
HAL Id: hal-01862608
https://hal.science/hal-01862608v1

Submitted on 27 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular and Hierarchical Discrete Control for
Applications and Middleware Deployment in IoT and

Smart Buildings
Adja Ndeye Sylla, Maxime Louvel, Eric Rutten, Gwenaël Delaval

To cite this version:
Adja Ndeye Sylla, Maxime Louvel, Eric Rutten, Gwenaël Delaval. Modular and Hierarchical Discrete
Control for Applications and Middleware Deployment in IoT and Smart Buildings. CCTA 2018 -
2nd IEEE Conference on Control Technology and Applications, Aug 2018, Copenhagen, Denmark.
pp.1472–1479. �hal-01862608�

https://hal.science/hal-01862608v1
https://hal.archives-ouvertes.fr

Modular and Hierarchical Discrete Control for Applications and Middleware
Deployment in IoT and Smart Buildings

Adja Ndeye Sylla∗,Maxime Louvel†, Eric Rutten‡ and Gwenaël Delaval‡
∗ Univ. Grenoble Alpes, CEA, LETI, DACLE, LIALP, F-38000 Grenoble

AdjaNdeye.Sylla@cea.fr
† Bag-Era

Maxime.Louvel@bag-era.fr
‡ Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, F-38000 Grenoble

Eric.Rutten@inria.fr, Gwenael.Delaval@inria.fr

Abstract— In the Internet of Things (IoT) and Smart Homes
and Buildings, sensors and actuators are controlled through
a management software, that runs on a distributed network
of heterogeneous processors. Such management systems have
to be self-adaptive w.r.t. different aspects, at applications level
(functionalities) as well as deployment level (software tasks, exe-
cution platform). Holding a well-mastered and safe behaviour of
the overall system, in presence of these concurrent adaptations,
is a complex control problem. We approach this problem by
applying techniques from the area of Supervisory Control for
Discrete Event Systems (DES), where the space of configura-
tions at the different levels are modeled with automata. We
use programming language support tools, Heptagon/BZR and
ReaX, to build up a design environment for the considered
application domain. This paper contributes with (i) generic
behavioural models for both the applicative and deployment
aspects of systems; (ii) applications of Discrete Controller
Synthesis (DCS) to design controllers, especially modular and
hierarchical control structures; (iii) an implemented case study.

Keywords : Discrete Event Systems, Application, Soft-
ware Systems, Smart Building

I. INTRODUCTION

A. Internet of Things and Smart Buildings

Today’s computer-based systems (e.g., smart buildings
and homes) must adapt to their changing environment in
order to remain operational and achieve their objectives. For
this purpose, they continuously collect data, make decisions
and execute reconfiguration commands. Depending on the
collected data, the commands executed by a system are
related to its applicative functional logic and also to the
management of the computing system itself, typically the
deployment of software objects on an execution platform.

Such management systems have to be self-adaptive w.r.t.
different concurrent aspects. Applications have to adapt their
functionalities to the environment conditions (e.g., tempera-
ture, presence). Software tasks implementing them have to
be deployed on the execution platform, adapting on avail-
able resources (e.g., starting/stopping or migrating objects).
The execution platform itself has to adapt to variations in
workload or availability (e.g., switching on/off nodes, fault
tolerance). Therefore, managing these different concurrent
adaptations in order to hold a well-mastered and safe be-
haviour of the overall system is a complex control problem.

The design and the implementation of such a system
raises problems of avoiding decisions that can be conflicting,
useless or violate other target objectives. In the literature,
solutions have been proposed for the design and the imple-
mentation of reliable adaptive systems [5], [7], [17], [11],
[12]. However, they focus either on the systems application
logic or on the software deployment but not on both together.
The work in [11], [12] use Petri nets and perform model
checking, we propose a supervisory control based approach.

B. Application of DES control with Heptagon/BZR

To overcome these problems, we propose a generic control
support for reliable adaptive systems. We apply techniques
from the area of Supervisory Control for Discrete Event
Systems (DES), where the space of configurations at the
different levels (application, deployment, execution platform)
are modelled with transitions systems, particularly automata.

We use programming language support tools, Hep-
tagon/BZR [4] and ReaX [2], and their Discrete Controller
Synthesis (DCS) capabilities, to generate correct executable
controllers. These can be integrated in the underlying middle-
ware, based on the transactional rule-based framework LINC
[9], to build up a design environment for our application
domain. This allows to (i) ensure the behavioural reliability
of systems (absence of conflicting or incorrect decisions), (ii)
handle their heterogeneity and (iii) guarantee their execution
reliability (absence of inconsistencies). An inconsistency is
due to a hardware failure or a communication error and it
occurs when the system assumes that a command is executed
but it actually is not for instance due to a hardware failure.

We are following the same approach of DES model-based
design of reconfiguration controllers on different classes of
computing systems. We consider small, embedded hardware
systems, such as FPGA [10] as well as larger, more dis-
tributed software systems like web servers in the Cloud [3],
[1], or heterogeneous platforms, composed of numerous de-
vices with very different computation power, operating sys-
tems and communication protocols, like in the domain of the
Internet of Things (e.g., smart buildings [16]). These works
are distinguished by their very different target computing
systems, w.r.t. execution platforms and application domains:
therefore they bring complementary experience, towards the

identification of generic modelling methods, in order to pose
and solve logical control problems in computing systems.

C. Contributions of the paper

This paper contributes in the following points:
1) behavioural automata-based modelling, and objectives

formalisation, for the coordination of the applicative
and deployment mangers of smart building systems;

2) applications of Discrete Controller Synthesis to design
monolithic or modular and hierarchical controllers;

3) an implemented case study for a smart office, including
controller execution in a reactive autonomic loop, a
transactional runtime and an abstraction layer.

The paper is structured as follows. Section II gives the
background notions. Then, Section III presents the target
domain of smart buildings. Section IV describes behavioural
models and objectives. Section V presents a case study.
Finally, Section VI discusses and gives the perspectives.

II. BACKGROUND

A. Internet of Things and Smart buildings

The application domain we target is smart buildings, in
the context of the Internet of Things (IoT), equipped with
heterogeneous devices and managed by a software system.

1) Considered aspects: a smart building system consists
of two managers that interact to achieve a set of objectives.
An applicative manager handles the sensors and the actuators
of the building and provides applicative functionalities e.g.,
presence detection, access control and luminosity control.
This manager is implemented as a set software entities
that achieve applicative objectives. A deployment manager
handles these entities, and their deployment on the execu-
tion platform of the building. It consists of a middleware
that switches on/off computing devices, starts/stops/migrates
software entities and installs software resources if required.
The aim is to achieve a set of deployment objectives (e.g.,
minimize the energy consumption of the execution platform).

These two managers can interact in four ways. The ap-
plication can affect the deployment: for instance, providing
a new applicative functionality, with a specified Quality of
Service (QoS) level, can require switching on additional
computing devices. The deployment can affect the applica-
tion: for instance, the overload of a computing device can
require decreasing the QoS provided by the application. The
application can change without affecting the deployment: for
instance, the application can request for a functionality that
is provided by a set of software entities already deployed (for
another functionality). The deployment can change without
affecting the application: for instance, the deployment can
switches off unused computing devices for energy savings.

This paper models each manager to handle their coordi-
nation and solve the logical control problems they raise.

2) Logical control problems encountered: for both as-
pects, to achieve its target objectives, a smart building system
computes and executes at each step a set of commands that
could be conflicting or violate other target objectives. A
conflict occurs when a device or a software entity receives

at the same instant contradictory commands. An objective
is violated when it is not met due the execution of one or
several commands. For the applicative aspect, both conflicts
and objectives violations can be caused by environment
dependencies and are in this case, difficult to detect. For in-
stance, opening the window of a room for natural ventilation
can introduce noise and violate an objective that consists in
maintaining the noise level below a given threshold. Conflicts
and objectives violations could lead to unsafe or undesired
states that should be avoided. The smart building system
must also autonomously adapt to its environment by reacting
to changes. We follow the approach of autonomic comput-
ing [6] for performing self-configuration, self-optimization,
self-healing or self-protection, through a control loop. In this
paper, to deal with the logical control problems, we use
Discrete Controller Synthesis (DCS) [13] through a reactive
language and tool, and allow for executable code generation.

B. Reactive language for Discrete Controller Synthesis

The reactive language used is Heptagon/BZR (H/BZR) [4].
It is based on a contract mechanism and allows for declara-
tive design of controllers trough discrete controller synthesis.

1) Design and synthesis of a controller: A H/BZR pro-
gram is first written, for the considered system, as a set of
hierarchical blocks called nodes. Each node declares input
and output flows, i.e., sequences of values taken by inputs
and outputs on a discrete scale of time. A node can contain
equations and control structures on these equations, like
automata. Each automaton models an entity of the system
and they can be composed in parallel or in hierarchy. A
node can be provided with a contract that define objectives
to be enforced in the program through DCS. Once designed,
the program is compiled to generate the system controller.

a) Equations: they define outputs, and possible local
variables, in terms of other variables (inputs, outputs, local
variables). Equations can be composed of memorised values,
introduced by the pre delay operator: pre e holds the value
of e at the previous instant. Memories can be initialized with
the -> operator: c ->pre e holds the value c at the first
instant, and the previous value of e at following ones.

b) Automata: they are control structures contained in
nodes and allowing to associate equations (or hierarchically,
sub-automata) to states of the system. An automaton has a set
of states, one of them being the initial state, and transitions
between them. States are associated to equations that give
values to the output flows of the node that contains the
automaton. At each instant, one state is activated and a value
must be defined for each output flow. A transition goes from
one state to another and is associated to a boolean expression
that is related to one or more flows of the automaton node.

Fig. 1a, presents an automaton designed for the control
of a computing device. This automaton is contained in a
node that has two input flows (c1, c2) and two output flows
(on, cmd). The automaton has two states (Off, On) and two
transitions. Each state is associated to two equations that
give values to the output flows of the node. In the state Off,
the output flow on is equal to false. This meaning that the

ComputingDevice(c1, c2) = on, cmd

not c1

c2

O On

on = false on = true

cmd = s_o nothing cmd = s_on nothing

(a) Computing device node

with (c1_device1, c2_device1, c1_device2, c2_device2)

Room(c) = device1_on, device2_on, device1_cmd, device2_cmd

enforce c => (device1_on and device2_on)

(device1_on, device1_cmd) = ComputingDevice(c1_device1, c2_device1);

assume true

(device2_on, device2_cmd) = ComputingDevice(c1_device2, c2_device2)

(b) Room node

with (c_room1, c_room2)

Building(pr1, pr2) = device1_cmd, device2_cmd, device3_cmd, device4_cmd

enforce pr1 => (device1_on and device2_on)

 pr2 => (device3_on and device4_on)

(device1_on, device2_on, device1_cmd, device2_cmd) = Room(c_room1);

assume true

(device3_on, device4_on, device3_cmd, device4_cmd) = Room(c_room2)

(c) Building node

Fig. 1: Example of H/BZR program

computing device is off. In the state Off, the output flow
cmd is equal to s off (switch off) when this state is newly
reached and nothing otherwise. The reason is twofold. First,
the value of an output flow must be defined at each instant.
Second, this prevents from, continuously, sending cmd =
s off while the computing device is already switched off.
The initial state of the automaton is Off. When the input
flow c1 is false, the automaton goes to the state On and the
output flows takes the values given by the equations of this
state. Otherwise (c1 is true), the automaton remains in Off.

c) Contract: it allows for DCS through a tool called
the ReaX [2], and consists of three parts: assume, enforce
and with. The assume defines the hypotheses of the con-
sidered system. The enforce defines the target objectives
(invariance properties). The with declares the controllable
variables, that will be used to enforce the objectives. From
a contract, the DCS algorithm computes the possible values
of the controllable variables. This is done by exploring the
state space of the model and inhibiting all the behaviours
that violate the target objectives. The aim is to enforce all the
objectives whatever the uncontrollable variables values. After
the synthesis, several solutions can be possible regarding the
target objectives. However, one solution must be selected.
This selection is done by the backend of the H/BZR com-
piler by favouring the value true to false for each boolean
controllable variable following the order of their declaration.

Fig. 1b presents an example of node with contract to
switch on both computing devices of a room when a presence
is detected. This node defines two instances of the comput-
ing device node (Fig. 1a) and composes, in parallel, their
automata using the operator ;. The contract defines no hy-
pothesis (assume true), one objective and four controllable
variables that are the input of the computing device nodes.
The objective specifies that when c is true (a presence is
detected in the room), both computing devices must be on.

d) Cost of the controller synthesis: the DCS algorithm
has a cost exponential in the number of variables used in
the model of the system [4]. These variables consists of
the state variables, the controllable and the uncontrollable
variables. Hence, for a system that consists of a high number
of entities, the controller synthesis can take a lot of time

or not succeed due to CPU and/or RAM limitations. For
such systems, H/BZR allows for performing the controller
synthesis modularly to reduce the related synthesis cost.

2) Modular design and synthesis of a controller: this
consists in dividing the system into subsystems and defining
for each subsystem, a node with a contract. This node instan-
tiates and composes relevant automata and enforce a subset
of the target objectives. In this case, DCS is performed on
each subsystem instead on the whole system. This decreases
the DCS execution time and its resources consumption. This
also allows for the generation of several controllers, one for
each subsystem, instead of a single one for the whole system.

Fig. 1c shows an example of modular design and synthesis
of a controller. The Room node (Fig. 1b) is instantiated twice,
to model a building of two rooms. This Building node takes
as input two flows pr1 and pr2, that model the value of a
presence sensor in each room. Then, this node is provided
with a global contract, to achieve the following objective:
for each room, both computing devices must be switched
on when a presence is detected by the associated sensor.
The contract defines two objectives and two controllable
variables. This enables the modular synthesis of a controller.

3) Execution of a controller: the compilation of a H/BZR
program (e.g., Fig. 1) generates a step function. In case of
modular DCS, several step are generated (one for each node
with a contract) but one of them is the main step. The
step takes as parameter the inputs, computes the outputs
and updates the state of the automaton modelling the system.
One execution of the step corresponds to one reaction of
the system. Hence, the step must be executed each time
a relevant event occurs. Executing the step requires con-
sistency between the automaton state and the actual system
automaton. For this, a transactional middleware (LINC [8])
is used and the step is invoked in a LINC rule as detailed
in [14], for its execution in the form of a reliable autonomic
loop [16]. Fig. 2 illustrates this loop, with an abstraction layer
that hides the heterogeneity of the system, the controller to
execute and a transactional execution mechanism that avoids
inconsistencies. Data are first collected through the abstrac-
tion layer. Then, they are analysed by the controller which
computes correct and coherent commands that are executed
by the transactional mechanism through the abstraction layer.

III. DESCRIPTION OF A SMART BUILDING SYSTEM

This section identifies informally, for both the applicative
and deployment aspects of a smart building system, the con-
trolled entities, the relevant events and the target objectives.

Abstraction Layer

Controlled System

data

commands

Transactional
Execution
Mechanism

data

commands

Controller

objectives

Fig. 2: Architecture of a reliable loop

A. Applicative aspect

1) Controlled entities: they consists of the actuators that
are installed in the considered building. Examples of such
actuators are lamps, shutters, windows, doors and heaters.

2) Relevant events: they consist of data that are produced
by the sensors of the building. These data are related to
the states of the actuators (e.g., opening of a window or a
door) or the building (e.g., presence) and to the environment
parameters (e.g., temperature, noise, CO2). The events also
consists of information about meetings (e.g., feature), about
time (e.g., 7 AM) and requests for maintenance of actuators.

3) Target objectives: an applicative objective specifies,
depending on the events that occur in the system, the value
that must be taken by an environment parameter or by the
state of an actuator. Applicative objectives are of three types

• a objT1: keep the value of an environment parameter
in a specified interval (delimited by thmin and thmax);

• a objT2: avoid the situation where an actuator that is
requested to be idle for a maintenance operation, can
be not used but remains used by the application;

• a objT3: decrease (resp. increase) the value of an
environment parameter when its actual value (measured
by a sensor) is below (resp. above) a specified threshold.

B. Deployment aspect

1) Controlled entities: they consist of the software enti-
ties, implemented to offer the target applicative functionali-
ties, and the execution platform of the considered building.

The software entities consist of tasks, objects and rules.
A task offers one or more applicative functionalities, using
Input/Output (I/O) resources. Each task has a set of versions,
with different QoS (High, Medium, Low), and transitions
specifying the changes of versions that are possible. For
instance, let us consider a task with three versions V1, V2 and
V3. For this task, it can be valid to go from V1 to V2 and from
V2 to V3 but not from V1 to V3, for instance for sequencing
reasons. A task version consists of rules and configurations
of objects. A rule communicates with one or several objects
and is executed by an object. An object can have required
I/O resources and a set of configurations. Both a rule and an
object configuration have a CPU (resp. a RAM) load, that is
either negligible or expressed as a percentage (resp. in MB).

The execution platform is composed of a set of computing
devices and I/O resources. A computing device consists of
a host and a set of I/O resources. Hosts are heterogeneous,
they have different capacities in terms of CPU and RAM. An
I/O resource is either software or hardware. Both have a type
(e.g., USB dongles, OpenCV) and a hardware I/O resource
has a usage mode that specifies an usage constraint. The
usage mode of a resource is equal to R (reading), 1W (writing
by one entity) and nW (writing by several entities).

2) Relevant events: they consist of data related to load
variations, to the execution platform and those measured by
the sensors of the building. Examples of events are failures of
hardware I/O resources, maintenance requests of computing
devices or their loads. The events can also be related to time.

3) Target objectives: they are related to the considered
building execution platform and to the deployment of the
software entities. Deployment objectives are of five types

• d objT1: allocate to objects, the computing devices and
the hardware and/or software I/O resources they require.
This means that when an object is started, its computing
device must be on and must have its required resources;

• d objT2: ensure the constraints related to the usage
modes (exclusive ot not) of the hardware I/O resources;

• d objT3: avoid the situation where a computing device
that is requested for maintenance is not switched off;

• d objT4: if possible, decrease the load of a computing
device when its actual load, that is measured, is above
a maximum threshold. Similarly, increase the load of a
computing device or switch it off when its actual load
is below a minimum threshold. The aim is to avoid both
overloading and under-loading the computing devices;

• d objT5: minimize the execution platform energy con-
sumption, by using the minimum of computing devices.

C. Coordination of both aspects

To handle their interactions, the applicative and the de-
ployment managers must be coordinated. The coordination
scheme and its objectives are presented in the followings.

1) Coordination scheme: it consists of three points
• when the applicative manager requests the starting of

a functionality, with a given QoS, a task version is
first selected among those that offer the functionality
and have a version with the requested QoS. Then, a
notification is sent to the deployment manager which
deploys the objects and rules of the selected task version
on the execution platform. The selection of the task
version is done based on information about the tasks
(offered functionalities, versions and their QoS) and on
the status of the execution platform (computing devices
and I/O resources). These objects and rules are kept
deployed as long as the functionality has to be provided;

• when the deployment manager can no longer provide
the requested QoS or functionality due to the lack of
computing or I/O resources in the execution platform,
it sends a notification. In this case, the application
manager can, for instance, ask for a another QoS or
functionality that has a cheaper resource consumption;

• when the application managers requests the stopping of
a functionality, the deployment managers is first noti-
fied. Then, it stops the associated objects and rules. The
deployment manager can also switch off the computing
devices that are no longer used, for energy savings.

2) Coordination objectives: they consist of three types
• c objT1: when a functionality is requested to be pro-

vided, one version of a task among the set of tasks that
offer this functionality must be active, if this is possible;

• c objT2: for a functionality, when no task that offers it
is active, its applicative objectives must not be achieved;

• c objT3: when a task version is active, its objects must
be started and its rules must be activated and executed.

Shutter(c, o_lum) = cmd, lum, air

Closed Opened

 not c

not c

cmd = close nothing

lum = 0

air = false

cmd = open nothing

lum = o_lum

air = true

(a) Shutter model example

O Cooling

Heating

Rac(c1, c2) = cmd, cool, heat

cmd = s_o nothing

cool = false

heat = false

cmd = cool nothing

cool = true

heat = false

cmd = heat nothing

cool = false

heat = true

not c1

c1
not c2

c2

not c2

 not c1

(b) RAC model example

Fig. 3: Shutter and RAC models

IV. MODELLING AS A DISCRETE CONTROL PROBLEM

This section presents how the coordination of a smart
building managers is written as a discrete control problem
and how it is solved to generate an executable controller.

A. Behavioural modelling

Each controlled entity is modelled as an automaton with
points of controllability (variable starting with c by conven-
tion). A preference can be defined between the states of an
automaton, through the declaration order of these variables.

1) Applicative aspect: Each actuator is modelled as an
automaton contained in a H/BZR node. Such an automaton
specifies the different states of the modelled actuator, its
states transitions and its effects on the environment. For this,
a set of environment parameters (e.g., luminosity, noise, air)
are first defined. Then, the effects of each actuator on these
environment parameters are identified and specified. This is
done in the form of equations that are encapsulated in the
states of the automaton. These equations have boolean or
numerical variables and define their values. In the followings
a set of automata modelling different actuators are presented.

a) Shutter modelling: Fig. 3a presents an automaton
modelling a shutter. This automaton is contained in a node
that has two input flows (c, o lum) and three output flows
(cmd, lum, air). The automaton has two states (Closed,
Opened) and two transitions. Each state is associated to
three equations to produce the command of the shutter (cmd)
and specify its effects on the environment (lum, air). In
Closed, the command is equal to close (resp. nothing)
if this state is (resp. not) newly activated. This prevents
from continuously sending the command close while the
shutter is already Closed. In this state, the shutter provides
a luminosity equal to zero (lum = 0) and does not allow
outdoor air to pass (air = false). In Opened, the shutter
provides a luminosity equal to the outdoor luminosity (lum
= o lum) and allows outdoor air to pass (air = true). The
transitions going from a state to a different one are associated
to not c, to open/close the shutter only when necessary.

b) Reversible Air-Condition (RAC) modelling: Fig. 3b
presents an automaton modelling a RAC. Each state is
associated to three equations to produce the command of
the RAC and also specify its effects on the environment.
For instance, in Off, the RAC does not cool nor heat the
room. This automaton is contained in a node that has two
input flows c1 and c2. The reason is that, at each state,

three transitions can be triggered (i.e., two transitions that
leave the state and one that allows to stay). To associate a
different boolean expression to each of the three transitions
of a state, at least two variables are needed. Here, when the
state Off is activated, if the input c1 flow is false, the
RAC automaton goes to the state Cooling. If c2 is false,
it goes to Heating. If both c1 and c2 are true, it remains
in the state Off. Finally, if both c1 and c2 are false, at the
same instant, the transition that was first declared is chosen.
Associating not c1 and not c2 (resp. c1 and c2) to the
transitions leaving (resp. coming to) the state Off means that
it is preferred to maintain the RAC Off for energy savings.

We similarly define models for lamps (and their luminos-
ity), Mechanical Ventilation (MV) (affecting CO2), windows
(affecting heating, cooling, ventilation, pollution and noise),
doors (affecting noise). These models are detailed in [15].

2) Deployment aspect: An automaton is designed for task,
object, rule, I/O resource, host and computing device.

a) I/O resources modelling: the automaton of a
hardware or a software I/O resource has three states
(Unavailable, Unused, Used) and is contained in a node
that has five inputs (avail, fail, c1, c2 and c3). The
input avail (resp. fail) allows to know if the I/O resource
is available (resp. failed). The inputs c1, c2 and c3 are
points of controllability that enable changing the state of
the I/O resource. For a software resource, the input fail is
a constant that is equal to false (a software does not fail).
The input c2 allows installing the software when it is equal
to false. For a hardware resource, c2 is a constant equal
to true because a hardware resource cannot be installed.

Fig. 4 presents the automaton of a hardware I/O resource
that is a dongle. The outputs of the automaton node respec-
tively correspond to state of the dongle and its command.

Unavailable

Unused Used

Dongle_dongle1(avail, fail, c1, c2, c3) = cmd, available, used

available = false
used = false
cmd = nothing

available = true
used = false
cmd = nothing

available = true
used = true
if not c2 cmd = install
else cmd = nothing

avail and c3

failfail

not c3 and not fail

c1 and not fail

not avail and not c2
or (not avail and not c3)

Fig. 4: Hardware resource model example

b) Host modelling: the automaton of a host has four
states (Off, On, Wait, Unavailable). This automaton has
six inputs (avail, fail, rmaint, c1, c2, c3). The first three
inputs respectively specify if the host is available, if it is
failed or if a maintenance request is sent by the maintenance
team to no longer use it. The inputs c1, c2, c3 are points
of controllability. They allow for starting the host, stopping
it or bringing it in the state Wait (upon the occurrence of
a maintenance request that cannot be satisfied). In the state
Wait, the host goes to the state Unavailable when it is
failed or can be no longer used (allowing its maintenance).

Fig.5 presents the automaton of a host (H1). The outputs
of the node that contains this automaton are the status of the
host (on, available) and the command to send (cmd).

O On

Unavailable

Wait

H1(avail, fail, rmaint, c1, c2, c3) = on, available, cmd

on = false

available = false

cmd = s_o nothing

on = true

available = true

cmd = s_on nothing

on = true

available = true

cmd = nothing
on = false

available = false

cmd = cmd1 nothing

if c2 then cmd1 = s_o else cmd1 = nothing

fail or rm
aint and c1

 c3 and not fail

fa
il
or
 r
m
ai
nt
 a
nd

 c
2

rmaint and not c2

and not fail

c2 or fail

av
ai
l

c1 and not rmaint and not fail

Fig. 5: Host model example

c) Computing devices modelling: the automaton of a
computing device is the composition following automata:

• a host automaton for associated with the associated host;
• a hardware I/O resource automaton for each hardware

I/O resource that is local to the computing device;
• software I/O resource automaton for each one of the

considered software I/O resource in order to install it if
it is not available on the computing device, if needed.

Fig. 6 presents an automaton modelling a computing
device (D1) that has a dongle (dongle1). This automaton is
the parallel composition of two automata modelling the host
H1 (Fig. 5) and the hardware resource dongle1 (Fig. 4).

D1(avail_H1, fail_H1, rmaint_H1, c1_H1, c2_H1, c3_H1, avail_dongle1, fail_dongle1, c1_dongle1,
c3_dongle) = on_D1, available_D1, cmd_D1, available_dongle1, used_dongle1, cmd_dongle1

(on_D1,available_D1, cmd_D1) = H1(avail_D1, fail_D1, rmaint_D1, c1_D1, c2_D1, c3_D1);
 (available_dongle1, used_dongle1, cmd_dongle1) = Dongle_dongle1(avail_dongle1, fail_dongle1,

 c1_dongle1, true, c2_dongle1)

Fig. 6: Computing device model example

We similarly define models for tasks (that can be acti-
vated), objects (that can be migrated), rules (that can be
deactivated). These models are presented in details in [15].

3) Coordination of both aspects: here, the fact that each
applicative functionality can be requested to be provided with
a given QoS or stopped is modelled. For this, an automaton
is designed for each functionality, with a state for each QoS
level, and an input for requesting it, as well as points of
controllability for changing the current QoS or stopping.

Fig. 7 presents an example of automaton modelling a
luminosity control functionality, with QoS High or Medium,
points of controllability (c1, c2) and requests (req H,
req M). When req H is true, depending on the values of c1
and c2, the functionality is provided appropriately. The fact
that c1 is declared before c2 allows for choosing the Medium
QoS only if the High cannot be provided when requested.

B. Objectives formalisation

1) Applicative objectives: from Section III-A.3 are

Stopped

Medium

QoStoProvide = High

QoStoProvide = null

QoStoProvide = Medium

Lum_Ctrl(req_H, req_M, end, c1, c2) = QoStoProvide

req_H and c1
req_H and c2 or

req_M and c1

req_M and c1 or not c2

req_H and c1 or not c2

High

en
d
or
 n
ot
 c
1 end or not c1

Fig. 7: Functionality model example

• a objT1: events ⇒(var > thmin and var < thmax) ;
• a objT2: for acti in actuator set :
possible ⇒ (acti.requestMaint ⇒ acti.unused) ;

• a objT3: possible ⇒ ((param_measuredValue >

th) ⇒ (param_compValue < pre param_compValue)).
where param_compValue is the value computed for
param in the current instant, pre param_compValue
is the value computed in the previous instant.
param_measuredValue is an input giving the actual
measured value (from the environment).

Objective a objT3 is logico-numerical, as it involves a
numeric input (param_measuredValue) and a numeric state
(pre param_compValue). Achieving an objective of this type
requires the use of advanced discrete control techniques,
involving abstract interpretation on abstract domains such
as intervals or convex polyhedra [2].

2) Deployment objectives: from Section III-B.3 are e.g.,
• d objT1: for obji in objects set. obji.device_dest.on

is the computing device selected to start or migrate obji:
obji.started ⇒ (obji.device_dest.on and

obji.requiredResources areContainedIn

obji.device_dest.availableResources) ;
• d objT4: for every device devi, it consists of two

objectives : for avoiding overload : possible ⇒
((devi.measuredLoad > devi.thLoadmax) ⇒
(devi.estimatedLoad < pre devi.estimatedLoad))

for avoiding under-load : possible ⇒
((devi.measuredLoad < devi.thLoadmin) ⇒
(devi.estimatedLoad > pre devi.estimatedLoad or

devi.on = false)).
The deployment objective d objT4 is logico-numerical,

as devi.measuredLoad is a numerical input and pre

devi.estimatedLoad a numerical state.
3) Coordination objectives: from Section III-C.2 are
• c objT1: QoStoProvide 6= None ⇒ Ti.Vj.active,

where Ti.Vi is a task version offering the requested
functionality with the specified QoS;

• c objT2: for each functionality fi with a set of applica-
tive objectives : a_objij , not fi.tasks.active ⇒
not (a_obji1 and a_obji2 and ... a_objij);

• c objT3 : Ti Ti.Vj.active ⇒
(Ti.Vj.objectsConfigurations.started and

Ti.Vj.rules.activated and Ti.Vj.rules.objects 6=
None) for any of task Ti and its version Vj .

Once formalised, the objectives were defined in the con-
tract part of a main H/BZR node. This node instantiated

Room(time, avail_D1, fail_D1, rmaint_D1, measuredLoad_D1,..,
i_temp, i_CO2, o_temp, ,...) = (cmd_O1, device_dest_O1, ...,
cmd_shutter1, cmd_lamp1, cmd_window1, cmd_RAC)

contract
 assume not devices.all.unavailable and not dongles.all.unavailable
 enforce time > 8 => activate_Ta and
 activate_Ta => obj_app
 with (c_coord_dep, c_coord_app)

Deployment(c_coord_dep, avail_D1,.., avail_D2)
= (cmd_O1, device_dest_O1, ..., activate_Ta)

contract
 assume not devices.all.unavailable and not dongles.all.unavailable
 enforce obj_dep and activate_Ta
 activate_Ta = c_coord_dep => (Ta.active and O1.started)
 obj_dep = dongle1.usersNb() <= 1 and ...
with (c_O1, c_O2, device_O1, device_O2, c1_D1, c2_D1, c3_D1,....)

Deployment behavioural models

Application(c_coord_app, i_pres, i_temp, i_CO2, o_CO2,...)
= (cmd_shutter1, cmd_lamp1, cmd_window1, obj_app)

contract
 assume true
 enforce c_coord_app => obj_app
 obj_app = i_pres => (lum >= 500 and lum <= 600) and ...
 with (c_lamp1, c_shutter1,c1_RAC,c2_RAC,c3_RAC, c_door,...)

Applicative behavioural models

Fig. 8: Hierarchical node

and composed, in parallel, all the behavioural models and
was compiled to generate one controller, for the whole
system that is a building. To enable the generation of several
controllers, that can be distributed, and reduce the synthesis
cost, the control was done modularly and hierarchically.

C. Modularity and hierarchy

The system is first divided in two sub-systems: one for
the applicative aspect and one for the deployment. Then, as
shown in Fig. 8, a node with a contract is designed for each
sub-system and a third node is built for their coordination:

• Applicative node: it composes the behavioural models
of the applicative aspect and achieves the related objec-
tives. This node has a set of inputs that are allows for
its control by a node with a higher level of hierarchy.
Such an input makes the applicative node achieve (or
not) the objectives of the functionality related to it;

• Deployment node: it composes the behavioural models
of the deployment aspect and achieve its objectives. This
node has inputs that are allows for its control. Such an
input makes the node activates a task and deploying its
objects and rules, to provide a functionality, or stop it;

• Room node: it composes the applicative node, the
deployment node and the behavioural models that are
related to their coordination. It defines a contract in
order to enforce the coordination objectives defined
in Section III-C.2 with controllable variables that are
inputs of the applicative and the deployment nodes.

To allow for different levels of hierarchy and considerably
reduce the synthesis cost, each aspect of the system can be
decomposed in sub-systems and controlled modularly. For
instance, for the applicative aspect, the set of actuators are
first divided into several sub-sets, depending one the target
objectives. Then, the sub-sets are controlled as done in [16].

D. Dynamic reconfiguration of a controller

The controller of the system can be reconfigured, to
deal with changing objectives. Indeed, a building, generally,
have a set of configurations in which different objectives.
For instance, the objectives to achieve during working time
(e.g., comfort) are different from those to achieve during
holidays (e.g., energy savings). To enable the reconfigu-
ration, we propose a concrete solution which consists in
first designing separately several controllers that achieve
different objectives, and then, designing a reconfiguration
controller that switches between the controllers. The switch
consists in deactivating the current controller and activating
the appropriate one upon the occurrence of specific events.

Activating a target controller requires ensuring that current
state of the building is valid for this controller, for it to
work. This is not an easy task because a state is valid for a
controller only if it belongs to the controller state space, it
does not violate its objective and, does not lead, through one
or several uncontrollable transitions, to a state that violates an
objective. For this, in the simplified case of our application
domain, we first define a reconfiguration state the considered
building. Then, we design the controllers of the building
in such a way that they have the same initial state that is
the reconfiguration state. This allows for activating any of
the controllers when the building is in its reconfiguration
state. Finally, we design the reconfiguration controller using
H/BRZ. This is done by defining an automaton with a state
for each controller of the building and and transitions among
them. Such a state invokes the H/BZR node the correspond-
ing controller. When this state is reached, the associated
controller is automatically activated, all its variables and
equations are reinitialised. This means that the controller
starts in its initial state which is the reconfiguration state.

As an example, let us consider a building with two sets
of objectives (working time, holidays) and a state night in
which it is not occupied, not cooled, not heated and not
ventilated. This state is first taken as the building reconfig-
uration state and a controller is designed for each set of
objectives. Both controllers have night as initial state. The
automaton defined to design to enable the reconfiguration
of the controllers is presented in Fig. 9. It has two states
(WorkingTime, Holidays) and two transitions. The initial
state is WorkingTime meaning that the working time con-
troller is the one that is active. When holidays started
is true and the night state is reached, the automaton goes
to Holidays. This deactivates the workingTime controller
and activates the Holidays one from its initial state that is
night. This automaton is compiled and the generated step
function is invoked in a LINC rule to enable its execution.

V. PHYSICAL IMPLEMENTATION

The demonstrator presented in Fig. 10 was built to validate
our contribution. It consists of an office that has a shutter
(emulated by a graphical interface), a lamp (connected to
a plugwise circle that allows for sending commands to it),
a presence sensor (emulated by an EnOcean switch), an

enforce

with (c1,c2)

Room(holidays_started, workingTime_started, night) =

active_workingTime = WorkingTime_ctrl(c1);

active_holidays = Holidays_ctrl(c2);

assume not (holidays_started and workingTime_started)

(holidays_started and night) => active_holidays_ctrl
(workingTime_started & night) => active_workingTime_ctrl

target_ctrl

target_ctrl = if active_holidays then Holidays else if active_workingTime
then WorkingTime else None;

Fig. 9: Reconfiguration controller design

Lamp

Shutter

Plugwise

circle

Raspberry

Dongle

070140

EnOcean

swicth

PTM 210

Fig. 10: Demonstrator

outdoor luminosity sensor, an agenda for meeting informa-
tion (both are emulated by storing their values in LINC), a
raspberry connected to two dongles for the communication
with the circle and the switch (as an execution platform).

The objectives to be achieved in this office are (i) keep
the luminosity between 500 and 600 lux when a presence
is detected, (ii) keep the shutter closed during a confidential
meeting and (iii) prefer natural lighting for energy savings.

a) Controller synthesis: Two automata, for the shutter
and the lamp, and contract, define the luminosity and the
confidentiality objectives. The energy savings objective is
expressed by declaring the controllable variable of the shutter
after the on of the lamp. This allows for using the lamp
only when the office must be lighted and the shutter cannot
be used. The generated controller was executed by on the
Raspberry Pi. It takes as input the presence sensor data and
information related to meeting (the outdoor luminosity is set
to 600 lux) and executes commands of the lamp and shutter.

b) Controller behaviour: Fig. 11 presents the con-
troller behaviour. The variables time, i presence and
confidMeeting respectively correspond to the time, the
presence sensor value and an information specifying if there
is a confidential meeting. The variables shutter opened
and lamp on correspond to the state of the shutter and the
lamp. At 7 AM, a presence is not detected in the office, the
outdoor luminosity is equal to 600 lux (it is fixed) and there
is no confidential meeting. In this case, the shutter is closed
and the lamp is off. At 8, a presence is detected (one office
member arrives), the controller opens the shutter to achieve
both the luminosity and the energy savings objectives. At
11, the presence is still detected and there is a confidential
meeting. In this case, the controller switches on the lamp
and closes the shutter, for the confidentiality objective. At
12, the presence is not detected, it switches off the lamp.

VI. CONCLUSION

We present an application of Discrete Event Systems
Control techniques to the domain of smart buildings in the
context of IoT. Our contributions are: behavioural automata-
based modelling, and objectives formalisation, for the co-
ordination of the applicative and deployment managers of

Fig. 11: Controller behaviour

smart building systems; applications of Discrete Controller
Synthesis to design monolithic or modular and hierarchical
controllers; an implemented case study for a smart office.

Perspectives are in: exploiting the genericity of our models
by designing a Domain Specific Language for developers to
specify their systems, without needing expertise in formal
models; exploring extensions in expressiveness in the con-
trol problems modelled and solved, for example advanced
adaptive discrete control for reconfigurable controllers.

REFERENCES

[1] N. Berthier, F. Alvares, H. Marchand, G. Delaval, and E. Rutten.
Logico-numerical control for software components reconfiguration. In
IEEE Conf. Control Technology and Applications (CCTA), Aug 2017.

[2] N. Berthier and H. Marchand. Discrete Controller Synthesis for Infinite
State Systems with ReaX. In IEEE Int. Workshop on Discrete Event
Systems, Cachan, France, May 2014.

[3] G. Delaval, S. M. Gueye, and E. Rutten. Distributed execution of
modular discrete controllers for data center management. In Proc. 5th
IFAC WS on Dependable Control of Discrete Systems, DCDS, 2015.

[4] G. Delaval, É. Rutten, and H. Marchand. Integrating discrete controller
synthesis into a reactive programming language compiler. Discrete
Event Dynamic Systems, 23(4):385–418, 2013.

[5] S. Guillet, B. Bouchard, and A. Bouzouane. Correct by construction
security approach to design fault tolerant smart homes for disabled
people. Procedia Computer Science, 21:257–264, 2013.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[7] D. Kolokotsa, A. Pouliezos, et al. Predictive control techniques for
energy and indoor environmental quality management in buildings.
Building and Environment, 44(9):1850–1863, 2009.

[8] M. Louvel and F. Pacull. Linc: A compact yet powerful coordination
environment. In Proc. Coordination Models and Languages, 2014.

[9] M. Louvel, F. Pacull, et al. Development tools for rule-based
coordination programming in linc. In International Conference on
Coordination Languages and Models, pages 78–96. Springer, 2017.

[10] S. Mak Karé Gueye, É. Rutten, and J.-P. Diguet. Autonomic man-
agement of missions and reconfigurations in FPGA-based embedded
system. In NASA/ESA Conf. on Adaptive Hardware and Systems
(AHS), Pasadena, USA, July 2017.

[11] A. K. Nabih, M. M. Gomaa, and oters. Modeling, simulation, and
control of smart homes using petri nets. International Journal of
Smart Home, 5(3):1–14, 2011.

[12] X. Niu and Z. Wang. A smart home context-aware model based on
uml and colored petri net. International Journal of Smart Home,
10(1):101–114, 2016.

[13] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, 1989.

[14] A. N. Sylla, M. Louvel, and É. Rutten. Combining transactional
and behavioural reliability in adaptive middleware. In Proc. 15th
International Workshop on Adaptive and Reflective Middleware, 2016.

[15] A. N. Sylla, M. Louvel, and E. Rutten. Design framework for reliable
and environment aware management of smart environment devices.
Journal of Internet Services and Applications, 8(1):16, 2017.

[16] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval. Design framework
for reliable multiple autonomic loops in smart environments. In Int.
Conf. Cloud and Autonomic Computing (ICCAC), 2017.

[17] M. Zhao, G. Privat, et al. Discrete control for the internet of things
and smart environments. In Presented as part of the 8th International
Workshop on Feedback Computing, 2013.

