ 0 of the positive weight function 1/sin 2 (πx) on L. Therefore, for s = 2, the coefficients (1.6) are the moments of a positive weight. For s = 3, these coefficients appear as their derivative (k + 1)B k . The derivative of 1/sin 2 (πx) is a weight function, symmetric around -1/2 whose support is also the line L. But for integer value of s greater than 4, it is no more true for all k ≥ 0. A much more difficult case is the case when s is real.

B k k! (s) k-1 = B k of
Nevertheless, from the previous Theorem, we obtain an integral representation of

B k k! (s) k-1 but for k ≥ 2.
Theorem 2. Integral representation of Bernoulli numbers.

If s is a complex number such that (s) > 0, then for k ∈ N,

B k+2 (s) k+1 (k + 2)! = (-1) k/2 +∞ 0 x k w s (x)dx (if k even) 0 (if k odd) (3.2) with w s (x) := 2(-1) m x s Γ(s)Γ(m + 1 -s) ∞ x (t -x) m-s d m dt m 1 e 2πt -1 dt (3.3)
where m is any integer satisfying m > (s) -1.

Proof We use the expansion of ζ(s, a) in terms of Bernoulli numbers [11, p.160]. We have

ζ(s, a) = a -s + n k=0 (s) k-1 B k k! a -k-s+1 + 1 Γ(s) ∞ 0 1 e t -1 - n k=0 B k k! t k-1 e -a t t s-1 dt
which is valid for (s) > -2n + 1, (a) > 0 and n a positive integer. By comparing this formula with (3.1), we get the formula (3.2).

Remark. The positivity of the weight function is important because it guarantees the convergence of Padé approximants. In the case when s is a positive real number then w s is positive on its support. This gives the following main theorem.

Theorem 3. For every positive real number s, s = 1, for every complex number a, (a) > 0, for all integers n ≥ 0, p ≥ 1, the following sequence

RP A(n, m + p, m) := n-1 k=0 1 (k + a) s + (n + a) 1-s [m + p/m] Ψ(s,t) t=1/(n+a) . (3.4) 
converges to ζ(s, a) when m tends to ∞.

Theorems (1 and 3) will be proved in Section 4.

Remarks. For n ∈ N, p = -1, Theorem 3 is proved only for s = 2, 3 in [9]. RP A(n, n-1, n) (resp. RP A(n, 2n -1, 2n)) are the Apéry's numbers for ζ(2) (resp. ζ(3)). If n = 0, formula (3.4) yields ∀s > 0, ∀a ∈ C, (a) > 0, ∀p ≥ 1, lim m→∞ a 1-s [m + p/m] Ψ(s,t) t=1/a = ζ(s, a).
Moreover, for the particular case n = 0, a = 1, RP A(0, m + p, m) is a rational function depending on the variable s and which converges to ζ(s, 1) = ζ(s) when m tends to ∞ (by Theorem 3).

For example, for p = 1, RP A(0, 2, 1) = (s+2)(s+3) 12(s-1) , RP A(0, 3, 2) =

(s+2)(s 2 +12s+31) 2(s-1)(s 2 +3s+62) , RP A(0, 4, 3) = (s+2)(s+4)(3s 2 +88s+405) 120(s-1)(s 2 +7s+54)
, RP A(0, 5, 4) = (s+2)(s+4)(s 5 +124s 4 +2644s 3 +23730s 2 +92939s+122130) 2(s-1)(s 6 +101s 5 +1755s 4 +21415s 3 +153884s 2 +657564s+977040) RP A(0, 6, 5) = (s+2)(s+4)(s+6)(s 5 +746s 4 +28162s 3 +498112s 2 +3612925s+8457750) 84(s-1)(s 6 +429s 5 +10387s 4 +134511s 3 +1044772s 2 +4891020s+9666000)

If n ≥ 1 and a = 1, then RP A(n, m+p, m) is no more a rational fraction since it contains powers of (n + a) with s as exponent:

RP A(1, 2, 1) = 2 1-s (s 2 +11s+36) 48(s-1) + 1, RP A(1, 3, 2) = 2 -s-1 (s 3 +26s 2 +231s+726) (s-1)(s 2 +3s+242) + 1, RP A(1, 4, 3) = 2 -s-4 (3s 4 +166s 3 +2937s 2 +22334s+64800) 15(s-1)(s 2 +7s+180) + 1, RP A(2, 2, 1) = 3 1-s (s 2 +17s+90) 108(s-1) + 2 -s + 1, RP A(2, 3, 2) = 3 -s (s 3 +38s 2 +527s+2710) 2(s-1)(s 2 +3s+542) + 2 -s + 1.
Nevertheless, if s is an integer, a = 1 and p ≥ 1, we obtain a sequence of rational approximations of ζ(s) by computing RP A(n, m + p, m), depending on the two integers parameters n and m.

Proof of Theorems

4.1. Proof of Theorem 1. We start from Hermite's formula for ζ(s, a), (a) > 0, which is a consequence of Plana's summation formula ( [START_REF] Srivastava | Zeta and q-Zeta functions and associated series and integrals[END_REF], p.158):

ζ(s, a) = 1 2 a -s + a 1-s s -1 + 2 ∞ 0 (a 2 + y 2 ) -s/2 sin s arctan y a dy e 2πy -1 . ( 4.1) 
Note that this integral converges for every complex number s = 1.

Let us define

I s := t 0 x s (t -x) -s a 2 + x 2 dx (t ≥ 0, 0 < (s) < 1
). The proof is based on the formula [8, p. 142]: we have for (α) > 0 and (β) > 0,

1 0 u α-1 (1 -u) β-1 (u + z) α+β du = B (α, β) (1 + z) -α z -β (z ∈ C, |ph(z)| < π) (4.2)
where B (α, β) =

1 0 u α-1 (1 -u) β-1 du = Γ (α) Γ (β) Γ (α + β) .
With the change of variable x = tu, we have

I s = 1 0 tu s (1 -u) -s a 2 + t 2 u 2 du = i 2 1 0 u s-1 (1 -u) -s 1 a + itu - 1 a -itu du.
By applying formula (4.2) with α = s, β = 1 -s and z = ± a it (|ph(z)| < π since (a) > 0) we get

I s = Γ(s)Γ(1 -s) a s-1 2i (a -it) -s -(a + it) -s .
Let us set t = a tan θ. We obtain

I s = Γ(s)Γ(1 -s)a -1 cos s (θ) sin(sθ) = Γ(s)Γ(1 -s)a s-1 (a 2 + t 2 ) -s/2 sin s arctan t a .
Thus, the following identity

1 Γ(s)Γ(1 -s) t 0 x s (t -x) -s a 2 + x 2 dx = a s-1 (a 2 + t 2 ) -s/2 sin s arctan t a (4.3) 
holds for all real t ≥ 0 and complex s, 0 < (s) < 1. Now, for s complex satisfying (s) > 0 and m an integer such that m > (s) -1, we claim that the following formula, sin(s arctan t/a)

(a 2 + t 2 ) s/2 = a 1-s Γ(s)Γ(m + 1 -s) d m dt m t 0 x s (t -x) m-s 1 + x 2 dx (4.4)
is satisfied. First, it is true for m = 0 (4.3). Let us assume that (4.4) is true for m then using

d m+1 dt m+1 t 0 x s (t -x) m+1-s 1 + x 2 dx = d m dt m d dt t 0 x s (t -x) m+1-s 1 + x 2 dx = d m dt m t 0 (m + 1 -s) x s (t -x) m-s 1 + x 2 dx ,
we obtain formula (4.4) by using the identity Γ(m + 2 -s) = (m + 1 -s)Γ(m + 1 -s).

To prove Theorem 1, we replace sin(s arctan(t/a)) (a 2 + t 2 ) s/2 (formula 4.4) in Hermite's formula (4.1), and we apply integration by parts m times:

ζ(s, a) = a -s 2 + a 1-s s-1 + 2 a 1-s Γ(s)Γ(m+1-s) ∞ 0 d m dt m t 0 x s (t-x) m-s a 2 + x 2 dx dt e 2πt -1 = a -s 2 + a 1-s s-1 + 2(-1) m a 1-s Γ(s)Γ(m+1-s) ∞ 0 t 0 x s (t-x) m-s a 2 +x 2 dx d m dt m 1 e 2πt -1 dt = a -s 2 + a 1-s s -1 + 2(-1) m a 1-s Γ(s)Γ(m+1-s) ∞ 0 x s dx a 2 +x 2 ∞ x (t-x) m-s d m dt m 1 e 2πt -1
dt.

The permutation in the last integral is valid since the function

x s a 2 +x 2 (t -x) m-s d m dt m 1 e 2πt -1 is less than t m a 2 d m dt m 1 e 2πt -1 which is integrable in [0, ∞[. Remark.
If we consider a = 1, we get an integral representation of the Riemann zeta function:

ζ(s) = 1 2 + 1 s -1 + ∞ 0 1 1 + x 2 w s (x)dx (4.5) with w s (x) := 2(-1) m x s Γ(s)Γ(m + 1 -s) ∞ x (t -x) m-s d m dt m 1 e 2πt -1 dt (4.6)
where m is an integer satisfying m > (s) -1. So, if s is an integer, we can consider m = s and

ζ(s) = 1 2 + 1 (s -1) + 2(-1) s-1 Γ(s) ∞ 0 x s 1 + x 2 d s-1 dx s-1 1 e 2πx -1 dx (4.7) = 1 2 + 1 (s -1) + 2 Γ(s) ∞ 0 1 e 2πx -1 d s-1 dx s-1 x s 1 + x 2 dx (4.8)
which yields

ζ(2) = 3 2 + π ∞ 0 x 2 1 + x 2 1 sinh 2 πx dx = 3 2 + ∞ 0 1 e 2πx -1 4x (1 + x 2 ) 2 dx (4.9) ζ(3) = 1 + π 2 ∞ 0 x 3 1 + x 2 cosh πx sinh 3 πx dx = 1 - ∞ 0 1 e 2πy -1 2x(x 2 -3) (1 + x 2 ) 3 dx (4.10) ζ(4) = 5 6 + π 3 3 ∞ 0 x 4 1 + x 2 2 + cosh(2πx) sinh 4 πx dx = 5 6 - ∞ 0 1 e 2πx -1 8x(x 2 -1) (1 + x 2 ) 4 dx. (4.11)
4.2. Proof of Theorem 3. We consider the function Ψ(s, t) given in (1.6) written as

Ψ(s, t) = B 0 s -1 -B 1 t + t 2 Ψ 2 (s, t) (4.12)
where

Ψ 2 (s, t) := ∞ k=0 B k+2 (k + 2)! (s) k+1 (-1) k t k .
Thus the Padé approximant [m + p/m] Ψ(s,t) satisfies

[m + p/m] Ψ(s,t) = B 0 s -1 -B 1 t + t 2 [m + p -2, m] Ψ 2 (s,t) .
For s a positive real number, the weight w s is positive (Theorem 2) and so Ψ 2 (s, t) is a Stieltjes function 5.1. Case s = 2. In this case, the weight in the expression (3.1) is defined as

Ψ 2 (s, t) = ∞ 0 1 1 + x 2 t 2 w s (x)dx. Its coefficients c k := B k+2 (k + 1)! (s) k+1 (-
w 2 (x) := 2x 2 ∞ x d 2 dt 2 1 e 2πt -1 dt = πx 2 sinh 2 (πx) . (5.1)
Another expression of w 2 (x) is

w 2 (x) = 1 π |Γ(1 + ix)Γ(1 -ix)| 2 .
Generalizing a result by Carlitz [START_REF] Carlitz | Bernoulli and Euler numbers and orthogonal polynomials[END_REF], Askey and Wilson [START_REF] Askey | A set of hypergeometric orthogonal polynomials[END_REF] gave an explicit expression for the orthogonal polynomial P m with respect to the weight function w 2 :

P m (x) = (m + 1)(m + 2) 3 F 2   -m, m + 3, 1 -x ; 1 2, 2   (5.2) = m k=0 m + 1 k + 1 m + k + 2 k + 1 x -1 k , (5.3 
)

and iR P n (x)P m (x) πx 2 sin 2 πx dx =    0 (if n = m), (-1) n 2(n + 1)(n + 2) 2n + 3 (if n = m).
The roots of the polynomials P n are located on the imaginary axis since the weight πx 2 sin 2 πx is positive on this line (see 2.7). The three-term recurrence relation is

P m+1 (x) = 2(2m + 3) (m + 1)(m + 2)
x P m (x) + P m-1 (x) (5.4) with initial conditions: P -1 (x) = 0, P 0 (x) = 2.

The Padé approximants are expressed with orthogonal polynomials and their associated polynomials (see 2.5).

Before computing these associated polynomials, we need some suitable modified moments, i.e., the moments of the binomial x -1 k .

Let us define the linear functional c (s) acting on the space of polynomials as

c (s) , x j := B j j! (s) j-1 (-1) j , j ∈ N,
and x 2 c (s) by x 2 c (s) , x j := c (s) , x j+2 . The following modified moments [9, p.228] satisfy c (2) , x k = (-1) k k + 1 .

(5.5)

The identity

x 2 x -1 k = (k + 1)(k + 2) x k + 2 + (k + 1) 2 x k + 1
leads to the following formula for modified moments for the functional x 2 c (2) :

x 2 c (2) , x -1 k = (-1) k (k + 1) (k + 2)(k + 3) . (5.6)
The associated polynomials R m-1 (2.5) are defined by

R m-1 (t) := x 2 c (2) , P m (x) -P m (t) x -t
where the variable is x. From the expression (5.3) for P m , we get the following formula for

R m-1 R m-1 (t) = m k=0 m + 1 k + 1 m + k + 2 k + 1 x 2 c (2) , x -1 k - t -1 k x -t . (5.7)
Using the expression of the polynomial

x -1 k - t -1 k x -t on the Newton basis with abscissae {0, 1, 2 • • • , k -1} x -1 k - t -1 k x -t = t -1 k k i=1 x -1 i -1 i t -1 i ,
we can write a compact formula for R m-1 :

R m-1 (t) = m k=0 m + 1 k + 1 m + k + 2 k + 1 t -1 k k i=1 (-1) i-1 t -1 i (i + 1)(i + 2)
.

So, we get the [m + 1/m] Padé approximant to the function Ψ(2, t)

[m + 1/m] ψ(2,t) = B 0 -B 1 t + t 2 R m-1 (t) P m (t) = B 0 -B 1 t + t R m-1 (1/t) P m (1/t)
and also an approximation of ζ(2, a):

ζ(2, a) ≈ n-1 k=0 1 (k + a) 2 + 1 n + a [m + 1/m] Ψ(2,t) | t=1/(n+a) = n-1 k=0 1 (k + a) 2 + 1 n + a + 1 2(n + a) 2 + 1 (n + a) 2 ε m (a) =: v n,m (a) u n,m (a) = RP A(n, m + 1, m)
where

ε m (a) = m k=0 m + 1 k + 1 m + k + 2 k + 1 k i=1   n + a -i -1 k -i   (-1) i-1   k i   (i+1)(i+2) m k=0 m + 1 k + 1 m + k + 2 k + 1 n + a -1 k .

Irrationality of ζ(2)

A consequence of the previous formula is another proof of the irrationality of ζ(2).

Indeed, if d k := LCM [1, 2, • • • , k], then [9, Lemma 3.1]
d k i k i ∈ N.
Consequently, the numerator of ε m (1) multiplied by d 2 m+2 is an integer and for all integers n, m, d

2 m+2 v n,m (1) ∈ N, d 2 m+2 u n,m (1) 
∈ N. The error (formula (2.10)) applied to the function Ψ(2, t) rewrites as

Ψ(2, t) -[m + 1/m] Ψ(2,t) (t) = t 2m P 2 m (t) iR P 2 m (x) 1 -xt x 2 sin 2 (πx) dx
and the error term satisfies

ζ(2) - v n,m (1) 
u n,m (1) 
≤ 1 P 2 m (n + 1) iR P 2 m (x) 1 -x/(n + 1)
x 2 sin 2 (πx) dx (5.8)

≤ 1 P 2 m (n + 1) iR P 2 m (x)
x 2 sin 2 (πx) dx (5.9)

≤ 1 P 2 m (n + 1) 2(m + 1)(m + 2) π(2m + 3) . (5.10) 
Note that u n,m (1) = P m (n + 1). Now, we consider r ∈ Q such that m = rn ∈ N. Applying the Stirling formula to the expression (5.3) for orthogonal polynomials P n , we get lim

n (P rn (n + 1) 1/n = max t∈[0,1] (r + t) r+t t 3t (r -t) r-t (1 -t) 1-t = (r + σ(r)) r (1 -σ(r))(r -σ(r)) r =: ρ(r) (5.11) 
where σ(r)

= -r 2 + √ r 4 +4r 2 2
is a zero of t 2 + r 2 t -r 2 = 0. So, using the prime number theorem

d n = e n+o(n) , lim sup n ζ(2)d 2 rn+2 u n,rn (1) -d 2 rn+2 v n,rn (1) 1/n ≤ lim n (d 2 rn+2 u n,rn (1) 
) 1/n lim n 1 (P rn (n + 1) 2/n = e 2 max(r,1) /ρ(r).

The inequation e 2 max(r,1) /ρ(r) < 1 is satisfied for r ∈]0. 

w 3 (x) := - x 3 3 ∞ x d 3 dt 3 1 e 2πt -1 dt = π 2 x 3 cosh πx 3 sinh 3 (πx) .
(5.12)

Another expression of x 2 w 3 (x) is

x 2 w 3 (x) = 1 12π |Γ(1 + ix)| 8 |Γ(2ix)| 2 .
This weight has been investigated by Wilson [START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF]. The orthogonal polynomial P n satisfies:

P m (x 2 ) = (m + 1)(m + 2) 4 F 3   -m, m + 3, 1 -x, 1 + x ; 1 2, 2, 2   (5.13) 
= m k=0 m + 1 k + 1 m + k + 2 k + 1 x -1 k x + k k /(k + 1) (5.14) 
and the orthonality relation is iR P n (x 2 )P m (x 2 ) π 2 3

x 5 cos πx

sin 3 πx dx =    0 (if n = m), 1 3 (-1) n (n + 1)(n + 2) 2n + 3 (if n = m).
The weight x 5 cos πx sin 3 πx is positive on the line iR thus, the roots of the polynomials P n are located on the imaginary axis.

We set Π m (x) := P m (x 2 ). The three-term recurrence relation is

Π m+1 (x) = 2(2m + 3) (m + 1)(m + 2) 2 x 2 + 2m + 3 m + 2 Π m (x) - m + 1 m + 2 Π m-1 (x) (5.15)
with initial conditions: Π -1 = 0, Π 0 = 2.

In the previous subsection, we have defined the linear functional c (s) acting on the space of polynomials as c (s) , x j := B j j! (s) j-1 (-1) j , j ∈ N, and x 4 c (s) by x 4 c (s) , x j := c (s) , x j+4 .

Before computing the associated polynomials, we need the moments of x -1 k

x + k k and x -1 k + 1

x + k k .

Lemma 1. Let us define the polynomials ν 2j+1 (x) and ν 2j (x) by

ν 2j+1 (x) = x -1 j + 1 x + j j ν 2j (x) = x -1 j x + j j .
Then,

x 4 c (3) , ν 2k+1 (x) = (-1) k+1 (k + 1) 2 2(k + 3)(k + 2)
(5.16)

x 4 c (3) , ν 2k (x) = (-1) k (k + 1) 2 2(k + 3)(k + 2)
(5.17)

Proof. c (2) satisfies c (2) , x j = B j (-1) j . We denote c (2) by c (2) , x j := c (2) , -jx j-1 .

From the definition of c (3) , c (3) , x j = 1 2 B j (j + 1)(-1) j , we have 2) .

c (3) = - 1 2 xc ( 
In [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF] p. 230, it is proved that -c (2) , N 2k (x) = 0, -c (2) , N 2k+1 (x) = (-1) k (k+1) 2 where

N 0 (x) = 1, N 2k (x) = x k x + k k , N 2k+1 (x) = x k + 1 x + k k . Now, x 4 c (3) , ν 2k+1 (x) = -1 2 x 5 c (2) , ν 2k+1 (x) = 1 2 -c (2) , x 5 ν 2k+1 (x) .
The proof of (5.16) follows from the expansion

x 5 ν 2k+1 (x) = αN 2k+6 (x) + βN 2k+5 (x) + γN 2k+4 (x) + δN 2k+3 (x) + µN 2k+2 (x) -2µN 2k+1 (x), with α = (k + 1)(k + 2) 2 (k + 3) 2 , β = -2(k + 1)(k + 2) 3 (k + 3), γ = (k + 1)(k + 2) 2 (2k 2 + 6k + 5), δ = -(k + 1)(k + 2)(2k + 3)(2k 2 + 6k + 5), µ = (k + 1) 5 .
For (5.17), we use the expansion

x 5 ν 2k (x) = (k+1) 2 (k+2) 2 (k+3)N 2k+5 (x)+(k+1) 2 (k+2)(2k 2 +6k+5)N 2k+3 (x)+(k+1) 5 N 2k+1 (x).
Now, the associated polynomials Θ m-1 (2.5) are defined as

Θ m-1 (t) := x 4 c (3) , Π m (x) -Π m (t) x -t
where the variable is x. From the expression (5.14) for Π m , we get the following formula for Θ m-1 ∈ P 2m-2 :

Θ m-1 (t) = m k=0 m+1 k+1 m+k+2 k + 1 1 k + 1 x 4 c (3) , x-1 k x+k k - t-1 k t+k k x -t . (5.18)
Using the expression of the polynomial

x -1 k x + k k - t -1 k t + k k x -t on the New- ton basis with abscissae {0, 1, -1, 2, -2 • • • , k, -k} [9, formula 55], i.e. x -1 k x + k k - t -1 k t + k k x -t = 2k-1 j=0 ν 2k (t) ν j+1 (t) ν j (x) [(j + 2)/2]
.

and Lemma 1, 3) , ν 2j (x) = (-1) j (j + 1) 2 2(j + 3)(j + 2) ,

x 4 c (3) , ν 2j+1 (x) = -x 4 c ( 
we can write a compact formula for Θ m-1 :

Θ m-1 (t)= m k=0 m + 1 k + 1 m + k + 2 k + 1 1 k + 1 2k-1 j=0 ν 2k (t) ν j+1 (t) x 4 c (3) , ν j (x) = m k=0 m+1 k+1 m+k+2 k+1 ν 2k (t) k+1 k p=1 t t-1 p t+p p (-1) p 2(p+1)(p+2)
.

So, for m ≥ 2, we get the [2m + 2/2m] Padé approximant to the function Ψ(3, t)

[2m + 2/2m] Ψ(3,t) = B 0 2 -B 1 t + 3 2 t 2 B 2 + t 5 Θ m-1 (t) Π m (t) = B 0 2 -B 1 t + 3 2 t 2 B 2 + t 4 Θ m-1 (1/t) Π m (1/t) ,
and an approximation of ζ(3, a) :

ζ(3, a) ≈ n-1 k=0 1 (k + a) 3 + 1 2(n + a) 2 + 1 2(n + a) 3 + 1 4(n + a) 4 + 1 (n + a) 5 m (a) =: f n,m (a) g n,m (a) where m (a) = Θ m-1 (n + a) Π m (n + a) = m k=0 m + 1 k + 1 m + k + 2 k + 1 n+a k+1 k p=1   n + a -p -1 k -p     n + a + k k -p   (-1) p   k p   2 2(p+1)(p+2) m k=0 m + 1 k + 1 m + k + 2 k + 1 n + a -1 k n + a + k k /(k + 1)
.

Irrationality of ζ(3)

The irrationality of ζ(3) has been proved by Apery in a celebrated paper [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF]. A little later, a particular straightforward and elegant proof of this irrationality was given by Beukers [START_REF] Beukers | A note on the irrationality of ζ(2) and ζ(3)[END_REF]. The author gave another proof in [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF] (r + t) r+t (1 + t) 1+t t 3t (r -t) r-t (1 -t) Numerically, it seems that this property is valid for all s > 0, s = 1 and more generally for all complex numbers s, s = 1.

  1 and uniformly convergent in any finite region where (s) ≥ 1 + δ, with δ > 0. It defines an analytic function for (s) > 1. The Riemann ζ function is ζ(s, 1). An integral representation of ζ(s, a) is given by ζ(s, a) 1 e -ax 1 -e -x dx (s) > 1, (a) > 0, (1.2) where Γ(s) = ∞ 0 y s-1 e -y dy is the gamma function. If (s) ≤ 1, the Hurwitz zeta function can be defined by the equation ζ(s, a) = Γ(1 -s) 1 2πi C

For p = 1 ,

 1 s = 2 or p = 2, s = 3 , we will give in this section the formal expression of RP A(n, m + p, m) and the expression of the error. If a = 1, then the rational approximations RP A(n, rn + 1, rn) to ζ(2) and RP A(n, rn + 2, rn) to ζ(3) with some suitable value of r lead to another proofs of the Apéry's theorem. The case for s ≥ 4 remains an open problem.

5 . 2 .

 52 74, 1.53[. The irrationality of ζ(2) follows from the following limit lim n ζ(2)d 2 rn+2 u n,rn (1) -d 2 rn+2 v n,rn (1) = 0. Case s = 3. For s = 3, the weight in the expression (3.1) is

3 .

 3 using the RPA. Actually, RP A(m, 2m -1, 2m) provides exactly the Apery's numbers for ζ(3). In the following, we show that the previous approximation also proves irrationality of ζ(3) with RPA's depending on other parameters.Actually,∀n, a ∈ N, d 3 m+1 Θ m-1 (n + a) ∈ Z, d 3 m+1 f n,m (n + a) ∈ Zand d 3 m+1 g n,m (n + a) ∈ Z.Note that g n,m (n + a) = Π m (n + a). The proof is similar than in the previous subsection. We consider the case a = 1. The error (formula (2.10)) applied to the function Ψ(3, t) becomes Ψ(3, t) -[2m + 2/2m] Ψ(3,t) Now, we consider r ∈ Q such that m = rn ∈ N. Using the Stirling formula in the expression of the orthogonal polynomials (5.14), lim n (Π rn (n + 1)) 1/n = max t∈[0,1]

3

 3 µ(r))(r + µ(r)) r (1 -µ(r))(r -µ(r)) r =: η(r)where µ(r) = r √ 1 + r 2 is a zero of (1 -t 2 )(r 2 -t 2 ) = t 4 . rn+1 g n,rn (1) -d 3 rn+1 f n,rn (1) 1/n ≤ lim n (d 3 rn+1 g n,rn (1)) 1/n lim n 1 (g n,rn (1)) 2/n = e 3 max(r,1) /η(r)The inequation e 3 max(r,1) /η(r) < 1 is satisfied for r ∈]0.74, 1.36[. The irrationality of ζ(3) then follows from the following limitlim n ζ(3)d 3 rn+1 g n,rn (1) -d 3 rn+1 f n,rn(1)= 0.ConclusionIn section 3, for a = 1, we have proved that for all fixed integers n, p ≥ 1, and for each s > 0, s = 1, then the sequence(RP A(n, m + p, m)) m converges to ζ(s).If m and n are linked such that m = rn, then the convergence of (RP A(n, rn + p, rn)) n is proved for s = 2 and the rate of convergence is ρ(r) (see(5.11)): lim sup n (|ζ(s) -RP A(n, rn + p, rn))| 1/n ≤ ρ(r).

  )/ P m 2 (t) be a Padé approximant to the function Ψ.

	Then by replacing the remainder term Ψ s,	1 n + a	in (1.4), by the Padé approximant
	[m 1 /m		

2 ] Ψ(s,t) , computed at t = 1/(n + a), we obtain the RPA approximant