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Abstract

Many data collected in sport science come from time dependent phe-
nomenon. This article focuses on Functional Data Analysis (FDA), which
study longitudinal data by modeling them as continuous functions. After
a brief review of several FDA methods, some useful practical tools such
as Functional Principal Component Analysis (FPCA) or functional clus-
tering algorithms are presented and compared on simulated data. Finally,
the problem of the detection of promising young swimmers is addressed
through a curve clustering procedure on a real data set of performance
progression curves. This study reveals that the fastest improvement of
young swimmers generally appears before 16 years old. Moreover, sev-
eral patterns of improvement are identified and the functional clustering
procedure provides a useful detection tool.

Keywords Curve clustering; Functional Data Analysis; Swimming; Sport ;
Detection

1 Introduction

For a long time, sport science has been interested by time dependent phe-
nomenons. If, at first, people only kept track of performance records, there
is currently a massive amount of various data. Among them, one specific type
is called time series or longitudinal data. Many recorded and studied data can
be considered as time series depending on the context. From the heart rate
during a sprint [17], to the number of injuries in a team over a season [5], to
the evolution of performances during a whole career [2], the common ground
remains the evolution of a characteristic regarding a time period. An interest-
ing property of such data lies in the dependency between two observations at
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two different instants, leading, in mathematical terms, to the fact that the inde-
pendent and identically distributed (iid) hypotheses are not verified. However,
most of the usual statistical tools classically used in Sport Science, such as the
law of large number and central limit theorem, need these properties1. Thus,
all the statistical methods based on these results (hypothesis testing, method of
moments, ...) collapse, and one needs specific tools to study time series. There
is a whole literature related to the subject [4]. These methods focus on the study
of time dependent processes that generate discrete observations. For instance,
since an important topic of this paper concerns clustering, and a really compre-
hensive review about clustering of time series can be found in [25]. Despite the
usefulness of such an approach, some theoreticians proposed a new modeling of
the problem [7]. In many cases, the studied phenomenon is actually changing
continuously over the time. Thus, the object we want to know about is more of
a function than a series of point. In their paper [5], the authors highlight that it
may be damageable to discretize phenomenons that are intrinsically functional.
Moreover, they claim that continuous methods perform better than discrete ones
on the specific case of the relationship between training load and injury in sport.

In some particular cases, it thus seems natural to model a continuous phe-
nomenon as a random function of time, formally a stochastic process, and con-
sider our observations as just few records of an infinite dimensional object. This
approach is called functional data analysis (FDA) and gives a new range of meth-
ods well suited to work on longitudinal data. There was substantial theoretical
improvements in the area the last two decades, and this paper intends to present
some topics that might be useful to the sport science field. To our knowledge,
there is very few paper in the sport literature that use FDA. We can cite [9] in
which curve clustering is used to analyse the foot-strike of runners, or [18] for
the study of muscle fatigue through a whole FDA analysis. Another example
is given in [11] that proposes a functional version of ANOVA using splines to
overcome common issues that occur in sport medicine.

The purpose of this paper is twofold : at first, it aims at providing a brief
review of several methods and references for the theoretical aspects. Secondly,
examples of practical tools and useful packages (on the software R as it is cur-
rently the most convenient to perform FDA) of state of the art methods are
presented. Then, we also detail a specific study on a real data set, coming from
our collaboration with the French Swimming Federation. This work focuses on
the clustering of performance progression curves of young male swimmers and
uses several FDA tools. We emphasise on the fact that FDA provides some
tools that give information we could not exhibit otherwise, like the study of
derivatives for example.

As mentioned previously, FDA allows to take into account the intrinsic na-
ture of functional data. Apart from this philosophical advantage in term of
modeling, one may note important benefits. For example, if one records sev-
eral time series with observations at different instants and/or in different num-
bers, how to compare them ? How to study the evolution of performances of

1Note that there exist several versions of these theorems with more or less flexible hypothe-
ses, depending on the context. We talk here about the most common versions, classically used
in applied science.
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swimmers from their competition times at given ages ? Competitors may have
different number of races during their careers, and their performances are done
at different ages (if one wants to avoid age discretization that have been shown
problematic in [26]). This example illustrates exactly what we try to deal with
in the following study on the data set of french male swimmers. Another fun-
damental advantage of FDA is the possibility to work on the derivatives of the
observed functions. Indeed, it is often interesting to study the dynamic of a
time dependent process. Even the second derivative, often referred as the ac-
celeration, or a superior order derivative might provide valuable information in
practice. The specific nature of functional data allows to study such properties,
and the sport scientist may easily imagine the wide range of situations on which
the study of derivatives might be interesting. One could think for example of
the GPS position tracking analysis, the progression phenomenon of young ath-
letes, or the following of actions of some muscles over time.

The first and fundamental step of a functional data analysis generally con-
sists in the reconstruction of the function from the discrete set of observations.
There is two cases at this step. Whether the observations are being considered
as error-less (in term of measurement) and one can proceed to a direct inter-
polation through one of the multiple existing methods (linear, polynomial, ...).
Or, more frequently, the set xi,t1 , . . . , xi,tn is considered as observations at time
t1, . . . , tn of a realisation xi(t) of a stochastic process X(t). In this case, one can
proceed to a smoothing step. It consists in the approximation of a function de-
fined to be close to the observed points. To deal with noisy data, one always has
to face the over-fitting/under-fitting issue. In most cases, one has to determine
a smoothing parameter that define how much one wants to allow the function
to contain peaks. These topics are largely detailed in the first chapters of [21].
Even if defining a consistent value of the smoothing parameter is a first work,
one can see as an advantage the fact to explicitly control the signal-on-noise
ratio of the data. The most common way to reconstruct the function from the
observations is to use a basis of functions. A basis of functions is a set of specific
functions φi of a functional space S , such as each element of S can be defined
as a linear combination of the φi. Formally, we can define the basis expansion
f as :

f(t) =

N∑
i=1

αi φi(t) (1)

where φ1, . . . , φN are the basis functions of a given functional space and α1, . . . , αN

are real valued coefficients. Intuitively, if one fixes a common basis to fit obser-
vations, the information on individuals is contained in the vector of coefficients
{α1, . . . , αN}. That is why a common approach is to perform classical multi-
variate methods on these coefficients. Among the most common basis used in
practice, we can cite Fourier basis and wavelets, which are well suited for pe-
riodic data [21] [13]. For non periodic data, the classical choice is spline basis,
particularly the cubic splines in practice [7]. They allow to approximate a wide
range of shapes with a rather good smoothness [20]. From a computational
point of view, one can use the R package fda, on which one can find methods to
fit observations into functional data, and way more tools for FDA. An overview
of the fda package can be found in [20].
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Once the data set is approximated by functions, one may perform analysis on
them, and some classical statistical tools have been extended in the functional
context. One of the first and most important adapted method was the functional
principal component analysis (FPCA). Although slightly different, FPCA pro-
vides analogous information as the finite dimensional version [21]. This method
allows to describe data into a non correlated low dimensional space. That is
why it provides an excellent explanatory tool to visualize main features of the
data as well as a way to reduce the number of informative dimensions. This
can be particularly useful when one wants to apply algorithms on the vector
{α1, . . . , αN} of coefficients of the basis expansion, with N rather large. It may
accelerate calculation while retain most of the information as well as avoid curse
of dimension in a big data context. We may also cite several methods presented
in [21] such as functional canonical correlation, discriminant analysis and func-
tional linear models.

In this article, we emphasise on the clustering approach, often fundamental
when exploring a new data set or beforehand to a forecast. This method con-
sists in computing sub-groups of individuals on a data set that make sense in
the context of the study. Given K the number of clusters, a clustering algo-
rithm would apply one or several rules to gather individuals presenting common
properties. This problem has been largely explored these past ten years in the
functional context and we will give some elements to summarize the state of the
art. According to the survey [13], functional data clustering algorithms can be
sorted in three distinct families, detailed below. We do not develop on direct
clustering on raw observational points that does not take into account functional
nature of the data and may give poor results.

(i) 2-steps methods. The first step consists in the fitting procedure we de-
tailed previously, choosing a common basis for all data. Then, a clustering
algorithm such as k-means [1], or hierarchical clustering methods for example,
is performed on the basis coefficients. If this vector of coefficients is in high di-
mension, one can add a step of FPCA and perform the clustering on the scores
coming from the first eigenfunctions of the FPCA.

(ii) Non-parametric clustering. An overview of non-parametric functional
data analysis is provided by [8]. It details many aspects where one does not
assume that functional observations can be defined by a finite number of pa-
rameters. The idea is to define a distance between the functional observations
without assumptions on the form of the curves. A classical measure of proximity
between functions xi and xj is defined as :

dl(xi, xj) =

(∫
T
x
(l)
i (t)− x(l)j (t)dt

) 1
2

(2)

where x
(l)
i is the l-th derivative of x. With such a measure of distance, one

can run the heuristic of the k-means, for example, or any other distance-based
clustering.

(iii) Model-based clustering. This approach has been widely developed in
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the past years and gives good results. As the 2-step approach, it often uses
basis expansion and/or FPCA to fit the data. However, rather than proceeding
in two-step, the clustering is performed simultaneously. Many algorithms are
based on Gaussian mixture models coupled with an EM-algorithm to compute
the parameters [12] [23] [3]. We chose in this study to adapt the algorithm
FunHDDC presented in [3] for several reasons that we develop in the following
Materials and Methods section.

Note that the literrature does not give specific indications on which family
of methods to use in a specific context and one might test several of them.
Nevertheless, one should keep in mind that the right way to fit the data into
functions strongly depends on the structure of the data. We also give some
additional references in the next section, where we detail some algorithms that
are easy to use in practice because of their implementation withon an unified R
package. Below, the graph from [13] summarizes efficiently the different families
and the process of clustering in a functional context :

Functional Data

Discrete
observations

Raw-data
Clustering

2-steps
methods

filtering
(basis expansion)

Clustering feature extraction
(FPCA)

Clustering

Non-parametric
Clustering

Model-based
Clustering

2 Materials and Methods

Description of the real swimming data set

First of all, two types of data sets, on which we performed functional clustering
algorithms, are described. The way we simulated data sets to test several meth-
ods will be described at the end of the current section. The real data have been
collected by the French Swimming Federation. It gathers all the performances
of french male swimmers, since 2002, for the 100m freestyle in a 50m pool. Be-
cause of confidentiality issues, athletes are identified by a number. The data set
is composed of 46115 performances and ages of 1468 different swimmers, and is
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available on the Github page of the corresponding author. All the algorithms
were run on the R software and the corresponding packages will be named in
the sequel.

Testing several algorithms on simulated data sets

To begin, a comparative study of several classical functional clustering algo-
rithms has been performed on simulated data. Only few information are pro-
vided here on these methods, and we invite the reader to refer to the correspond-
ing papers. For this work, the R package funcy, which compiles seven state of
the art algorithms, was used. It gives a common syntax and format for the
input and output data. The list below enumerates the algorithms, regrouped
according to their family, that can be used with funcy.

(ii) distance-based:

• distclust, a distance based algorithm that allows irregular measurement.
[19]

(iii) model-based :

• fitfclust, a mixed mixture model based algorithm that allows irregular
measurement [14].

• iterSubspace, a model based algorithm, based on a subspace projection,
that allows irregular measurements. Dimension between clusters can vary
[6].

• funclust, a mixed mixture model based algorithm [12].

• funHDDC, a mixed mixture model based algorithm. Dimension between
clusters can vary [3].

• fscm, a mixed mixture model based algorithm [15].

• waveclust, a mixed mixture model based algorithm that uses a fitting step
with a Wavelet basis [10].

Unfortunuatly, the current version (1.0.0) of the funcy package has troubles
with the funHDDC algorithm, which is not directly usable at the moment. All
the remaining algorithms were applied on three simulated data sets, with K = 4
groups. The resulting clustering were compared to real group distributions
using the Rand Index (RI)[22]. This measure, between 0 and 1, is computed by
counting according pairs of individuals between two different partitions of a data
set. The RI is provided as a result of the funcit function of the funcy package,
and compares the ability of each procedure to retrieve the actual groups. Then,
graphs of centers of each curve clusters were drawn to analyse consistency of
our results according to the original data.

Clustering the real swimming data set

As mentioned above, the real data set is very irregular, with no accordance in
time and in number of measurements between athletes. Thus, the first step
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of the analysis was the definition of a common ground through a smoothing
procedure. According to the non-periodic form of the data and the relatively
low number of observational points (around 30) for each athlete, a B-spline basis
was chosen. The study focus on the age period from 12 to 20 years old, which
is crucial in the progression phenomenon that we aimed at studying. A basis of
seven B-splines of order 4 was defined so that the derivatives remain smooth.
Since we did not wish to focus on a specific time period, the knots were equally
placed on ages 13 to 19. This fitting procedure was performed thanks to the
fda R package. To analyse efficiently a real data set, one needs first to explore
it, to figure out the more suited algorithm to use. To this purpose, a FPCA
was performed on the progression curves and their derivatives, separately. We
looked at the percentage of variance explained by each eigenfunction and the
shapes of them, to understand the main features of the curves. The funHDDC
algorithm was used as clustering procedure. One can find more details in the
result section about the reasons of this choice. Although implemented in the
funcy package, we chose to work with the original funHDDC R package, because
of current problems of implementation on it. Several features of the package
were used, as Bayesian Information Criterion (BIC), Integrated Classification
Likelihood (ICL) and slope heuristic, to deal with problems of model selection
and choice of the number K of clusters. The clustering was performed on the
curves and their derivatives, separately at first. Then, the resulting clusters
were compared thanks to the Adjusted Rand Index (ARI) [22], which is an
extended version of the RI to partitions with different number of clusters. This
measure allows to quantify the adequacy between individuals grouped whether
by a clustering on progression curves or on derivatives. Noticing that athletes
were clustered differently, providing two types of information, we decided to
perform a third clustering procedure. This time, the multivariate clustering
version on the funHDDC algorithm was used. The term multivariate clustering
refers to a clustering algorithm that deals with multidimensional functions. The
progression curves were defined as a first variable, while the derivatives as a
second variable. For each clustering procedure, the resulting clusters centers
and curves were plotted. Finally, the results were analysed and discussed with
swimming experts to confront the found clusters to the sport logic.

2.1 Definition of the simulated data sets

We defined three simulated data sets to test the algorithms of the funcy package
on different contexts. We used the function sampleFuncy of the funcy package
that provides an easy way to simulate data sets suited to apply directly methods
from funcy on them.

Sample 1:
Data are sampled from four different processes of the form f(t) + ε , with
ε ∼ N (0, 0.05). The four functions f are :

• t 7−→ t− 1

• t 7−→ t2

• t 7−→ t3

• t 7−→
√
t
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For each process, 25 curves are simulated and each is observed at 10 regular
instants on the t-axis. This sample corresponds to a low variance situation with
well separated processes.

Sample 2:
The data set is the same as Sample 1 with ε ∼ N (0, 0.1). This sample corre-
sponds to middle variance situation with well separated processes.

Sample 3:
Data are sampled from four different processes of the form f(x) + ε , with
ε ∼ N (0, 0.5). The four functions f are :

• t 7−→ t− 1

• t 7−→ −t2

• t 7−→ t3

• t 7−→ sin(2πt)

For each process, 25 curves are simulated and each is observed at irregular
instants on the t-axis (less than 10 instants and/or not regularly placed). Since
the observations are irregular, we had to proceed to a fitting step to use three
of the six methods of the package, which are not implemented in this case.
We used the function regFuncy of the funcy package for this purpose. This
sample corresponds to a high variance situation with crossing processes observed
irregularly.

3 Results

Results on simulated data

The Table 1 below provides results on the comparison between the six algorithms
of the funcy package. These results are mainly illustrative and one should be
aware that the quality of a clustering algorithm cannot be addressed through
simulation. However, it can give some clues on the type of situations where
algorithms seem to perform properly or not. The sample 1 was designed to
be easy to cluster and most model based algorithms perform well. Neverthe-
less, they are outperformed by the only distance based method distclust gives
almost perfect results. As Sample 2 is simply a noisier version of Sample 1,
the problem becomes harder and results slightly decrease. One can note that,
although the stochastic processes we sampled from are the same as in Sample
1, the ”hierarchy” between methods changes. This might indicate differences at
noise robustness between the methods. For example, performances of the fcsm
algorithm decrease only slightly compared to distclust. Finally, as expected,
the results fall on the fuzzy situation of Sample 3. Only three methods achieve
moderate performances, and one can note that there is an algorithm of both
families among them. Although Table 1 informs on the performances of these
algorithms, it does not give information on the ability of the methods to re-
trieve the actual shape of the underlying functions. The following graphs will
add some visual evidences to judge quality of the results.
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Table 1: Mean Rand Index and (Standard Deviation) on 100 simulations of the
tree samples.

Method Sample 1 Sample 2 Sample 3
fitfclust 0.945 (0.14) 0.857 (0.01) 0.307 (0.06)
distclust 0.996 (0.01) 0.888 (0.05) 0.523 (0.07)

interSubspace 0.938 (0.14) 0.850 (0.12) 0.527 (0.07)
funclust 0.450 (0.17) 0.418 (0.16) 0.084 (0.07)

fscm 0.948 (0.12) 0.902 (0.01) 0.527 (0.07)
waveclust 0.920 (0.12) 0.810 (0.01) 0.324 (0.13)

Figure 1 gives one representation of the Sample 1 curves. In addition, the
curves of each clusters centers of the best performing algorithm are drawn. One
can see that Sample 1 is quite simple to deal with, since curves of different
groups are well separated. Not surprisingly, the distclust clustering algorithm
satisfyingly figures out the actual shape of each process.

2 4 6 8 10

−1
.0

−0
.5

0.
0

0.
5

1.
0 t → t

t → t − 1
t → t3

t → t2

Figure 1: All curves (dotted lines) and cluster centers curves (plain lines) ob-
tained with distclust algorithm for Sample 1

One can see on Figure 2 that, if the noisier situation of Sample 2 affects the
good clustering rate, the shapes of the underlying functions remain correctly
approximated by clusters centers of fscm.

Sample 3 was designed to be trickier since curves cross each other and the
signal appears rather noisy. In this context, one can see on Figure 3 that, as
expected, the algorithms retrieve approximately the true shapes of the under-
lying functions. While the sinus (in black) function seems correctly identified,
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Figure 2: All curves (dotted lines) and cluster centers curves (plain lines) ob-
tained with fscm algorithm for the simulated Sample 2

the iterSubspace algorithm struggles to separate the polynomial functions.

Data set of swimmers’ progression curves

The choice of the funHDDC algorithm was motivated by two main arguments.
First, this is a flexible method that has been shown efficient in various cases.
Secondly, because of the results of the FPCA performed to explore the data
set. Indeed, as presented on the top Figure A1 (Appendix), we notice that the
underlying dimension of the data seems clearly lower than the original one: the
entire variance of the data set can be expressed with only three scores. Addi-
tionally, the shapes of the first informative eigenfunctions are drawn (bottom
Figure A1) and inquire on the main features of the data. One can see an analo-
gous result of low underlying dimension for the derivatives (Appendix : Figure
A2). Thus, it seems natural to work with a FPCA-based method. FunHDDC
provides a flexible way to deal with the ”extra-dimensions”, proposing six mod-
els that represents six different ways to model covariance matrices. We tested
each of them to figure out the more appropriate. As adviced by the authors in
[23], the BIC is used for the model selection and the slope heuristic to choose
the number K of clusters. According to these criteria, the best model, among
the six, is composed of 5 clusters for the progression curves, and 4 clusters for
the derivatives. Resulting clusters are represented on Figure A3 and Figure A4
(Appendix). At this stage, the Adjusted Rand Index (ARI) is used to compare
the way athletes were grouped and give a value of 0.41. The value of ARI would
be around 0.20 for a completely random clustering procedure. This result, far
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Figure 3: All curves (dotted lines) and cluster centers curves (plain lines) ob-
tained with iterSubspace algorithm for the simulated Sample 3

from an ARI equals to 1 of complete adequacy, lets us think that different fea-
tures of the data were used to group individuals in each context. A Discussion
with swimming experts leads us to conclude that the clustering on progression
curves mainly grouped athletes according to their level of performance, whereas
the derivatives clustering seems to gather individuals presenting similar trends
of progression (at a particular age, or with the same dynamic for example).
These conclusions guided us to the multivariate clustering procedure, that gives
results presented on Figure 2 and Figure 3. A close look at the groups on Figure
2 seems to indicate that multivariate clustering clusters combines information
both on level of performance and trends of evolution. One can see that similar
profiles are coloured the same way. We also verify this from a swimming expert
point of view by checking samples of athletes in each groups. On Figure 3, one
can see more clearly differences between each group thanks to the cluster center
curves.

4 Discussion

As mentioned in the simulated data set context, we shall emphasise that no
objective criterion might reflect correctly the quality of a clustering procedure.
The authors of [24] recall that all clustering algorithms are some way subjective
regarding how they gather individuals or which metric they use. Thus, the re-
sulting clusters should be judged and analysed according to the context. Like
many other statistical tools, a clustering procedure does not give any quantita-
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Figure 4: All progression curves of swimmers (left) and derivatives (right)
coloured by clusters, obtained with the multivariate funHDDC algorithm.

tive certainty, but rather a new point of view on the data. One should consider
as good results any useful perspective hidden in the raw data. Thus, we worked
closely with sport experts, not only to analyse the results but throughout the
entire analysis. All choices of parameters and/or methods were driven both by
mathematical and sport considerations.

In this work, we enlighten some classical methods and useful practical pack-
ages as well as provide some clues on the particularities of the different algo-
rithms. One can note that distance-based methods are generally easy to use
and give rather good results for simple problems. In the other hand, model-
based methods lie on more complicated design but often give good results in
a wider range of problems. It explains why they are often recommended by
experts of the field [13] and form most of the algorithms implemented in funcy.
Algorithms using Gaussian mixtures are naturally more flexible than methods
like k-means, since they might be considered as a generalisation with elliptic
clusters rather than circular ones. However, one should also keep in mind that
this flexibility often costs longer computational time. Indeed, even if the EM
algorithm is really efficient to solve the mixture of Gaussian problem, the mul-
tiplicity of models and the number of clusters to test might take non negligible
time to run. For our purpose, which is to help a swimming federation with
the detection of young promising athletes, computational time was not an issue
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Figure 5: Cluster centers curves of swimmers (left) and derivatives (right)
coloured by clusters, obtained with the multivariate clustering funHDDC al-
gorithm.

since the aim was more of a long term decision making. Nevertheless, many
sport-related problems need today to be solved quickly or even in live, and our
methodological choices would have been different under such constraints.

About the results on the swimming data set, we observe consistent outcomes
from both mathematical and sport point of views. If our work does not give
any certainty about the progression phenomenon of young swimmers, it gives
some enlightenments of its general pattern and provide a practical tool to gather
similar profiles. These results might help the detection of promising young ath-
letes with both a better understanding and graphical outcomes to support the
decision process. Note that this work remains descriptive and thus preliminary,
but one can think of it as a first step for a further predictive analysis. If we do
not discuss here findings about any particular swimmers for confidentiality con-
cerns, we can highlight some points that seem interesting to swimming experts.
First, as mentioned in [2] [16], it seems difficult to precisely detect young talents
before 16 years old, because of the fast evolution before this age. One can ob-
serve between 14 and 16 years old a huge decrease of the value of the derivatives
and thus of the speed of progression. Moreover, athletes that seem to be better
at 20 years old are often those who continue to progress, even slightly, after 16
years old. A classical pattern, confirmed with swimming experts, is the pres-
ence of a cluster of swimmers who are always among best performers. These
athletes are typically often detected and can benefit of the best conditions to
improve their performances. However, two clusters of athletes, often slightly
slower than previous ones when young, present opposite behaviors. As one
group stops rapidly to progress and performs rather modestly at 20 years old,
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another cluster gathers swimmers with a fast improvement who often perform
as good as best swimmers when older. One can think of these young athletes
as the main target of a detection program, since they often remain away from
top level structures at young ages. If these findings are promising, this work
needs further developments to provide more quantitative and predictive out-
comes. The FDA offers several methods of classification and regression, but as
mentioned many times previously, it would be necessary to adapt them to our
specific problem, or to develop new algorithms.

To conclude, we recall that the main purpose of this paper is to present a
brief review of the functional data analysis and we emphasise one last time on
the usefulness of such an approach. As supported by the example of curves
clustering, FDA can offer new perspectives in the sport science field.
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Figure 6: Result of the FPCA on the progression curves. Proportion of variance
explained by each eigenfunctions (top). Values of the two first eigenfunctions
(bottom)
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Figure 7: Result of the FPCA on the derivatives of the progression curves.
Proportion of variance explained by each eigenfunctions (top). Values of the
three first eigenfunctions (bottom)
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Figure 8: Clusters centres of the progressions curves. Computed with the uni-
variate funHDDC algorithm.
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Figure 9: Clusters centres of the derivatives of the progressions curves. Com-
puted with the univariate funHDDC algorithm.
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