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ABSTRACT
We introduce an original algorithm to perform the joint eigen-
value decomposition of a set of real matrices. The proposed
algorithm is iterative but does not resort to any sweeping pro-
cedure such as classical Jacobi approaches. Instead we use a
first order approximation of the inverse of the matrix of eigen-
vectors and at each iteration the whole matrix of eigenvectors
is updated. This algorithm is called Joint eigenvalue Decom-
position using Taylor Expansion and has been designed in or-
der to decrease the overall numerical complexity of the pro-
cedure (which is a trade off between the number of iterations
and the cost of each iteration) while keeping the same level
of performances. Numerical comparisons with reference al-
gorithms show that this goal is achieved.

Index Terms— Joint eigenvalue decomposition, joint di-
agonalization, canonical polyadic decomposition, ICA.

1. INTRODUCTION

In this paper, we consider the Joint EigenValue Decompo-
sition (JEVD), also called joint diagonalization by similar-
ity. The principle of JEVD is to diagonalize a set of K non-
defective matrices, as the following way:

∀k = 1, ....,K M(k) = AD(k)A−1, (1)

where the matrix of eigenvectors A and the K diagonal ma-
trices D(k) are unknown. We only consider here the real case
for simplicity. Note that the matrix of eigenvectors A is es-
timated up to a permutation and scaling indeterminacy. This
limitation is inherent to the JEVD problem. The uniqueness
condition of the JEVD problem is given in [1]. Let theN×K
matrix
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be the matrix whose columns are the diagonals of each ma-
trix D(k). JEVD is unique if and only if the rows of Ω are
all distinct. The JEVD is useful in several contexts: direc-
tion of arrival estimation [2], joint angle-delay estimation
[3], multi-dimensional harmonic retrieval [4], Canonical
Polyadic Decomposition (CPD) of tensors [1], [5], [6], and

Independent Component Analysis (ICA) [7], [8], [9], [10],
[11]. Note that this problem is different than classical Joint
Diagonalization by Congruence (JDC), for which the right
matrix A−1 is replaced by At [12], [13], [14]. Of course, if
A is orthogonal JEVD and JDC problems are equivalent.
JEVD algorithms usually resort of a Jacobi-like procedure
using different matrix decompositions such as QR, LU and
polar factorizations. Most algorithms are based on the polar
decomposition: “sh-rt” algorithm [15] allows to diagonalize
the K matrices correctly but it is not as good regarding the
estimation of the matrix of eigenvectors, JUST algorithm
[16] can sometimes improves these results. Before going
further with this short JEVD historic, we would like to insist
here that an important application of JEVD is the CPD of
multiway arrays (also called PARAFAC). Indeed the CPD
can be rewritten as a JEVD problem and this approach has
given birth to very fast CPD algorithms such as CFS [5] and
DIAG [6]. Thereby, in order to accentuate this strong point,
it was important to develop fast JEVD algorithms. In this
context, JDTM algorithm [6], still based on polar decom-
position, provides satisfying results in most situations and
requires only few iterations to converge. However it keeps
a high computational cost per iteration. Conversely, JET-O
algorithm [17], [18] based on the LU decomposition has low
computational cost per iteration but it can require many more
iterations to converge.
Therefore, we propose here a new approach able to decrease
the overall numerical complexity of the process by keeping
low both the cost per iteration and the average number of
iterations to reach the convergence and the same performance
level that JET-O and JDTM. This algorithm is called Joint
eigenvalues Decomposition based on a Taylor Expansion
(JDTE) and has been inspired by the algorithm H-NOODLES
for JDC [19].

2. NOTATIONS

In this paper scalars are denoted by a lower case (a), vectors
by a lower case boldface (a) and matrices by an upper case
boldface (A). The i−th element of the vector a is denoted by
ai and the (i, j)− th element of a matrix A is denoted byAij .
The identity matrix is denoted by I. The operator Diag{·}
represents the diagonal matrix built from the diagonal of the



matrix argument, the operator ZDiag{·} sets to zero the diag-
onal of the matrix argument and ||.|| is Frobenius norm of the
argument matrix.

3. A FAST METHOD FOR JEVD BASED ON TAYLOR
EXPANSION

Here, we consider that all matrices are of size N × N . To
solve our problem we have to find an estimated matrix Â such
that, for all matrices M(k), Â

−1
M(k)Â are as diagonal as pos-

sible. The matrix Â is estimated iteratively by successive up-
dates. At each iteration i a matrix Bi is computed in order
to decrease a diagonalization criterion and the matrix set is
updated as

∀i = 1, ...., S, ∀k = 1, ....,K T(k)
i+1 = B−1

i T(k)
i Bi, (3)

with T(k)
1 = M(k), and S the number of iterations to reach

the convergence. Thereby, if S iterations allow to achieve the
JEVD, Â will be equal to

∏S
i=1 Bi and all the T(k)

S matrices
are diagonal.
To process, a classical approach is to reduce at each iteration
the following criterion based on a quadratic measure of diag-
onality:

C(Bi) =

K∑
k=1

||ZDiag{B−1
i T(k)

i Bi}||2. (4)

As said before, at each iteration we have to determine the N2

elements of the matrix Bi. Here, we simply decompose Bi as
follow:

Bi = (I + Zi), (5)

where Zi is equal to ZDiag{Bi}. Hence, at each iteration the
updated data matrices become:

∀k = 1, ....,K T(k)
i+1 = (I + Zi)

−1T(k)
i (I + Zi), (6)

so that the criterion (4) depends only on Zi and can be written
as:

C(Bi) = C̃(Zi) =

K∑
k=1

||ZDiag{(I + Zi)
−1T(k)

i (I + Zi)}||2.

(7)
In the following, to simplify the notations, we drop the index
i.
To solve this problem we aim to minimize the previous cri-
terion, more precisely an approximation of this criterion. In-
deed, it is compulsory to approximate our criterion if we want
work on an analytic form of Z. For this purpose, we assume
that we are close to the solution and so that ||Z|| � 1 then we

compute its first order Taylor expansion which yields:

(I + Z)−1T(k)(I + Z) ≈ (I− Z)T(k)(I + Z)

≈ T(k) − ZT(k) + T(k)Z− ZT(k)Z

≈ T(k) − ZT(k) + T(k)Z. (8)

Moreover each matrix T(k) can be decomposed as

T(k) = Λ(k) + O(k), (9)

where Λ(k) = Diag{T(k)} and O(k) = ZDiag{T(k)}. Once
again, considering that we are close to the solution, all the
T(k) matrices are almost diagonal and ||O(k)|| � 1. This
second approximation gives:

T(k)−ZT(k)+T(k)Z ≈ Λ(k)+O(k)−ZΛ(k)+Λ(k)Z (10)

and thus, we finally resort to the following approximated
JEVD criterion:

Ca(Z) =

K∑
k=1

||ZDiag{O(k) − ZΛ(k) + Λ(k)Z}||2

≈ C̃(Z). (11)

Now, developing (11) yields:
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where

f(Zmn) =
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Since for allm, n, f(Zmn) is non-negative, minimizing Ca(Z)
is equivalent to minimize all the f(Zmn) independently. In
order to find the elements of the updating matrix Z, we look
for the values of Zmn which annul the derivative:

∀m,n m 6= n,
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Finally, we deduce the analytic expression of Zmn:

∀m,n m 6= n,Zmn = −
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Algorithm 1 The JDTE algorithm
Define a stopping criterion crit and a maximal number of
iterations Smax;
Initialize Â;
i = 1
while crit is false and i ≤ Smax do

for m = 1 to N do
for n = 1 to N do

if m 6= n then
Compute Zmn using (15);

end if
end for

end for
Compute B = I + Z ;
Compute B−1;
for k = 1 to K do

T(k) ← B−1T(k)B;
end for
Â← ÂB;
i = i+ 1;
update crit

end while

Algorithm 1 gives an algorithmic description of the method.
Note that here, one iteration consists in only one update of
matrices Â and T(k). Several stopping criteria can be used,
for our simulations, algorithm are stopped as soon as the fol-
lowing condition is fulfilled:

|C(Bi)− C(Bi−1)|
C(Bi−1)

≤ ε. (16)

4. NUMERICAL COMPLEXITIES OF JEVD
ALGORITHMS

We define here the numerical complexity (denoted Γ) of an
iterative algorithm as the minimal number of multiplications
computed by this algorithm during each iteration. Accord-
ing to this definition the numerical complexity of the JDTE
algorithm is given by:

Γ{JDTE} ' (N(N − 1)(2K + 1) + 2N3 + 2KN3), (17)

this value has to be compared to the numerical complexities
of reference JEVD algorithms. Hence we have:

Γ{JET-O} 'KN(N − 1)(N + 7)/6 +N2(N + 1)/2

+ (5K + 4KN +N/3)(N − 1)N/2, (18)
Γ{sh-rt} ' (3K + 16KN + 14N)(N − 1)N/2, (19)

Γ{JDTM} ' (6K + 16KN + 8N)(N − 1)N/2, (20)
Γ{JUST} ' (32− 6K + 22KN + 8N)(N − 1)N/2.

(21)

Costs per iteration are thus dominated by a term in αKN3,
whatever the algorithm, and only the value of α depends on
the considered algorithm. It then clearly appears that only
JET-O can compete with JDTE in terms of cost per itera-
tion. However the average number of required iterations to
reach the stopping criterion varies from one algorithm to an
other. It’s why, we define the total numerical complexity as
Γtot = SΓ. Therefore total numerical complexities of the dif-
ferent algorithms have to be compared empirically by means
of numerical simulations.

5. NUMERICAL SIMULATIONS

Matrix sets to be diagonalized are created as follow: for given
values of K and N we randomly draw (according to a stan-
dard normal distribution) a set of K diagonal matrices and a
squared matrix A of sizeN . Then we compute theK matrices
M(k) as:

∀k = 1, ....,K M(k) =
AD(k)A−1

‖AD(k)A−1‖
+ σ

E(k)

‖E(k)‖
. (22)

Where Ek models a Gaussian random noise. Parameter σ al-
lows to regulate the noise power and obtain the desired Sig-
nal to Noise Ratio (SNR) value which is then defined as :
−20 log10(σ).
In order to validate the proposed approach, we have com-
pared the performance of JDTE algorithm with those of JUST,
JDTM and JET-O according two different scenarios. For each
simulation i.e. each time we vary a simulation parameter, 100
Monte-Carlo runs are performed. For each MC run a new
random matrix set is built and the three algorithms are ap-
plied to this new set. The same stopping criterion (16) is used
for the four algorithms wiht ε = 10−6. All the algorithms
are initialized with the identity matrix. At the end of each run
two indicators are computed for each algorithm along with the
numerical complexities. Our first indicator quantifies the rel-
ative deviation between the eigenvalues estimated by a JEVD
algorithm and the actual eigenvalues of matrices M(k). In the
same way, our second indicator quantifies the relative devi-
ation between the estimated matrix of eigenvectors and the
actual one. These indicators are denoted rD and rA respec-
tively and are computed as follow, after removing scaling and
permutation indeterminacy:

rD =
1

K

K∑
k=1

‖d(k) − d̂
(k)
‖

‖d(k)‖
, (23)

rA =
‖A− Â‖
‖A‖

, (24)

where d(k) and d̂
(k)

are vectors containing actual and esti-
mated eigenvalues of M(k) respectively. Finally we resort to
three criteria in order to assess algorithm performances: the
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(a) Diagonalization criterion (median value).

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

lo
g 10

(r
A
)

 

 

JDTE
JET−O
JDTM
JUST

(b) Estimation of the matrix of eigenvectors (me-
dian value).
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Fig. 1. Evolution of the three comparison criteria as a function of the SNR value (in dB) for the JDTM (dash-dot line), JET-
O(dash line), JUST(dot line) algorithms and the proposed JDTE (solid line) method for 20 matrices of size 5× 5.
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(b) Estimation of the matrix of eigenvectors (me-
dian value).
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Fig. 2. Evolution of the three comparison criteria as a function of the size of the number of matrices to be jointly diagonalized
for the JDTM (dash-dot line), JET-O(dash line), JUST(dot line) algorithms and the proposed JDTE (solid line) method for
matrices of size 5× 5 and a SNR of 50 dB.

median values of rD and rA and the average value of Γtot

over the 100 MC runs.
For our first scenario, we consider sets of 20 matrices of size
5 and we vary the SNR value from 10 to 100. Evolutions of
the three comparison criteria as a function of the SNR are
reported on figures 1(a), 1(b) and 1(c). It can be seen that the
JDTE, JET-O and JDTM algorithms provide very similar per-
formances in terms of estimation precision of the eigenvalues
and of the matrix of eigenvectors while JUST is less efficient.
As expected, the numerical complexity criterion allows to
discriminate between these three algorithms. We observe
that for the lowest SNR values JET-O is the less costly algo-
rithm respectively followed by JDTE and JDTM. Note that if
we consider that the median values of rA must be lower than
10−1 no algorithm gives satisfying results under 30 dB. Then,
above 40 dB, JDTE becomes clearly the less costly solution
and this tendency increases with the SNR value.
The second scenario is performed in the same way but this
time, we vary the size of the matrix sets from 2 to 50 while
the SNR and the matrix size are set to 50 dB and 5 respec-
tively. Results are plotted on figures 2(a), 2(b) and 2(c). Once

again the diagonalization criterion does not allow to decide
between JDTE, JDTM and JET-O and although JET-O al-
gorithm provides now the best estimation of the matrix of
eigenvectors, performances remains very close. Conversely,
looking at the Γtot criterion, it appears clearly that if we are
looking for rapidity JDTE is a recommended choice. Indeed
it is consistently less costly than its competitors and it is
noteworthy that the gap increases linearly with the size of
the matrix set. This makes JDTE a suitable solution for the
CP decomposition since in most CPD application the size of
the matrix set can be very large. More precisely, the ratios
Γtot{JDTM}/Γtot{JDTE}, Γtot{JET-O}/Γtot{JDTE} and
Γtot{JUST}/Γtot{JDTE} remains stable around 1.7, 1.4 and
3.4 respectively. In conclusion, numerical simulations, we
can show that the proposed method is the least costly while
keeping the same performances as JDTM and JET-O.

6. CONCLUSION

We have introduced here a new algorithm to compute the
JEVD of a set of real matrices. Contrary to classical ap-



proaches our algorithm does not resort to any sweeping pro-
cedure so that at each iteration all the element of the ma-
trix of eigenvectors are directly computed. This approach is
achieved by using a Taylor expansion of the diagonalization
criterion and allows significantly to reduce the cost per itera-
tion. Thus, we have shown that the numerical complexity of
one JDTE iteration is much lower than the one of most other
JEVD algorithms. Numerical simulations confirm that JDTE
clearly appears as the quickest algorithm in many practical sit-
uations, notably when the signal to noise ratio is not too low.
Moreover, it offers similar performances than reference JEVD
algorithms in term of estimation precision of eigenvectors and
eigenvalues. This makes JDTE a good candidate to perform
the JEVD step included in recent fast CPD algorithms.
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