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Abstract

Purpose The development of common ontologies has re-

cently been identified as one of the key challenges in the

emerging field of surgical data science (SDS). However,

past and existing initiatives in the domain of surgery

have mainly been focussing on individual groups and

failed to achieve widespread international acceptance

by the research community. To address this challenge,

the authors of this paper launched a European initiative

- OntoSPM Collaborative Action - with the goal of es-

tablishing a framework for joint development of ontolo-

gies in the field of SDS. This manuscript summarizes

the goals and the current status of the international

initiative.

Methods A workshop was organized in 2016, gathering

the main European research groups having experience
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in developing and using ontologies in this domain. It led

to the conclusion that a common ontology for Surgical

Process Models (SPM) was absolutely needed, and that

the existing OntoSPM ontology could provide a good

starting point toward the collaborative design and pro-

motion of common, standard ontologies on SPM.

Results The workshop led to the OntoSPM Collabora-

tive Action—launched in mid-2016—with the objective

to develop, maintain and promote the use of common

ontologies of SPM relevant to the whole domain of SDS.

The fundamental concept, the architecture, the man-

agement and curation of the common ontology have

been established, making it ready for wider public use.

Conclusion The OntoSPM Collaborative Action has

been in operation for 24 months, with a growing dedi-

cated membership. Its main result is a modular ontol-

ogy, undergoing constant updates and extensions, based

on the experts’ suggestions. It remains an open collabo-
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rative action, which always welcomes new contributors

and applications.

1 Introduction

Context Information processing has become a crucial

element of modern surgery, going beyond the guidance

of surgical actions using medical images of the patient,

rather infiltrating the whole surgical process. Optimiza-

tion of digital information in the surgical domain is the

main objective of an emerging domain, called “Surgical

Data Science” (SDS) [42] (Fig. 1).

Information processing is ubiquitous in surgery, deeply

impacting all stages of the treatment, from the gather-

ing of preoperative data/images and choosing the most

appropriate surgical plan, to the actual realization of

the surgery. It may involve robots and other advanced

equipment, and advanced statistical tools during the

post-operative assessment. In addition to the classical

monitoring of vital signs, data-flow often includes the

acquisition and interpretation of intra-operative imag-

ing (e.g., video-endoscopy or ultrasound images). The

complexity and inter-dependency of these processes re-

quire increased automation and optimization in the work-

flow management. Another challenge that calls for SDS

is the consistent communication between all actors and

equipment in the Operating Room (OR). Implement-

ing computer systems capable of achieving the previ-

ous computing tasks requires to acquire the relevant

domain knowledge and to represent it in some machine-

readable format. Concretely, this work consists in ex-

tensive modeling and analysis of the OR workflows,

decomposition of the tasks, identifying the actors in-

volved (both human and robotic) and their roles, in con-

junction with the information exchanged [38]. Based on

such OR workflow models, context-aware surgical sys-

tems aim at interpreting the data provided by sensors

(i.e., video cameras, RFIDs on surgical instruments or

actors) and apprehending situations in real-time, with

respect to predefined models of the procedures, poten-

tially leading to better anticipation of risks, better sur-

gical decision making and most probably, reduction of

serious adverse events.

Another application comes from the simulation of

such procedural models, contributing to initial and con-

tinuing education of healthcare professionals. Training

curricula with highly realistic and rich application con-

tent can effectively address the needs of training and

accreditation of the surgical staff. [14, 37].

Data science offers new possibilities to categorize,

learn, and assess from experimental data, annotated in

reference to relevant description models and vocabu-

laries. Healthcare management is keen to optimize the

use of available resource and equipment, and to pre-

vent adverse events. One of the biggest challenges is to

gather enough data, surgical cases from multiple clin-

ics and a variety of patients, in order to overcome the

uniqueness of pathologies and procedures. Such pooling

requires that multi-center data can actually be semanti-

cally aligned, which closely relies on the use of standard

protocols, common data models and common vocabu-

laries.

In this context, the ability to create common, stan-

dardized Surgical Process Models (SPM), [38] is fun-

damental and ontologies and semantic technologies are

considered to be key enabling technologies for that. On-

tologies are information artifacts that present two basic

characteristics: they are vocabularies shared in a certain

community, and they have formal semantics based on

axioms, expressed in some logic language [26]. Descrip-

tion Logics (DL) is a family of widely used knowledge

representation languages, especially providing a logi-

cal formalism for the Web Ontology language (OWL)1.

Ontologies can provide significant help to build SPMs,

by providing the basic vocabulary (naming and def-

inition of the classes and of the data properties and

object properties) that is needed to annotate surgical

data. The wider scale adoption of a common vocabu-

lary would greatly facilitate the alignment of data col-

lected in multiple institutions. It would also stimulate

the development of specialty-specific procedure models

used in workflow management systems and simulation-

based training systems. Beyond that, common vocabu-

lary would facilitate the emergence of inter-operability

(communication) standards in the OR.

Objective The emergence of SDS and the growing in-
terest for SPMs led to the organization of two comple-

mentary workshops in 2016 (Rennes, France and Hei-

delberg, Germany). The latter (Surgical Data Science

workshop) dealt with the strategic organization of the

scientific community interested in SDS, and the former

(First OntoSPM workshop) dealt with the role of on-

tologies and semantic technologies in this context. The

main European research groups that had been devel-

oping ontologies for SPM were invited to share their

experience, and to discuss the main challenges and the

standardization of their efforts. The following of the

paper is organized in three main parts. Section 2 pro-

vides an overview of the main contributions reported

during the workshop in the domains of SPM and sur-

gical robotics. It reports on the activities which led to

launching of the OntoSPM Collaborative Action. Sec-

tion 3 first describes recent activity of the OntoSPM

1 Web Ontology Language: https://www.w3.org/TR/

owl2-overview/

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
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Fig. 1 Illustration of Surgical Data Science. This new domain employs classical data science tools to collect, interpret and
optimize data available in the Operating Room to achieve better patient outcome.

Collaborative Action, and it discusses the perspectives

and main challenges to face.

2 The background of SDS research: the results

of the First OntoSPM Workshop

This section provides a summary of the key a priori

achievements presented in Rennes, concerning research

on SPM and the use of ontologies in medical robotics.

2.1 Ontology development at ICCAS

The development of surgical ontologies in the Leipzig

University at the Innovation Center for Computer-assisted

Surgery (ICCAS) has been associated with the acqui-

sition of intra-operative surgical workflow data using

an ontological approach with a surgical workflow ed-

itor [55]. The collection of workflow data is used to

create verified and valid SPMs [57]. These models are

built to support the development of medical devices

and computer-assisted systems. In addition, SPMs are a

prerequisite for surgical workflow management in mod-

ern integrated ORs [13].

The surgical process ontology was implemented for

different surgical disciplines and used for the repre-

sentation of generic surgical processes [55, 59]. Propri-

etary, discipline-specific ontologies were integrated in a

domain-level ontology for surgical workflows [48], and

additionally implemented in a Core Ontology for Com-

puter Assisted Surgery (SOCAS) [47]. SOCAS is an on-

tological framework, which is embedded into the Gen-

eral Formal Ontology (GFO), and contains various on-

tologies at different levels of abstraction as well as exter-

nal ontologies. In addition, an ontology-based meta lan-

guage was developed, which is a unifying,mathematically

founded framework for the modeling of surgical pro-

cesses [54]. Based on the process ontology, the surgical

workflow editor was equipped with an adaptive user in-

terface, which simplifies the recording of workflow data

by a sizable terminology for surgical actions, instru-

ments and patient anatomies, considering the actual

surgical situation. The ontology-driven interface was

validated in a study and enables a recording accuracy

above 90% for inexperienced users [58]. The ontology

was also used for the recognition of surgical instru-

ments for the purpose of preselecting the perspectives in

the surgical workflow editor [56]. Furthermore, surgical

ontologies were developed to support markerless sur-

gical navigation in minimally-invasive endoscopic ENT

surgery [3, 73], and for surgical workflow management

and automation in the integrated OR [53].

2.2 Ontology development at the University Hospital

of Rennes

The SDS-related work on at University of Rennes 1

relies on a solid culture and experience of conceptual

modeling, acquired along many projects in medical im-

age processing, management and sharing [16, 45, 79].

The first dedicated activities were initiated in the early

2000s, aiming at developing systems facilitating the intra-
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operative management of imaging information. It was

applied to neurosurgical procedures (e.g., presenting

the right information—target lesion, functional area to

be preserved—at the right time and under an appropri-

ate form) [29, 30]. These information models enabled

the detailed description of surgical procedures and sup-

ported comparison studies (e.g., senior versus novice

surgeons [46, 65] or practices in different countries [12]).

The implementation of such models as formal ontologies

(i.e., using ontology languages such as the Web Ontol-

ogy Language—OWL) was initiated in the context of

the French project Synthesis and Simulation of Surgical

Process Models (S3PM), aiming to train scrub nurses

in neurosurgery using virtual reality [7].

In the context of S3PM, the goal was to provide a

formal representation of SPM domain knowledge that

is both tailored to the specific needs of this project (i.e.

facilitating the creation of simulation scenarios from de-

scriptions of real clinical cases) and also reusable in

other application contexts. Based on the S3PM results,

two levels were defined in the ontology: a generic one

(core ontology), suitable for reuse in almost any domain

of surgery and a specific one, focused on the S3PM use

cases. The generic module was called OntoSPM as it fo-

cused on SPMs, the actions and processes (considered

at various granularity levels, from global procedure to

detailed actions completed by the actors). The following

lines introduce briefly the essential aspects, namely: 1)

the domain covered, 2) the relation to an upper level on-

tology and philosophical framework and 3) the modular

architecture with modules extracted from existing on-

tologies. In terms of scope, key representation included:

– roles played by the actors;

– affected objects (e.g., anatomy or pathology);

– instruments and material used;

– ways of manipulations (e.g., which hand of the sur-

geon or of the assistant was involved).

A preliminary version of the OntoSPM ontology was

presented in 2014 [17], together with a first version of

a software based on this ontology, and dedicated to the

annotation of surgical procedures from video recordings

(SurgeTrack [15]).

This preliminary version of OntoSPM was refined in

2015, in collaboration with the Karlsruhe Institute of

Technology (KIT), to make it compatible with the BFO

foundational ontology [74], as well as with a number

of relevant ontologies that could provide terms (classes

and object properties) needed in OntoSPM. This work

led to an extended version of OntoSPM, composed of

modules extracted from several ontologies developed ac-

cording to the methodology and principles of the Open

Biological and Biomedical Ontologies (OBO) Foundry [75]

and reusing the BFO 2 ontology (Table 1).

The extraction of the modules was achieved using

the Ontofox tool [83]2 and based on the MIREOT method [8].

Actually, this extended version allowed to meet both

initial objectives, i.e. creating realistic simulation sce-

narios for the S3PM project, and supporting other sur-

gical application contexts, as explained in the next sec-

tion. The interest raised by OntoSPM in the community

led to organization of the First OntoSPM Workshop

in Rennes, April 2016. The latter led to the conclu-

sion that the design of an ontology of surgical process

models addressing the needs of the whole SDS commu-

nity required a broader scale collaborative effort. This

is the reason why the OntoSPM Collaborative Action

was launched in June 2016.

2.3 Ontology development at the Karlsruhe Institute

of Technology

The development of medical ontologies at KIT, with

its partners in Heidelberg and Rennes, focuses on two

key areas: surgical workflows in laparoscopy and anno-

tation of surgical data. To support these, two ontolo-

gies are developed: the Ontology for Surgical Process

Models in Laparoscopy (LapOntoSPM) and the Ontol-

ogy for Data Integration in Surgery (ODIS). Both are

designed as sub-ontologies of OntoSPM. LapOntoSPM

inherits OntoSPM’s mechanism to model surgical work-

flows, and extends it with additional concepts for in-

struments and actions specific to laparoscopic surgeries.

Additionally, it models entire surgeries (e.g., laparo-

scopic adrenalectomies, cholecystectomies and pancre-

atic resections) at the level of phases and steps. ODIS

adds means of describing surgical data and algorithms
to OntoSPM.

The primary motivation for the development of LapOn-

toSPM was the need for a machine-readable represen-

tation of surgical knowledge to provide intra-operative

context-aware assistance. The focus on this is due to

the fact that the availability of intra-operative infor-

mation outpaces the processing capabilities of surgeons.

In the case of sensory overload, information is “phys-

ically available” but “not operationally effective” [31].

To counter this, context-aware systems with automatic

information filters have been developed. These provide

a specific subset, tailored to the given situation in the

OR. For this purpose, surgical knowledge is necessary.

We represent this—for which the surgical knowledge

comes from LapOntoSPM.

LapOntoSPM was used to provide context-aware

warnings during cholecystectomies [32], to raise sur-

geons’ attention in critical situations (e.g., when the

2 Ontofox tool: http://ontofox.hegroup.org

http://ontofox.hegroup.org
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Table 1 Main imported modules of the OntoSPM ontology

FMA Foundational Model of Anatomy [67] Domain of human anatomy
PATO Ontology of phenotypic qualities [49] Domain of phenotypic qualities
MPATH Mouse pathology [70] Pathologic entities (for the mouse and

other mammal species)
IAO Information Artifact Ontology [76] Information entities in the biomedical

domain
UO Units Ontology [18] Ontology of units of measurement

gallbladder may be harmed). The experiments were con-

ducted on a porcine liver in a realistic environment, as

used in training of young surgeons. The outcome was

assessed in a structured interview with the performing

surgeon. The surgeon confirmed that the surgery is, in-

deed, facilitated and can be done faster and safer as

appropriate warning are given in a timely manner. It

was also stressed that the explicit knowledge represen-

tation leads to better understanding of the system and

makes its behavior more predictable and thus trust-

worthy. LapOntoSPM enabled these result by allowing

us to create straightforward, human-readable rules to

define critical situations, and use reasoning to intra-

operatively identify them. Furthermore, LapOntoSPM

was used to segment entire surgical procedures into

phases, employing rule-based reasoning and machine

learning [33, 35]. LapOntoSPM successfully aided in

this task by enabling the formulation of explicit rules to

filter for event indicative of new phases and also helped

reduce the number of labeled training samples needed

for machine learning. This is especially important in

the surgical use case where labeled samples are diffi-

cult to acquire. The reliable detection of all relevant

phases, as opposed to just critical situations, is an im-

portant step towards more sophisticated context-aware

assistance during the entire surgery.

ODIS provides a language which allows semantic an-

notation of surgical data, algorithms and the execution

of algorithms on the data [34]. Representation of con-

tent types (e.g., image, video, report), actual content

(e.g., showing a specific anatomical structure and addi-

tionally the patient it belongs to) and provenance (i.e.,

the origin of data expressed as the processing chain used

to obtain it) are all supported by ODIS.

ODIS has been used as the annotation language for

the large knowledge base of a semantic data infrastruc-

ture, which was created as part of the collaborative re-

search project Cognition Guided Surgery [11]. An early

version of ODIS was used in a system to automatically

create execution pipelines by combining algorithms for

medical use cases [62]. The goal was to automatically

sequence processing pipelines for surgical phase recog-

nition based on sensor data and image progressing for

tumor progression mappings. ODIS successfully offered

the modeling language to describe inputs and outputs

of the algorithms so that they could be put in a sensi-

ble sequence. ODIS is also part of a system for holistic

information processing for surgical decision support in

liver surgery [43]. The aim of the project is to support

treatment planning for neoplasms based on case knowl-

edge, clinical guidelines and studies. ODIS was success-

fully used to model the data on which the treatment

planning is performed.

2.4 Ontology development in Heidelberg

Ontology development in Heidelberg began in 2012,

with the Collaborative Research Center 125: “Cognition-

Guided Surgery”, in close collaboration with partners

from Karlsruhe (now Dresden) and Rennes. Techni-

cal focus has been on the holistic modeling and pro-

cessing of all relevant data for a given patient with

the goal of providing patient-individual clinical deci-

sion support [43]. The aim was to provide a model that

combines patient data models with factual knowledge

in order to allow inferring i.e. prognoses for a patient

based on current literature. To this end, two informa-

tion types are distinguished:

1. Practical knowledge that relates to hospital-specific

case data. It represents information that can be ex-

tracted from medical images (e.g., tumor number,

size and location), laboratory reports or genetic data;

2. Factual knowledge, written down in quotable sources,

such as clinical guidelines, studies or educational

books.

While most groups in the field have been targeting

SPM, Heidelberg has been focusing on to information

acquired throughout the whole patient workflow, from

diagnosis to therapy and follow-up. First, liver tumor

treatment planning was chosen as a clinical applica-

tion [43], while by now, the ontology comprises over

1000 different parameters extracted from over 200 stud-

ies and more than 300 liver tumor patients from the

University Hospital Heidelberg. These parameters are

linked to the most important biomedical ontologies in-

cluding SNOMED-CT [82] LOINC [39], RadLex [24]
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and the FMA [67] where possible. The software de-

veloped for data annotation and modeling also com-

prises means for the formalization of studies and clini-

cal guidelines, as well as using them for knowledge in-

ferencing. The model has been applied to several hun-

dreds liver tumor patients, and is currently being ex-

tended to applications in renal surgery, including intra-

operative process models based on LapOntoSPM. In

this context, new methods for large-scale medical data

annotation based on crowdsourcing have been devel-

oped [25, 40, 41]. An implementation of the system is

publicly available [69]. As a first technical use case, the

formalization of biomedical image analysis challenges

was chosen. The goal was to establish an ontology that:

1. encourages challenge organizers to formalize chal-

lenge design in a structured manner to enhance re-

producibility and interpretation of results;

2. enables structured access to information from past

biomedical image analysis challenges.

The first list comprises a total of more than 50 pa-

rameters corresponding to the categories challenge or-

ganization, participation conditions, validation objec-

tive, study conditions, validation datasets, assessment

method and challenge outcome. Using this information,

an ontology was created to formalize all biomedical im-

age analysis challenges—about 150 events (challenges)

with a total of over 500 competitions (tasks)—that have

been conducted until the end of 2016. To apply for a

MICCAI challenge 2018, potential organizers needed to

submit their proposal in a structured format based on

the ontology developed.

2.5 Ontology development at Politecnico di Milano

Ontology development in Milan at the Politecnico di

Milano started with the ontological description of the

robotic components as part of a modular surgical archi-

tecture for a robot task execution of a neurological pro-

cedure within the ACTIVE (FP7-ICT-2009-6-270460)

and the EuRoSurge European projects (FP7-ICT-2011-

7-288233).

A workflow was implemented for the design and the

deployment of a modular architecture for autonomous

execution of a surgical task (i.e., tool positioning on

the correct trajectory for needle insertion), where the

architecture’s components were automatically derived

from the ontological description [61]. The success crite-

ria were defined as final development of modular com-

ponents which could be safe, need no further re-designing

and possibly interchangeable if the surgical scenario is

changed. The design of the modular architecture, for

surgical autonomous robots, used the knowledge of the

robotic components (e.g., connection ports, data types,

and priority of sensors) represented in a dedicated on-

tology module, built on top of the Suggested Upper

Merged Ontology (SUMO) [60]. The ontology also con-

tained the device instances available in the lab (e.g.,

optical trackers). A high-level control was implemented

using a component exploiting the incoming trackers’

data. The system allowed choosing the best available

tracker at each moment, using the ontology, according

to the performance of the single sensor to track both the

robot and the intra-operative reference frame, and the

accuracy of the sensor. The ontology has been shown

as a successful design tool for task execution during the

robotic surgical workflow.

More recently, an ontology for thoracentesis was de-

veloped for context-awareness in surgical training [50].

Thoracentesis is an invasive procedure to remove fluid

from the pleural space in disease conditions such as

pleural effusion. An ontology named Ontology for Tho-

racentesis [50] was developed, which was dedicated to

context-aware reasoning on the surgical entities and the

spatiotemporal activities involved in thoracentesis. To

create contextual awareness, the ontology was extended

with production rules, which were used to recognize the

current phase, as well as instruments on the table and

predict the next and previous phases of the surgery. The

system was deployed for context-aware surgical train-

ing, where the ontology-based system gave the similar

results as mentor-based surgical training. Furthermore,

production rules were created automatically using the

first-order inductive learning [51], which were used in

task execution. These contributions can be reused to

address the need of integrating entities representing im-

age processing and robotic components within a com-

mon ontology of SPM, which could be useful in robotic

surgery.

2.6 Ontology development at the Universidade de

Lisboa and the IPCB

The ontology development for surgical scenarios in Lis-

bon at Universidade de Lisboa and the Instituto Polit-

écnico de Castelo Branco (IPCB) has been focusing

on orthopedics. An Ontology for Robotic Orthopedic

Surgery (OROSU) [20] was developed and then ap-

plied for hip resurfacing surgery (e.g., for trimming the

femoral head). In this scope, the main goal of the re-

search, related to ontologies, was to build a knowledge

based framework for this surgical scenario, along with

a formal definition of components and actions to be

performed during the surgery. The developed ontology

was based, in part, on the 1872-2015 – IEEE Stan-

dard Ontologies for Robotics and Automation [63]. The
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work was developed under the HIPROB and ECHORD

projects, funded by the Portuguese Science Founda-

tion and the EU-FP7, respectively. From the knowledge

based framework, several queries can be performed, to

extract information from the system, and also for its

validation. Amongst others, is possible to monitor the

usage of medical devices, and its actions, in the op-

erating room, and to obtain important data from the

system sensors, e.g., the current drilling position of the

femur.

To evaluate the developed work in a real scenario,

a first part of the work was to set up a medical vi-

sion system [21] with a robot [81] in the loop, in order

to compensate some bone movements when the robot

is performing surgical procedures. The second part of

the work was to develop the OROSU ontology, based

on the Hip Resurfacing scenario. During this study, a

survey on ontologies for surgical robotics [19] was per-

formed, concluding that there was still a large room

for improvement, to align medical/surgical ontologies

to robotic ontologies. This is because of the usage of dif-

ferent upper ontologies, e.g., SUMO and BFO. For the

OROSU development, SNOMED CT [82], the CORA

ontology [63] and the KnowRob framework [80] were

adopted as the base ontologies, and implemented using

OWL.

The two outcomes of the research, the robot con-

trolled by a medical vision system, and the OROSU

ontology, were amongst the first to integrate robotic

ontologies in the surgical field. The system was capable

to perform tasks in the hip resurfacing scenario, while

interacting with the knowledge base to access, for ex-

ample, the drilling position of the procedure and the

3D positions of the medical devices in the operating

room. As the conclusions of the studies referenced in

this sub-section state, there is still an important work

to be done to achieve a full alignment between robotic

and surgical/medical ontologies.

2.7 Ontology development in the IEEE ORA group

Standardization is becoming an increasingly important

area within the overall robotics community, with sev-

eral works published in the recent years [23], and within

IEEE, a special focus has been given to medical/surgical

applications, since these lack appropriate regulations

and standards [22]. The IEEE 1872-2015 standard [1]

refers to the core ontology for Robotics and Automa-

tion (R&A), being the first standard related to ontolo-

gies and (non-medical) robotics [68]. “ It is composed

of a core ontology, called CORA, along with other sup-

porting ontologies, developed under SUMO, thus the

basic definitions are derived from SUMO. The support-

ing ontologies for CORA are: CORAX, RPARTS and

POS. The two first cover interaction and robot parts,

respectively. The latter (POS ontology) [6] presents the

concepts of position, orientation and pose. These con-

cepts are of extreme importance in R&A. Early adap-

tation of the CORA includes some medical projects as

well.

Currently, the P1872.1 Robot Task Representation

Working Group and the P1872.2 Working Group on

Autonomous Robotics Ontology are working on appli-

cation oriented extensions. Nevertheless, these develop-

ments remain linked to the field of service robotics.

As a sub-domain of service robotics, surgical robotics

is an important cross-section of the medical and R&A

domains. In this domain, clinical-use oriented process

models and ontologies have already been proposed for

surgical skill evaluation [64], but their implementation

in surgical automation and safety standards are still a

future work.

2.8 Discussion

The convergence of the research topics at many eminent

institutions highlighted the relevance and complemen-

tarity of the works, and called for synchronized action.

These trends allowed to recognize that SPM is a cor-

nerstone of almost all of the projects, thus common,

standardized models would be beneficial to the whole

community. Bridging the domain of SPM and the do-

main of medical robotics is important regarding the fu-

ture development, but still poses many challenges. The

OntoSPM ontology was considered as a good starting

point, to be further developed and extended, collabora-

tively. The modality of collaboration was also discussed.

The preference was given to an academic collaboration,

rather than to a regular standards development process

(activities in the context of the DICOM Surgery Work-

ing Group could have been an alternative). The reason

for this choice was that the topic was felt not enough

mature to be well-received by the manufacturers of sur-

gical equipment.

3 OntoSPM Collaborative Action

This Section describes the current organization of the

OntoSPM Collaborative Action and introduces the main

challenges related to its further maintenance and exten-

sion towards a broad adoption.
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Benefits 
the Community

Network of OntoSPM Participants

Teleconferencing Collaboration Platforms

OntoSPM WikiSteering Commitee Technical Commitee

Fig. 2 General organization of the OntoSPM Collaborative Action.

3.1 Current practical implementation

The OntoSPM Collaborative Action was launched with

the general objective to collaboratively develop and dis-

tribute an ontology of Surgical Process Models based

on the preliminary work presented above. All the re-

search groups who had contributed to the First On-

toSPM workshop were invited to join. The collabora-

tion is organized as a network of participating cen-

ters (participants) interacting through teleconferences.

A Steering Committee was setup, to coordinate the Ac-

tion, which includes defining objectives, recruiting new

participants, writing proposals or applying for funding,

making decisions regarding intellectual property, pro-

moting the Action and its results. The technical work

is managed by the Technical Committee, in charge of

developing, maintaining and distributing the ontology.

New versions of the ontology are delivered regularly and

distributed both through a version control repository

and through a dedicated website, from which the on-

tology files can be dereferenced (Fig. 2).

A wiki website3 was deployed to support internal

and external communication. Internal communication

concerns meeting agenda and minutes and document

sharing. External communication provides any inter-

ested party with general information about the objec-

tives, participants, functioning, and results of the Ac-

tion. This mode of organization has been in place since

3 OntoSPM wiki: https://ontospm.univ-rennes1.fr/doku.

php

September 2016. The OntoSPM Collaborative Action

currently involves 30 contributors from 15 institutions,

located in 7 European countries, and is open to any new

contributors.

3.2 Strategy to extend OntoSPM

In addition to the need to gather medical experts and

improve acceptance of the ontology, the technical devel-

opment of the ontology itself also faces multiple tech-
nical challenges. While the collaborative development

of software has been carefully studied and mostly ad-

dressed by the software engineering community (source

versioning, bug tracking, test-driven development, etc.),

such tools are still lacking for ontology engineering. Sev-

eral ontology development best-practices and method-

ologies exist [52, 72, 77, 78], but none of them have been

accepted at a large scale. As ontology development is

in its essence a collaborative work, the lack of mature

tools for their collaborative development is a major ob-

stacle. An accepted and important practice in ontology

development is the re-use of existing resources to ensure

cross-compatibility with existing platforms and accep-

tance by existing communities. Here again, while the

concept of software modules (or software packages) is

well-defined and widely used in software development,

the best way to implement this concept in ontology en-

gineering is still lacking of maturity [10]. As for the

OntoSPM initiative, we decided to re-use as much as

possible existing resources through dedicated “ontol-

https://ontospm.univ-rennes1.fr/doku.php
https://ontospm.univ-rennes1.fr/doku.php
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ogy modules” containing only an extract of existing re-

sources relevant for our application (e.g., FMA ontol-

ogy). However, using existing resources also raises the

issue of maintaining the created modules according to

the evolution of the initial resource, problem known as

“dependance maintenance” in software engineering.

For further extending the scope of OntoSPM, the

link with existing resources in robotic surgery has also

to be strengthened. Discussions are under way in order

to link or integrate relevant resources from this domain

(e.g., IEEE-CORA). The domain of medical imaging

has also to be considered, and existing resources like

ODIS would also be relevant to OntoSPM. Some com-

petencies are available within the consortium as it is,

but extra participants are welcome, so that to extend

ontoSPM into both directions. One of the issues that

could prevent or limit the integration of such resources

is the choice of different upper-level ontologies on top

of these existing resources. Nevertheless, it is certainly

feasible to map entities to a different upper ontology;

it is fundamentally the role that was assigned to upper

level ontologies (as part of the EU WonderWeb Project)

to facilitate such mapping [44].

3.3 Strategy to ensure medical relevance and adoption

The strategy to ensure medical relevance and accep-

tance is threefold. First, the development of OntoSPM

is directed towards a framework that supports appli-

cations for real world surgical use cases and the most

pressing challenges in computer-assisted surgery research.

Second, practicing surgeons participate in the develop-

ment of OntoSPM and contribute with their knowledge

and feedback. Third, OntoSPM is disseminated into the

surgical research community.

Actual clinical application: A critical factor for adop-

tion is that surgeons understand the concrete added

value of SPMs in their daily clinical activities. Surgi-

cal use cases for OntoSPM so far include monitoring

of surgical procedures for context-aware assistance and

documentation, support of surgical training and (cogni-

tive) surgical robotics. Applications based on OntoSPM

are able to monitor surgical procedures and provide the

right assistance in the right situation based on formal-

ized surgical knowledge [32]. After the operation is fin-

ished, the surgeon benefits from automatically created

reports that summarize the procedure in a standard-

ized way. Thereby, OntoSPM enables comparison of the

procedure to other institutions [27]. Furthermore, these

reports will augment today’s text reports by taking all

relevant sensor data and patient information from the

procedure into account. Also, applications in surgical

training will allow the trainees to benefit from a more

standardized feedback. Training will not only be based

on sensor information [36] but training results will en-

able comparison of trainees’ performance. Because of its

shared vocabulary OntoSPM can help to bridge the gap

from the training lab to the OR. Here, applications can

monitor the trainee’s performance and progress in the

OR and subsequently recommend the most appropriate

training. Surgical robotics is nowadays dominated by

telemanipulators such as the da Vinci Surgical System

(Intuitive Surgical Inc.) [66]. In order to overcome their

passive role in the OR and become active assistants,

surgical robots need to develop an understanding of the

surgical procedure, anatomy, actions and potential ad-

verse events. OntoSPM makes this surgical knowledge

machine-interpretable, and thus helps the research com-

munity to add cognitive capabilities to surgical robots.

In this context, the analysis of surgical processes based

on data mining and machine learning techniques would

also benefit from OntoSPM. For example, [2] faced the

problem of surgical data recorded in different interna-

tional centers that used different surgical vocabularies

to record surgical process. In this work, the authors

manually aligned the vocabularies between the centers.

While this ad-hoc solution can be considered for proof-

of-concept application, it does not scale up and requires

important manual work. This is why providing an inter-

national resource allowing to share annotated data and

results is now mandatory to reach the next level of data-

driven and knowledge-driven applications in surgery.

Actual surgeons’ involvement : Participation of sur-

geons from different countries and surgical specialties

in the OntoSPM collaboration is a prerequisite for its

success. Yet, it is essential that their important clin-

ical knowledge can be shared with people trained in

computer science or knowledge engineering, in order to

insure clinical relevance. The organization of summer

schools can definitely help creating a common culture

shared by surgical research trainees on knowledge engi-

neering and the use of OntoSPM.

Dissemination: For dissemination into the surgical

community OntoSPM will be promoted as a frame-

work for standardization in surgical trials. It is a well-

known problem that surgical procedures - in contrast

to medication trials - cannot easily be compared be-

cause of a lack of standardization [28]. Whereas some

trials require their participants to proof their level of

competence [5], monitoring the surgical procedure, for

example regarding learning curves, requires new ap-

proaches [28]. Accordingly standardized reporting of

surgical procedures is only in its infancy [4]. Here, the

surgeons participating in the collaboration will transfer

the results of OntoSPM into their respective surgical

communities and describe surgical procedures in pub-
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lications according to the OntoSPM standards. As a

long-term goal publications of trial results in high im-

pact journals [2] will not only require a trial registra-

tion [9] and adherence to the Consolidated Standards

of Reporting Trials (CONSORT) [71], but also stan-

dardization of the procedures by means of models and

monitoring according to OntoSPM.

4 Conclusions

The paper presented the OntoSPM Collaborative Ac-

tion, which serves as a platform developing ontologies

in the domain of surgery, focusing on Surgical Process

Modeling in the context of Surgical Data Science. Past

efforts and contributions from actual members, related

to surgical process models and surgical robotics were

presented, as well as the currently active collaboration

between several European institutions.

The authors aim at increasing the size and the scope

of this international collaborating network, currently

limited to the development of the OntoSPM ontology.

Current members and their local clinical partners aim

at involving the international clinical community to de-

scribe needs, discuss knowledge models dedicated to

specific domains of surgery and specific procedures. Such

discussions and models are supposed to feed the reflec-

tion on what OntoSPM should cover in terms of scope

in the future.

Based on the experience and expertise of the action

partners and the industry needs, we envision that On-

toSPM can evolve to cover data science concepts in a

ontological framework, to categorize, learn and assess

from experimental surgical data. This framework will

enable next-generation surgery, delivering better and

safer patient care, thanks to the ability to share surgi-

cal knowledge and actual surgical data in semantically-

consistent machine readable form.
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