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A fast algorithm for the CP decomposition of
large tensors

Un algoritmo veloce per la decomposizione di grandi

tensori

R. André, X. Luciani and E. Moreau

Abstract The canonical polyadic decomposition is one of the most used tensor de-

composition. However classical decomposition algorithms such as alternating least

squares suffer from convergence problems and thus the decomposition of large ten-

sors can be very time consuming. Recently it has been shown that the decomposi-

tion can be rewritten as a joint eigenvalue decomposition problem. In this paper we

propose a fast joint eigenvalue decomposition algorithm then we show how it can

benefit the canonical polyadic decomposition of large tensors.

Abstract La decomposizione canonica di tensori è usata in diversi campi tra cui

quello dei data sciences. Tuttavia, in classici algoritmi di decomposizione, come

l’alternating least squares, si possono riscontrare problemi di convergenza e pro-

prio per questo motivo che la decomposizione di grandi tensori puo essere molto

dispendiosa in termini di tempo di calcolo. Recentemente, sono stati sviluppati al-

goritmi di decomposizione canonica veloci, basati sulla diagonalizzazione di un in-

sieme di matrici su una base comune di autovettori. In questo articolo proponiamo

un algoritmo originale per risolvere quest’ultimo problema. In seguito mettiamo in

evidenza l’aspetto più interessante di questo approccio al fine di effettuare la de-

composizione canonica di grandi tensori.
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2 R. André, X. Luciani and E. Moreau

1 Introduction

In many data sciences applications, the collected data have a multidimensional struc-

ture and can thus be stored in multiway arrays (tensors). In this context, multi-

way analysis provides efficient tools to analyze such data sets. In particular, the

Canonical Polyadic Decomposition (CPD) also known as PARAllel FACtor analysis

(PARAFAC) has been successfully applied in various domains such as chemomet-

rics, telecommunications, psychometrics and data mining, just to mention a few [7].
The CPD models the data thanks to multilinear combinations as described bellow.

Let us consider a data tensor T of order Q (i.e. a Q-dimensions array) and size
I1×·· ·× IQ. Its CPD of rank N is then defined by:

Ti1,···,iQ =
N

∑
n=1

F
(1)
i1,n
· · ·F

(Q)
iQ,n

+ Ei1,··· ,iQ (1)

where F(q) is the q-th factor matrix of size Iq×N and E is a tensor modeling the noise

or the model error. One crucial point here is that this decomposition has usually

an unique solution up to trivial scaling and permutation indeterminacy. The idea

is then that the meaningful information lies in the factor matrices. Thus we want

to estimate these matrices from the data. Several algorithms were proposed in this

purpose. The most popular is the Alternating Least Squares algorithm (ALS) [6].

This iterative algorithm is very simple to implement and usually provides accurate

results. However it suffers from well known convergence problems. In particular

the convergence is very sensitive to the initialization and the algorithm can be easily

stuck in a local minimum of the cost function. A smart initialization is always pos-

sible but in practice one had usually better to perform several runs of the algorithm

with random initialization. A second consequence is that it is difficult to set effi-

ciently the threshold of the stopping criterion. Indeed it frequently occurs that the

algorithm escapes from a local minimum after a very large number of iterations and

during these iterations the variations of the cost function can be very small. Thereby

the decomposition performed with ALS can result in a high effective computational

cost and thus can be time consuming when dealing with high rank CPD of large ten-

sors. Several other iterative algorithms were proposed to solve those convergence

problems but in practice the computational cost of these solutions remains high.

More details about ALS convergence problems and other iterative CPD algorithms

can be found in [7], [3] and [1].
Recently several authors showed how to rewrite the CPD as a Joint EigenValues

Decomponsition (JEVD) of a matrix set [5, 8, 10]. The JEVD consists in finding
the eigenvector matrix A that jointly diagonalizes a given set of K non-defective
matrices M(k) in the following way:

M(k) = AD(k)A−1, ∀k = 1, . . . ,K. (2)

This approach allows to reduce the computational cost of the CPD. Indeed JEVD

algorithms converge in few iterations with an excellent convergence rate. Several

JEVD algorithms have been proposed in the last decade [4,8,9]. In a recent paper we

have introduced an algorithm called JDTE [2]. This algorithm offers a good trade-
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off between speed and precision but its performances decrease with the matrix size.

In the CPD context, it means that this algorithm is not suitable for high rank CPD.

As a consequence, we propose in this paper an improved version of this algorithm.

The paper is organized as follow. In the next section we recall a simple and

economic way to rewrite the CPD as a JEVD problem. Then in section 3 we describe

the proposed JEVD algorithm. Finally, in section 4 we evaluate our approach for the

decomposition of large tensors by means of numerical simulations.

In the following, the operator Diag{·} represents the diagonal matrix built from

the diagonal of the matrix argument, the operator ZDiag{·} sets to zero the diagonal

of the matrix argument and ‖.‖ is the Frobenius norm of the argument matrix or

tensor.

2 From CPD to JEVD

There are several ways to rewrite the CPD as a JEVD problem. Here we use the

method described in [8] because the associated algorithm, called DIAG, has the

lowest numerical complexity.
We consider the tensor T and its CPD of rank N defined in introduction. The

first step consists in rearranging entries of T into an unfolding matrix T of size

∏P
p=1 Ip×∏

Q
q=P+1 Iq by merging the first P modes on the rows of T and the Q−P other

modes on its columns. Defining:

Y(P,1) = F(P)⊙F(P−1)⊙·· ·⊙F(1) and Y(Q,P+1) = F(Q)⊙F(Q−1)⊙·· ·⊙F(P+1), (3)

where ⊙ is the Khatri-Rao product, we can thus rewrite (1) in a matrix form:

T = Y(P,1)
(
Y(Q,P+1)

)
T. (4)

Of course, other merging of the tensor modes could have been chosen, leading to

other unfolding matrices. The choice of the unfolding matrix can have a huge impact

on the numerical complexity of the DIAG algorithm [8]. As a rule of thumb, when

all tensor dimensions are large we recommend to chose P = Q− 2 and to place the

smaller dimension at the end (IQ ≤ Iq,∀q).

The second step is the singular value decomposition (SVD) of T, truncated at

order N. We denote U, S and VT the matrices of this truncated SVD.
At this stage, their exists a non singular square matrix A of size N×N such that:

Y(P,1) = UA and
(
Y(Q,P+1)

)
T = A−1SVT. (5)

(
Y(Q,P+1)

)
T can be seen as an horizontal block matrix:

(
Y(Q,P+1)

)
T =

[
φ (1)

(
Y(Q−1,P+1)

)
T, · · · ,φ (IQ)

(
Y(Q−1,P+1)

)
T

]
, (6)

where φ (1), · · · ,φ (IQ) are the IQ diagonal matrices built from the IQ rows of matrix F(Q).
Then, (5) and (6) yield:

SVH =
[
Γ (1)T, · · · ,Γ (IQ)T

]
, (7)
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where Γ (k1) =Y(Q−1,P+1)φ (k1)AT for k1 = 1, · · · , IQ. Assuming that matrices Γ (k1) and ma-

trix Y(Q−1,P+1) are full column rank, then they all admit a Moore-Penrose matrix in-
verse denoted by ♯. Thereby, we can define for any couple (k1,k2) with k1 = 1, · · · , IQ−1

and k2 = k1 +1, · · · , IQ:

M(k1 ,k2) def

=
(

Γ (k1)♯Γ (k2)
)

T, (8)

= AD(k1 ,k2)A−1, (9)

where D(k1,k2) = φ (k2)φ (k1)♯ are diagonal matrices. As a result, A performs the JEVD of

the set of matrices M(k1,k2) and can be estimated using a JEVD algorithm. An impor-

tant observation must be made here. In the previous step we have built IQ(IQ− 1)/2

matrices M(k1 ,k2). When dealing with large tensors this value can be very high with

respect to the matrix size. In practice this does not help to improve the estimation

of A significantly and dramatically increases the numerical complexity of the JEVD

step. Thereby, we propose as an alternative to build only a subset of IQ−1 matrices,

for instance by taking k2 = k1 +1 in (8). This can be seen as an economic version of

the DIAG algorithm.

After the JEVD, matrices Y(P,1) and Y(Q,P+1) are immediately deduced from A

using (5). Finally, we can easily deduce F(a), · · · ,F(b) from Y(b,a) as explained in [8].
In the next section, we propose an algorithm to solve the JEVD step. In order to

simplified the notation, subscript k1 and k2 are replaced by unique subscript k so that
equation (9) becomes:

M(k) = AD(k)A−1, ∀k = 1, . . . ,K. (10)

where K = IQ(IQ − 1)/2 or K = IQ − 1 depending on whether we choose the original

DIAG algorithm or the economic version.

3 A fast JEVD algorithm

We propose here a fast algorithm to compute an estimate of A, denoted B, up to a

permutation and scaling indeterminacy of the columns. This indeterminacy is inher-

ent to the JEVD problem.
We want that B jointly diagonalizes the set of matrices M(k). It means that matrices

D̂
(k)

defined by:

D̂
(k)

= B−1M(k)B, ∀k = 1, . . . ,K (11)

must be as diagonal as possible. B is called the diagonalizing matrix. This kind of
problem can be efficiently solved by an iterative procedure based on multiplicative

updates. Before the first iteration, we set D̂
(k)

= M(k), then at each iteration, matrices

B and D̂
(k)

are updated by a new matrix X as follow:

B← BX and D̂
(k)
← X−1D̂

(k)
X, ∀k = 1, . . . ,K. (12)

The strategy that we now propose to compute the updating matrix X can be seen as
a modified version of the one we proposed in [2]. The main difference is that here
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we resorts to a sweeping procedure. It means that X is built from a set of N(N−1)/2

matrices, denoted X(i, j) (i = 1, . . . ,N−1 and j = i+1, . . .,N) as follow:

X =
N−1

∏
i=1

N

∏
j=i+1

X(i, j). (13)

As a consequence, at each iteration, the updates in (12) consist now in N(N− 1)/2

successive (i, j)-updates of B and D̂
(k)

, defined as:

B← BX(i, j) and D̂
(k)
←

(
X(i, j)

)
−1D̂

(k)
X(i, j), ∀k = 1, ...,K. (14)

Furthermore, because of the scaling indeterminacy of the JEVD problem we can
impose the following structure to matrices X(i, j): X(i, j) is equal to the identity matrix

at the exception of entries X
(i, j)
i, j and X

(i, j)
j,i that are equal to two unknown parameters:

X
(i, j)
i, j = x

(i, j)
1 , (15)

X
(i, j)
j,i = x

(i, j)
2 . (16)

We now explained how these parameters are computed for a given couple (i, j). First
of all, let us define the function C as

C(X(i, j)) =
K

∑
k=1

‖ZDiag{
(

X(i, j)
)−1

D̂
(k))
i X(i, j)}‖2. (17)

C is a classical diagonalization criterion that is equal to zero if the K updated matri-

ces are diagonal. Therefore we look for X(i, j) that minimize C.
Matrix X(i, j) can be decomposed as X(i, j) = (I+Z(i, j)), where Z(i, j) = ZDiag{X(i, j)}.

The criterion can then be written as:

C(X(i, j)) = C̃(Z(i, j)) =
K

∑
k=1

‖ZDiag{(I+Z(i, j))−1D̂
(k)
(I+Z(i, j))}‖2. (18)

We consider in fact an approximation of C(X(i, j)) assuming that we are close to the
diagonalizing solution i.e. X(i, j) is close to the identity matrix. This implies that
‖Z(i, j)‖≪ 1 and thus the first order Taylor expansion of (I+Z(i, j))−1 yields:

(I+Z(i, j))−1D̂
(k)
(I+Z(i, j)) ≃ (I−Z(i, j))D̂

(k)
(I+Z(i, j)) (19)

≃ D̂
(k)
−Z(i, j)D̂

(k)
+ D̂

(k)
Z(i, j)−Z(i, j)D̂

(k)
Z(i, j) (20)

≃ D̂
(k)
−Z(i, j)D̂

(k)
+ D̂

(k)
Z(i, j). (21)

In the same way, matrices D̂
(k)

can be decomposed as D̂
(k)

=Λ (k)+O(k), where Λ (k) =

Diag{D̂
(k)
} and O(k) = ZDiag{D̂

(k)
}. Here our assumption means that matrices D̂

(k)
are

almost diagonal and thus ‖O(k)‖≪ 1. It yields:

D̂
(k)
−Z(i, j)D̂

(k)
+ D̂

(k)
Z(i, j) ≃Λ (k)+O(k)−ZΛ (k)+Λ (k)Z (22)

and finally we can approximate C̃(Z(i, j)) by Ca(Z
(i, j)):
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Ca(Z
(i, j)) =

K

∑
k=1

‖ZDiag{O(k)−Z(i, j)Λ (k)+Λ (k)Z(i, j)}‖2 (23)

=
K

∑
k=1

N

∑
m,n=1

m 6=n

(O
(k)
mn +ZmnΛ

(k)
mm−ZmnΛ

(k)
nn )2 (24)

=
K

∑
k=1

((
O
(k)
i j − x

(i, j)
1

(
Λ

(k)
j j −Λ

(k)
ii

))2
+
(
O
(k)
ji − x

(i, j)
2

(
Λ

(k)
ii −Λ

(k)
j j

))2
+

N

∑
m,n=1

m 6=n

(O
(k)
mn)

2
)
.

(25)

We can then easily show that Ca is minimum for :

(x
(i, j)
1 ,x

(i, j)
2 ) =


∑K

k=1 O
(k)
i j (Λ

(k)
j j −Λ

(k)
ii )

∑K
k=1(Λ

(k)
ii −Λ

(k)
j j )

2
,

∑K
k=1 O

(k)
ji (Λ

(k)
ii −Λ

(k)
j j )

∑K
k=1(Λ

(k)
j j −Λ

(k)
ii )2


 . (26)

We call this algorithm SJDTE for Sweeping Joint eigenvalue Decomposition

based on a Taylor Expansion.

4 Numerical Simulations

We have included SJDTE in the DIAG procedure described in section 2 for the

JEVD step. Two versions of this CPD algorithm were implemented corresponding

to original and economic versions of DIAG. In the following, these are referred

as DIAG-SJDTE and DIAG-SJDTE-eco respectively and are compared with the

ALS for the CPD of large tensors. Three comparison criteria are used: the recon-

struction error, r, defined by: r = ‖T −T̂ ‖2

‖T ‖2
, the number of computed iteration, nit ,

and the cputime of matlab (elapsed time during the algorithm run), tcpu. Of course

the cputime strongly depends on the implementation of the algorithms and for this

reason the computational cost might be preferred. However in the present case, nu-

merical complexities of compared algorithms involve subroutines such as truncated

SVDs whose numerical complexity is hard to evaluate with precision. Furthermore,

all the algorithms compared in this section were carefully implemented in house in

Matlab language and optimized for it.

As explained in the introduction a classical problem with ALS is to choose an

appropriate threshold for the stopping criterion. As a consequence, we implemented

two versions. In the first version (ALS-1), the ALS procedure is stopped when the

relative difference between two successive values of the reconstruction error term

is lower than 10−3 or when the number of iterations reach 50. In the second version

(ALS-2), we set these two values to 10−8 and 200. SJDTE is stopped when the

relative difference between two successive values of C is lower than 10−3 or when the

number of iterations reach 10. Comparisons are made according to three scenarios

by means of Monte-Carlo (MC) simulations. For each MC run three new matrix

factors of size 200×N are randomly drawn from a normal distribution and a new
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Table 1 Average values of the reconstruction error, number of iterations and cputime.

Algorithm Scenario 1 : N = 5 Scenario 2 : N = 15 Scenario 3 : N = 30

r nit tcpu r nit tcpu(s) r nit tcpu

ALS-1 0.0786 7.16 4.87 0.0565 10.44 10.9 0.0428 13.39 28.55

ALS-2 0.0655 9.97 6.47 0.0470 16.20 16.59 0.0358 21.1 44.28

DIAG-SJDTE 0.0001 4.26 8.96 0.0001 4.76 56.77 0.0003 5.12 407.53

DIAG-SJDTE-eco 0.0004 4.3 6.78 0.0002 4.87 12.55 0.0003 5.24 24.57
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Fig. 1 Distributions of the reconstruction error for the four algorithms according to the value of N.

tensor is built from the CPD model. A white Gaussian noise is then added to its

entries in order to obtain a signal to noise ratio of 40 dB. Then the five algorithms

are run to compute the CPD of rank N of the noisy tensor. We distinguish three

scenarios according to the chosen value of N: N = 5 (scenario 1), N = 15 (scenario

2) and N = 30 (scenario 3). Average values of r, nit and tcpu computed from 1000

MC runs are reported in table 1 for each algorithm and scenario. In order to have

a more precise idea of the convergence rate of the algorithms, we show in figure 1

the distribution of r in the ranges
[
5.10−5; 5.10−4

[
,
[
5.10−4; 5.10−3

[
,
[
5.10−3; 5.10−2

[
and[

5.10−2;+∞
[
.

Convergence problems of the ALS clearly appear from these results. Whatever

the considered scenario, the average value of r remains high for both ALS-1 and

ALS-2. Figure 1 shows that for N = 5 less than 60% of the values of r fall in the range[
5.10−5; 5.10−4

[
. Moreover, this percentage dramatically decreases for increasing val-

ues of N besides a significant rate of the values of r fall in the range
[
5.10−2;+∞

[
. In

these conditions, convergence times of ALS-1 are very low and compete with those

of DIAG but considering the convergence rates of ALS-1 these cputime values are

misleading. Indeed, we could say that in average ALS-1 quickly converge to a lo-

cal minimum and in practice it should be run from different starting point in order

to obtain satisfying convergence hence increasing the total cputime. Furthermore,

comparing ALS-1 and ALS-2 results, it seems that decreasing the threshold of the

stopping criterion has little impact on the convergence. Conversely, DIAG-SJDTE

and DIAG-SJDTE-eco offer very good results in term of reconstruction errors : from

90% to 100% of he values of r fall in the range
[
5.10−5; 5.10−4

[
. Moreover, these per-

formances are very stable with respect to the value of N, with a little advantage

for DIAG-SJDTE. Now, regarding the average cputime, DIAG-SJDTE-eco is very
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less time consuming than DIAG-SJDTE for N = 15 (13s against 57s) and N = 30 (25s

against 408s) whereas the average iteration numbers of both algorithms is the same.

Considering the small difference between both algorithms regarding the reconstruc-

tion error, we can clearly recommend the use of DIAG-SJDTE-eco when N is large.

5 Conclusion

We have proposed an original JEVD algorithm and showed how it can help for com-

puting the canonical polyadic decomposition of large tensors. Preliminary results

showed in this work point out that this approach provides very good convergence

rates comparing to a reference CPD algorithm. Moreover it converges in very few

iterations and the computing times are very low, including for high rank CPD. Fur-

ther studies will be conducted to refine this conclusion. In particular, we want now

to evaluate the impact of the choice of the subset of matrices M(k) and of the JEVD

algorithm inside the DIAG procedure.
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