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Abstract

Several signal processing problems can be written as the joint eigenvalue de-

composition of a set of noisy matrices. This is notably the case of the canonical

polyadic decomposition of tensors that is widely applied in blind identification

and source separation. Most of the existing algorithms are based on a block co-

ordinate procedure and require significant modifications to deal with complex-

valued matrices. These modifications decrease algorithms performances either

in terms of estimation accuracy of the eigenvectors or in terms of computational

cost. Therefore, we propose a class of algorithms working equally with real- or

complex-valued matrices. These algorithms are still based on a block coordinate

procedure and multiplicative updates. The originality of the proposed approach

lies in the structure of the updating matrix and in the way the optimization

problem is solved in C. This structure is parametrized and allows to define up

to five different JEVD algorithms. Thanks to numerical simulations, we show

that, with respect to the more accurate algorithms of the literature, this ap-

proach improves the estimation of the eigenvectors and has a computational

cost significantly lower. Finally, as an application example, one of the proposed

algorithm is successfully applied to the blind sources separation of DS-CDMA

signals.
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1. Introduction

Joint EigenValue Decomposition (JEVD), also called joint diagonalization by

similarity, is an important issue for a number of signal processing applications

such as directions of arrival estimation [1], joint angle-delay estimation [2], multi-

dimensional harmonic retrieval [3], Independent Component Analysis (ICA) [4,

5, 6, 7, 8] and Canonical Polyadic Decomposition (CPD) of tensors [9, 10, 11].

JEVD problems occur when a set of K non-defective matrices M
(k) shares the

same basis of eigenvectors:

M
(k) = AD

(k)A−1, ∀k = 1, . . . ,K (1)

where the invertible matrix A ∈ CN×N is the common matrix of eigenvectors

and the K matrices D
(k) ∈ CN×N are all diagonal and contain the eigenvalues

of corresponding M
(k) matrices. The goal is then to estimate A or A−1 from

matrices M
(k).

Naive approaches consist in considering the K eigenvalue decompositions sepa-

rately or a linear combination of those. The main problem is then that if some

eigenvalues are degenerated or very close, the corresponding eigenvectors cannot

be correctly identified. Moreover, in practice this problem is accentuated by the

presence of noise because small perturbations of a matrix can strongly affect its

eigenvectors [9, 12]. As a consequence, a recommended solution is to decompose

the whole matrix set jointly. One usual way of doing is to make matrices M
(k)

as diagonal as possible within the same change of basis. That’s why JEVD can

be seen as a joint diagonalization problem. More precisely we speak of joint

diagonalization by similarity in contrast with the Joint Diagonalization by Con-

gruence (JDC) problem for which the inverse of the matrix A in (1) is replaced

by the conjugate transpose of A. Of course, JDC and JEVD are equivalent if
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A is a unitary matrix but this is not necessary the case here. A second conse-

quence is that JEVD algorithms are often inspired by JDC algorithms. Indeed

most of them resort to an iterative block coordinate procedure adapted from

the original Jacobi method [13]. This means that matrix A (or A−1) is built

by successive multiplicative updates. Each update involves a small set of pa-

rameters (with respect to N2) that allows to build the updating matrix. JEVD

algorithms differ one from another in the way these parameters are defined and

computed. Several family of algorithms can then be identified. Algorithms of

the first family look for the updating matrix in the form of a QR factorization

[3, 14]. More recently, three algorithms based on the polar decomposition were

proposed: SHear RoTation algorithm (SH-RT) [15], Joint Unitary Shear Trans-

formation (JUST) [16] and Joint Diagonalization algorithm based on Targeting

hyperbolic Matrices (JDTM) [11]. These algorithms build the updating matrix

as a product of a unitary and an hermitian matrix. Finally a third family of

algorithms based on the LU factorization and called Joint Eigenvalue decom-

position algorithms based on Triangular matrices (JET) was introduced in [8].

Thus, in practice the updating matrix is computed as a product of two matrices

having a particular structure: unitary, Hermitian or triangular. At this stage,

it is worth mentioning that all of the previously mentioned algorithms compute

these two matrices separately by solving two successive optimization problems.

Furthermore, two versions of each algorithm have been consistently proposed by

their authors in order to deal with real or complex-valued matrices respectively.

Indeed, the extension of the previous methods to the complex case implies to

work in R2 instead of C and this involves some significant modifications. Ac-

cording to the used approach, these modifications are not trivial and make the

optimization step more intricate. The consequence is a performance decrease

of the algorithms [8]. More precisely, in the complex case, algorithms based on

polar decomposition are robust to the noise power but require many iterations

to converge hence a high computational cost. Conversely algorithms based on

the LU decomposition have a low computational cost but are less robust to the

noise power. As a consequence we propose here a new class of algorithms that
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work equally for real- or complex-valued matrices.

The proposed approach has common points with the previous methods: it is also

based on a block coordinate procedure and the updating matrix is still computed

as a product of factorization matrices. However its originality is twofold. First,

these matrices are estimated conjointly from a simple eigenvalue decomposition

of a 2× 2 matrix. This strategy is inspired from [17] for the JDC problem and

allows to reduce the numerical complexity of the block coordinate step. Second

we propose a parametrized expression of the updating matrix that cover differ-

ent matrix factorizations. We then show that we can switch from one matrix

factorization to another by changing only one parameter. This allows to define

a class of five algorithms sharing the same structure. One of these algorithm

was briefly presented in [18]. Moreover, we have the possibility to pass from one

version to another at each new iteration of the optimization process. This ap-

proach has the advantage to work in C throughout the process. In other words,

no modifications are required to deal with real- or complex-valued matrices.

The paper is organized as follow: in section 2, we recall the principle of block

coordinate JEVD algorithms. In section 3, we describe the proposed method

and the algorithms. In section 4, we compare the numerical complexity of these

algorithms to the ones of the existing algorithms. Section 5 is dedicated to

numerical simulations. We have evaluated the performances of the proposed

algorithms to compute the JEVD of complex matrices according to several sce-

narios. Comparison are made with all the other JEVD algorithms. Finally in

section 6, we show how the proposed approach can be used to achieve the blind

sources separation of telecommunication signals.

Notations. In the following scalars are denoted by a lower case (a), vectors by

a boldface lower case (a) and matrices by a boldface upper case (A). ai is the

i-th element of vector a and Ai,j is the (i, j)-th element of matrix A. Operator

|| • || is the Frobenius norm of the argument matrix. Operator ZDiag{•} sets to

zero the diagonal of the argument matrix. I is the identity matrix. Modulus
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and conjugate of any complex number z are denoted by |z| and z̄ respectively.

k ∈ [1,K]N is the sequence of natural integers from 1 to K.

2. A block coordinate procedure

The JEVD problem consists in finding a matrix, B, which jointly diagonalizes

the given set of matrices M
(k) in equation (1). B is called the diagonalizing

matrix and can be considered as an estimate of A−1 up to a permutation and

a scaling indeterminacy. This indeterminacy is inherent to the JEVD problem.

An important uniqueness result has been shown in [9]. Let us define matrix Ω

as

Ω =




D
(1)
11 · · · D

(K)
11

... · · ·
...

D
(1)
NN · · · D

(K)
NN


 . (2)

The JEVD is unique up to a permutation and a scaling indeterminacy if and only

if the rows of Ω are two by two distinct (i.e. ∀m,n with m 6= n, ωm. − ωn. 6= 0

where ωm. and ωn. are the mth and the nth rows of Ω respectively). Obviously

this uniqueness condition makes sense only for K > 1. In the following, we will

always assume that this condition is satisfied.

We want to build B such that matrices D̂
(k)

defined by:

D̂
(k)

= BM (k)B−1, ∀k = 1, . . . ,K (3)

are as diagonal as possible. The method is iterative. At each iteration, B is

multiplicatively updated with a matrix X in the following way:

B ←XB (4)

and the set of matrices D̂
(k)

is consequently updated as:

D̂
(k) ←XD̂

(k)
X−1, ∀k = 1, . . . ,K. (5)

We expect that at the end of the iterative process, matrices D̂
(k)

are diago-

nalized and BA is close to the product between an invertible diagonal matrix
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and a permutation matrix. B is initialized from an appropriate initial guess B0

and before the first iteration we set D̂
(k) ← B0M

(k)B0
−1, ∀k ∈ [1,K]N. The

choice of B0 will be discussed in section 5.

At each iteration, X is computed thanks to a block coordinate procedure. Here,

it means that X is built from a set of N(N − 1)/2 matrices, denoted X(i,j)

(i = 1, . . . , N − 1 and j = i, . . . , N) in such a way that:

X =

N−1∏

i=1

N∏

j=i+1

X(i,j) (6)

where matrices X(i,j) are equal to the identity matrix up to four unknown

parameters: x
(i,j)
1 , x

(i,j)
2 , x

(i,j)
3 , x

(i,j)
4 :






∀ (p, q) /∈ {(i, i), (i, j), (j, i), (j, j)} , X
(i,j)
p,q = δp,q ,

X
(i,j)
i,i = x

(i,j)
1 , X

(i,j)
i,j = x

(i,j)
2 ,

X
(i,j)
j,i = x

(i,j)
3 , X

(i,j)
j,j = x

(i,j)
4 ,

(7)

where δ is the Kronecker delta. As a consequence the update in (4) and (5)

consists in N(N − 1)/2 successive (i, j)-updates of B and D̂
(k)

, defined as:





B ← X(i,j)B,

D̂
(k) ← X(i,j)D̂

(k)
(
X(i,j)

)
−1, ∀k ∈ [1,K]N.

(8)

The fact of having N(N − 1)/2 matrices sharing the structure defined in (7)

allows to equivalently affect all the off-diagonal terms of D̂
(k)

with elementary

operations. Thus, the block coordinate procedure transforms the problem of

estimating X into N(N−1)/2 successive simpler optimization problems. Indeed

each X(i,j) matrix is estimated by minimizing a wisely chosen cost function.

Obviously, this sequential optimization framework is not equivalent to a global

optimization of X. That’s why it needs several iterations to converge. It has

been successfully used to solve any kind of joint diagonalization problems. One

can see for instance [4, 19, 15] for examples in orthogonal JDC, non-orthogonal

JDC and JEVD contexts respectively.

For each (i, j)-update in equation (8), we define:

N (k) = X(i,j)D̂
(k)

(
X(i,j)

)
−1, ∀k ∈ [1,K]N (9)
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and we use the following cost function to compute the current matrix X(i,j):

C (X(i,j)) =
K∑

k=1

|N (k)
i,j |2 + |N

(k)
j,i |2. (10)

This diagonalization criterion has been introduced in [19] for the JDC problem

and it was successfully adapted to solve the JEVD problem in [11] and [8].

Minimizing this criterion is not equivalent to minimizing all the off diagonal

entries of N (k) ∀k ∈ [1,K]N but in practice it offers good, empiric, convergence

properties. A possible justification is that the only off-diagonal entries affected

by both matrix multiplications in (9) are N
(k)
i,j and N

(k)
j,i .

One of the advantages of criterion (10) is that it allows to rewrite the problem

involving only 2× 2 matrices instead of N ×N matrices. Since we are now only

interested in N
(k)
i,j and N

(k)
j,i in the left member of (9), we can define matrices

Ñ
(k)

and X̃
(i,j)

as

Ñ
(k)

=


N

(k)
i,i N

(k)
i,j

N
(k)
j,i N

(k)
j,j


 , ∀k ∈ [1,K]N; (11)

X̃
(i,j)

=


x

(i,j)
1 x

(i,j)
2

x
(i,j)
3 x

(i,j)
4


 . (12)

Then, we can reduce (9) into: ∀k ∈ [1,K]N,

Ñ
(k)

= X̃
(i,j)


D̂

(k)
i,i D̂

(k)
i,j

D̂
(k)
j,i D̂

(k)
j,j




(
X̃

(i,j)
)−1

(13)

and the cost function becomes:

C (X̃
(i,j)

) =
K∑

k=1

|Ñ (k)
1,2 |2 + |Ñ

(k)
2,1 |2. (14)

In the next section, we propose a general framework to minimize an approxi-

mation of C (X̃
(i,j)

) from which we derive five different ways to compute X̃
(i,j)

(and thus X(i,j)).
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3. A new class of JEVD algorithms

3.1. General framework

First of all, we recall that at each iteration the process has to be repeated in the

same way for each couple (i, j) with i < j. In order to simplify the notation,

in this section we will drop (i, j) subscripts by referring to X̃
(i,j)

, x
(i,j)
1 , x

(i,j)
2 ,

x
(i,j)
3 and x

(i,j)
4 as X̃ , x1, x2, x3 and x4.

Thanks to the scaling indeterminacy of the JEVD problem, we can impose that

det{X(i,j)} = 1. Thereby we have:

X̃
−1

=


 x4 −x2

−x3 x1


 . (15)

As a consequence, the off diagonal elements of Ñ
(k)

in (13) can be written:

∀k ∈ [1,K]N,





Ñ
(k)
1,2 = x1x2(D̂

(k)
j,j − D̂

(k)
i,i ) + x2

1D̂
(k)
i,j − x2

2D̂
(k)
j,i ,

Ñ
(k)
2,1 = x3x4(D̂

(k)
i,i − D̂

(k)
j,j ) + x2

4D̂
(k)
j,i − x2

3D̂
(k)
i,j .

(16)

Let us define the two vectors

v =




x1x2

x2
1

x2
2


 ; w =




x3x4

x2
4

x2
3


 (17)

and the two matrices

F 12 =




D̂
(1)
j,j − D̂

(1)
i,i D̂

(1)
i,j −D̂(1)

j,i

...
...

...

D̂
(K)
j,j − D̂

(K)
i,i D̂

(K)
i,j −D̂(K)

j,i


 ; (18)

F 21 =




D̂
(1)
i,i − D̂

(1)
j,j D̂

(1)
j,i −D̂(1)

i,j

...
...

...

D̂
(K)
i,i − D̂

(K)
j,j D̂

(K)
j,i −D̂(K)

j,i


 . (19)
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The two terms of the right hand member of (14) can be rewritten as:





K∑

k=1

|N (k)
1,2 |2 = vHFH

12F 12v,

K∑

k=1

|N (k)
2,1 |2 = wHFH

21F 21w

(20)

These two terms can be minimized separately. Matrices FH
12F 12 and FH

21F 21

are semi-define positive matrices, thereby both optimization problems can be

seen as minor eigenvalue problems (as explained in [17]). Indeed it is well

known that the norm-1 vector that minimize one of the quadratic form in (20)

is a normalized eigenvector associated to the smallest eigenvalue of FH
12F 12

or FH
21F 21. This eigenvector has to be unique up to the product by a scale

coefficient. Consequently the smallest eigenvalue must not have a multiplicity

superior to 1. However, by observing the structure of F 12 and F 21, it is easy to

check that if the diagonalizing solution is perfectly reached, these two matrices

will be of rank 1 and so FH
12F 12 and FH

21F 21 will have a zero eigenvalue of

multiplicity 2. Thus in order to avoid this problem, we firstly do the following

assumption:

Assumption 1. We assume that we are close to a stationary point. Here

a stationary point is characterized by |x2| ≪ 1 and |x3| ≪ 1. Moreover we

assume that we are in the vicinity of the diagonalizing solution and so that

∀k ∈ [1,K]N, ‖ZDiag{D̂
(k)}‖ ≪ 1.

Under assumption 1, we can neglect x2
2D̂

(k)
j,i and x2

3D̂
(k)
i,j in (16), yielding: ∀k ∈

[1,K]N, 




Ñ
(k)
1,2 ≃ x1x2(D̂

(k)
j,j − D̂

(k)
i,i ) + x2

1D̂
(k)
i,j ,

Ñ
(k)
2,1 ≃ x3x4(D̂

(k)
i,i − D̂

(k)
j,j ) + x2

4D̂
(k)
j,i .

(21)

Now we define the two vectors

v1 =


x1x2

x2
1


 ; w1 =


x3x4

x2
4


 (22)
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and the two matrices

E12 =




D̂
(1)
j,j − D̂

(1)
i,i D̂

(1)
i,j

...
...

D̂
(K)
j,j − D̂

(K)
i,i D̂

(K)
i,j


 ; (23)

E21 =




D̂
(1)
i,i − D̂

(1)
j,j D̂

(1)
j,i

...
...

D̂
(K)
i,i − D̂

(K)
j,j D̂

(K)
j,i


 . (24)

The cost function to be minimized is then given by the right member of:

C (X̃) ≃ vH
1 EH

12E12v1 +wH
1 EH

21E21w1. (25)

We can now notice that even if at the convergence, EH
12E12 and EH

21E21 can be

rank-1 matrices, their structure avoids the zero eigenvalue to be of multiplicity

2 because it exists at least one k ∈ [1,K]N such that D̂
(k)
i,i 6= D̂

(k)
j,j . Indeed, it

is noteworthy that, at the convergence, this last condition is equivalent to the

JEVD uniqueness condition given in introduction.

We denote e and f the normalized eigenvectors corresponding to the smallest

eigenvalue of EH
12E12 and EH

21E21 respectively, and thus we have:





e = αv1,

f = βw1,
(26)

where α and β are unknown scale parameters. Before going further, one should

note that due to the scaling indeterminacy of the JEVD, B is estimated up to

the left product by a diagonal matrix. Thanks to the updating process, whatever

the matrix X chosen for the update, we still keep a JEVD problem that can

be solved up to a diagonal matrix. Therefore, if X̃ is a minimizer of the right

member, in practice we can seek for any scaled matrix of determinant 1 of the

form Λ
−1X̃ where Λ is an unknown invertible diagonal matrix. Thus, at this

stage we can sum up our problem as follow:
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Problem 1. Let X̃ be an unknown complex-valued matrix whose determinant

is equal to 1:

X̃ =


x1 x2

x3 x4


 ; (27)

and e and f two given non-zero vectors defined by :

e = α


x1x2

x2
1


 ; f = β


x3x4

x2
4


 (28)

where α, β are unknown parameters, we want to find from e and f a matrix Y

verifying: det{Y } = 1 and X̃ = ΛY where Λ is an invertible diagonal matrix.

Then we will use Y as the updating matrix.

We can easily check that problem 1 admits one degree of freedom. Furthermore,

since e and f are non-zero we know that x1 6= 0 and x4 6= 0. As a consequence,

we can look for Y having the following structure:

Y =
1√

y4 − y2y3


 1 y2

y3 y4


 , with y4 6= 0. (29)

We then immediately deduce from the definition of e and f that





y2 =
x2

x1
=

e1
e2

,

y3 =
x3

x4
y4 =

f1
f2

y4.

(30)

Therefore, with this formulation the key point is the choice of y4. In the next

subsections, we will propose five different solutions to problem 1 corresponding

to different choices of y4 based on different factorizations of X̃. In this purpose,

before to proceed, we recall in the following propositions three classical factor-

izations of a square complex-valued matrix of size 2 and introduce three other

ones.

In each of the following propositions, X̃ is an invertible complex-valued matrix

of size 2× 2 with X̃1,1 6= 0 and X̃2,2 6= 0.
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Proposition 1. It exists an invertible diagonal matrix Λ and two complex

numbers y2 and y3 such that:

X̃ = Λ


 1 y2

y3 1


 1√

1− y2y3
. (31)

Proposition 2 (LU factorization). It exists an invertible diagonal matrix Λ

and two complex numbers l and u such that:

X̃ = Λ


1 0

l 1





1 u

0 1


 . (32)

Proposition 3 (RQ factorization). It exists an invertible diagonal matrix Λ

and two complex numbers r and q such that:

X̃ = Λ


1 r

0 1





1 −q̄
q 1


 1√

1 + |q|2
. (33)

Proposition 4 (Algebraic RQ factorization). It exists an invertible diagonal

matrix Λ and two complex numbers r and q such that:

X̃ = Λ


1 r

0 1





1 −q
q 1


 1√

1 + q2
(34)

if and only if
(

X̃2,1

X̃2,2

)2

6= −1.

Proposition 5 (Algebraic LQ factorization). It exists an invertible diagonal

matrix Λ and two complex numbers l and q such that:

X̃ = Λ


1 0

l 1





1 −q
q 1


 1√

1 + q2
(35)

if and only if
(

X̃1,2

X̃1,1

)2

6= −1.

Proposition 6 (Algebraic polar decomposition). If
(

X̃1,2

X̃1,1

)2

6= −1 and
(

X̃2,1

X̃2,2

)2

6=
−1, then it exists an invertible diagonal matrix Λ and two complex numbers h

and q such that:

X̃ = Λ


1 h

h 1





1 −q
q 1


 1√

(1− h2)(1 + q2)
(36)
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Propositions 1 and 2 are well known results. Proposition 3 is a simpler formu-

lation of the RQ factorization of X̃ taking advantage of X̃1,1 6= 0 and X̃2,2 6= 0.

Proofs of propositions 4, 5 and 6 are simple and are given in Appendix A.

3.2. Trivial solution

Proposition 1 provides a trivial solution to problem 1 by choosing y4 = 1 and

thus y3 = f1
f2

.

3.3. Solution based on the LU factorization

Proposition 2 allows us to look for Y in the form:

Y =


1 u

l lu+ 1


 . (37)

Then by identifying (29) and (37) we obtain immediately:





y4 = 1 + y2y3

y3 =
f1e2

f2e2 − f1e1

(38)

3.4. Solution based on the RQ factorization

Proposition 3 allows us to look for Y in the form:

Y =
1√

1 + |q|2


1 + qr r − q̄

q 1


 (39)

=
1 + qr√
1 + |q|2


 1 r−q̄

1+qr

q
1+qr

1
1+qr


 . (40)

Identifying (29) and (40) yields :

1

y4
= 1 +

y3y2
y24

+

∣∣∣∣
y3
y4

∣∣∣∣
2

(41)

and finally: 



y4 =
|f2|2 (f2e2 − f1e1)

f2e2(|f1|2 + |f2|2)

y3 =
f1
f2

y4

(42)
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3.5. Solution based on the algebraic RQ/LQ factorization

If we have
(

f1
f2

)2

6= −1, proposition 4 allows us to look for Y in the form:

Y =
1√

1 + q2


1 + qr r − q

q 1


 (43)

=
1 + qr√
1 + q2


 1 r−q

1+qr

q
1+qr

1
1+qr


 . (44)

Identifying (29) and (44) yields :

1

y4
= 1 +

y3y2
y24

+

(
y3
y4

)2

(45)

and finally: 



y4 =
f2(f2e2 − f1e1)

e2(f2
1 + f2

2 )

y3 =
f1
f2

y4

(46)

It is noteworthy that in the real case this solution is equivalent to the previous

one. Furthermore if
(

f1
f2

)2

= −1 but
(

e1
e2

)2

6= −1 one can still use the LQ

factorization of proposition 5 leading to:

y4 =
f2(e

2
1 + e22)

e2(e2f2 − e1f1)
. (47)

3.6. Solution based on the algebraic polar decomposition

If we have
(

e1
e2

)2

6= −1 or
(

e1
e2

)2

= −1 and
(

f1
f2

)2

= −1, proposition 6 allows

us to look for Y in the form:

Y =
1√

(1− h2)(1 + q2)


1 + qh h− q

h+ q 1− qh


 (48)

=
1 + qh√

(1− h2)(1 + q2)


 1 h−q

1+qh

h+q
1+qh

1−qh
1+qh


 . (49)

Identifying (29) and (49) yields :

y24 + y4 +
(y23 − y22)

2
− 2 = 0 (50)
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and finally:





(2f2
2 e

2
2 + f2

1 e
2
2)y

2
4 + 2e22f

2
2 y4 − f2

2 (e
2
1 + 4e22) = 0

y3 =
f1
f2

y4.
(51)

Since y3 should be close to zero at the convergence, we can choose the root of

the binomial that leads to the smallest modulus of y3.

These solutions define a class of JEVD algorithms called JAPAM (Joint eigen-

value decomposition Algorithms using a PArameterized Matrix) sharing the

same structure. In the following, we will call JAPAM-1, JAPAM-2, JAPAM-3,

JAPAM-4 and JAPAM-5 the algorithms based on the parametrizations pro-

posed in section 3.2, 3.3, 3.4, 3.5 and 3.6 respectively. The structure of JAPAM

algorithms is summed up in algorithm 1. We clearly see that we can switch from

one JAPAM algorithm to another by changing only the expression of y4 and it

is worth mentioning that this can even be done during the iterative procedure.

This feature will not be studied here.

One should note that in JAPAM-5 matrix Y is decomposed as the product of a

complex symmetric matrix and a complex orthogonal matrix. We recall that a

complex symmetric matrix is any complex matrix H verifying HT = H and a

complex orthogonal matrix is any complex matrix Q verifying QTQ = I. This

decomposition is thus a particular case of the algebraic polar decomposition in-

troduced and studied in [20, 21]. In the present context, it is more appropriate

than the usual polar decomposition (defined as the product of an Hermitian ma-

trix and a unitary matrix). Indeed the algebraic polar decomposition does not

involve product and cross product between the parameters and their complex

conjugates. This allows their computation in a very simple way as it has been

shown in section 3.6. Moreover, equations are the same in the real and complex

cases. The same reasoning has led to the factorizations used for JAPAM-4 that

involve the product of a triangular matrix and a complex orthogonal matrix.

In the best of our knowledge, we found no mention of such a decomposition so

far, so we propose to refer to it as an algebraic RQ or LQ decomposition. The

counter part of these simplified algebraic decompositions is that they do not
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always exist. However, the existence conditions, given in 3.4, 3.5 and 3.6, are

very weak in practice.

Finally we can notice that JAPAM algorithms work with complex and real data

without changes. This is an important feature of the proposed approach in

comparison with the existing algorithms.

Algorithm 1 The JAPAM algorithms

Let SC be a stopping criterion and Itmax the maximal number of iterations;

Initialize B with I or any clever choice;

it← 1;

while SC is false and it < Itmax do

for i = 1 to N − 1 do

for j = i+ 1 to N do

Compute EH
12E12 and EH

21E21 by using (23) and (24);

Compute the eigenvalue decomposition of EH
12E12 and EH

21E21 to find

e and f ;

Compute y2 = e1/e2;

Compute y4 according to one of the proposed solutions and deduce

y3 = y4f1/f2;

Compute X(i,j) from (7) with x
(i,j)
1 = 1√

y4−y2y3

, x
(i,j)
2 = y2√

y4−y2y3

,

x
(i,j)
3 = y3√

y4−y2y3

and x
(i,j)
4 = y4√

y4−y2y3

;

Update B ←X(i,j)B;

Update D̂
(k) ←X(i,j)D̂

(k)
(
X(i,j)

)−1

∀k ∈ [1,K]N;

end for

end for

Update SC

it← it+ 1;

end while
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4. Numerical complexity

We define here the numerical complexity as the number of real multiplications

computing during one iteration. We consider that a complex multiplication is

equivalent to four real multiplications (even if it could be done in only three

real multiplications). Numerical complexity of JEVD algorithms resorting to

block coordinate procedure are dominated by the updating step (equation (8)).

Therefore, the numerical complexity of existing polar decomposition based al-

gorithms is about 32KN3 for SH-RT and JDTM and 44KN3 for JUST. The

proposed approach allows to reduce this number to only 16KN3. One can argue

that JET-O and JET-U still have the lowest complexity with 8KN3 and 4KN3.

However it has been shown in [8] that, in the complex case, these algorithms

are less efficient than the others in the medium-low SNR range. This will be

confirmed in the next section.

5. Numerical Simulations

We now compare the performances the JAPAM approach with those of refer-

ences JEVD algorithms: SH-RT, JDTM, JUST, JET-U and JET-O. The three

first algorithms define the family of polar decomposition based algorithms. In

the comparisons the JAPAM family will be represented by JAPAM-2, JAPAM-

4 and JAPAM-5 algorithms. Indeed preliminary studies were led (results not

shown) and revealed that they consistently perform better than JAPAM-1 and

JAPAM-3. The set of matrices to decompose is built from complex valued ma-

trices. In order to evaluate the accuracy of the eigenvector matrix estimation,

we use an indicator which quantifies the relative deviation between the inverse of

the estimated diagonalizing matrix B and the actual matrix of eigenvectors A.

After removing scaling and permutation indeterminacy, the indicator is defined

as:

rA =
||A−B

−1||
||A|| . (52)

A second criterion is used to measure the average computational cost of the

algorithms. This criterion, called Γ, is the product of the numerical complexity
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with the average number of iterations that an algorithm needs to converge.

We study the algorithms behavior according to two scenarios. In the first one,

we focus on the impact of the noise level. In the second one, we study the

impact of the matrix size. For both scenarios, we build the set of matrices as

follow:

M (k) =
AD(k)A−1

||AD(k)A−1||
+ σ

E
(k)

||E(k)|| , ∀k = 1, ...,K. (53)

Where matrices A, D(k) and E(k) ∈ CN×N are drawn according to a standard

normal distribution and σ is a parameter which allows to set the Signal to Noise

Ratio (SNR). We now define the following function:

S (B) =

K∑

k=1

‖ZDiag{BM (k)B−1}‖2. (54)

All the algorithms are stopped when the criterion |S (Bit+1) − S (Bit)| falls

bellow 10−6 (where Bit is the estimated diagonalizing matrix at iteration it)

or when they have computed 150 iterations. For each value of the varying

parameters (SNR value or matrix size), we perform 200 Monte Carlo (MC) runs

and for each MC runs, we build a new set of matrices.

5.1. Scenario 1

Settings: we take a matrix size N = 5, a number of matrices K = 20 and we

vary the SNR values from 0 dB to 100 dB by step of 10 dB. We initialize B

with the identity matrix.

Results: the results of scenario 1 are plotted on figure 1.

JAPAM-5 provides the best estimation of the matrix of eigenvectors from 30 dB

to 100 dB, indeed it has the lowest average and median values of rA and also

the lowest standard deviation (respectively figures 1a, 1b and 1c). Under 30 dB

the only reference JEVD algorithm which competes with JAPAM-5 is JDTM.

About the average computational cost (figure 1d), it can be seen that JAPAM-5

is about 2 to 10 times less costly than polar decomposition based algorithms

(SH-RT, JUST and JDTM).
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JAPAM-4 reaches a level of performances close to JAPAM-5 in term of accu-

racy and stability. However it is more costly, in particular for the intermediate

SNR values. Indeed, at 0 dB and 100 dB JAPAM-4 and JAPAM-5 have about

the same average computational cost while, for instance, JAPAM-4 is 1.9 times

more costly than JAPAM-5 at 30 dB.

It is noteworthy that JAPAM-2 has the same rA median value as JAPAM-5

and JAPAM-4 above 30 dB. On the other hand its rA average value and its rA

standard deviation are greater. It means that JAPAM-2 converges more fre-

quently to absurd solutions than JAPAM-5 and JAPAM-4. Thereby JAPAM-2

is not recommended for low SNR values. In addition, JAPAM-2 is costlier than

JAPAM-4 and JAPAM-5 (but it remains less costly than the polar decomposi-

tion based methods).

Thus we show with this first scenario that the JAPAM method is interesting for

diagonalizing a set of small matrices for any tested SNR value at the exception

of 0 dB but we can consider that at this value no algorithms give satisfying re-

sults. Indeed JAPAM-5 and JAPAM-4 improve the estimation of the matrix of

eigenvectors with a limited computational cost and also appears as the stablest

algorithms. JET-U is clearly the least costly algorithms but it is also much less

accurate and stable than JAPAM-5 and JAPAM-4.

5.2. Scenario 2.a

Settings: we now set the SNR value to 50 dB, the number of matrices to

K = 20 and we vary the matrix size from N = 3 to N = 15 by step of 1. We

still initialize B with the identity matrix.

Results: results of scenario 2.a are plotted on figure 2.

By observing the rA average and the rA median value (figures 2a and 2b) of the

JAPAM methods, it can be seen that these values dramatically increase from

a critical value of N which depends on the JAPAM version. Actually, in this

scenario, we can define a working range for each of the proposed algorithm.

The working range of JAPAM-5 is located under N = 13 (figure 2b). However

JAPAM-5 is clearly the most accurate of all the algorithms for N < 12 (figure
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Figure 1: Algorithm performances computed from 200 MC runs on sets of 20 matrices 5× 5

(initialization with Identity matrix).
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2a). Inside its working range it has a quite good stability. It is notably the

stablest for N < 7 (figure 2c). Average computational cost is displayed on fig-

ure 2d. Inside its working range, JAPAM-5 is much less costly than the polar

decomposition based algorithms but JET-U is still the less costly for any matrix

size.

The working range of JAPAM-4, its working range is located under N = 10. It

can be considered as the second best algorithm for N < 7 in term of estimation

precision of A. For N = 3 and N = 4, it is as stable as JAPAM-5 then its

rA standard deviation increases until the end of its working range. JAPAM-4

is less costly than the polar decomposition based algorithms, but it is costlier

than JAPAM-5.

The working range of JAPAM-2 is located under N = 7. It is competitive with

the reference JEVD algorithms for N < 6 but it is one of the least stable algo-

rithms in its working range. Moreover, in this range, the average computational

cost of JAPAM-2 is the most important of the JAPAM methods but it is still

clearly lower than those of classical polar decomposition algorithms.

Thus in this scenario we show that the JAPAM algorithms are interesting for

small and medium matrix sizes in terms of accuracy, stability and computational

cost but with this kind of initialization (using the identity matrix) they are not

adapted to big matrices. This behaviour may be explained by the combina-

tion of the chosen diagonalization criterion and the approximation derived from

assumption 1. In the following, we will show that this issue can be corrected

easily.

The common framework of the JAPAM methods allows to highlight that the

LU factorization is less robust to approximation errors than the algebraic QR

factorization which is itself less robust than the algebraic polar decomposition.

5.3. Scenario 2.b

Settings: we take the same settings as for scenario 2.a but here we initialize

B (for all the algorithms) with the results of a General EigenValue Decompo-

sition (GEVD). The GEVD is the exact joint eigenvalue decomposition of two
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Figure 2: Algorithm performances computed from 200 MC runs on sets of 20 matrices with a

SNR value of 50 dB (initialization of B with the identity matrix).
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matrices, which are here two matrices of the set M(k) randomly chosen (but we

could choose the two matrices with the lower conditional number). The GEVD

helps the algorithms to get closer to the diagonalizing solution.

Results: Results of scenario 2.b are plotted on figure 3.

We can notice that, this time, the JAPAM algorithms provide very good results

for any matrix size in term of average (figure 3a) and of median (figure 3b)

estimation of A.

Indeed by observing the rA average value and the rA median value of JAPAM-5,

we can see that it is now the best method for estimating the matrix of eigen-

vectors for any value of N . Concerning the standard deviation (figure 3c), we

can notice that for N < 12 JAPAM-5 and JDTM are the stablest algorithms,

but for N ≥ 12 JDTM is more stable. About the average computational cost,

the gap between the algorithms is constant. Once again JAPAM-5 is much less

costly than SH-RT, JUST and JDTM but costlier than JET-U and JET-O.

Regarding the average value of rA JAPAM-4 is as accurate as JAPAM-5 for the

estimation of the matrix of eigenvectors for N < 5. Then it is slightly less accu-

rate. On the other hand, regarding the median value, JAPAM-4 is as good as

JAPAM-5 for any matrix size. Concerning the standard deviation of JAPAM-4,

we can notice that it provides the same results as JAPAM-5 for N < 6, then it

is outperfomed by JAPAM-5 and by the polar decomposition based algorithms.

In conclusion, JAPAM-4 is almost as accurate as JAPAM-5 but it is less stable.

Its average computational cost is also slightly more important than the one of

JAPAM-5.

Finally JAPAM-2 is as accurate as JAPAM-5 and JAPAM-4 on median. But

it is not as good regarding the average value for N > 5. Its rA standard de-

viation is similar to the one of JAPAM-5 and JAPAM-4 for N < 6, then it

competes only with JET-O and JET-U which are the least stable algorithms.

So JAPAM-2 is globally as accurate as JAPAM-4 and JAPAM-5, but it is less

stable. The average computational cost of JAPAM-2 is slightly higher than

those of JAPAM-4.

Thus, we have shown that initializing our problem with a GEVD significantly
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improves the performances of the coupled algorithms for the largest matrix

sizes. This makes of JAPAM-5 a suitable solution if we look for the algorithm

that achieves the best performances in terms of estimation of the matrix of

eigenvectors, whatever the considered combination of SNR and matrix sizes.

Furthermore its average computational cost is limited with respect to all other

algorithms at the exception of JET-O and JET-U.
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Figure 3: Algorithm performances computed from 200 MC runs on sets of 20 matrices with a

SNR value of 50 dB (initialization of B with a GEVD).

6. Application example in numerical telecommunications

As mentioned in introduction of this paper, canonical polyadic decomposition

of tensors is one the main motivation of JEVD algorithms since various authors

showed that the CPD can be rewritten as a JEVD problem, giving birth to fast

CPD algorithms in comparison to classical iterative approaches.
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Complex-valued tensor and CPD are commonly used in digital telecommuni-

cations for blind source separation purpose. In particular, in [22] Sidiropoulos et

al showed how a Direct-Sequence Code Division Multiple Access (DS-CDMA)

system can be modelized by using a Canonical Polyadic Decomposition (CPD

or PARAFAC) model and then proposed a "PARAFAC DS-CDMA receiver"

that allows to estimate the source signals in a deterministic way. Indeed, in the

absence of intersymbol-interference the complex envelop of the source signals

appear as the columns of one of the CPD factor matrices. Since this pioneer

work, deterministic tensor approaches have been successfully applied to several

DS-CDMA devices [23, 24, 25, 26]. In this short section, we want to evaluate

the suitability of the JAPAM-5 algorithm to address this kind of problem. In

this purpose we simulate the following DS-CDMA system of transmission: At

the emission, N users transmit at the same time sequences of P QPSK symbols

spread by hadamar codes of Q symbols. At the reception, we consider an array

of R antennas and the transmission canal is modeled by R linear mixtures of

the N emitted signals. A white Gaussian noise is added to the mixed signals.

Thus each receiving antenna receives a sequence of PQ symbols. After shifting

and downsamping operation, the collected symbols are gathered in a P ×Q×R

complex-valued tensor X and the rank N CPD of X gives:

Xpqr =

N∑

n=1

SpnCqnHrn + Epqr (55)

where Spn is the pth symbol of source n, Cqn is the qth symbol of code sequence

n, Hrn is the nth coefficient of the linear mixture received by antenna r and

tensor E represents the noise. Hence, CPD factors matrices S, C and H define

the source, code and mixture matrices respectively and can be estimated by the

rank N CPD of X . In the following simulation we compare the performances

of 3 CPD algorithms: ALS, ALS+ELSCS1 and DIAG-JAPAM-5 which is a

version of the DIAG algorithm [11] that use the proposed JAPAM-5 algorithm

1we used the matlab code provided at the author web-page:

http://dimitri.nion.free.fr/Codes/Tensor_Decompositions.html
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to compute the JEVD step. ALS (Alternating Least Squares) is still one of

the most popular CPD algorithm. An Enhanced Line Search procedure (ELS)

has been proposed in [27] for real-value tensor CPD in order to improve ALS

performances. This procedure was then extended to complex-valued tensors in

[28], giving birth to the ALS+ELSCS algorithm. It it worth mentioning that in

the same paper both algorithms were successfully applied for blind separation

of DS-CDMA signals. We propose here a simple test scenario that illustrate

the interest of the proposed method. We choose N = 7, P = 512, Q = 16 and

R = 5 so that we have less receiving antenna (4) than emitting antenna (7) and

we vary the signal to noise ratio of the system from 0 to 12 dB. Comparisons

are done by means of MC simulations: for each SNR value 200 test tensors

are built according to equation (55) from 200 random draws of S, H and E.

More precisely, each column of S is built as the QPSK modulation of a random

binary signal of length 2P . Test tensors are then decomposed using the three

algorithms. ALS and ALS+ELS algorithms are initialized randomly and the

JEVD step of DIAG-JAPAM-5 is initialized by the identity matrix. Our first

comparison criteria is the average value over 200 MC runs of the Binary Error

Ratio (BER) computed after demodulation from the source matrix estimated

by each algorithm. Results are plotted on figure 4. It clearly appears that the

best results are obtained with DIAG-JAPAM-5, whatever the SNR value. On

figure 5, we plot the average value of the normalized mean squared error, denoted

rH , between the actual mixing matrix and the mixing matrices estimated by the

three algorithms. Again, the best estimates of the mixing matrix are consistently

provided by DIAG-JAPAM-5. Actually, in this particular scenario iterative

algorithm ALS and ALS+ELS algorithms provide poor average results. This is

mainly explained by the sensibility of algorithms to the random initialisation,

especially when the rank of the CPD is high and this is the case here.
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Figure 4: Evolution of the average value of the BER with the SNR (at 12 dB the value

obtained with DIAG-JAPAM-5 is zero)
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7. Conclusion

Thus we introduced a new class of algorithms to compute the joint eigenvalue

decomposition of a set of matrices. Five algorithms that share a common struc-

ture are described: JAPAM-1, JAPAM-2, JAPAM-3, JAPAM-4 and JAPAM-5.

In comparison with existing algorithms, the proposed approach offers several im-

mediate advantages. First of all, it allows to deal with real or complex matrix

sets without change. Second, our numerical simulations show that JAPAM-5

and JAPAM-4 are the most accurate and the stablest algorithms to decom-

pose a set of small complex-valued matrices, whatever the SNR value. Finally,

in terms of computational cost JAPAM-5 and JAPAM-4 are usually much less

costly than polar decomposition based algorithms. JET algorithms have a lower

computational cost but are significantly less accurate and stable.

Numerical simulations also highlighted that when the JAPAM algorithms are

initialized with the identity matrix, these are very sensitive to the matrix size.

This is particularly true for JAPAM-2 and JAPAM-4. However we then show

that this issue can be easily circumvent by using a generalized EVD for initializa-

tion. Indeed the more we increase the size of the matrices the more JAPAM-2,

JAPAM-4 and JAPAM-5 takes benefit of the GEVD so that finally JAPAM-4

and JAPAM-5 provide the best results of all the tested algorithms whatever the

evaluated matrix sizes.

Globally, JAPAM-5 appears as the best of the JAPAM algorithms, whatever

the tested scenario: the performance criterion or the initialization. It is fol-

lowed by JAPAM-4 and JAPAM-2. The gap between the JAPAM algorithms

is reduced when using a GEVD for initialization. The only difference between

the proposed algorithms is the used matrix factorization. Therefore, if a more

general conclusion had to be drawn, this study would advocate for the use of

the polar decomposition for joint diagonalization problems.

The present work also includes a practical application of JAPAM-5 for the

blind source separation of telecommunication signals. Indeed we have shown

that JAPAM-5 can be efficiently used for the canonical polyadic decomposition
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of complex DS-CDMA signals with respect to classical approaches. Finally,

one interesting feature of the JAPAM approach is that the algorithms can be

interchanged during the iterative process. In other word, one iteration of an al-

gorithm can be followed by an iteration of another one then by one iteration of

a third one and so on. This point has not been exploited here and investigated

in future works.

Appendix A. Proof of propositions 4, 5 and 6

Proof of proposition of 4. Equation (34) is equivalent to

X̃


 1 q

−q 1





1 −r
0 1


 1√

1 + q2
= Λ. (A.1)

Thereby, we have to find a necessary and sufficient condition for which the

following system in q and r has a solution:





X̃1,1(q − r) + X̃1,2(1 + qr) = 0

X̃2,1 − qX̃2,2 = 0

1 + q2 6= 0.

(A.2)

Recalling that X̃2,2 6= 0 and det(X̃) = X̃1,1X̃2,2 − X̃2,1X̃1,2 = 1, the system is

solved by q = X̃2,1/X̃2,2 and r =
X̃2,2X̃1,2+X̃1,1X̃2,1

X̃1,1X̃2,2−X̃2,1X̃1,2

if and only if (
X̃2,1

X̃2,2

)2 6= −1.

Obviously, if (
X̃2,1

X̃2,2

)2 6= −1, Λ being a product of invertible matrices, it is

invertible too.

Proposition 5 can be proved in the same way.

Proof of proposition 6. We use the same reasoning as for proposition 4:

thus we show that it exists h and q such that the matrix

X̃


 1 q

−q 1





 1 −h
−h 1


 1√

(1− h2)(1 + q2)
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is diagonal and invertible. In other words we want to check that if (
X̃1,2

X̃1,1

)2 6= −1

and (
X̃2,1

X̃2,2

)2 6= −1, then the following system has a solution:





X̃1,2qh+ X̃1,1q − X̃1,1h+ X̃1,2 = 0

−X̃2,1qh− X̃2,2q − X̃2,2h+ X̃2,1 = 0

1 + q2 6= 0

1− h2 6= 0.

(A.3)

We distinguish four cases:

case 1. X̃1,2 = X̃2,1 = 0

This case is trivial since X̃ is already an invertible diagonal matrix so q = h = 0

is a solution.

case 2. X̃1,2 = 0 and X̃2,1 6= 0

One can easily check that in this case, q = h with q verifying:

− X̃2,1q
2 − 2X̃2,2q + X̃2,1 = 0. (A.4)

This polynomial has at least one solution. Then, (
X̃2,1

X̃2,2

)2 6= −1 implies q2 6= −1
and X̃2,2 6= 0 implies h2 6= 1.

case 3. X̃1,2 6= 0 and X̃2,1 = 0

The same reasoning leads to the following conclusion: q = −h and q is a solution

of

− X̃1,2q
2 + 2X̃1,1q + X̃1,2 = 0. (A.5)

Then (
X̃1,2

X̃1,1

)2 6= −1 implies q2 6= −1 and X̃1,1 6= 0 implies h2 6= 1.

case 4. X̃1,2 6= 0 and X̃2,1 6= 0

Here we have: 



αq − βh+ γ = 0

βh2 + 2h− β = 0

q2 6= −1
h2 6= 1.

(A.6)
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with 



α = X̃2,1X̃1,1 − X̃2,2X̃1,2

β = X̃1,1X̃2,1 + X̃2,2X̃1,2

γ = 2X̃2,1X̃1,2.

We have four subcases according to the value of α and β:

1. α = 0 and β = 0

Impossible because X̃2,1 6= 0 and X̃1,2 6= 0.

2. α 6= 0 and β = 0

Here, a solution is given by q = − γ
α
= − X̃1,2

X̃1,1

and h = 0 thus if (
X̃2,1

X̃1,1

)2 6=
−1 then q2 6= −1.

3. α = 0 and β 6= 0

Here, a solution is given by q = 0 and h = γ
β
=

X̃1,2

X̃1,1

=
X̃2,1

X̃2,2

. We can then

easily verify that h2 = 1 is incompatible with det{X̃} = 1.

4. α 6= 0 and β 6= 0

Here it is clear that h 6= 1 and h 6= −1 (otherwise the second equation

in (A.6) would be false). The first equation of (A.6) gives h = αq+γ
β

,

reporting this expression in the second equation yields:

α2q2 + (2αγ + 2α)q + γ2 + 2γ − β2 = 0 (A.7)

which has at least one solution. After some straightforward computations,

we can show that:

q2 6= −1⇔ α 6= ±i(1 + γ) (A.8)

and that





(
X̃1,2

X̃1,1

)2 6= −1

(
X̃2,1

X̃2,2

)2 6= −1
⇒ α 6= ±i(1 + γ).
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