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Abstract: Many data collected in sport science come from time dependent phenomenon. This article1

focuses on Functional Data Analysis (FDA), which study longitudinal data by modeling them as2

continuous functions. After a brief review of several FDA methods, some useful practical tools such as3

Functional Principal Component Analysis (FPCA) or functional clustering algorithms are presented4

and compared on simulated data. Finally, the problem of the detection of promising young swimmers5

is addressed through a curve clustering procedure on a real data set of performance progression6

curves. This study reveals that the fastest improvement of young swimmers generally appears before7

16 years old. Moreover, several patterns of improvement are identified and the functional clustering8

procedure provides a useful detection tool.9

Keywords: Curve clustering; Functional Data Analysis; Swimming; Sport; Detection10

1. Introduction11

Longitudinal data in sport12

For a long time, sport science has been interested by time dependent phenomenons. If, at first,13

people only kept track of performance records, there is currently a massive amount of various data.14

Among them, one specific type is called time series or longitudinal data. Many recorded and studied15

data can be considered as time series depending on the context. From the heart rate during a sprint [1],16

to the number of injuries in a team over a season [2], to the evolution of performances during a whole17

career [3], the common ground remains the evolution of a characteristic regarding a time period. An18

interesting property of such data lies in the dependency between two observations at two different19

instants, leading, in mathematical terms, to the fact that the independent and identically distributed20

(iid) hypotheses are not verified. However, most of the usual statistical tools classically used in Sport21

Science, such as the law of large number and central limit theorem, need these properties1. Thus, all22

the statistical methods based on these results (hypothesis testing, method of moments, ...) collapse,23

and one needs specific tools to study time series. There is a whole literature related to the subject [4].24

1 Note that there exist several versions of these theorems with more or less flexible hypotheses, depending on the context. We
talk here about the most common versions, classically used in applied science.
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These methods focus on the study of time dependent processes that generate discrete observations.25

For instance, since an important topic of this paper concerns clustering, and a really comprehensive26

review about clustering of time series can be found in [5].27

28

Despite the usefulness of the time series approach, some theoreticians proposed a new modeling29

of longitudinal data [6]. In many cases, the studied phenomenon is actually changing continuously30

over the time. Thus, the object we want to know about is more of a function than a series of point. In31

their paper [2], the authors highlight that it may be damageable to discretize phenomenons that are32

intrinsically functional. Moreover, they claim that continuous methods perform better than discrete33

ones on the specific case of the relationship between training load and injury in sport.34

35

In some particular cases, it thus seems natural to model a continuous phenomenon as a random36

function of time, formally a stochastic process, and consider our observations as just few records of37

an infinite dimensional object. This approach is called functional data analysis (FDA) and gives a38

new range of methods well suited to work on longitudinal data. There was substantial theoretical39

improvements in the area the last two decades, and this paper intends to present some topics that40

might be useful to the sport science field. To our knowledge, there is very few paper in the sport41

literature that use FDA. We can cite [7] in which curve clustering is used to analyse the foot-strike of42

runners, or [8] for the study of muscle fatigue through a whole FDA analysis. Another example is43

given in [9] that proposes a functional version of ANOVA using splines to overcome common issues44

that occur in sport medicine. Finally, the work presented in [10] uses curve clustering methods to45

study different types of footfall in running. The methodology used in this paper is closely related46

to our present article, and authors claim that this approach clearly improved analysis of footfall47

compared to former empirical and observational ways to classify runners.48

49

If such an approach remains marginally applied in the sport field, one would find many examples50

in a wide range of other domains. We can cite for example meteorology, with the article [11] that51

describes the study of temperature among Canadian weather stations, which has become a classic52

data set over the years. Another famous data set is presented in [12] as an application to biology, by53

studying the growth of children as a time continuous phenomenon. Those works and data sets are54

today considered as benchmarks to test new methods, but many fields such as economy [13], energy55

[14], medicine [15] or astronomy [16] have used FDA and contribute to this really active research topic.56

Detection of young athletes57

In the elite sport context, a classical problem lies in the detection of promising young athletes [17].58

With professionalisation and evolution of training methods, differences in competition became more59

and more tight in recent years [18]. Besides, it has been shown that the development of some specific60

abilities during adolescence is a key component of improvement [19]. Hence, many sport federations61

or structures have paid interest in the subject and tried to understand mechanisms behind what could62

be called talent [20] and the evolution during young years of a career. A key feature to take into account63

is morphology, since it obviously influences performance in many sports [21]. Morphology is also64

known as a major noise factor in the detection issue, as the differences in physical maturity leads to65

promote some young athletes over others [22] just because of their advantages in height or weight,66

which will disappear when adult. Some problems raise when these maturity rhythms are ignored,67

such as in training centers, with an over-representation of athletes born during the first months of68

the year [23]. Moreover, it appeared in several studies that performance at young ages provides in69

itself a poor predictor of the future competition results [3]. Only a small portion of elite athletes before70

16 years old remains at a top level of performance later [24]. It thus seems clear that the classical71

strategy, which consists in training intensively in specific structures only best performers of a young72

age range, reaches its limits. If there are numerous elements that influence performance [25], several73
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works [26] seem indicate that the evolution over the time of a young athlete is more suited to predict74

future abilities than raw values at given ages. Different patterns of progression exist, and it might be75

important to take them into account if one wants to improve quality of talent detection strategies. Our76

work in this context aims to provide a more global vision of the progression phenomenon by saving its77

genuine continuous nature. Therefore, model data as functions and study them as such in the frame of78

FDA might offer a new perspective and provide insights to sport structures for their future decisions.79

Functional Data Analysis (FDA)80

As mentioned previously, FDA allows to take into account the intrinsic nature of functional data.81

Apart from this philosophical advantage in term of modeling, one may note important benefits. For82

example, if one records several time series with observations at different instants and/or in different83

numbers, how to compare them ? How to study the evolution of performances of swimmers from84

their competition times at given ages ? Competitors may have different number of races during their85

careers, and their performances are done at different ages (if one wants to avoid age discretization that86

have been shown problematic in [23]). This example illustrates exactly what we try to deal with in the87

subsequent curve clustering example. Another fundamental advantage of FDA is the possibility to88

work on the derivatives of the observed functions. Indeed, it is often interesting to study the dynamic89

of a time dependent process. Even the second derivative, often referred as the acceleration, or a superior90

order derivative might provide valuable information in practice. The specific nature of functional91

data allows to study such properties, and the sport scientist may easily imagine the wide range of92

situations on which the study of derivatives might be interesting. One could think for example of the93

GPS position tracking analysis, the progression phenomenon of young athletes, or the following of94

actions of some muscles over time.95

96

The first and fundamental step of a functional data analysis generally consists in the reconstruction97

of the function from the discrete set of observations. There is two cases at this step. Whether the98

observations are being considered as error-less (in term of measurement) and one can proceed to a99

direct interpolation through one of the multiple existing methods (linear, polynomial, ...). Or, more100

frequently, the set xi,t1 , . . . , xi,tn is considered as observations at time t1, . . . , tn of a realisation xi(t)101

of a stochastic process X(t). In this case, one can proceed to a smoothing step. It consists in the102

approximation of a function defined to be close to the observed points. To deal with noisy data, one103

always has to face the over-fitting/under-fitting issue. In most cases, one has to determine a smoothing104

parameter that define how much one wants to allow the function to contain peaks. These topics are105

largely detailed in the first chapters of [27]. Even if defining a consistent value of the smoothing106

parameter is a first work, one can see as an advantage the fact to explicitly control the signal-on-noise107

ratio of the data. The most common way to reconstruct the function from the observations is to use a108

basis of functions. A basis of functions is a set of specific functions φi of a functional space S , such as109

each element of S can be defined as a linear combination of the φi. Formally, we can define the basis110

expansion f as :111

f (t) =
N

∑
i=1

αi φi(t) (1)

where φ1, . . . , φN are the basis functions of a given functional space and α1, . . . , αN are real valued112

coefficients. Intuitively, if one fixes a common basis to fit observations, the information on individuals113

is contained in the vector of coefficients {α1, . . . , αN}. That is why a common approach is to perform114

classical multivariate methods on these coefficients. Among the most common basis used in practice,115

we can cite Fourier basis and wavelets, which are well suited to model periodic data [27] [28]. Fourier116

basis is a widespread choice that works well when data present a repetitive pattern (such as day/night117

cycles for example) since the basis functions are sinusoids. However, their efficience decrease when118

data are less regular, especially on the modelisation of derivatives. Wavelet basis are designed to settle119
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this sensibility to irregular signals. Coefficients are slightly longer to compute, but this basis has120

really good mathematical property and progressively replace Fourier basis in several applications121

[29] [30]. For non periodic data, the classical choice is spline basis, particularly the cubic splines in122

practice [6]. B-splines are piecewise polynomial functions and require few coefficients to define a good123

approximation, which make B-splines especially adequate when observations are sparse on the time124

domain [31]. They allow to approximate a wide range of shapes with a rather good smoothness [30].125

From a computational point of view, one can use the R package fda, on which one can find methods to126

fit observations into functional data, and way more tools for FDA. An overview of the fda package can127

be found in [30].128

129

Once the data set is approximated by functions, one may perform analysis on them, and some130

classical statistical tools have been extended in the functional context. One of the first and most131

important adapted method was the functional principal component analysis (FPCA). Although slightly132

different, FPCA provides analogous information as the finite dimensional version [27]. This method133

allows to describe data into a non correlated low dimensional space. That is why it provides an134

excellent explanatory tool to visualize main features of the data as well as a way to reduce the number135

of informative dimensions. This can be particularly useful when one wants to apply algorithms on136

the vector {α1, . . . , αN} of coefficients of the basis expansion, with N rather large. It may accelerate137

calculation while retain most of the information as well as avoid curse of dimension in a big data138

context. We may also cite several methods presented in [27] such as functional canonical correlation,139

discriminant analysis and functional linear models.140

141

The purpose of this paper is twofold: at first, it aims at providing a brief review of several142

methods and references for the theoretical aspects. Secondly, examples of practical tools and useful143

packages (on the software R as it is currently the most convenient to perform FDA) of curve clustering144

state of the art methods are presented. Then, we also detail a specific study on a real data set, coming145

from our collaboration with the French Swimming Federation. This work focuses on the clustering of146

performance progression curves of young male swimmers and uses several FDA tools. We emphasise147

on the fact that FDA provides some tools that give information we could not exhibit otherwise, like the148

study of derivatives for example.149

150

Clustering functional data151

In this article, we emphasise on the clustering approach, often fundamental when exploring a new152

data set or beforehand to a forecast. This method consists in computing sub-groups of individuals on153

a data set that make sense in the context of the study. Given K the number of clusters, a clustering154

algorithm would apply one or several rules to gather individuals presenting common properties.155

This problem has been largely explored these past ten years in the functional context and we will156

give some elements to summarize the state of the art. According to the survey [28], functional data157

clustering algorithms can be sorted in three distinct families, detailed below. We do not develop on158

direct clustering on raw observational points that does not take into account functional nature of the159

data and may give poor results.160

161

(i) 2-steps methods. The first step consists in the fitting procedure we detailed previously, choosing162

a common basis for all data. Then, a clustering algorithm such as k-means [31], or hierarchical163

clustering methods for example, is performed on the basis coefficients. If this vector of coefficients is in164

high dimension, one can add a step of FPCA and perform the clustering on the scores coming from the165

first eigenfunctions of the FPCA.166

167
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(ii) Non-parametric clustering. An overview of non-parametric functional data analysis is provided168

by [32]. It details many aspects where one does not assume that functional observations can be defined169

by a finite number of parameters. The idea is to define a distance between the functional observations170

without assumptions on the form of the curves. A classical measure of proximity between functions xi171

and xj is defined as :172

dl(xi, xj) =

(∫
T

x(l)i (t)− x(l)j (t)dt
) 1

2
(2)

where x(l)i is the l-th derivative of x. With such a measure of distance, one can run the heuristic of the173

k-means, for example, or any other distance-based clustering.174

175

(iii) Model-based clustering. This approach has been widely developed in the past years and176

gives good results. As the 2-step approach, it often uses basis expansion and/or FPCA to fit the data.177

However, rather than proceeding in two-step, the clustering is performed simultaneously. Many178

algorithms are based on Gaussian mixture models coupled with an EM-algorithm to compute the179

parameters [33] [34] [35]. We chose in this study to adapt the algorithm FunHDDC presented in [35]180

for several reasons that we develop in the following Materials and Methods section.181

182

Note that the literrature does not give specific indications about the family of methods that should183

be used in a specific context and one might test several of them. Nevertheless, one should keep in184

mind that the right way to fit the data into functions strongly depends on the structure of the data. We185

also give some additional references in the next section, where we detail some algorithms that are easy186

to use in practice because of their implementation withon an unified R package. Below, Figure 1 from187

[28] summarizes the different families described above and the process of clustering in a functional188

context:189

Functional phenomenon

Discrete
observations

Raw-data
Clustering

2-steps
methods

filtering
(basis expansion)

Clustering feature extraction
(FPCA)

Clustering

Non-parametric
Clustering

Model-based
Clustering

Figure 1. Summary of the different approaches to perform clustering on functional data, from raw data
(top) to final clusters (bottom).
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2. Materials and Methods190

Description of the real swimming data set191

First of all, two types of data sets, on which we performed functional clustering algorithms,192

are described. The way we simulated data sets to test several methods will be described at the end193

of the current section. The real data have been collected by the French Swimming Federation. It194

gathers all the performances of french male swimmers, since 2002, for the 100m freestyle in a 50m195

pool. Because of confidentiality issues, athletes are identified by a number. The data set is composed of196

46115 performances and ages of 1468 different swimmers, and is available on the Github page of the197

corresponding author. Raw data consists of time series of competition performances at different ages198

for each swimmer. The number of competitions and the age at which swimmers participate differs199

from one to another, leading to strongly uneven time series. This particularity of the data set (as well200

as the ability to work on derivatives) led to model the observations as functions rather than time series.201

Thus, a first step of fitting was performed to extract the functional nature of the data and deal with202

the random fluctuations in the observations. All the algorithms were run on the R software and the203

corresponding packages will be named in the sequel.204

Testing several algorithms on simulated data sets205

To begin, a comparative study of several classical functional clustering algorithms has been206

performed on simulated data. Few information are provided on the algorithms, but we invite readers207

to refer to the corresponding papers for details. For this work, the R package funcy, which compiles208

seven state of the art algorithms, was used. It gives a common syntax and format for the input and209

output data. The list below enumerates the algorithms, regrouped according to their family, that can210

be used with funcy.211

212

(ii) distance-based:213

• distclust: An approximation of the L2 distance between curves is defined, and a k-means heuristic214

is used on individuals using this distance. This method is well designed in the context of sparsely215

observed functions with irregular measurements. [36]216

(iii) model-based :217

• fitfclust: One of the first algorithm to use a Gaussian mixture model for univariate functions218

that we briefly describe. This heuristic holds for all following algorithms described as Gaussian219

mixture methods. Functions are represented using basis functions, and the associated coefficients220

are supposed to come from Gaussian distributions. Given a number K of different means and221

covariances parameters corresponding to the K clusters, an EM algorithm is used to estimate the222

probability of each observational curves to belong to a cluster. When the iterations stop (various223

stopping criteria exhist), an individual is affected to its most likely cluster. A preliminar step of224

FPCA can be added to work on lower dimensional vectors and thus speed up the calculations.225

This method is well designed in the context of sparsely observed functions. [37]226

• iterSubspace: A non-parametric model based algorithm. This method uses the Karhunen-Loeve227

expansion of the curves, and perform a k-means algorithm on the scores of FPCA and the mean228

process. This method can be useful when the Gaussian assumption does not hold but k-means229

approach can lead to unstable results. [38]230

• funclust: A Gaussian mixture model based algorithm. This method uses the Karhunen-Loeve231

expansion of the curves and allows each cluster’s Gaussian parameters to be of different sizes,232

according to the quantity of variance expressed by the corresponding FPCA. The algorithm also233

allows different covariance structures between clusters ans thus generalizes some methods such234

as iterSubspace. [33]235
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• funHDDC: A Gaussian mixture model based algorithm. This method presents lots of common236

caracteristics with funclust, but additionally allows clustering of multivariate functions. The237

algorithm proposes six ways to model covariates structures, especially for the extra-dimension of238

the FPCA. [35]239

• fscm: A non-parametric model based algorithm. Each cluster is modeled by a Markov random240

field, and functions are clustered by shape regardless to the scale. Observation curves are241

considered as locally-dependent, and a K-nearest neighbors algorithm is used to define the242

neighborhood structure. Then, an EM algorithm estimates parameters of the model. This method243

is well designed when the assumption of independence between curves does not hold. [39].244

• waveclust: A linear Gaussian mixed effect model algorithm. This approach uses a dimension245

reduction step using wavelet decomposition (rather than classic FPCA). An EM algorithm is246

used to compute parameters of the model and probabilities to belong to a cluster. This method is247

well design for high-dimension curves, when variations such as peaks appears in data, and thus248

wavelets performe better than splines. [29].249

Unfortunately, the current version (1.0.0) of the funcy package has some troubles with the250

funHDDC algorithm, which is not directly usable at the moment. All the remaining algorithms251

were applied on three simulated data sets, with K = 4 groups. The resulting clustering were compared252

to real group distributions using the Rand Index (RI)[40]. This measure, between 0 and 1, is computed253

by counting according pairs of individuals between two different partitions of a data set. The RI254

is provided as a result of the funcit function of the funcy package, and compares the ability of each255

procedure to retrieve the actual groups. Then, graphs of centers of each curve clusters were drawn to256

analyse consistency of our results according to the original data.257

Clustering the real swimming data set258

As mentioned above, the real data set is very irregular, with no accordance in time and in number259

of measurements between athletes. Thus, the first step of the analysis was the definition of a common260

ground through a smoothing procedure. According to the non-periodic form of the data and the261

relatively low sampling of observational points (around 30) for each athlete, a B-spline basis was262

chosen. The study focuses on the age period from 12 to 20 years old, which is crucial in the progression263

phenomenon that we aimed at studying. A basis of seven B-splines of order 4 was defined so that the264

derivatives remain smooth enough to work on derivatives. Since we did not wish to focus on a specific265

time period, the knots were equally placed on ages 13 to 19. One should note that data are considered266

as realisations of a stochastic process, and thus raw data are assumed to contain random fluctuations.267

The function that is fitted using the B-spline basis has to represent properly the true signal and the well268

known over/under-fitting issue appears in this case. In order to differentiate the true signal from the269

noise, several methods can be used, knowing that there is always a trade-off between smoothness of the270

function and closeness to observation points. A classical approach consists in the use of penalisation271

in the least-square fitting calculation, and the signal-on-noise ratio would be controlled by a unique272

hyper-parameter. In our case, we used a cross-validation criterion to compute an optimal value for this273

hyper-parameter, and the resulting functional data were considered as coherent by swimming experts.274

This whole fitting procedure was performed thanks to R (version 3.5.0) software, and especially the275

fda (version 2.4.8) package. To analyse efficiently a real data set, one needs first to explore it, to figure276

out the more suited algorithm to use. To this purpose, a FPCA was performed on the progression277

curves and their derivatives, separately. We looked at the percentage of variance explained by each278

eigenfunction and the shapes of them, to understand the main features of the curves. One can see on279

Figure A1 of the appendix that main variations among level of performance appear at young ages280

and a clustering procedure on progression curves tends to simply group individuals according to this281

criterion. As displayed on Figure A2, first eigenfunctions of the derivatives represent three different282

modes of variations localized at young, middle, and older ages. These characteristics of data would283

be relevant to include to the clustering procedure beside the level of performance information. To284
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this purpose the funHDDC algorithm was used as clustering procedure, as this is one of the rare285

implemented algorithm that works in a multivariate case and thus allow to consider both curves and286

their derivatives simultaneously. One can find more details in the result section about the reasons of287

this choice. Although implemented in the funcy package, we chose to work with the original funHDDC288

R package, because of current problems of implementation on it. Several features of the package were289

used, as Bayesian Information Criterion (BIC), Integrated Classification Likelihood (ICL) and slope290

heuristic, to deal with problems of model selection and choice of the number K of clusters. Since no291

particular assumptions were made on the covariance structure or the number of clusters form a sport292

expert point of view, the hyper parameters of the model have been optimised from data. All possible293

models were computed for different values of K and the best one (the sense of the term best is developed294

in the Results section) was retained as our result clustering. In the funHDDC algorithm, each cluster295

is considered to be fully characterised by a Gaussian vector, from which scores on eigenfunctions of296

the FPCA are assumed to come. Thus, the clustering becomes a likelihood maximization problem297

where one wants to find value of means and covariance matrices that fit the best to data, as well as298

probabilities for each of data curves to belong to a cluster. All parameters influence values of each299

others and this classical issue is addressed thanks to an Expectation-Maximization (EM) algorithm300

that computes efficiently close approximations of optimal parameters. At the end of the procedure, a301

data curve is considered to belong to the cluster within which it has the higher probability to come302

from. The clustering was performed on the curves and their derivatives, separately at first. Then, the303

resulting clusters were compared thanks to the Adjusted Rand Index (ARI) [40], which is an extended304

version of the RI to partitions with different number of clusters. This measure allows to quantify305

the adequacy between individuals grouped whether by a clustering on progression curves or on306

derivatives. Note that many other indexes exist, such as Silhouette index or Jaccard index for example.307

Although our results were quite comparable using one or another, the reader can find an extensive308

comparative study of the different idexes in [41]. Noticing that athletes were clustered differently,309

providing two types of information, we decided to perform a third clustering procedure. This time,310

the multivariate clustering version on the funHDDC algorithm was used. The term multivariate311

clustering refers to a clustering algorithm that deals with multidimensional functions. The progression312

curves were defined as a first variable, while the derivatives as a second variable. For each clustering313

procedure, the resulting clusters centers and curves were plotted. Finally, the results were analysed314

and discussed with swimming experts to confront the found clusters to the sport logic.315

2.1. Definition of the simulated data sets316

We defined three simulated data sets to test the algorithms of the funcy package on different317

contexts. We used the function sampleFuncy of the funcy package that provides an easy way to simulate318

data sets suited to apply directly methods from funcy on them.319

320

Simulated data sets are sampled from four different processes of the form f (t) + ε , with f321

and ε detailed in Table 1 below. For each process 25 curves are simulated, thereby leading to 100322

curves in each sample. The aim of the following clustering procedure is to gather themselves curves323

that correspond to the same underlying process. An additional goal would be to retrieve, at least324

approximately, the shapes of deterministic functions f that generated each data curves within a cluster.325

Intuitively, Sample 1 depicts an easy situation with low noise and well separated processes, whereas326

Sample 2 represents the same processes in a higher variance context. Finally, Sample 3 corresponds to327

a high-noise and crossing processes context, which is designed to be trickier. Moreover, in the case of328

Sample 3, observations of the curves are irregular on t-axis and thus, for three out of six algorithms of329

the package that are not implemented in this case, we had to proceed to a previous fitting step. We330

used the function regFuncy of the funcy package to this purpose.331
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Table 1. Details on the simulated samples. Processes are defined as f (t) + ε with 4 different functions
f in each sample and a varying noise parameter ε.

Data set Functions Noise Observations on t-axis

Sample 1 t 7−→ t− 1
t 7−→ t2

t 7−→ t3

t 7−→
√

t

ε ∼ N (0, 0.05) 10 points at regular instants

Sample 2 t 7−→ t− 1
t 7−→ t2

t 7−→ t3

t 7−→
√

t

ε ∼ N (0, 0.1) 10 points at regular instants

Sample 3 t 7−→ t− 1
t 7−→ −t2

t 7−→ t3

t 7−→ sin(2πt)

ε ∼ N (0, 0.5) ≤ 10 points at irregular instants

3. Results332

Results on simulated data333

The Table 2 below provides results on the comparison between the six algorithms of the funcy334

package. These results are mainly illustrative and one should be aware that the quality of a clustering335

algorithm cannot be addressed through simulation. However, it can give some clues on the type336

of situations where algorithms seem to perform properly or not. The sample 1 was designed to be337

easy to cluster and most model based algorithms perform well. Nevertheless, they are outperformed338

by the only distance based method distclust gives almost perfect results. As Sample 2 is simply a339

noisier version of Sample 1, the problem becomes harder and results slightly decrease. One can note340

that, although the stochastic processes we sampled from are the same as in Sample 1, the "hierarchy"341

between methods changes. This might indicate differences at noise robustness between the methods.342

For example, performances of the fcsm algorithm decrease only slightly compared to distclust. Finally,343

as expected, the results fall on the fuzzy situation of Sample 3. Only three methods achieve moderate344

performances, and one can note that there is an algorithm of both families among them. Although345

Table 2 informs on the performances of these algorithms, it does not give information on the ability of346

the methods to retrieve the actual shape of the underlying functions. The following graphs will add347

some visual evidences to judge quality of the results.348

Table 2. Mean Rand Index and (Standard Deviation) on 100 simulations of the tree samples. Each
algorithm run in at most few seconds on our simulated data sets. Comparison in speed between
algorithms is given as a multiple of the fastest which is set arbitrarily to 1.

Method Sample 1 Sample 2 Sample 3 Running speed

fitfclust 0.945 (0.14) 0.857 (0.01) 0.307 (0.06) 2.8
distclust 0.996 (0.01) 0.888 (0.05) 0.523 (0.07) 19.2

iterSubspace 0.938 (0.14) 0.850 (0.12) 0.527 (0.07) 1
funclust 0.450 (0.17) 0.418 (0.16) 0.084 (0.07) 1

fscm 0.948 (0.12) 0.902 (0.01) 0.527 (0.07) 7
waveclust 0.920 (0.12) 0.810 (0.01) 0.324 (0.13) 34

Figure 2 gives one representation of the Sample 1 curves. In addition, the curves of each clusters349

centers of the best performing algorithm are drawn. One can see that Sample 1 is quite simple to deal350

with, since curves of different groups are well separated. Not surprisingly, the distclust clustering351

algorithm satisfyingly figures out the actual shape of each process.352
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Figure 2. All curves (dotted lines) and cluster centers curves (plain lines) obtained with distclust
algorithm for Sample 1. The algorithm correctly clusters curves and retrieves the underlying shapes of
generating processes.

One can see on Figure 3 that, if the noisier situation of Sample 2 affects the good clustering rate,353

the shapes of the underlying functions remain correctly approximated by clusters centers of fscm.354

2 4 6 8 10
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.5

0.
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0.
5

1.
0 t → t − 1

t → t
t → t2

t → t3

Figure 3. All curves (dotted lines) and cluster centers curves (plain lines) obtained with fscm algorithm
for the simulated Sample 2. Clustering becomes more difficult between curves (e.g. blue and green
curves) but the algorithm still performs well to figure out the underlying shapes.
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Sample 3 was designed to be trickier since curves cross each other and the signal appears rather355

noisy. In this context, one can see on Figure 4 that, as expected, the algorithms retrieve approximately356

the true shapes of the underlying functions. While the sinus (in black) function seems correctly357

identified, the iterSubspace algorithm struggles to separate the polynomial functions.358

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

t → sin(2πt)
t → t3
t → t−1
t → − t2

Figure 4. All curves (dotted lines) and cluster centers curves (plain lines) obtained with iterSubspace
algorithm for the simulated Sample 3. Both clustering and detecting underlying shapes become difficult.
The high noise makes the clustering fuzzy, which is affecting the cluster central curves.

Data set of swimmers’ progression curves359

The choice of the funHDDC algorithm was motivated by two main arguments. First, this is a360

flexible method that has been shown efficient in various cases. Secondly, because of the results of the361

FPCA performed to explore the data set. Indeed, as presented on the top Figure A1 (Appendix), we362

notice that the underlying dimension of the data seems clearly lower than the original one: the entire363

variance of the data set can be expressed with only three scores. Additionally, the shapes of the first364

informative eigenfunctions are drawn (bottom Figure A1) and inquire on the main features of the data.365

One can see an analogous result of low underlying dimension for the derivatives (Appendix : Figure366

A2). Thus, it seems natural to work with a FPCA-based method. FunHDDC provides a flexible way to367

deal with the "extra-dimensions", proposing six models that represents six different ways to model368

covariance matrices. We tested each of them to figure out the more appropriate. As advised by the369

authors in [34], the BIC is used for the model selection and the slope heuristic to choose the number K370

of clusters. According to these criteria, the best model, among the six, is composed of 5 clusters for the371

progression curves, and 4 clusters for the derivatives. Resulting clusters are represented on Figure372

A3 and Figure A4 (Appendix). At this stage, the Adjusted Rand Index (ARI) is used to compare the373

way athletes were grouped and give a value of 0.41. The value of ARI would be around 0.20 for a374

completely random clustering procedure. This result, far from an ARI equals to 1 of complete adequacy,375

lets us think that different features of the data were used to group individuals in each context. A376

Discussion with swimming experts leads us to conclude that the clustering on progression curves377

mainly grouped athletes according to their level of performance, whereas the derivatives clustering378

seems to gather individuals presenting similar trends of progression (at a particular age, or with the379

same dynamic for example). These conclusions guided us to the multivariate clustering procedure,380
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that gives results presented on Figure 2 and Figure 3. A close look at the groups on Figure 2 seems to381

indicate that multivariate clustering clusters combines information both on level of performance and382

trends of evolution. One can see that similar profiles are coloured the same way. We also verify this383

from a swimming expert point of view by checking samples of athletes in each groups. On Figure 3,384

one can see more clearly differences between each group thanks to the cluster center curves.385
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Figure 5. All progression curves of swimmers (left) and derivatives (right) coloured by clusters,
obtained with the multivariate funHDDC algorithm. Left: Each curve represents the time performance
for one swimmer between 12 and 20 years old. The clustering by level of performance can be observed
particularly on this graph. Right: Each curve represents the derivative of the progression curve for one
athlete between 12 and 20 years old. The clustering by speed of improvement and progression patterns
is more clearly expressed on this graph.
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Figure 6. Cluster centers curves of swimmers (left) and derivatives (right) coloured by clusters, obtained
with the multivariate clustering funHDDC algorithm. Similar information as on Figure 4 can be seen on
this graph, in a clearer way with only center of clusters displayed.

4. Discussion386

As mentioned in the simulated data set context, we shall emphasise that no objective criterion387

might reflect correctly the quality of a clustering procedure. The authors of [42] recall that all clustering388

algorithms are some way subjective regarding how they gather individuals or which metric they use.389

Thus, the resulting clusters should be judged and analysed according to the context. Like many other390

statistical tools, a clustering procedure does not give any quantitative certainty, but rather a new point391

of view on the data. One should consider as good results any useful perspective hidden in the raw392

data. Thus, we worked closely with sport experts, not only to analyse the results but throughout the393

entire analysis. All choices of parameters and/or methods were driven both by mathematical and394

sport considerations.395

396

In this work, we enlighten some classical methods and useful practical packages as well as397

provide some clues on the particularities of the different algorithms. One can note that distance-based398

methods are generally easy to use and give rather good results for simple problems. In the other399

hand, model-based methods lie on more complicated design but often give good results in a wider400

range of problems. It explains why they are often recommended by experts of the field [28] and form401

most of the algorithms implemented in funcy. Algorithms using Gaussian mixtures are naturally402

more flexible than methods like k-means, since they might be considered as a generalisation with403

elliptic clusters rather than circular ones. However, one should also keep in mind that this flexibility404

often costs longer computational time. Indeed, even if the EM algorithm is really efficient to solve the405

mixture of Gaussian problem, the multiplicity of models and the number of clusters to test might take406

non negligible time to run (few hours in our case). For our purpose, which is to help a swimming407

federation with the detection of young promising athletes, computational time was not an issue since408

the aim was more of a long term decision making. Nevertheless, many sport-related problems need409

today to be solved quickly or even in live, and our methodological choices would have been different410

under such constraints.411

412

About the results on the swimming data set, we observe consistent outcomes from both413

mathematical and sport point of views. If our work does not give any certainty about the progression414
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phenomenon of young swimmers, it gives some enlightenments of its general pattern and provide a415

practical tool to gather similar profiles. Moreover, using FDA, we were able to figure out information416

from uneven time series. Using smooth functions instead of raw data points provides a first417

understanding of the main trends and the continuous nature of the progression phenomenon.418

However, one should always pay attention to the random fluctuations of the data that serve to fit the419

studied functions. In order to improve the quality of the approximation and decrease the influence of420

the noise, we would like to collect more data on swimmers, with training performances for example.421

Nevertheless, these results might help the detection of promising young athletes with both a better422

understanding and graphical outcomes to support the decision process. Note that this work remains423

descriptive and thus preliminary, but one can think of it as a first step for a further predictive analysis.424

If we do not discuss here findings about any particular swimmers for confidentiality concerns, we425

can highlight some points that seem interesting to swimming experts. First, as mentioned in [3] [24],426

it seems difficult to precisely detect young talents before 16 years old, because of the fast evolution427

before this age. One can observe between 14 and 16 years old a huge decrease of the value of the428

derivatives and thus of the speed of progression. Moreover, athletes that seem to be better at 20 years429

old are often those who continue to progress, even slightly, after 16 years old. A classical pattern,430

confirmed with swimming experts, is the presence of a cluster of swimmers who are always among431

best performers. These athletes are typically often detected and can benefit of the best conditions to432

improve their performances. However, two clusters of athletes, often slightly slower than previous433

ones when young, present opposite behaviors. As one group stops rapidly to progress and performs434

rather modestly at 20 years old, another cluster gathers swimmers with a fast improvement who often435

perform as good as best swimmers when older. One can think of these young athletes as the main436

target of a detection program, since they often remain away from top level structures at young ages. If437

these findings are promising, this work needs further developments to provide more quantitative438

and predictive outcomes. The FDA offers several methods of classification and regression, but as439

mentioned many times previously, it would be necessary to adapt them to our specific problem, or to440

develop new algorithms.441

442

To conclude, we recall that the main purpose of this paper is to present a brief review of the443

functional data analysis and we emphasise one last time on the usefulness of such an approach. As444

supported by the example of curves clustering, FDA can offer new perspectives in the sport science445

field.446
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Bottom: Values of the two first eigenfunctions. Eigenfunctions are orthogonal each others and display
the main modes of variation of the curves. The first eigenfunction mainly informs on differences at
young ages, while the second focuses on the opposition between speeds at young and older ages.

Figure A1. Results of the FPCA on the progression curves. Top: Proportion of variance explained by
each eigenfunction. With only 2 eigenfunctions, one can express about 90% of the total variance of the
data set.
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Figure A2. Results of the FPCA on the derivatives of the progression curves. Top: Proportion of
variance explained by each eigenfunction. With only 3 eigenfunctions, one can express about 90% of
the total variance of the data set. Bottom: Values of the three first eigenfunctions. Eigenfunctions are
orthogonal each others and display the main modes of variation of the curves. The first eigenfunction
mainly informs on derivative differences at young ages, while the second focuses on the behaviour
between 16 and 18 years old. The third eigenfunction expresses the differences of swimmers
improvement between the middle and the bounds of the time interval.
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Figure A3. Clusters centres of the progressions curves. Computed with the univariate funHDDC
algorithm. Clusters show different patterns of evolution, and some progression curves cross each
others. The same level of performance at 12 years old (e.g. pink and blue curves) can lead to really
different levels when older.
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Figure A4. Clusters centres of the derivatives of the progressions curves. Computed with the univariate
funHDDC algorithm. Clusters mostly differ on the value of the derivatives at young age and converge
all to 0 at 20 years old.
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