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RUPTURE DETECTION IN FATIGUE CRACK PROPAGATION

ROMAIN AZAÏS, ANNE GÉGOUT-PETIT, AND FLORINE GRECIET

This chapter is dedicated to piecewise-deterministic models for Fatigue Crack
Propagation (FCP) with a particular focus on the estimation issues. In this setting,
the process is usually observed on a temporal discrete grid and through an additive
noise, which makes unknown both the continuous trajectory and the mode. A
significative part of the chapter relies on the article [4].

1. Phenomenon of Crack Propagation

FCP in materials is a complex deterioration process which, under the action
of cyclic stresses over an extended time period, modifies local properties of the
materials. It begins by the apparition of micro-cracks which can propagate rapidly
until the failure of the structure.

FCP is responsible for 50 to 90 percent [36] of all mechanical failures in metallic
structure. Engineers have to take into account this phenomenom in the design and
in life prediction of fatigue-critical structures such as aircrafts, offshore platforms,
bridges, etc.

Figure 1.1. Schematic illustration of the different regimes of
FCP. The vertical dashed lines indicate the transition between
crack propagation regimes.

Data obtained from experimental tests provide the main source of information
regarding fatigue of materials. If we denote at the length of the crack at time t, for
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ductile materials, fatigue crack growth rate dat/dt can be correlated with the cyclic
variation of stress intensity factor ∆Kt. The typical logarithmic plot of dat/dt
versus ∆Kt is shown in Figure 1.1. The curve involves three regimes. In regime
I, referred to as the crack initiation region, crack propagation is a discontinuous
process which is extremely slow at very low values of ∆Kt. In regime II, a power-
law relationship between crack growth rate and stress intensity factor range is
observed. Finally, regime III corresponds to a quick and unstable crack growth
leading to rupture when the stress intensity factor tends to the critical value Kc.

1.1. Virkler’s Data. Experimental data obtained by Virkler et al. [39] is a well
known source of information about fatigue of engineering materials. These data,
available in the literature, are probably the most famous and frequently used data
sets to model crack propagation. Many figures and studies presented in this chapter
rely on analyses about these data. We describe the process of their acquisition in
the next paragraph.

A total of 68 center-crack specimens of 2024-T3 aluminium alloys were tested
under constant amplitude loading ∆σ = 48.28 MPa at a stress ratio R = 0.2.
During these tests, engineers used the same material containing initially identical
artificial made 9 mm crack length where the crack initiation can be considered
completed. The sample paths represent the evolution in time of the crack size for
the 68 specimens, whose measures were performed until they reach the critical value
Kc=49.8 mm. Measurements were taken every 0.2 mm in the range 9.0 ≤ at ≤ 36.2
mm, every 0.4 mm in the range 36.2 ≤ at ≤ 44.2 mm, and every 0.8 mm in the
range 44.2 ≤ at ≤ 49.8 mm.

Number of cycles
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Figure 1.2. The 68 experimental crack length curves versus the
number of cycles provided by [39].
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A total of 164 measurements were taken for each of the 68 replicate specimens
presented in Figure 1.2. These empirical data were used to build the FCP models
of this chapter.

2. Modeling Crack Propagation

2.1. Deterministic Models. Generally, phenomenological laws used by mechan-
ical engineers to model FCP are of the following form [25],

dat
dt

= L(t,∆Kt,Kmax,t,Kc, σmax, at, R), (2.1)

with L a non-negative function and the different notations given in Table 2.1.
t number of cycles
at crack size
da/dt fatigue crack growth rate
∆Kt range of the stress intensity factor
Kmax,t maximum stress intensity factor, depending on t
Kc fracture toughness
σmax maximum stress amplitude in the loading spectrum
R stress ratio defined by R = Kmin,t/Kmax,t

∆σ stress range defined by ∆σ = σmin − σmax

Table 2.1. Notations

Paris and Erdogan in [31] were the first to propose an equation of such a form.
This equation, called Paris’ law, only describes the linear part of the logarithmic
relationship between FCP rate and stress intensity range (regime II). It is certainly
the most used model because of its simplicity. It relates the change rate of crack
size at with number of load cycles t through ∆Kt by the following equation,

dat
dt

= C(∆Kt)
m, (2.2)

where C and m are constant parameters depending on the material. In most cases,
∆Kt is given by the relation

∆Kt = Y (at)∆σ
√
πat,

where Y (at) is a dimensionless factor that considers the crack shape and the geom-
etry of the specimen, and ∆σ is the stress range.

Even with its popularity and its accuracy in describing the regime II of prop-
agation, the model given by (2.2) is not well adapted to express the transition at
the beginning of region III and it does not account for stress ratio effects. Many
alternatives for FCP relations have been proposed to overcome the limitations of
Paris’ law. The Walker equation, introduced by Walker in [40], provided one of the
first simple equations that accounted for the stress ratio R and is given by

dat
dt

= C[(1−R)mKmax]p, (2.3)

where C, m and p are the parameters of this law.
Forman, in [17], suggested a model called Forman’s law. This law captures the

rapid increase of growth in region III and includes the stress ratio R and the fracture
toughness Kc. To do that, Paris’ law equation was divided by a factor that would
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reach zero when the stress intensity factor reaches a critical level. The general form
of the Forman equation is

dat
dt

=
C(∆Kt)

m

(1−R)Kc −∆Kt
, (2.4)

where Kc, the fracture toughness represents the value of the stress intensity factor
required to reach failure. This equation can be rearranged to yield the following
equality,

dat
dt

=
C(1−R)m−1Km

max,t

Kc −Kmax,t
, (2.5)

which shows that the equation has the capability to describe multiple stress ratio
data sets.

Other authors such as Forman and Mettu in [18] proposed more complex models
which account for the stress ratio R and describes the entire crack growth life taking
into account both of the threshold of stress intensity range delimiting the regimes
∆Kth, ∆Kσ (see Figure 1.1) and therefore of the material fracture toughness Kc.

Nevertheless, Paris’ law is still in wide use to model fatigue crack growth be-
cause it works well to describe the regime II of propagation with a low number of
parameters.

2.2. Sources of Uncertainties. Based on engineering and macroscopic view-
points, mechanical properties of material are often considered homogeneous. How-
ever, as shown on the Virkler’s data presented in Figure 1.2, crack length data
exhibit statistical variability which increases with the number of cycles. Other
authors such as Ghonem and Dore in [19] or Wu and Ni in [43] show similar results.

The randomness observed is not an artifact of the measurement device but is due
to the material behavior, even when data were obtained under the same loading
condition in a strictly controlled environment with specimens cut from the same
sheet. These random effects seem to vary not only from specimen to specimen but
also during crack growth.

We can suppose that basic scientific knowledge of fatigue is not yet certain enough
to describe in a strictly deterministic manner the propagation of cracks. It is not
possible to propose a deterministic law which would be valid for any individual of an
experiment even if the experiment is repeated under absolutely identical conditions.

This scatter is also shown on the logarithmic representation of the Virkler’s
results of crack growth rate in terms of stress intensity range ∆Kt represented in
Figure 2.3. As schematized in Figure 1.1, a linear increase of dat/dt is observed on
the largest part of the propagation with some changes at the end and to a lesser
extend, at the beginning.

Due to the amount of scatter, investigators have started using statistical models
to characterize FCP behavior. It has been pointed out that the remaining scatter
is due to the essentially random nature of fatigue crack growth which is a result
of the relative inhomogeneity of the material. Deterministic models can not ade-
quately describe crack growth behavior, and the variability in the data should be
appropriately taken into account in the design and in analysis of fatigue-critical
structure.

2.3. Stochastic Models. To take into consideration scatter observed on data,
many authors were interested in stochastic models to describe the evolution of
crack propagation in fatigue.
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Figure 2.3. Crack growth rate in terms of ∆Kt computed from
the 68 experiments provided in [39].

Some of them have proposed models to describe the process of crack initiation,
see for instance [35, 24]. In [35], the authors proposed some empirical equations.
They indicate a possible way towards a more detailed characterization of random
microstructural effects of mechanical and fatigue properties of materials. The re-
sults can be used for the design of device.

One advantage of the stochastic model proposed by [24] is that it is applied to
two different data sets of Ohtani et al. in [28, 29] for which experimental data of
crack initiation are available. This model uses concepts of damage accumulation
and critical damage required for failure, to predict the crack initiation distribution
and their early growth. Note that the number of data based on crack initiation is
very low and this part of propagation is difficult to model. It is not the case for the
propagation and fracture regimes of the crack we are interested in and for which
there are a lot of models in the literature.

Stochastic models for the propagation and rupture can be broken down into
two families. The first one corresponds to purely statistical modeling of crack
propagation data while the second is based on stochastic models derived from phe-
nomenological laws and are random versions of the deterministic models presented
above.

Statistical Modeling.
Empirical Models. A first kind of models consists in finding the statistical dis-

tribution which best represents the data and which takes into consideration their
dispersion. For exemple in [43] authors used descriptive statistics to investigate
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the distribution of the number of loading cycles needed by crack size to reach spe-
cific values or the distribution of crack sizes at specific loading cycles. Normal,
lognormal and Weibull probability distribution functions were used to fit 51 dif-
ferent datasets. Authors conclude that the random loading cycles were best fitted
by lognormal probability distribution (45/51) while random crack sizes were best
fitted by Weibull probability distribution (29/51). This type of modeling seems
adequate to describe a specific dataset but not flexible enough to be extended to
several datasets or to prediction. Moreover, in this same paper, authors have shown
that models that take into account the phenomenological laws (Paris’ law (2.2) for
example) and the temporal aspect are better adapted to describe the randomness
of fatigue.

Jumps Models. These models were introduced by Bogdanoff and Kozin in [6]
and they have since been used by other authors as Kirkner et al. [23]. In both
cases, authors try to model the process of crack length at in continuous time, by
a cumulative jump random process that is a MC in continuous time (Markovian
jump process). In this case, there is no hazard on transitions because the process
evolves deterministically from a state to the next one. On the other hand there is
randomness on the time spent in each state who follows an exponential distribution.
When the crack size increases, it is possible to model the propagation acceleration
by increasing the parameter of the exponential variable.

The McGill-Markov model, introduced by Bodganoff and Kozin in [6], is an
inhomogeneous jump model. It directly models the temporal evolution of the crack
size by a random process that is defined as follows.

• The crack length at at time t evolves as a MC, that means the next crack
length evolution depends only on its current length, not on its history.

• The law of the process dynamics is given by the transition probability.
Given two times t < t′, this probability is defined by

P(at′ = j|at = i) = pij(t, t
′) = Cj−ij−1q(t, t

′)i(1− q(t, t′))j−1,
with

q(t, t′) = exp(−∆(t, t′)) and ∆(t, t′) =

∫ t′

t

λ(1 + λs)

1 + λsκ
ds,

where λ and κ are the model parameters.
In [41] authors have shown that these models fit fairly well the data. Neverthe-

less, they have no physical interpretations but can be generalized in order to give
them a meaning using Piecewise-Deterministic Markov Processes (PDMPs).

Stochastic Models Derived from Deterministic Laws.
Deterministic Laws with Random Variables. Some authors as Virkler et al. [39]

or Tanaka et al. [37] have proposed the first random models of fatigue based on
the phenomenological laws like the one of Paris. They have done this introducing
randomness in the characteristic coefficients of the material (C and/orm in the case
of Paris’ law (2.2)), in order to account for the non-homogeneity of the material.

In a more recent paper [33], the authors also consider the parameters C and m
of Paris’ law (2.2) as random variables. From the analysis of experimental data
they decide to model either C by a log-normal random variable or m by a normal
random variable but they are not random together. It is therefore easy to estimate
them and to calculate the reliability indicators of the model.
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This approach goes well with a better description of the phenomenon. However,
the authors do not seem to consider the possibility of having C and m random
together while this is what the data tends to show. Moreover, this model ignores
the possible changes of dynamics in the propagation of the cracks because the laws
of C and m do not depend on time.

Deterministic Laws with Random Processes. The use of stochastic differential
systems makes possible to describe the temporal variations of the dispersion profile.
Stochastic models take the general form of the experimental laws (2.1) by adding
a multiplicative factor that is a random process.

• Lognormal Processes. Yang and Manning have introduced this model in
[44, 45]. They added a multiplicative random factor Xt to the general
equation of deterministic models (2.1).

dat
dt

= XtL(t,∆Kt,Kmax,Kc, σmax, at, R) = XtQ(at)
b,

in which Q and b are constants. The multiplicative coefficient Xt depends
on time, so it is a stochastic process. According to these authors, if the
above random factor Xt is modeled as a stationary lognormal random
process with a median value of 1 and a standard deviation σX , its auto-
covariance function has the following form

Cov[Xt, X
′
t] = σ2

X exp(−ζ|t′ − t|).
and the probability structure of the stochastic fatigue crack growth process
can be obtained analytically. The success of this model is the fact that there
are only two parameters to estimate: the standard deviation parameter
σX and the covariance parameter ζ. If ζ tends to 0, we find the model
with random variables because, for all t, Xt = X0 and there is no longer
dependence in time.

Wu and Ni in [41, 42, 43] have tested this model on experimental data
and concluded that the simplest lognormal model is sufficient to describe
the studied fatigue crack growth data. However, the hypothesis of process
stationarity can be questioned because the rate of evolution of the cracks
follows different phases over time, with in particular an acceleration phase
just before the rupture. Moreover, in order to perform the reliability cal-
culations it is necessary to know the law of

WT =

∫ T

0

Xtdt.

Without any mathematical justification, the authors assume that the pro-
cess (Wt) still follows a lognormal law whose parameters can be linked to
those of the process X. There is no ongoing discussion on the validity of
this approximation.

In [32] the authors modeled the expectation of the crack length µt =
E[at] by a deterministic law that looks like Paris’s law,

dµt
dt

= C(∆Kt)
m. (2.6)

Using Karhunen-Loève expansion, they proposed a stochastic model in
which they consider that the crack length has the lognormal distribution
instead of the more common assumption that growth rate is log-normally
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distributed. The proposed model has been verified on the following experi-
mental fatigue crack growth data [39] and [19] at different levels of constant
amplitude. But these data contain only information on crack propagation
and fracture regimes.

• Polynomial Law. Ni in [26] was inspired from the Yang model and proposed
a polynomial stochastic fatigue crack growth model. This model is based on
the assumption that the fatigue crack growth rate is equal to a deterministic
polynomial function in terms of fatigue crack size. To take into account the
statistical scatter of the fatigue crack growth, this function is multiplied by
a stationary lognormal random factor,

dat
dt

= Xt(p+ qat + ra2t ). (2.7)

In [27] the author verified results between analytical outcomes obtained
from its proposed model and experimental data. These results appear sat-
isfactory.

• Diffusion Processes (DPs). DP associated with SDE driven by a Brownian
motion have been studied extensively in the literature for the modeling of
crack propagation. The first attempt to model crack propagation by DPs
was done by Sobczyk in [34]. They proposed an asymptotic approximation
of the process at by diffusion that becomes valid when the parameter ε
appearing in the propagation law tends to zero,

dat
dt

= ε L̃(at)Xt,

where L̃ depends on ∆Kt, Kmax, Kc, σmax and R that are known constants
or functions of at. So L̃ is only a function of the time and the crack length.

Asymptotic results and averaging techniques were initially developped by
Stratonovich. They were then consolidated by other authors like Khas’min-
skii [21, 22] or Papanicolaou and Kholer [30], who allow to specify the
conditions of approximation for at by a DP when ε tends to 0. Sobczyk in
[34], based on these findings, was the first to try to model at by a DP. He
showed that in the homogeneous case, the DP at is governed by a system
of the form

dat = µ(at)dt+ σ(at)dBt,

where µ and σ are the drift and diffusion functions and Bt a brownian
motion.

Lin and Yang in [25, 46] have completed these results by applying them
to real cases. Since, the use of these processes has been declined by many
other authors like Ivanova et Naess in [20] which use methods of numeri-
cal approximation of diffusion models for structural reliability calculations.
These models have good mathematical justifications and allow to calculate
indicators of reliability. The disadvantage of this type of model is related
to the dynamics of the process at which fluctuates continuously over time,
whereas growth is an intrinsic character of crack propagation.

3. PDMP Models for Propagation

In this section, we discuss the interest to use PDMPs for modeling crack propa-
gation and present some models of the literature.
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3.1. Relevance of PDMP Models. PDMPs are frequently used to model physi-
cal processes involved in the dynamics of industrial systems. Each physical process
evolves according to a deterministic physical law until the occurrence of events of
two types:

(1) the first type is directly linked to a deterministic evolution of the physical
parameters of the process;

(2) the second type of event is purely stochastic.
It usually corresponds to random exogenous event or failures of system components.
In this way, between two events, evolution of the system is based on physical laws
and these ones take into account the dependencies or dynamical interactions be-
tween the different processes involved. Whatever the modeled phenomenon, it is
of strong interest both to use deterministic laws – that come from physics or are
well known by the practitioners – and to allow random events that come from the
system itself (failure) or from outside.

Another interest of using PDMPs for modeling is that mathematical properties
and numerical implementations for such processes have been extensively developed
[10, 11]. For instance, in [13, 7], de Saporta et al. propose numerical methodology
to perform optimal stopping on PDMPs or hidden PDMPs. [12] gives numerical
method for impulse control of PDMPs. These sophisticated tools allow the compu-
tation of quantities of interest like the expected value of the remaining life (before
failure or rupture), the probability to reach a threshold or to fail before a given
time. Such tools allow the design of maintenance policy that takes into account
the history of the system. These methodology was used in [14, 3] in a context of
reliability and system safety.

In the case of FCP, there is no physical law for the propagation, but, on the one
hand, the crack length is clearly increasing with time and it does not allow the use
of diffusive processes for modeling since they are not monotonous. On the other
hand, the phenomenological law of Paris, or other laws like Forman or Walkers,
work well in the regimes II and III and are well known by the mechanical engineers.
Use of PDMPs to model FCP makes it possible to:

(1) use the deterministic laws of propagation like the one of Paris,
(2) introduce randomness accounting for the variability between different spec-

imens (like between the cracks in the same experimental conditions),
(3) introduce randomness during the crack propagation,
(4) take into account more predictable event like the change between regime II

and regime III.
We will see below that according to the objectives of the modeling, the second
and the third points are not necessarily used together. About the second item,
note that even if PDMPs are not DPs, the randomness given by the law of the
jump endow these kind of processes with a great flexibility and versatility to model
phenomena. Figure 3.4 shows simulations of PDMPs from a very simple model with
only one jump and the same ODEs with two different sets of parameters before and
after the jump. Dispersion and scattering of the bundle is due to only one jump
per trajectory, and some of them are visible. For a theoretical study about points
accessible by a PDMP, [5] gives some results on the long time behavior of a certain
class of PDMPs related to a certain set of accessible points.

One of the great interest of modeling with PDMPs is that it is possible to model
regime switching at time of jump. The stochasticity of the change is linked to
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the randomness of the phenomenon in different ways. The change can occur at
a predictable time when some components of the state process reach a threshold,
then deterministically trigger a change of mode in the system (see for instance [47]
for description and modeling of the heated tank. The change can also occur at
a random epoch because of exogenous events, like an impact independent of the
system dynamics. A third kind of jump can occur, in a stochastic way depending
on the state of the process, typically through the jump rate λ(Φ(x, t)); which seems
interesting to model the transition time between propagation regimes II and III.
Framework of PDMPs allow the jump time to depend on the state of the process,
that is the length of propagation in our case: the longer the crack, the more likely
the change is from linear regime II to regime III. In [2], authors propose a method
to infer the jump rate in such a case.

Figure 3.4. Simulation of crack propagation curves with only one
jump and two modes before and after the jump.

3.2. Multiplicative Model. Chiquet, Limnios and Eid in [9] were the first to
propose a PDMP for modeling crack propagation. This modeling allows to obtain
a model based on well-known deterministic laws, to make the parameters of this
law random and to allow regime changes in propagation. In this approach, the au-
thors consider that fatigue crack growth changes through small shocks occurring at
random times. They choose to use PDMPs without any constraint on the number
of possible jumps associated with deterministic Paris’ law and proposed a model
derived from Paris’ law, considering that the dimensionless factor Y (at) appearing
in (2.2) is approximately equal to one. They randomize the law with a multiplica-
tive factor given by a jump Markov process Pt leading to the following stochastic
dynamical system,

dat
dt

= C(∆σ
√
π)m(at)

m/2Pt, a0 = a. (3.1)

The Markov process Pt is supposed to have a finite state space P and a constant
matrix generator Q = (qij)(i,j)∈P2 . Clearly, (Xt)t≥0 = (at, Pt)t≥0 is a PDMP with
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state space X = R+ × P, jump rate given by λ(x) = λ((a, p)) = λ(p) = qp,p and
jump kernel Q(x, dy) = Q(p, p′) = −qp,p′/qp,p given by the generator Q of Markov
process. Parameters C and m are the same for the whole set of cracks so that each
crack has its own process Pt. We can say that this term captures both randomness
between cracks and during the propagation modifying crack growth rate da/dt. In
[8], Chiquet fitted Virkler’s data of propagation and highlights the acceleration of
the jumps of the Pt’s at the end of the propagations toward larger values announcing
the instable regime III.

3.3. One Jump Models. In [38, 1, 4], in collaboration with mechanical engineers
from Bordeaux University and EADS Astrium company, we have proposed two
different models of crack propagation using PDMPs. We assumed that crack prop-
agation can be expressed by a simple PDMP with only one change of regime. This
allows to give a physical meaning to this jump and also to bring some flexibility
to the model called regime-switching model. The objectives of the modeling were
different for the two models.

For the first one, the objective was to capture and analyze the time transition
between the linear regime II and instable regime III. For this, a regime switching
model was really appropriate and we proposed the following simple model. At first,
crack length evolves according to Paris’ law given by (2.2) with parameters C and
m chosen at random. After a random time, the model switches from Paris’ law
to Forman’s law given by (2.4) with new parameters C and m. There is only one
change in the propagation. In this case, Xt = (at, Pt), at is the length of the crack;
Pt is a mode with three components Pt = (Lt, Ct,mt) where Lt ∈ {1, 2} indicates
the law of propagation and (Ct,mt) are parameters of this law, which are constant
before and after the jump. The initial value of Lt is deterministically equal to 1 and
the transition is also deterministic from 1 to 2. L0 = 1 and Q((1, C1,M1), (2, ., .)) =
1.

For the second model, the objective was to design a method of prediction of a
given crack according to the first points of observation. This method of prediction
is based on a model of PDMPs simpler than the previous one. Again we consider
only one jump, but the deterministic flow is given by Paris’ law before and after
the jump. When a jump occurs, parameters of Paris’ law change in a stochastic
manner but the flow does not switch toward Forman’s law. Indeed, the modeling
of the crack propagation with two successive ODEs given by Paris’ law fits well
the data, the jump gives versatility and flexibility for the fitting and the “second”
Paris’ law is natural because the method of prediction is designed to predict crack
propagation with information about the start of it, at the beginning of the Paris
regime. In this case, Xt = (at, Pt), at is the length of the crack; Pt is a mode with
two components Pt = (Ct,mt) where (Ct,mt) are parameters of this law.

Whatever the modeling, to study the characteristics of the crack at the jump
time between the regimes II and III (model 1) or to build a model of propagation
useful for the prediction (model 2), the manner to use the Virkler’s data was to
replace each experimental curve by the best possible theoretical curve issued from
the chosen model (that is with the two given laws of propagation and only one
jump). A theoretical curve i is determined by the values of five parameters: that of
the first part law of propagation that we denote from this moment forward (mi

1, C
i
1),

the time of transition T i and the parameters of the second part (mi
2, C

i
2). For each

model, we obtained a set of 68 vectors of parameters (mi
1, C

i
1, T

i,mi
2, C

i
2)1≤i≤68.
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The method to infer them is similar to a method of rupture detection, which is
detailed in Subsection 4.1.

Now, let us give the results of this fitting of experimental curves by theoreti-
cal ones. For both models, the whole crack propagation is well fitted. Figure 3.5
displays graphs of the worst (left) and the best (right) fitted versions of the exper-
imental curves among the 68’s. If we consider distance between experimental and
theoretical cracks on the whole trajectory, the model with Paris’ law before and
after the jump is the best one. But the regime switching model using Forman’s law
after the transition is better to account for the change at the end of the propaga-
tion. As shown in Figure 3.6, the end of crack propagation is accurately described,
and the change between regimes II and III is captured by the regime switching of
the PDMP.
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Figure 3.5. Experimental (solid line) and theoretical (dashed
line) curves for the worse fitted propagation length curve (left)
and for the best one (right).

Concerning the results of the model from Paris to Forman, it was interesting
to analyze the time of transition and the characteristics of the crack at this time
: they are given in Table 3.2. As expected, change of regime occurs at the end of
the propagation. From a mechanical point of view, the study of the range value
of the stress intensity factor ∆Kt at the time of transition gives information on
the fracture toughness KC , which is a quantity whose estimation is difficult and
requires heavy experimentations. The results are analyzed in [4].

Mean Standard dev. Min Max
Crack length (mm) 39.53 4.55 30.40 48.20
Transition times (number of cycles) 241401 19184 192389 296091
∆Kt (MPa

√
m) 20.8 1.0544 16.5 25.3

KC (MPa
√
m) 25.8 NA 20.6 32

Table 3.2. Statistics concerning the crack length at transition,
the transition times in terms of number of cycles and the corre-
sponding stress intensity factor range.

About the result of prediction, we used the model from Paris to Paris to pro-
pose a method of prediction of a crack according to the first points of measure.
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Figure 3.6. End of propagation for three different experimental
cracks and fitting by regime-switching models with Paris’ and For-
man’s law for the second regime.

We start with the model elaborated from the theoretical curves inferred with the
rupture detection method described in Subsection 4.1. The model is described by
the following elements:

(1) the flow of propagation given by Paris’ law (2.2) before and after the jump,
(2) the state space P for the parameters (m,C),
(3) the initial distribution of (m1, C1), given by a probability distribution on
P,

(4) the law of the jump time depending on the parameters (m1, C1),
(5) the law of transition between the parameters of the first regime (m1, C1)

and that of the second one (m2, C2).

We used this model with four possible values for (m1, C1), two others for (m2, C2)
and constant jump rates λ(m1, C1) to simulate the bundle of cracks of Figure 3.4
plausible to model together the 68 experimental cracks of Virkler’s data.

It is clear that experimental cracks do not grow in the same way: some of them
have high growth rate from the beginning to the end, while others are slower.
The idea of the updating method is to use the information of the first points of
the propagation of a given experimental crack in order to reduce the number of
possible trajectories of the model: it means that the set of parameters (m(j), C(j))
in P is reduced to predict the future of the propagation. It leads to a restricted
and precise bundle of crack paths. Suppose that we have ` measures from an



14 ROMAIN AZAÏS, ANNE GÉGOUT-PETIT, AND FLORINE GRECIET

experimental curve. Paris’ model contains p theoretical curves corresponding to p
values of (m(j), C(j)) for the first part of the propagation. For a given experimental
curve h, with ` points of measure, it is easy to compute a distance with each of the
p theoretical curves of the model for the beginning of the propagation by

f(m,C) =
∑̀
i=1

(aith(m,C)− aiexp)2, (3.2)

where aj,kth and aj,kexp are respectively the theoretical and experimental crack lengths
at measurement k.

For each of the 68 experimental curves, we proceed in two steps:

(1) We compute the p values f(m(j), C(j)) in order to choose the r (r < p)
nearest curves among the p theoretical curves of the modeling. The top of
Figure 3.7 summarizes this procedure for p = 10 and r = 4: the experi-
mental measures are drawn with crosses and we choose here the 4 nearest
theoretical curves (dashed lines) among the p = 10 possible paths in the
modeling.

(2) Now we work with each of the r possible trajectories chosen at the first
step corresponding to r values of (m(j), C(j)). For a given crack and each
number of cycle Ni corresponding to the point of measure aiexp, we draw
the p possible paths starting from the point (Ni, a

i
th(m,C)) and compute

the distance between the second part of the experimental curve. Again we
choose the r nearest among the p possible. This step is illustrated at the
bottom of Figure 3.7 for the jump time at the third measure with p = 10
and r = 4.

Now, it remains to simulate the prediction bundle of each crack with the r
selected (m(j), C(j)) for the first part of propagation. The jump time is Tj ∧ t`−1
with Tj an exponential time with parameter λj of the Paris model and a transition
matrix derived by truncation of the initial transition matrix to the 2r remaining
modes. In Figure 3.8, we draw the two extremal curves of this bundle for three
experimental cracks.

In order to tackle the versatility of the actualisation procedure, we propose a
cross validation method based on principle of “Leave one out”. The principle is the
following: for each of the experimental cracks, we compute the parameters of the
Paris model with the 67 remaining cracks. With the ` first points of propagation
of the crack of interest, the obtained modeling is used to propose a prediction
bundle. The method gives a set of prediction for each of the 68 curves and we
study the quality of the prediction with the following criterion. We compute a
distance between the crack and its prediction bundle, which is null if the crack
remains inside the bundle along the propagation. This distance is precisely defined
in [4] but Figure 3.8 gives an idea of the quality of the predictions for a given
distance.

We summarized the results in Table 3.3. For this, we distinguish three different
crack behaviors according to their speed, measured by the number of cycles (denoted
N160) reached at the end of propagation, i.e after 160 length measurements. Cracks
are considered rapid for N160 < 240 000 cycles, while they are slow for N160 >
280 000 cycles. Figure 3.8 presents three experimental curves with their predicted
bundle for two rapid cracks (top) and for a slow one (bottom). The normalized
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Figure 3.7. Top: first step of actualization method. Bottom:
second step. Experimental measurements are drawn with crosses
and continuous lines indicate the 4 nearest theoretical curves.

distance values D are calculated. For the quicker crack, the experimental curve
stays inside its prediction bundle. The other rapid crack goes out of the bundle
during a short time – around 125 000 cycles – and consequently the distance D is
about 0.2. For the slow crack, the experimental curve does not predict well and
the corresponding value of D is about 11.6. For all cracks, results of the cross
validation are presented in Table 3.3. The parameter d160 indicates if the crack
is in the bundle at the end of its propagation. Furthermore, we note that all the
rapid cracks are well predicted (0 < Dh < 1) while any slow crack is accurately
simulated (D > 1). For slow cracks and some mean cracks, when the crack path
is not well simulated, the bundle is always situated above the experimental curve.
This means that in this situation, the modeling always overestimates the real crack
behavior and that the prediction will systematically reduce the risk of rupture.
On the contrary, the prediction carried out for the quickest cracks and for a large
number of mean cracks, which are the most dangerous in practice, is very powerful.

In this section, we introduced two models of crack propagation with PDMPs.
With the first one, mechanical engineers were able to deduce information about
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Figure 3.8. Three experimental curves with the extreme curves
of the prediction bundle. From top to bottom, rapid crack with
D = 0 and D = 0.2 and slow crack with D = 11.6.
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Quick crack Mean crack Slow crack
Dh = 0 8/11 18/50 0/7

0 < Dh < 1 11/11 38/50 0/7
Dh > 1 0/11 12/50 7/7
dh160 = 0 9/11 35/50 1/7

Table 3.3. Normalized distance D and crack position at the end
of the propagation d160 as a function of the type of crack.

the stress intensity factor at the transition of the linear regime II and the instable
regime III. The second one is a first step of a prediction tool of experimental curve
according to the first information about its propagation. We can claim that PDMP
models, even if they are very simple, are relevant, and can be interpreted and give
useful information on the mechanical processes involved in propagation.

4. Rupture Detection

In this section, we present two different ways to fit Virkler’s data with PDMPs.
Formally, if the proposed models do not allow the crack length to have discontinu-
ities, fitting consists in detecting the changes of regime for the PDMP, i.e. to detect
rupture in its dynamics. The first point of view is the one of Subsection 3.3. Our
model is very simple, we suppose that we have only one change of dynamics, that
is only one rupture to detect. To detect this change in an experimental curve, we
search for the theoretical curve of the model that is the nearest, see Subsection 4.1.
The second possibility is to consider each curve of propagation as a hidden PDMP
where, at each point of the measure, the deterministic flow leading to dat/dt is
noised by a Gaussian variable. Algorithm and results on Virkler’s data are given
in Subsection 4.2. Whatever the viewpoint, it is necessary to determine epochs of
transition for the fitting of the data and the construction of the model. Formally,
it consists in detecting the change of regime for the PDMP. The next subsection
is devoted to the presentation of the methods used in our different works, for this
purpose.

4.1. Length at vs time t. This section is devoted to the determination, for each
experimental curve, of the nearest theoretical curve coming from the first model of
Subsection 3.3. We tackle this problem with an optimisation problem formulation.
By definition of our model, a theoretical curve is determined by five parameters
Z = (m1, C1, T,m2, C2) with (m1, C1) the Paris’ law parameters and (m2, C2), the
Forman’s law parameters and T the jump time. Thus, to properly fit each of the 68
experimental curves with a theoretical one, we must determine the optimal param-
eters denoted by Z∗ = (m∗1, C

∗
1 , T

∗,m∗2, C
∗
2 ) that minimise an objective function.

The latter measures the distance between crack lengths given by the experimental
curve and a theoretical one obtained by discretisation of deterministic laws. The
optimisation problem can be stated as follows for each curve j ≤ 68,

Z∗ = arg min
Z∈R5

+

f j(Z ) =

164∑
k=1

[
aj,kth (Z )− aj,kexp

]2
. (4.1)

Each point k of measure of a curve j is associated with the number of cycles N j
k

needed by curve j to reach length of the crack aj,kexp. The number of cycles plays
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the role of time t in (2.2) and (2.4). Note that according to the typical design of
measures described in Subsection 1.1, aj,kexp does not depend of j but only N j

k does.
The theoretical length aj,kth (Z) is computed by a Runge-Kutta scheme of order 4 for
the solution of the ODE (2.2) with parameter (m1, C1) at time t = N j

k if N j
k ≤ T ; if

not, we compute it until time T and then solve ODE (2.4) starting from ath(Z, T )

at time 0 and until N j
k − T .

We have chosen to perform a simulated annealing algorithm to solve the above
optimisation problem in (m1, C1,m2, C2) for a grid of times T . The initial value
assigned to Z was randomly selected from a range of value. The use of a metaheuris-
tic algorithm is justified by its ability to determine the global optimum for highly
non-linear constrained optimisation problems. The reader can find further informa-
tion about the implementation of simulated annealing algorithms and parameter
selection in [16, 15].

4.2. Growth Rate dat/dt vs ∆Kt in Log Scale. In this section, we present
another way to model one curve of crack propagation. Unlike the previous Sub-
section 3.3, here we are interested in the typical logarithmic curve of the crack
growth rate dat/dt versus the stress intensity factor ∆Kt as shown in Figure 1.1
of Section 1. For that purpose, second order polynomial regression models seem
to be appropriate to model this curve. We would like to estimate the polynomial
regression models parameters and the time of transition between the linear regime
II and the unstable regime III.

The studied model, as shown in Figure 4.9, is simple. It consists in two regimes
separated by a time of transition T . Each of them is a second order polynomial
regression model. Let us give some notations:

• the measurement times X1, · · · , Xn are fixed;
• the regime variable is denoted by Zi, Zi ∈ {1, 2}. The two regimes are

consecutive;
• the time of transition between the two regimes is denoted by T ;
• the speed of propagation at Xi is denoted Yi. When Zi = z, Yi is given by

the following equation,

Yi = azX
2
i + bzXi + cz + εi,z, for z ∈ {1, 2} and 1 ≤ i ≤ n, (4.2)

where εi,z ∼ N (0, σ2
z). Note that the change concerns not only parameters

of the polynomial but also the variance of the noise.
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Figure 4.9. Example of one curve of the simulated model.
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The regime variable Zi is deterministic and takes its values according to Xi and T
by the relation

Zi =

{
1 if Xi < T,
2 else. (4.3)

This relation can be rewritten as P(Zi = 1|Xi) = 1{Xi<T}.
Our objective is to estimate the polynomial parameters of the two regimes: a1,

b1, c1, σ2
1 , a2, b2, c2, σ2

2 and time of transition T , parameters that are denoted by
the vector θ,

θ =
(
a1, a2, b1, b2, c1, c2, σ

2
1 , σ

2
2 , T

)t
.

Let us now define some useful conditional probability functions:
• Pθ(Z|X) is the conditional probability function of Z given X defined by

(4.3).
• hθ(Y,Z|X) is the conditional probability function of Y and Z given X

defined by
hθ(Y, Z|X) = ωθ(Y |Z,X)Pθ(Z|X),

where
• ωθ(Y |Z,X) is the conditional probability density function of Y given Z and
X,

ωθ(Y |Z,X) =
1√
σ2
Z2π

exp

(
−(Y − (aZX

2 + bZX + cZ))2

2σ2
Z

)
,

where aZ , bZ , cZ and σ2
Z depend on the regime variable Z.

• gθ(Z|Y,X) is the posterior probability distribution of Z given X and Y
given by

gθ(Z|Y,X) =
hθ(Y, Z|X)

fθ(Y |X)
=

ωθ(Y |Z,X)Pθ(Z|X)
2∑
k=1

ωθ(Y |Z,X)Pθ(Z|X)

.

With these notations, we can write the complete log-likelihood of the model

L((Yi, Zi)1≤i≤n, θ|(X)1≤i≤n) =

n∑
i=1

log (ωθ(Yi|Zi, Xi)Pθ(Zi|Xi)) . (4.4)

Because T is not observed, the indicator functions coming from the Pθ(Zi|Xi) give
an extreme rigidity to the model used for the inference of θ. It is why we modify
the model to approach the likelihood by smoothing the indicators. To do so, we put
some flexibility about the probability to be in a regime near the time of transition.
Conditionally to the value of T the regime Z will now not be completely observed.
It can be considered as a latent variable and its distribution Pθ(Z|X), shown in
Figure 4.10, is given by

Pθ(Z=1|X=x) = 1[0,T−e1] +

(
1−

[
x− (T − e1)

e1 + e2

]2)
1(T−e1,T+e2]. (4.5)

The flexibility is provided by the probabilities on the interval [T−e1, T+e2] around
T that are not 0 or 1. Parameters e1 and e2 are chosen in the following way.

• T − e1: value of X such as 95% of the observations before T are lower than
T − e1;
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Figure 4.10. Probability of Z according to X.

• T + e2: value of X such as 95% of the observations after T are greater than
T + e2.

In attendance of the latent variable Z, the classic method of maximum likelihood is
not usable anymore. Indeed, all available variables need to be observed to calculate
the complete log-likelihood. To estimate θ when all variables are not observable, the
Expectation Maximization (EM) algorithm consists in replacing the complete log-
likelihood by its conditional expected value given the observations. This algorithm
is an iterative procedure for computing the maximum likelihood estimator when
only a subset of the variables is observed. The lth iteration of the algorithm breaks
down in two steps:

• E-step: considering θ̂l−1 we compute the conditional expected value given
the observations L(Y ; θ, θ̂l−1) defined in (4.6);

• M-step: we find the parameters θ̂l that maximizes L(Y ; θ, θ̂l−1) in θ.

L(Y ; θ, θ̂l−1), the conditional log-likelihood at the lth iteration of the EM algorithm
is given by

L(Y ; θ, θ̂l−1) = E(log(L(Y, Z, θ|X))|X,Y )

=

n∑
i=1

∫
gθ̂l−1

(z|Yi, Xi) log(hθ(Yi, z|Xi))dz. (4.6)

Note that with this definition, at step M, the conditional probability given (X,Y )
for Z to be in a regime is considered as known and the optimization concerns
the function hθ. By integrating the conditional log-likelihood with respect to the
counting measure on {1, 2} for Z, it can be rewritten as

L(Y ; θ, θ̂l−1) = −n
2

log(2π) +

2∑
z=1

n∑
i=1

giz log(Pθ(z|Xi))

−1

2

n∑
i=1

2∑
z=1

[
log(σ2

z) +
(Yi − (azX

2
i + bzXi + cz))

2

σ2
z

]
giz,
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where giz = gθ̂l−1
(z|Yi, Xi).

The variable T is hidden in the probability Pθ(z|Xi). That makes it difficult to
optimize according to the whole components of the vector θ. For this reason we
divide the problem into two parts. The first part corresponds to the research of T
and the second part corresponds to the estimation of θ̃, which is given by

θ̃ =
(
a1, a2, b1, b2, c1, c2, σ

2
1 , σ

2
2

)t
.

Let us consider the problem if T is known. We would like to estimate θ̃ by max-
imizing the conditional log-likelihood, given the observations. Because piecewise-
polynomial regression models admit continuity between the two regimes, maximiza-
tion needs to be done under a continuity constraint at times of transition, that is
given by

q(θ) = a1T
2 + b1T + c1 − a2T 2 − b2T − c2 = 0.

To do this optimization, we made the choice to use Lagrange multiplier method.
This method is a strategy for finding the local maxima or minima of a function
subject to constraints. It states that if there is an extremum in θ̃, then there exists
µ, the Lagrange multiplier associated to constraints, such that

∇L(Y ; θ, θ̂l−1) = µ∇q(θ).

Parameter µ has to be evaluated so that we incorporate it in the parameters
to estimate and split them into two parts θ̆ = (a1, a2, b1, b2, c1, c2, µ)t and σ2 =(
σ2
1 , σ

2
2

)t such that the system to resolve can be written in the following way{
M(σ2)θ̆ = γ,

σ2 = f(θ̆).

Let us define gi1 and gi2 such as gi1 = gθ̂l−1
(1|Yi, Xi) and gi2 = gθ̂l−1

(2|Yi, Xi). γ

depends on the observed data (Xi, Yi), σ2 and θ̂l−1. It is given by

γ = 0,
n∑
i=1

X2
i Yigi1,

n∑
i=1

X2
i Yigi2,

n∑
i=1

XiYigi1,
n∑
i=1

XiYigi2,
n∑
i=1

Yigi1,
n∑
i=1

Yigi2t.

M is a 7× 7 matrix that only depends on T , σ2 and θ̂l−1,

M =



T 2 −T 2 T −T 1 −1 0
n∑
i=1

X4
i gi1 0

n∑
i=1

X3
i gi1 0

n∑
i=1

X2
i gi1 0 −T 2σ2

1

0
n∑
i=1

X4
i gi2 0

n∑
i=1

X3
i gi2 0

n∑
i=1

X2
i gi2 T 2σ2

2

n∑
i=1

X3
i gi1 0

n∑
i=1

X2
i gi1 0

n∑
i=1

Xigi1 0 −Tσ2
1

0
n∑
i=1

X3
i gi2 0

n∑
i=1

X2
i gi2 0

n∑
i=1

Xigi2 Tσ2
2

n∑
i=1

X2
i gi1 0

n∑
i=1

Xigi1 0
n∑
i=1

gi1 0 −σ2
1

0
n∑
i=1

X2
i gi2 0

n∑
i=1

Xigi2 0
n∑
i=1

gi2 σ2
2



.
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Start: [u, v],β

Trichotomic_algorithm: While v − u ≥ β

h← v−u
3

t1 ← u+ h t2 ← v − h

θl ← EM_algorithm(t1,θ̃i,t1) θr ← EM_algorithm(t2,θ̃i,t2)

Ll ← Complete_logLikelihood(θl,t1) Lr ← Complete_logLikelihood(θr,t2)

Ll ≤ Lr ?

T = t2, θ = θr, [u, v]← [t1, v] T = t1, θ = θl, [u, v]← [u, t2]

parameters initialisation: θ̃i,t1parameters initialisation: θ̃i,t2

yes no

Figure 4.11. Outline of the global procedure.

f(θ̆) is a non linear function taking values in R2 defined by

f(θ̆) =



n∑
i=1

(Yi − (a1X
2
i + b1Xi + c1))2gi1

n∑
i=1

gi1
n∑
i=1

(Yi − (a2X
2
i + b2Xi + c2))2gi2

n∑
i=1

gi2


.

This non linear part forces us to solve this system by using a fixed point method.
Let us now consider the estimation of time of transition T . For this, we use

a trichotomic algorithm. This algorithm allows to calculate the maximum of a
concave function ` defined on a known time interval [u, v]. It consists in dividing
in three equal parts the time interval [u, v]. Let us define h = v−u

3 , t1 = u+ h and
t2 = v − h,

• if `(t1) ≤ `(t2) then the [u, v] interval becomes [t1, v];
• if `(t1) ≥ `(t2) then the [u, v] interval becomes [u, t2].

In our case,
• At the first step, the interval [u, v] corresponds to the interval of the obser-

vations [X1, Xn];
• t1 and t2 are the times of transition that we compare;
• ` corresponds to the complete log-likelihood given by (4.4).

This algorithm stops when the difference between the two interval bounds is smaller
than a fixed value β. To obtain our final algorithm, we combine the EM and
trichotomic algorithms as presented in Figure 4.11.
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As explained in Subsection 3.3, we used the Virkler’s data by replacing each
experimental curve by the best possible theoretical curve issued from the piecewise
polynomial regression model. A theoretical curve i studied over the form dat/dt vs
∆Kt in log scale is determined by the values of nine parameters: the parameters of
the first regime (ai1,bi1,ci1,σ2i

1 ), the time of transition T i, and the parameters of the
second regime (ai2,bi2,ci2,σ2i

2 ).
If we consider distance between experimental and theoretical crack growth rate

on the wole trajectory, Figure 4.12 (4.13, respectively) displays graphs of the worst
and the best fitted versions of the experimental curves dat/dt vs ∆Kt (at vs t,
respectively) among the 68s. Even if Figure 4.12 shows difference between the
experimental and the fitted growth rate, this difference is well smoothed when we
draw the corresponding trajectories of at vs t in Figure 4.13. This one has to be
compared with the fitting by switching ODEs of Figure 3.5. In each case, the model
fits the crack growth evolution very well and we can note that in both model the
worst fitting concerns the same crack. It is the slowest crack of the Virkler’s data
in both case (we can see oscillations in the growth rate as if some grains in the alloy
have slowed down the propagation).
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Figure 4.12. Experimental (points) and theoretical (line) curves
for the worst fitted propagation curve (left) and for the best one
(right) in the dat/dt vs ∆Kt representation. Vertical lines show
the time of transition between regimes II and III.

About the results of this model, it was interesting to analyze the time of transi-
tion and the characteristics of the crack at this time. They are given in Table 4.4.
As observed with fitting switching ODEs, change of regimes occurs at the end of
the propagation.

Mean Standard dev. Min Max
Crack length (mm) 43.1 3.27 36 49
Transition times (number of cycles) 248758 18957 209128 303893
∆Kt (MPa

√
m) 22.47 1.74 18.9 25.9

KC (MPa
√
m) 28.1 NA 23.64 32.46

Table 4.4. Statistics concerning the crack at transition, the tran-
sition times in terms of number of cycles and the correspond stress
intensity factor range.
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Figure 4.13. Experimental (solid line) and theoretical (dashed
line) curves for the worst fitted propagation curve (left) and for
the best one (right) in the at vs t.

The main part of the present work is the application of the EM algorithm in
piecewise polynomial regression versus fitting switching ODEs to the data set of
Virkler et al. [39]. These two models are used when the propagation has two regimes
and one unique time of transition. They are different because they model different
quantities issued from the data. Fitting switching ODE models crack propagation
evolution (at versus t) whereas EM algorithm in piecewise polynomial regression
models crack growth rate evolution (dat/dt versus ∆Kt) which seems to be more
scattered. Models and the number of parameters to estimate are different (seven
for Paris and nine for the polynomial regression).

Regarding the rupture detection, the two optimization methods we propose are
really different. The first one is using simulated annealing to estimate model pa-
rameters and T is optimized across a grid of time. For the second one, to estimate
the model parameters a more statistical approach is set up, thanks to an EM algo-
rithm, while the transition time T is estimated by a trichotomic algorithm. In both
cases, the estimations of the model parameters and time of transition are separated.

Moreover, the estimation results of the transition times using the two methods
are drawn in Figure 4.14, and we can see that they are well correlated and that
polynomial models give greater values than switching ODE models. Because the
real time of transitions are unknown, we cannot conclude what is a best model
or method. However, if we consider the computation time needed for the estima-
tion, there is a great advantage to use the EM algorithm in piecewise polynomial
regression, which is faster than fitting switching ODEs.

5. Conclusion and Perspectives

In this chapter, we have presented the interest to model crack propagation with
PDMPs and presented two different methods of rupture detection for the fitting
of these models. We have shown that even if the PDMP models are very simple,
they are versatile enough to report propagation phenomenon, to help for their
understanding and to propose prediction bundles for individual cracks. Results of
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Figure 4.14. Comparison of the times of transition estimations
obtained by EM algorithm in piecewise polynomial regression (ab-
scissa) and fitting switching ODEs (ordinate).

these models make possible inference on the jump rate of the transition between
regimes II and III according to the length of the crack as it has be done in [2] in a
slight different switching ODE model (results shown in Figure 5.15).
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Figure 5.15. Estimated jump rate of a crack according to its length.

On the other hand, inference of PDMP models leads to the emergence of new
questions for the statisticians who have to develop new methods. For instance, we
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work now on an algorithm to detect jumps whose number is not determined. It is
a very delicate problem to infer altogether number and times of jumps.
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