
Discrete and Logico-numerical Control for Dynamic Partial Reconfigurable
FPGA-based Embedded Systems : a Case Study

Soguy Mak-Karé Gueye∗, Gwenaël Delaval∗, Éric Rutten∗ and Jean-Philippe Diguet†
∗Univ. Grenoble Alpes, CNRS, Inria, LIG, F-38000 Grenoble France

†CNRS, Université Bretagne Sud, LAB-STICC, F-56321 Lorient, France
Email: {soguy-mak-kare.gueye,gwenael.delaval,eric.rutten}@inria.fr, jean-philippe.diguet@univ-ubs.fr

Abstract—Embedded systems need to be more and
more self-adaptive, in order to better manage their
constrained resources, and to better take into account
evolutions in their environment and in their comput-
ing architecture. They can benefit from Field Pro-
grammable Gate Array (FPGA) architectures , which
supports Dynamic Partial Reconfiguration (DPR)
of the running fonctions, enabling improved perfor-
mance and power consumption. The reconfigurations
need to be decided and controlled in a closed loop.
We approach this problem by applying techniques
from the area of Supervisory Control for Discrete
Event Systems (DES), where the space of config-
urations at the different levels (application, tasks,
hardware platform) are modeled with automata, us-
ing the tools Heptagon/BZR and ReaX. This paper
contributes with (i) generic modeling of the behaviors
and objectives ; (ii) applications of Discrete Controller
Synthesis (DCS), especially logico-numerical control
; (iii) concrete implementation on a FPGA hardware
platform for an embedded video processing case study.

Keywords : Discrete Event Systems, Applica-
tion, Hardware/Software Embedded Systems

I. Introduction
A. Reconfigurable FPGA-based computing architectures

Embedded systems can benefit from Field Pro-
grammable Gate Array (FPGA) architectures to improve
performance compared to software-based system and to
satisfy resource constraints, particularly by exploiting
dynamic reconfiguration, which enables to realize adap-
tive hardware algorithms e.g., to meet performance or
to reduce power consumption. Furthermore, Dynamic
Partial Reconfiguration (DPR) improves the flexibility
of FPGA by enabling reconfiguration of some subsystem,
while the rest continues running in parallel.

The reconfigurations need to be decided and con-
trolled in a closed loop. Changing mission parameters
of embedded systems might lead to reorganizing the
processings and the allocation of the resources based
on their redefined priority and execution requirements.
This management can be automated by control loops
as addressed in Autonomic Computing [10]. Manual
programming of controllers could be error-prone, costly
and complex due to the combinatorial design space.

Instead, we propose a design approach based on tech-
niques from the area of Supervisory Control for Discrete
Event Systems (DES), where the space of configurations

at the different levels (application, tasks architecture) are
modeled with transitions systems, particularly automata.
This approach produces correct-by-construction con-
trollers enforcing desired control objectives, and avoids
error-prone manual programming and tedious debugging.

B. Logico-numerical control with Heptagon/BZR
We use a programming language and its support tools,

Heptagon/BZR [6] and ReaX [3], and their Discrete
Controller Synthesis (DCS) capabilities. They provide
us with high level programming for formal specification
of possible configurations, symbolic DCS, as well as
powerful compilers to automatically generate a correct
executable code implemented in C. This point is partic-
ularly important for the concrete application of control
techniques, which can therefore be integrated in the
underlying FPGA-based hardware platform.

We are exploring this same approach of DES model-
based design of reconfiguration controllers by working in
parallel on different classes of computing systems. We
consider small, embedded hardware systems [11], like in
this paper, as well as larger, more distributed software
systems like web servers in the Cloud [2], [5], or heteroge-
neous platforms, like in the Internet of Things (IoT) (e.g.,
smart buildings [15]). These works are distinguished
by their very different target computing systems, w.r.t.
execution platforms and application domains: therefore
they bring complementary experience, towards the iden-
tification of generic modeling methods, in order to pose
and solve logical control problems in computing systems.

In this particular work, we focus on features of, on the
one hand, logico-numerical control, for control objectives
involving input and state integer values w.r.t. variations
in required performance values or priority levels ; and on
the other hand, conditional objectives in order to specify
complex objectives as a composition of multiple basic
ones. We also exploit modular control for scalability.

C. Contributions
Novel results of this paper concern : (i) generic model-

ing of the behaviors and objectives for the reconfiguration
control problem in DPR FPGA within a multi-layered
framework ; (ii) applications of Discrete Controller Syn-
thesis (DCS) to design controllers, beyond earlier work
[1], especially logico-numeric control to react to requested

performance or QoS, and modularity for scalability ; (iii)
concrete implementation on a FPGA hardware platform
for an embedded video processing case study.

In the remainder, Section II introduces background
notions, in FPGA and in DES ; Section III defines the
targeted class of systems ; Section IV proposes systematic
and generic models behaviours and objectives ; Section V
presents a case study, and Section VI concludes.

II. Background

A. Dynamic Partial Reconfigurable FPGA
Dynamic Partial Reconfiguration (DPR) is a promis-

ing solution for applications that require high perfor-
mance and high flexibility since it provides a way to
modify (part of) the implemented logic in the FPGA.
A dynamic partial reconfiguration consists in loading
a bitstream which contains only the configuration for
the target region of the FPGA. The unmodified regions
can continue to work without interruption. This allows
an FPGA with DPR capability to support more hard-
ware implementations than would be possible statically.
Hence, multiple applications can run on a single FPGA
by sharing hardware resources, as in Section III.

Research works like [4], [7] have focussed on the dy-
namically reconfigurable hardware to meet both per-
formance and cost required in most of embedded sys-
tem. They demonstrate how dynamic reconfigurable
hardware can be suitable for implementing compute-
intensive embedded applications while minimizing the
costs. [7] experienced sequences of reconfigurations to
run a fingerprint recognition application. They show how
the reconfiguration overhead can be minimized to avoid
performance degradation when performing sequences of
reconfigurations. However, they pay less attention on the
design of the reconfiguration manager which must, at
run-time, choose from several possible configurations, the
appropriate one satisfying execution constraints under
uncertainties at runtime.

Dynamic reconfiguration requires making decisions
about the choice of whether to reconfigure or not, and
if so, of the new configurations, depending on occurring
events and sensor values in a system, on past events and
sequences history, and on predictive knowledge about
possible outcomes of reconfigurations. For the design of
such feedback loops in computing systems, we follow the
approach of Autonomic Computing [10] for performing
self-configuration, self-optimization, self-healing or self-
protection. This approach is exploring amongst others
the application of Control Theory to design the feedback
controllers themselves. Most of the state of the art
concerns software systems, but some works also consider
reconfigurable hardware [14].

In this paper, to deal with the logical control prob-
lems, we use Discrete Controller Synthesis (DCS) [13],
through a reactive language and tool, Heptagon/BZR [6]
and ReaX [3], which provides us with executable code

generation for the implementations. We build upon pre-
vious work [1] where we had proposed generic behavioral
models and objectives of invariance and optimization, in
the context of a closed system. Here, we are considering
novel approaches involving logico-numeric control and
modular DCS to modeling a multi-layer system, where
the reconfiguration controller must interact with a higher
level deciding dynamically on e.g., varying levels of per-
formance and quality required.

B. A reactive language and Discrete Controller Synthesis
In this section we briefly recall the formal methods

and tools upon which we base our approach. To build
the Discrete Event System model, we use the Labelled
Transition Systems underlying the reactive languages of
the synchronous approach. They have been used as a
basis for the definition of a Discrete Controller Synthesis
approach, adapting the classical framework of [13] to
models obtained from synchronous languages. An ad-
vantage of this approach is that it is tool-supported, by
compilers like Heptagon/BZR (http://bzr.inria.fr)
and by the DCS tool Reax [3]. This is essential for
effective applications to concrete computing systems.
1) Reactive languages: Reactive systems are charac-

terized by their continuous interaction with their envi-
ronment, reacting to flows of inputs by producing flows
of outputs. They are classically modeled as transition
systems or automata, with languages like StateCharts [9].
We adopt synchronous languages [8], because we then
have access to the control tools used further. The syn-
chronous paradigm refer to the automata parallel com-
position that we use in these languages, allowing for
clear formal semantics, while supporting modeling asyn-
chronous computations : actions can be asynchronously
started, and their completion is waited for, without
blocking other activity continuing in parallel. The Hep-
tagon/BZR language [6] supports programming of mixed
synchronous data-flow equations and automata, with
parallel and hierarchical composition.

The basic behavior is that at each reaction step, values
in the input flows are used, as well as local and memory
values, in order to compute the next state and the values
of the output flows for that step. Inside the nodes, this is
expressed as a set of equations defining, for each output
and local, the value of the flow, in terms of an expression
on other flows, possibly using local flows and state values
from past steps.

Figure 1 shows a small Heptagon/BZR program. The
node delayable programs the control of a task, which
can either be idle, waiting or active. When it is in
the initial Idle state, the occurrence of the true value
on input r requests the starting of the task. Another
input c can either allow the activation, or temporarily
block the request and make the automaton go to a
waiting state. Input e notifies termination. The outputs
represent, resp., a: activity of the task, and s: triggering
the concrete task start in the operating system. Such

delayable(r,c,e) = a,s

Idle Wait

e r and c/s

Active
c/s

r and not c

a = true

a = falsea = false

(a) Graphical syntax

node delayable(r,c,e:bool)
returns (a,s:bool)

let automaton
state Idle do a = false ; s = r and c
until r and c then Active
| r and not c then Wait

state Wait do a = false ; s = c
until c then Active
state Active do a = true ; s=false

until e then Idle
end
tel

(b) Textual syntax
Fig. 1: Delayable task

automata and data-flow reactive nodes can be reused by
instantiation, and composed in parallel (noted ";") and in
a hierarchical way, as illustrated in the body of the node
in Figure 2(c), with two instances of the delayable node.
They run in parallel, in a synchronous way: one global
step corresponds to one local step for every node.
2) Discrete Controller Synthesis (DCS): Among the

methods of design and validation, the controller synthesis
is one of the most attractive. It helps refine an incomplete
specification in order to achieve a certain goal such as
the satisfaction of a property not yet satisfied in the
original system. DCS, computes a control logic correct
by construction. It is based on formal methods for the
synthesis of a controller enforcing properties on a system
to be controlled. It requires a model of the behavior of the
system to be controlled and a specification of properties
to achieve. The latter are expressed in terms of control
objectives, such as invariance. The model of the system
formally describes all possible behaviors, the correct and
incorrect behavior based on the control objectives. It also
exposes the controllability of the system, in the form of
controllable in variablesputs, which is exploited by DCS
to synthesize a control logic solution, if it exists.
3) Heptagon/BZR: We use the synchronous langage

Heptagon/BZR [6] which integrates DCS in its com-
pilation. It allows an easy use of DCS by introducing
the notion of contract in the modeling of system. The
contract is described declaratively and consists of three
statements: assume, enforce and with. The contract
contains predicates that the functioning of system must
invariantly satisfy. These properties are declared as con-
trol objectives in the enforce statement. When the
model that describes the dynamics of the system does
not meet the properties, Heptagon/BZR, through DSC,
generates a control logic that enforces the latter when
controllable variables are defined in the model, declared
as local variables in the with statement. The generated
control logic determines the values to assign to the
controllable variables in order to restrain the modelled
behaviors to satisfy the properties. Relevant properties
on the environment are declared in the assume statement
of the contract. This is taken into account during the
synthesis of the control logic.

twotasks(r1, e1, r2, e2)
= a1, s1, a2, s2

assume not (r1 and r2)
enforce not (a1 and a2)
with c1, c2

(a1, s1) = delayable(r1, c1, e1) ;
(a2, s2) = delayable(r2, c2, e2)

Fig. 2: Exclusion contract.

Figure 2 shows an example of contract coordinating
two instances of the delayable node of Figure 1(a). The
twotasks node has a with part declaring controllable
variables c1 and c2, and the enforce part asserts the
property to be enforced by DCS. Here, we want to ensure
that the two tasks can not be active at the same time:
not (a1 and a2). Thus, c1 and c2 will be used by the
synthesized controller to delay a request to start a task,
hence leading the task to the waiting state whenever the
other is active.
4) Modular contracts in Heptagon/BZR: Modular

DCS consists in taking advantage of the modular struc-
ture of the system to control locally some subparts of
this system. The benefits of this technique is firstly,
to allow computing the controller only once for spe-
cific components, independently of the context where
this component is used, hence being able to reuse the
computed controller in other contexts. Secondly, as DCS
itself is performed on a subpart of the system, the model
from which the controller is synthesized can be much
smaller than the global model of the system. Therefore,
as DCS is of practical exponential complexity, the gain
in synthesis time can be high and it can be applied on
larger and more complex systems.

Heptagon/BZR benefits from the modular compilation
of the nodes: each node is compiled towards one sequen-
tial function, regardless of its calling context, the inside
called nodes being abstracted. Thus, modular DCS is
performed by using the contracts as abstraction of the
sub-nodes. One controller is synthesized for each node
supplied with local controllable variables. The contracts
of the sub-nodes are used as environment model, as
abstraction of the contents of these nodes, to synthesize
the local controller. As shown in Figure 3, the objective
is to control the body and coordinate sub-nodes, using
controllable variables c1, ..., cq, given as inputs to the sub-
nodes, so that G is true, assuming that A is true. Here,
we have information on sub-nodes, so that we can assume

node(...) = ...
assume A enforce G
with c1, ...cq

subnode1(...) = ...
assume A1 enforce G1

; . . . ; subnoden(...) = ...
assume An enforce Gn

Fig. 3: Modular contracts in Heptagon/BZR.

not only A, but also that the n sub-nodes each do enforce
their contract :

∧n
i=1(Ai =⇒ Gi). Accordingly, the

problem becomes that: assuming the above, we want to
enforce G as well as

∧n
i=1 Ai. Control at composite level

takes care of enforcing assumptions of the sub-nodes.
This synthesis considers the outputs of local abstracted
nodes as uncontrollable variables, constrained by the
nodes’ contracts. A formal description is available [6].

III. FPGA reconfiguration control problem
In this Section we describe informally the class of

FPGA-based hardware systems which we target. We
identify the aspects relevant for the reconfiguration con-
trol problem to be solved, so that the subsequent model-
ing is performed at the appropriate level of abstraction.

A. Target class of reconfigurable systems
a) DPR FPGA architecture and configurations: The

system architectures we address are boards equipped
with a dynamically reconfigurable hybrid FPGA (e.g.
Xilinx Zynq) including ARM processors. As shown in
Figure 4, two DDRAM memories are connected to the
FPGA, the first one is usual and implements the ARM
memory. The second one is used to store bitstreams; and
also as shared memory for hardware and software tasks to
communicate with each other. The FPGA programmable
circuit is divided into tiles which will be shared by the
tasks at runtime. The sharing leads naturally to perform
sequences of reconfigurations so that all tasks requiring
hardware can be executed. Tiles are considered to be
equipped with a clock gating mechanism to put them
to sleep mode, lowering their energy consumption when
not used. They can also become unavailable e.g., due
to a fault. The ARM processors have several level of
DVFS (Dynamical Voltage Frequency Scaling) providing
for different speeds, and different energy consumptions.

At any moment, a configuration of the architecture
consists of the set of bitstreams uploaded on the tiles,
each being the hardware implementation of a computa-
tion, the sleep/active or unavailable state of tiles, and
the current DVFS level of the ARM processors.

b) Computations: They are organized as application
composed of tasks. A task can be active or not. It could
also be waiting for a processing resource occupied by an-
other task. It can have different versions, defined by dif-

Fig. 4: FPGA board

Taska
V1 V2 V3 Vn

…

...

time
10 n

Tasks

Taska
V1 V2 V3 Vn

…

Taskb
V1 V2 V3 Vm

…

V1 V2 V3 Vz

…Taskc

Taskb
V1 V2 V3 Vm

…

V1 V2 V3 Vz

…Taskc

V1 V2 V3 Vn

…Taska

V1 V2 V3 Vm

…Taskb

V1 V2 V3 Vz

…Taskc

V1 V2 Vn

…Taskz

V1 V2 Vn

…Tasky

...

V1 V2 Vn

…Taskz

Tasky
V1 V2 Vn

…

...

…Taska
V1 V2 V3 Vn

…Taskb
V1 V2 V3 Vm

…

Taskc
V1 V2 V3 Vz

V1 V2 Vn

…Taskz

V1 V2 Vn

…Tasky

...

V1 V2 Vn

…Taskz

Tasky
V1 V2 Vn

…

...

Perf,
QoS Compatibility

priority

n-1

Fig. 5: Reconfigurations: subsets of active tasks, versions

ferent algorithms and/or HW and SW implementations.
They can differ in terms of used computing resources,
performance and processing quality. For example some
using more FPGA surface and exploiting parallelism, or
smaller and more iterative.

The embedded system is provisioned offline with all
the required bitstreams for the tasks. Tasks can not all
be running simultaneously, due to surface limitations,
so a subset can be active at each time according to
a scheduling policy that must include the loading of
bitstreams. The subset of tasks to be active at a given
time is determined based on the environment and the
system state and the processing results.

Figure 5 shows an example of execution timeline : the
set of all available tasks, and for each of them its different
versions, is shown vertically, at time 0 with none active.
Across time, an application activates a subset of the tasks
(e.g., a, b, c at time 1), each of them in a chosen version
vi, and this changes in later periods of time.

B. Management policy
The management policy to be enforced concerns per-

formance, quality of service and energy optimization,
typically : keeping the value of performance in defined
intervals, e.g., task execution time between minand max-
thresholds ; ensuring coherent usage of the resources e.g.,
mutual exclusion of tiles,or bounded number of users.
ensuring configuration of the resources in order to reduce
energy consumption while maximizing the performance.

C. Control loop
The global self-adaptation manager, is responsible for

dynamically adapting the configuration of the system.
This involves the processing resources, the active tasks

...Taska Taskb Taskc Taskz

CPU Tile Peripheral
device

sensors actuators

Adaptation manager ● Tasks cmd {version}
● Tile cmd {on/off}
● CPU DVFS
● Peripheral devices modes

● Tasks {state,metrics}
● Tile {used, unavail}
● CPUs state
● Peripheral devices state

Requests
● Activation
● Requirements

Internal state

Fig. 6: Self-adaptation Manager

and the applications. The processing resources are recon-
figured to reduce the energy consumption or to enhance
the performance of the active tasks in order to meet their
execution requirements. As shown in Figure 6, the man-
agement decisions are based on the subset of tasks that
must be running as well as their execution requirements
and priority, received from the mission level.

IV. Modelling the reconfigurable systems

A. Need for logico-numerical and conditional objectives
We are going to model the class of systems previously

described as a Discrete Control problem, taking into
account the following characteristics.

The execution requirements (for performance, quality
of service) are expressed with numerical values, in the
form of an acceptable range, i.e, interval. Therefore we
need to express logico-numerical objectives such as
maintaining the execution time of a task between a
minimum threshold and a maximum threshold.

Also, for a more robust control, it is necessary to
consider situations in which (part of) the basic objectives
can not be satisfied. It can happen that measured per-
formance of the system (e.g., execution time) is different
from the one expected (e.g., the Worst Case Execution
Time, WCET) or that two or more basic objectives
become conflicting. We want to have controllers that
enforce the (relatively simple) basic control objectives
when possible, but are also able to adopt a degraded
behavior when it becomes impossible i.e., to choose the
best possible configuration while informing the upper
decision layer (the mission level) so that it can modify
the values of requirements, so that the controller can
enforce basic objectives again. For this we will express
conditional objectives such that DCS generates a
robust control logic aware of the achievability of a control
objective, that can disable it when not achievable, and
able to resolve conflicting objectives through priorities.

B. Configurations space
1) Architectural Resources: We model individually

each of the elements of the architecture at the ap-
propriate level of abstraction described before. We use
Hpetagon/BZR hierarchical automata : this improves
the structure and clarity of the model, while the Hep-
tagon/BZR compiler transforms them so that there is
no impact on the DCS algorithms.

Figure 7 (a) shows the generic model of a tile. It is
initially Available, and can become unavailable due to
failure f, and be repaired re (both uncontrollable). In the
Available state, it can be in Sleep state or in Active
state, with transitions controllable by c.
Each ARM CPU processor can be characterized as in

Figure 7 (b) by its levels of frequency, where XXX stands
for corresponding values of consumption and speed, and a
potential sleep mode, sparing energy. Peripheral devices
of such a FPGA board, for example a camera, could

(a) (b)
Fig. 7: Models : Reconfigurable tile (a), ARM CPU (b)

Fig. 8: Computation task

also be modeled, be characterized by more device-specific
aspects like e.g., resolution, black / white vs. color image.
2) Computations: Figure 8 shows an example of the

model of a task. The task is initially Inactive. When
requested by r it becomes Active. It goes back to
Inactive after completion notified by input e.

In Active, the task can be in versions V1 or V2
which correspond to two different implementations of
the task. The transitions between the states V1 and V2
are controllable by the input c1 and c2. In each of the
versions states, equations give th evalues of variable that
characterize them, either in terms of consumed resources
(e.g., size in memory, response time, communication
bandwidth), or in performance offered (e.g., levels of
Quality of Service (QoS), precision in a numerical com-
putation, depth of a search algorithm). In the example
of Figure 8 shows, their are distinguished by a different
value of WCET : that way, the controller can be designed
with a model of expected response times, and switch
versions if needed, to go to one expected to run faster.

Additional elements of modeling are the possibility to
have a wait state if the start of the task can be delayed
(e.g., in order for a resource to be freed), or several
parallel spaces of versions w.r.t. different metrics.

Applications are composed of a set of tasks. It can be
a structured set like a Directed Acyclic Graph (DAG) of
dependecies, or a data-flow graph [1], [11], for which the
semantics can be given by an automaton. In this paper
we consider simple sets of tasks decided upon at each
instant by the upper level mission manager.
3) Global model of the system: It is constructed from

the previous modeling patterns, as a parallel composition
of instances of all local behavioral models for each ele-
ment, architectural or computational. Additional equa-
tions can define global values for costs and performances
from local ones. This global transition system represents
the full configurations space, before control is enforced.

C. Control objectives

Following the DCS approach, we define declarative
objectives typically under the form of predicates to be
made invariant by control. Classical ones involve sim-
ple exclusiveness properties of resources like the tiles.
More interestingly, others involve more advanced logico-
numerical or conditional aspects.
1) Logico-numerical objectives: A management strat-

egy consists in switching to a version which has a lower
(resp. greater) wcet than the previous version when the
observed execution time is greater than a defined max-
imum threshold (max_thres) (resp. minimum threshold
(min_thres)). In H/BZR, we declare the objectives as :

((time_t > max_thres) ⇒ ((0 fby wcet) > wcet))
and ((time_t < min_thres) ⇒ ((0 fby wcet) < wcet))

where 0 fby wcet denotes the value 0 on the first instant,
and the previous value of wcet on following ones. These
two objectives allow to make a semantic link between the
input time_t, which is measured from the environment,
and the computed variable wcet. Hence, these objectives
will make the controller try to increase or decrease the
computation time, using the computed information on
the global theoretical WCET.

These objectives are logico-numerical as they involve
a numerical input (time_t) and a numerical state (de-
fined by the fby operator), mixed with Boolean inputs
and states (activation of tasks, states of devices). Such
logico-numerical objectives can be handled by the ReaX
synthesis tool.
2) Conditional objectives: Classically, supervisory

control of DES provides for controllers which enforce the
objectives at all times, if they exist. In practice, design-
ing a complex system involves defining multiple partial
objectives, between which there might be exceptions or
interferences. Composing them can require solving the
latter, for example with priorities, themselves changing
over time according to external conditions.

The practical need is then to be able to write simple
partial objectives, and to have ways to combine them in
order to coordinate them into more complex ones. We
want to be able to specify that a basic objective should
be either enforced when possible, or replaced by another,
degraded mode, with a variable notifying this explicitely
e.g., to be sent to an upper decision layer.

We propose a methodology for declaring conditional
objectives and priorities using controllable variables and
implications in the invariance predicates. We exploit
the fact that H/BZR produces determinized controllers
that, at each step, assign correct values to the Boolean
controllable variables by favoring true over false, with
respect to their declaration order. We declare a condi-
tional objective Objc, using a control variable cpos, as
follows : (cpos ⇒ Objc). This will guarantee that cpos

is false only if the right part cannot be enforced. In any
state in which Objc cannot be satisfied, the value false

is assigned to the variable cpos, otherwise the latter has
the value true and the objective Objc is enforced.

D. Modular design
The modular design of the model can be used to break

down the synthesis time, which can be the bottleneck
of this method on large systems. In our example, the
control problem can be decomposed in two levels: at task
level, and for each task, a local synthesized controller
handles the objectives on WCET and bound execution
time for this specific task; and at the main level, a global
synthesized controller enforces the coordination of all
tasks, specifically exclusive use of resources (like tiles)
depending on some versions of these tasks. For this global
controller to be successfully synthesized, the contracts
at task level are equipped with controllability objectives,
defining how inputs at task level can be used to control,
e.g., the current executed version of the task.

V. Case study
In this section we apply our modeling and control

approach on a concrete example. This system has been
completely implemented on a FPGA board. We describe
here the aspects directly related to the discrete control
itself : other aspects, related to the hardware system
design, are out of the scope of this paper, and available
elsewhere [11]. The example is very simple, in order to
facilitate the experiment, but it illustrates the essential
features of our approach, and particularly the design of
conditional and logico-numerical control objectives. We
discuss all phases of the design, until execution on the
FPGA, and including a variant on the design of the
controller in order to obtain a better behaviour.

A. Control problem
We consider a FPGA-based embedded system on a

UAV with a task called search-landing-area. It receives a
flow of images from the camera and performs a sequence
of transformations on each image in order to determine
suitable areas for the UAV to land. It has two versions :
software (sw) taking 1500 ms to process an image and
hardware (hw) : 55 ms. The FPGA board has one CPU
ARM and one Hardware processing resource (tile). The
hardware version of the task is designed to run on it.

Depending on the urgency of landing, the version of
the task might change. The control strategy consists of
keeping the execution time of the task between a mini-
mum and a maximum thresholds, which define the range
of acceptable performance. When measured execution
time is below the minimum threshold, we can reconfigure
towards a version which uses less hardware resources, if
its performance is inside the interval. This enables to
allocate them to other tasks needing them most urgently.

B. Global control model
Figure 9 shows the global composition of the models

(task, CPU and tile). It is associated with a behavioral

main(r, e, time_t, min_thres, max_thres, f, rp)
= act_t, res, wcet, act, err, objective

assume true
enforce objective
with cp1, cp2, c1, c2, ct

(act_t, res, wcet) = searchArea (r, c1, c2, e) ;
(speed, ...) = cpu (c, c1, c2, c3) ;
(act, err) = tile (ct, f, rp) ;
objective = (
(cp1 ⇒ ((time_t < min_thres) ⇒ ((0 fby wcet) < wcet)))
and (cp2 ⇒ ((time_t > max_thres) ⇒ ((0 fby wcet) > wcet)))
and (not (res = 2) ⇒ not act) and (err ⇒ not (res = 2))) ;

Fig. 9: Global program : behaviors and contract

contract which contains the declaration of the manage-
ment policies to enforce, defined by the Boolean variable
objective, involving integer inputs and state.
Figure 10 shows a snapshot of the simulation of the

synthesized controller using Sim2Chro from Verimag. We
observe, at step 3, when the task is requested, that
the manager triggers the SW version. At step 26, the
measured execution time of the task becomes greater
than the maximum threshold (time_t > max_thres).
The manager switches to the HW version which is the
fastest version and requires the tile.

Starting task

Stopping tasktime_t > max_thres

 Task active :SW Switching to HW

Objective = True

Fig. 10: Simulation for the conditional objectives

C. Compilation : Monolithic vs modular synthesis
In this section, we compare the monolithic DCS and

the modular DCS. We consider the same FPGA-based
embedded system with two tasks. Each task has two
versions (sw and hw). The hw versions can not be active
simultaneously because there is only one tile in the
system. The control objectives consist in :
1) Maintaining the execution time of each task between

a minimum threshold and a maximum threshold.
2) Enforcing mutual exclusion with respect to the tile
We compile the programs and synthesize the con-

trollers on a machine with 4 GiB of RAM, and processor
Intel Celeron(R) CPU N284 @ 2.1GHz x 2. For the
monolithic model, the synthesis takes 15s; and decreases
to 3s for the modular model. Both models includes 27
state variables.

D. Implementation on a FPGA platform
1) DE1-SoC FPGA: The board is based on a Alter-

a/Intel CycloneR© V SoC chip which supports DPR. It in-
cludes a Hard Processor System (HPS) and a FPGA. The
HPS comprises an ARM Cortex A9 dual-core processor,

a DDR3 memory port, and a set of peripheral devices.
The FPGA implements the reconfigurable tile (one in
this experiment) and different peripheral controllers. We
run a Linux OS on the HPS side. We implement a
cma_driver module for the interaction with the hardware
implementation of the task. The module allocates a con-
tinuous area of physical memory in the kernel space. We
use the Robot Operating System (ROS) [12] as support
for communication between manager and controlled task.
2) Executions: In the following executions, we first

send to the manager a request to start the search land-
ing area task. When the task is active, we change the
value of the minimum and maximum thresholds to see
which decisions the manager takes. Figure 11 shows an
execution in which we set the value of the thresholds as
follows. Initially the maximum threshold is set to 2000
ms while the minimum threshold is set to 0 ms. After 5
min of execution the maximum threshold is set to 70 ms.
Later, it is set to 1000 ms and the minimum threshold
is set to 100ms. After, 17 min the maximum threshold is
set to 1800 ms then 400 ms (3 min later) and 20ms (5
min later). 5 min later we send request to stop the task.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

T
as

k
 (

re
q

,V
er

s)

Time (Second)

Adaptation manager: Decisions

Processing time
Request start (1)/stop (0)

0 1 0

Task Version

0 1 2 1 2 0

Threshold max

2000

70

1500

40

Threshold min

0 100 30

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

V
er

s
(H

w
:2

,
S

w
:1

)

Time (Second)

Search Landing area Task : Executed version

Processing time Task State/version

0 1 2 1 2 0

Fig. 11: Execution trace of Search-landing-area task

As shown in Figure 11, the manager dynamically
adapts the executed version depending on the value
of the minimum and maximum thresholds. When
max_thres is set to 70 ms, when the manager ob-
serves that (time_t > max_thres) it switches the hard-
ware version. When min_thres is set to 100 ms while
max_thres is set to 1000 ms, it does nothing even if
(time_t < min_thres). But when max_thres is set to
1800 ms, the manager switches the software version. It
returns to to hardare version when max_thres = 400.
When max_thres = 20 it maintains the hardware ver-
sion even if the latter does not satisfy the objective.
E. A variant of the control to avoid oscillations

a) Oscillations: Setting the minimum and maxi-
mum thresholds to certain values can lead to oscillations.
In Figure 12 the maximum threshold is initially set to
2000ms while the minimum threshold is set to 0ms. After
388 sec the maximum threshold is set to 70ms. Later,
after 693 sec it is set to 1000ms instead of 1500ms.
Finally it is set to 400ms after 1557 sec. The minimum
threshold is to 100ms after 998 sec and later to 30ms.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

T
as

k
 (

re
q

,V
er

s)

Time (Second)

Adaptation manager: Decisions

Processing time
Request start (1)/stop (0)

0 1 0

Task Version
Threshold max

2000

70

1000

400

Threshold min

0 100 30

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

V
er

s
(H

w
:2

,
S

w
:1

)

Time (Second)

Search Landing area Task : Executed version

Processing time Task State/version

Fig. 12: Adaptation manager : log

As shown in Figure 12, when the minimum threshold
is set to 100 (time 1000) while the maximum threshold
is 1000, we observe oscillations. Indeed, the hardware
version is faster than the minimum threshold, while the
software version is slower than the maximum threshold.
Hence the manager keeps switching between hardware
and software in order to try to satisfy the policy.

b) Improving the objective to avoid oscillations: An
additional policy prevents from selecting a version that
has wcet greater than the maximum threshold :
cp1 ⇒ (((0 fby wcet) > wcet) ⇒ (wcet < max))
So when the execution time is lower than the minimum

threshold, only the subset of versions which have wcet
lower than the maximum threshold will be candidate for
replacing the active version.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

T
as

k
 (

re
q

,V
er

s)

Time (Second)

Adaptation manager: Decisions

Processing time
Request start (1)/stop (0)

0 1 0

Task Version
Threshold max

2000

70

1000

400

Threshold min

0 100 30

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

P
ro

ce
ss

in
g

 t
im

e
(m

s)

V
er

s
(H

w
:2

,
S

w
:1

)

Time (Second)

Search Landing area Task : Executed version

Processing time Task State/version

Fig. 13: Adaptation manager

As shown in Figures 13, with the additional policy the
oscillations are prevented from occuring. The manager
does not choose the software version since the latter has
a wcet greater than the maximum threshold.

This example illustrates that in practice the precise
formulation of objectives can be made in several succes-
sive improvements during a design.

VI. Conclusions and perspectives
We propose a generic modeling and control approach

for Dynamically Partially Reconfigurable FPGA hard-
ware architectures, based on Discrete Event Systems and

their supervisory control. Particularly, we exploit logico-
numerical control in order for controllers to take into
account changing integer values of performance and
quality requirements, conditional objectives for complex
specifications, as well as modular DCS supported by Hep-
tagon/BZR for scalability of design space exploration.
We apply our approach in an implemented case study.

Perspectives are in making our generic models useable
by specialists of the target systems and applications,
rather than discrete control theory, under the form of a
Domain Specific Language generating models automat-
ically. Enriching the control approach can be done e.g.,
by considering adaptive discrete control, when objectives
change due to the application or environment.

References
[1] X. An, E. Rutten, J.-P. Diguet, and A. Gamatié. Model-based

design of correct controllers for dynamically reconfigurable
architectures. ACM Transactions on Embedded Computing
Systems (TECS), 15(3), June 2016.

[2] N. Berthier, F. Alvares, H. Marchand, G. Delaval, and E. Rut-
ten. Logico-numerical control for software components recon-
figuration. In 2017 IEEE Conference on Control Technology
and Applications (CCTA), pages 1599–1606, Aug 2017.

[3] N. Berthier and H. Marchand. Discrete Controller Synthesis
for Infinite State Systems with ReaX. In IEEE Int. Workshop
on Discrete Event Systems, Cachan, France, May 2014.

[4] E. Chen, V. G. Lesau, D. Sabaz, L. Shannon, and W. A.
Gruver. Fpga framework for agent systems using dynamic
partial reconfiguration. In Proc. 5th Int. Conf. Industrial
Applications of Holonic and Multi-agent Systems for Manu-
facturing, HoloMAS’11, 2011.

[5] G. Delaval, S. M. Gueye, and E. Rutten. Distributed execution
of modular discrete controllers for data center management. In
Proc. 5th IFAC workshop DCDS’15, 2015.

[6] G. Delaval, E. Rutten, and H. Marchand. Integrating discrete
controller synthesis into a reactive programming language
compiler. Discrete Event Dynamic Systems, 23(4), Dec. 2013.

[7] F. Fons, M. Fons, E. Cantó, and M. López. Real-time
embedded systems powered by fpga dynamic partial self-
reconfiguration: A case study oriented to biometric recognition
applications. J. Real-Time Image Process., 8(3), Sept. 2013.

[8] N. Halbwachs. Synchronous programming of reactive systems,
a tutorial and commented bibliography. In Tenth Int. Conf.
on Computer-Aided Verification, CAV’98, June 1998.

[9] D. Harel and A. Naamad. The statemate semantics of state-
charts. ACM Trans. Softw. Eng. Methodol., 5(4), Oct 1996.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36:41–50, January 2003.

[11] S. Mak Karé Gueye, É. Rutten, and J.-P. Diguet. Autonomic
management of missions and reconfigurations in FPGA-based
embedded system. In NASA/ESA Conf. on Adaptive Hard-
ware and Systems (AHS), Pasadena, USA, July 2017.

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source robot
operating system. In ICRA WS Open Source Software, 2009.

[13] P. Ramadge and W. Wonham. On the supervisory control of
discrete event systems. Proc. IEEE, 77(1), Jan. 1989.

[14] M. D. Santambrogio. From reconfigurable architectures to
self-adaptive autonomic systems. In Int. Conf. Computational
Science and Engineering, CSE ’09, volume 2, Aug 2009.

[15] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval. Design
framework for reliable multiple autonomic loops in smart
environments. In Int. Conf. Cloud and Autonomic Computing
(ICCAC), 2017.

