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ABSTRACT

In this paper we propose a novel algorithm to compute the
joint eigenvalue decomposition of a set of squares matri-
ces. This problem is at the heart of recent direct canonical
polyadic decomposition algorithms. Contrary to the existing
approaches the proposed algorithm can deal equally with
real or complex-valued matrices without any modifications.
The algorithm is based on the algebraic polar decomposition
which allows to make the optimization step directly with com-
plex parameters. Furthermore, both factorization matrices are
estimated jointly. This “coupled” approach allows us to limit
the numerical complexity of the algorithm. We then show
with the help of numerical simulations that this approach is
suitable for tensors canonical polyadic decomposition.

1. INTRODUCTION

Many iterative algorithms have been proposed to compute the
Canonical Polyadic Decomposition (CPD) of tensors [1–4].
However these approaches can suffer from convergence prob-
lems (local minima, slow convergence or high computational
cost) and are very sensible to over-factoring and correlated
factors [2,5]. In the meantime, a number of authors has shown
how the CPD can be rewritten into a Joint EigenValue Decom-
position problem (JEVD) [5–7].
JEVD consists in finding the eigenvector matrixA that jointly
diagonalizes a given set ofK non-defective matricesM (k) in
the following way:

M (k) = AD(k)A−1, ∀k = 1, . . . ,K. (1)

It is worth mentioning that in practice if the JEVD have a
solution then it is unique up to a permutation and a scaling of
the columns of A, that is assumed here. We refer to [6] for a
sufficient and necessary condition of JEVD uniqueness.
The link between CPD and JEVD has given birth to efficient
CPD algorithms such as CFS [7], DIAG [5] or SECSI [8]. In-
deed, although the JEVD is computed iteratively throughout
a Jacobi-like procedure, this procedure involves small matri-
ces and it usually requires very few iterations to converge,
we thus speak of “direct” CPD algorithms. In comparison
with iterative algorithms, direct algorithms are fast and less

sensible to convergence, over-factoring and correlated factors
problems [5].
Several JEVD algorithms has been proposed in the literature.
Most of them are based on Jacobi-like updates (sweeping pro-
cedure) and look for a factorized form of the updating ma-
trix. In [11] Fu and Gao introduced a first algorithm called
sh-rt and based on the polar decomposition. The same fac-
torization is also at the heart of JUST [12] and JDTM [5] al-
gorithms while JET-U and JET-O resort to the LU factorisa-
tion [10]. Finally in [13] we proposed an alternative approach,
called JDTE that does not resort to any sweeping procedure.
These algorithms have been extensively compared in [5], [10]
and [13]. Most of them require significant modifications to
deal with complex-valued matrices that make the optimiza-
tion step more difficult during the sweeping procedure and
somehow decrease the performances [10]. This is because
complex versions of these algorithms need to estimate the real
and the imaginary part or the modulus and the angle of the
parameters separately. Therefore, in this paper we propose
a versatile JEVD algorithm that can deal equally with real
or complex-valued matrices, without any modifications. The
method resorts to the algebraic polar decomposition for the
factorization of the updating matrix. This allows us to make
the optimization step directly upon the complex parameters.
The second originality of the approach in the JEVD context
is that both factorization matrices are estimated jointly. This
“coupled” strategy limits the numerical complexity of the al-
gorithm. It was originally introduced to deal with other Joint
Diagonalization (JD) problems [14–16].

Notations Scalars are denoted by a lower case (a), vectors
by a boldface lower case (a), matrices by a boldface upper
case (A) and tensors by an upper case boldface calligraphic
(A). ai is the i-th element of vector a, Ai,j is the (i, j)-th
element of matrix A and so on for tensors. Determinant and
Frobenius norm of A are denoted det{A} and ||A|| respec-
tively. |z| is the complex modulus of z.

2. MATRIX JEVD FOR TENSOR CPD

We recall here how the canonical polyadic decomposition can
be rewritten into a JEVD problem. This algorithm called



DIAG has been introduced in [17] (under the name SALT)
and deeply investigated in [5]. Another connection between
both problems had been proposed in [7].
The rank-N CPD of a tensor T of order Q, size I1×· · ·× IQ
is given by:

Ti1,··· ,iQ =

N∑
n=1

X
(1)
i1,n
· · ·X(Q)

iQ,n , (2)

where X(q) defines the q-th factor matrix of size Iq × N .
Entries of T can be stored in an unfolding matrix T of size∏P

p=1 Ip×
∏Q

q=P+1 Iq by regrouping, in an appropriate way,
the first P modes on the rows of T and the Q − P other
modes on its columns. The CPD can then be rewritten in a
matrix form:

T = Y
(P,1)

X

(
Y

(Q,P+1)

X

)
T , (3)

with: Y (b,a)
X = X(b) �X(b−1) � · · · �X(a), (b > a) and

where � is the Khatri-Rao product. Note that one can easily
deduceX(a), · · · ,X(b) from Y (b,a)

X as explained in [5] so we
only recall here how to compute Y (P,1)

X and Y (Q,P+1)

X .
Let USV H be the singular value decomposition of T , trun-
cated at order N , their exists a non singular square matrix A
of size N ×N such that:

Y
(P,1)

X = UA and
(
Y

(Q,P+1)

X

)
T = A−1SV H. (4)

(
Y (Q,P+1)

X

)
T can be seen as an horizontal block matrix:(

Y
(Q,P+1)

X

)
T

=
[
φ

(1)
(
Y

(Q−1,P+1)

X

)
T
, · · · ,φ(IQ)

(
Y

(Q−1,P+1)

X

)
T
]
,

(5)

where φ(1), · · · ,φ(IQ) are the IQ diagonal matrices built
from the IQ rows of matrixX(Q). Then, (4) and (5) yield:

SV H =
[
Γ(1)T, · · · ,Γ(IQ)T

]
, (6)

where Γ(k) = Y
(Q−1,P+1)
X φ(k)AT for k = 1, · · · , IQ. As-

suming that matrices Γ(k) and matrix Y (Q−1,P+1)

X are full col-
umn rank, then they all admit a Moore-Penrose matrix inverse
denoted by ]. Thereby, we can define for any couple (k1, k2)
with k1 = 1, · · · , IQ − 1 and k2 = k1 + 1, · · · , IQ:

M (k1,k2) def
=

(
Γ(k1)]Γ(k2)

)
T, (7)

= AD(k1,k2)A−1, (8)

where D(k1,k2) = φ(k2)φ(k1)] are diagonal matrices. As a
result, A performs the JEVD of the set of matrices M and
is estimated using a JEVD algorithm. Matrices Y (P,1)

X and
Y (Q,P+1)

X are then immediately deduced fromA using (4).

3. A COUPLED JEVD ALGORITHM

We now describe the proposed coupled JEVD algorithm, that
works equally in the real and complex case i.e matrices A,
D(k) and M (k) can equally belong to R or C. Let us first
recall the general scheme of JD algorithms. We want to build
an estimate Â of matrix A (up to the scale and permuta-
tion indeterminacy). At each iteration (also called sweep),

the algorithm computes a new set of N(N − 1)/2 nonsin-
gular matrices, denoted B(i,j), with i = 1, · · · , N − 1 and
j = i + 1, · · · , N and does the following updates of Â and
M (k) (for each k) :

Â ← Â

N−1∏
i=1

N∏
j=i+1

B
(i,j)

−1

M(k) ←
N−1∏
i=1

N∏
j=i+1

B
(i,j)

M
(k)

N−1∏
i=1

N∏
j=i+1

B
(i,j)

−1
.

(9)

The process is repeated so that at the end all matrices M (k)

are diagonals and Â = AΛΠ, where Λ and Π are diagonal
and permutation matrices respectively. Â can be initialized
using the identity matrix, single EVD of one matrix M (k)

or generalized EVD. In practice, the updates in (9) consists
in N(N − 1)/2 successive (i, j)-updates of Â and M (k),
defined as: Â ← Â

(
B(i,j)

)
−1

M (k) ← B(i,j)M (k)
(
B(i,j)

)
−1.

(10)

The underlying idea being that each (i, j)-update brings ma-
trices M (k) closer to diagonal matrices by optimizing a “di-
agonality” criterion.
We propose here a new way to build the (i, j)-updating matri-
ces B(i,j). First, we define the (i, j)-updated matrices N (k)

as:
N (k) = B(i,j)M (k)

(
B(i,j)

)
−1. (11)

We then look for the matrix B(i,j) that minimizes the cost
function C [5, 10, 18], given by:

C(B(i,j)) =

K∑
k=1

(∣∣∣N (k)
i,j

∣∣∣2 + ∣∣∣N (k)
j,i

∣∣∣2) . (12)

Thus we can impose the following structure forB(i,j):
∀ (p, q) /∈ {(i, i), (i, j), (j, i), (j, j)} , B(i,j)

p,q = δp,q,

B
(i,j)
i,i = b

(i,j)
1 , B

(i,j)
i,j = b

(i,j)
2 ,

B
(i,j)
j,i = b

(i,j)
3 , B

(i,j)
j,j = b

(i,j)
4 .

(13)

where b(i,j)1 , b(i,j)2 , b(i,j)3 , b(i,j)4 are unknown parameters and δ is the
Kronecker delta. Thanks to the scaling indeterminacy of the
JEVD problem, we can also impose det{B(i,j)} = 1. Now,
defining matrices:

M̃
(k)

=

(
M

(k)
i,i M

(k)
i,j

M
(k)
j,i M

(k)
j,j

)
, Ñ

(k)
=

(
N

(k)
i,i N

(k)
i,j

N
(k)
j,i N

(k)
j,j

)
,

B̃
(i,j)

=

(
b
(i,j)
1 b

(i,j)
2

b
(i,j)
3 b

(i,j)
4

)
,

equation (11) becomes:

Ñ
(k)

= B̃
(i,j)

M̃
(k)
(
B̃

(i,j)
)

−1 (14)

and the cost function becomes:

C(B̃
(i,j)

) =

K∑
k=1

(∣∣∣Ñ (k)
1,2

∣∣∣2 + ∣∣∣Ñ (k)
2,1

∣∣∣2) . (15)



In order to simplify the notations, in the following we will

refer to B(i,j), B̃
(i,j)

, b(i,j)
1 , b(i,j)

2 , b(i,j)
3 and b(i,j)

4 as B, B̃,
b1, b2, b3 and b4 respectively.
We can immediately deduce from det{B} = 1 that:

B̃−1 =

(
b4 −b2
−b3 b1

)
(16)

and (14) yields:{
Ñ

(k)
1,2 = b1b2(M

(k)
j,j −M

(k)
i,i ) + b21M

(k)
i,j − b

2
2M

(k)
j,i ,

Ñ
(k)
2,1 = −b3b4(M (k)

j,j −M
(k)
i,i )− b23M

(k)
i,j + b24M

(k)
j,i .

(17)
At this stage, one should note that during the sweeping proce-
dure it is expected that the updating matrixB gets closer and
closer to the identity matrix. Thus, if we assume that we are
close enough to the solution we can reasonably assume that
|b1| � |b2| and |b4| � |b3| and the previous system can be
simplified:{

Ñ
(k)
1,2 ' b1b2(M

(k)
j,j −M

(k)
i,i ) + b21M

(k)
i,j ,

Ñ
(k)
2,1 ' −b3b4(M (k)

j,j −M
(k)
i,i ) + b24M

(k)
j,i .

(18)

Now defining vectors b12 = [b1b2 b
2
1]T, b34 = [b3b4 b

2
4]T and

matrices:

M12 =


M

(1)
j,j −M

(1)
i,i M

(1)
i,j

...
...

M
(K)
j,j −M

(K)
i,i M

(K)
i,j

M21 =


M

(1)
i,i −M

(1)
j,j M

(1)
j,i

...
...

M
(K)
i,i −M

(K)
j,j M

(K)
j,i


yields: 

K∑
k=1

∣∣∣Ñ (k)
1,2

∣∣∣2 = b12
HM12

HM12b12,

K∑
k=1

∣∣∣Ñ (k)
2,1

∣∣∣2 = b34
HM21

HM21b34.

(19)

It then clearly appears that the two contributions to the cost
function can be minimized separately and thus both parame-
ters vectors b12 and b34 can be computed independently. In
practice, we can first look for the 1-dimensional subspaces of
b12 and b34. In this purpose it is well known that the norm-1
vector that minimize f(x) = xHM12

HM12x is the normal-
ized eigenvector associated to the eigenvalue of M12

HM12

of smallest modulus. In the same way the norm-1 vector that
minimize g(x) = xHM21

HM21x is the normalized eigen-
vector associated to the eigenvalue of M21

HM21 of smallest
modulus. We denote e and f these two vectors and we have:{

e = αb12,
f = βb34,

(20)

where α and β are two unknown values. We now explain
how we deduce B̃ from e and f by using the algebraic polar
decomposition of B̃.
Matrix polar decomposition states that any square real (com-
plex) valued matrix X can be factorized as a product of an
orthogonal (unitary) matrix and a positive-definite symmetric
(hermitian) matrix. Actually, in the complex case we have

an alternative result stating that any square matrix X can be
factorized as a product of a complex orthogonal matrix and
a complex symmetric matrix if and only if XTX is similar
to XXT [19]. This factorization is called the algebraic polar
decomposition of X [20, 21]. A complex matrix Q is said
complex orthogonal if QTQ = I and a complex matrix S is
said complex symmetric if ST = S.
Therefore, letQ and S be the (complex) orthogonal and sym-
metric matrices of the (algebraic) polar decomposition of B̃
i.e. B̃ = QS. Note that since B̃ is nonsingular, B̃TB̃ is
similar to B̃B̃T and so the existence of the decomposition
is guaranteed. Because we have imposed det{B̃} = 1 and
thanks to the scaling indeterminacy of the JEVD problem we
can still impose det{Q} = det{S} = 1 and in these condi-
tions there exists a couple of parameters (t, th) so that:

Q =
1√

1 + t2

(
1 −t
t 1

)
; S =

1√
1− t2h

(
1 th
th 1

)
. (21)

Defining γ = 1√
(1+t2)(1−t2h)

, B̃ = QS gives:

b12 = γ

(
(1− tth)(th − t)

(1− tth)2
)
; b34 = γ

(
(t+ th)(tth + 1)

(tth + 1)2

)
.

(22)
Now, (22) and (20) yield:

e1
e2

=
th − t
1− tth

and
f1
f2

=
t+ th
tth + 1

(23)

and finally we deduce:{
t2h − 2 e1f1+e2f2

e2f1+e1f2
th + 1 = 0,

t = e1−e2th
the1−e2

.
(24)

Because th should be close to 0, it is chosen as the root of the
binomial with the smallest modulus. From th we immediately
deduce t then B̃ andB.
It is worth mentioning that: (i.) In the real case the algebraic
polar decomposition is equivalent to the polar decomposition,
therefore the proposed algorithm can be directly applied on
real- or complex-valued matrices without any modification.
(ii.) By construction, det{Q} = det{S} = det{B̃} = 1 so
that existence of B̃−1 is guaranteed throughout the algorithm.

Numerical complexity Numerical complexity of an itera-
tive algorithm based on matrix computations can be approxi-
mated by the number of multiplications computed during one
iteration of the algorithm. Numerical complexities of JEVD
algorithms are dominated by the updates of the matrix set.
When dealing with real-valued matrices, the dominant term
for the proposed algorithm is 4KN3. In comparison domi-
nant terms for JUST, JDTM, sh-rt, JDTE, JET-O and JET-U
algorithms are 11KN3, 8KN3, 8KN3, 2KN3, 2KN3 and
KN3 respectively. Numerical complexities of complex ver-
sions of the algorithms (when they exist) are still dominated
by the updating step. Thus we can simply multiply the previ-
ous values by 4. In conclusion, one iteration of the proposed
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Fig. 1. Comparison of DIAG-JDTM, DIAG-JETU and DIAG-coupled for the rank 5 CPD of complex valued-tensors of size 10× 10× 10.

algorithm is less costly than one iteration of other polar de-
composition based algorithms but more costly than one iter-
ation of JDTE or LU decomposition based algorithms. How-
ever, the global (and practical) computational cost of each al-
gorithm is obtained by multiplying its numerical complexity
by the number of computed iterations before convergence and
this number varies a lot from one algorithm to another.

4. NUMERICAL SIMULATIONS

Canonical polyadic decomposition of tensors is one of the
main application of JEVD. Thereby, we chose to evaluate
the performances of the proposed approach in this context
by considering CPD of complex-valued tensors of order 3.
In this purpose we compare 3 different implementations of
the DIAG algorithm described in section 2; namely, DIAG-
JDTM, DIAG-JETU and DIAG-coupled, respectively based
on JDTM, JETU and the proposed algorithm. JDTM and
JETU have been chosen as references because JDTM is very
efficient to estimate the matrix of eigenvectors from noisy
matrix sets while JETU has the lowest numerical complexity.
The first comparison criterion, rX , is an average value of the
normalized mean squares error computed between actual and

estimated factor matrices: rX = 1
3

∑3
q=1

||X(q)−X̂(q)||2

||X(q)||2
,

where X̂(q) is the estimated factor matrix corrected from
scaling and permutation indeterminacies. Algorithms perfor-
mances are evaluated from 100 Monte-Carlo (MC) runs. For
each run a new noise-free tensor is built using a new random
draw of the 3 complex factor matrices. Then a Gaussian white
noise is added in order to obtain the desired SNR value and
the noisy tensor is decomposed using the three algorithms.
When computing the DIAG algorithm, the JEVD is applied
to the whole matrix set built from equation (7) (no matrix is
removed). Matrix Â is initialized as the identity matrix. Dur-
ing the JEVD process the squared off-diagonal components
of the K matrices M (k) are summed and the obtained value
is compared to the value computed at the previous sweep.
The JEVD process is stopped when the relative deviation

between two successive values is smaller than 10−6 or when
a maximal number of 100 sweeps has been reached. Then the
global computational cost of the JEVD step, Γ, is computed
as defined previously. This gives us our second comparison
criterion. Factor matrices used to build the tensors are of size
10× 5, so rank-5 CPD of 10× 10× 10 tensors are performed
and the JEVD problem is of size: K = 45, N = 5.
We present on figure 1 the evolution of the median and aver-
age values of rX and of the average value of Γ with respect
to the SNR value. Regarding the estimation precision of the
factor matrices, the proposed approach is the more efficient
whatever the SNR value. Indeed DIAG-JDTM can compete
only at the lowest SNR values (10 and 20 dB) whereas DIAG-
JETU is clearly surpassed for the more realistic SNR values
(this is particularly true below 40 dB). Furthermore, the av-
erage value of rX shows a clear gap between the three algo-
rithms in favor of DIAG-coupled. Indeed during the JEVD
process, JDTM and JET-U have not always converged con-
trary to our coupled JEVD algorithm. Now regarding the
global computational cost, figure 1(c) shows that the proposed
algorithm is from 9.7 to 23.5 times less costly than JDTM
(depending on the SNR value) and from 3.4 to 8 times more
costly than JET-U. To sum up, DIAG-coupled appears here as
the best choice in terms of estimation precision while being
much less costly than the second more accurate solution.

5. CONCLUSION

In this paper we have introduced a new method for joint eigen-
value decomposition. Contrary to classical approaches, this
method works equally on real or complex-valued matrices by
exploiting the algebraic polar decomposition and a coupled
estimation of the factorization matrices. Numerical simula-
tions demonstrate that it can be successfully used to compute
the canonical polyadic decomposition of complex-valued ten-
sors, rewritten as a JEVD problem. Indeed, in the represen-
tative scenario that we have considered: the rank-5 CPD of a
noisy tensor of size 10× 10× 10, the proposed algorithm al-
lows a better estimation of the factors matrices than reference
algorithms while keeping a low computational cost.



6. REFERENCES

[1] R. A. Harshman, “Foundation of PARAFAC procedure:
Models and conditions for an ’explanatory’ multi-mode
factor analysis,” UCLA working papers in Phonetics,
no. 16, pp. 1–84, 1970.

[2] P. Comon, X. Luciani, and A. L. F. de Almeida, “Ten-
sor decompositions, alternating least squares and other
thales,” Journal of Chemometrics, vol. 23, april 2009.

[3] E. Acar, T. G. Kolda, and D. M. Dunlavy, “An op-
timization approch for fitting canonical tensor decom-
positions,” Tech. Rep. SANDIA national laboratories,
February 2009.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions
and applications,” SIAM Review, vol. 51, no. 3, pp. 455–
500, 2009.

[5] X. Luciani and L. Albera, “Canonical polyadic de-
composition based on joint eigenvalue decomposition,”
Chemometrics and Intelligent Laboratory Systems, vol.
132, no. 0, pp. 152 – 167, 2014.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle,
“Computation of the canonical decomposition by means
of a simultaneous Schur decomposition,” SIAM Journal
on Matrix Analysis and Applications, vol. 26, no. 2, pp.
295–327, 2004.

[7] F. Roemer and M. Haardt, “A closed-form solution for
multilinear parafac decompositions,” in SAM 08, Fifth
IEEE Sensor Array and Multichannel Signal Processing
Workshop, july 2008, pp. 487–491.

[8] ——, “A semi-algebraic framework for approximate
{CP} decompositions via simultaneous matrix diagonal-
izations (secsi),” Signal Processing, vol. 93, no. 9, pp.
2722 – 2738, 2013.

[9] M. Haardt and J. Nossek, “Simultaneous Schur decom-
position of several nonsymmetric matrices to achieve
automatic pairing in multidimensional harmonic re-
trieval problems,” IEEE Transactions on Signal Pro-
cessing, vol. 46, no. 1, pp. 161–169, January 1998.

[10] X. Luciani and L. Albera, “Joint eigenvalue decompo-
sition of non-defective matrices based on the lu factor-
ization with application to ica,” IEEE Transactions on
Signal Processing, vol. 63, no. 17, pp. 4594–4608, Sept
2015.

[11] T. Fu and X. Gao, “Simultaneous diagonalization with
similarity transformation for non-defective matrices,” in
ICASSP 2006, 2006 IEEE International Conference on
Acoustics Speech and Signal Processing, vol. 4, May
2006, pp. 1137–1140.

[12] R. Iferroudjene, K. Abed-Meraim, and A. Belouchrani,
“A new Jacobi-like method for joint diagonalization of
arbitrary non-defective matrices,” Applied Mathematics
and Computation, vol. 211, no. 2, pp. 363–373, 2009.

[13] R. Andre, T. Trainini, X. Luciani, and E. Moreau, “A fast
algorithm for joint eigenvalue decomposition of real ma-
trices,” in European Signal Processing Conference (EU-
SIPCO’2015), Nice, France, 2015.

[14] T. Trainini and E. Moreau, “A coordinate descent algo-
rithm for complex joint diagonalization under Hermi-
tian and transpose congruences,” IEEE Transactions on
Signal Processing, vol. 62, no. 19, pp. 4974–4983, Oct
2014.

[15] V. Maurandi and E. Moreau, “A decoupled Jacobi-
like algorithm for non-unitary joint diagonalization of
complex-valued matrices,” IEEE Signal Processing Let-
ters, vol. 21, no. 12, pp. 1453–1456, Dec 2014.

[16] V. Maurandi, E. Moreau, and C. D. Luigi, “Jacobi
like algorithm for non-orthogonal joint diagonalization
of Hermitian matrices,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP’2014), Florence, Italy, 2014.

[17] X. Luciani and L. Albera, “Semi-algebraic canonical de-
composition of multi-way arrays and joint eigenvalue
decomposition,” in IEEE International Conference on
Acoustics Speech and Signal Processing, Prague, Czech
Republic, May 22-27 2011, pp. 4104–4107.

[18] A. Souloumiac, “Nonorthogonal joint diagonalization
by combining Givens and hyperbolic rotations,” IEEE
Transactions on Signal Processing, vol. 57, no. 6, pp.
2222–2231, June 2009.

[19] R. A. Horn and D. I. Merino, “Contragredient equiva-
lence: A canonical form and some applications,” Linear
Algebra and its Applications, vol. 214, pp. 43–92, 1995.

[20] D. Choudhury and R. Horn, “A complex orthogonal-
symmetric analog of the polar decomposition,” SIAM J.
Algebraic Discrete Methods, vol. 8, pp. 219–225, 1987.

[21] I. Kaplansky, “Algebraic polar decomposition,” SIAM
Journal on Matrix Analysis and Applications, vol. 11,
no. 2, pp. 213–217, 1990.


