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Abstract

Biometrics is an emerging technology more and more
present in our daily life. However, building biomet-
ric systems requires a large amount of data that may
be difficult to collect. Collecting such sensitive data
is also very time consuming and constrained, s.a.
GDPR legislation. In the case of keystroke dynamics,
existing databases have less than 200 users. For these
reasons, we aim at generating a keystroke dynamics
synthetic dataset. This paper presents the generation
of keystroke data from known users as a first step to-
wards the generation of synthetic datasets, and could
also be used to impersonate users’ identity.
Keystroke; Synthetic dataset; Data Analysis;

1 Introduction

Keystroke dynamics (KD) [1] is a behavioral biomet-
ric modality that allows the authentication of indi-
viduals through their way of typing a password or a
free text on a keyboard. It is a behavioral biometrics
which has the advantage of not requiring additional
sensor than the keyboard. This biometric modality
also allows continuous authentication through time
[2,3].

User authentication with keystroke dynamics is
generally done in real time (i.e., online) in a real
world system. Scientists working on keystroke dy-
namics do not analyze the performance of their sys-

tem in an online way (i.e, by asking users to authenti-
cate themselves in real time and to impersonate other
users). Indeed, they work in an offline context by us-
ing samples previously collected by other researchers,
and stored in a benchmark dataset. A complete list of
available keystroke dynamics datasets has been made
in [4,5]. As it can be seen, most of datasets have less
than 200 individuals and few samples for each user.
The collection of such datasets is very time consum-
ing, this is the main reason why there is not more
very large datasets like for the face modality as for
example [6].

In this paper, we present a study whose objective is
to model real KD data in order to generate synthetic
KD datasets. This approach has been used for the
digital fingerprint modality with the SFINGE soft-
ware [7] as their collection and distribution are reg-
ulated in many countries. We believe the KD model
will be able to help the research community to cre-
ate a new dataset of higher quality than the existing
ones. We think this work is important, because it is
known that KD studies are not fair as (i) acquisition
protocols are different between studies [8]; (ii) there
is not always a comparative study [9] when authors
propose new algorithms; and (iii) there are not al-
ways a valuable statistical evaluation [9]. Our work
contributes to solve these problems.

The paper is organized as follows. Section II is ded-
icated to some background information on Keystroke
dynamics and existing studies for this biometric



modality. We present in section III the definitions
and the components of the KD model we propose
in this study. Section IV concerns the evaluation
of the proposed KD model on two real KD datasets
and 4 matching methods. We analyze in section V
the keystroke dynamics data of these two datasets to
set the parameters of the proposed KD model. Sec-
tion VI is dedicated to the validation process of the
KD model showing the capability to generate similar
keystroke dynamics data. Last, section VII concludes
this work and gives some perspectives.

2 Related works

A keystroke dynamic system (KDS) is composed of
two main modules: the enrollment and the verifica-
tion modules. Each user must enroll himself/herself
in the KDS which computes a biometric reference
given multiple samples (i.e., several inputs of the
password) acquired during the enrollment step. For
each input, a sequence of timing information is cap-
tured (i.e., time when each key is pressed or released)
from which some features are extracted (i.e., laten-
cies and durations) and used to learn the model which
characterizes each user. During a verification request,
the claimant types his/her password. The system ex-
tracts the features and compares them to the biomet-
ric reference of the claimant. If the obtained distance
is below a threshold, the user is accepted, otherwise
he/she is rejected.

First works on KD have been done in the eight-
ies [10], although the idea of using a keyboard to
automatically identify individuals has first been pre-
sented in 1975 [11]. In the preliminary report of
Gaines et al. [10], seven secretaries typed several
paragraphs of text and researchers showed that it is
possible to differentiate users with their typing pat-
terns. Since then, several studies have been done, al-
lowing to decrease the quantity of information needed
to build the biometric reference, while improving the
performances [8,12-15]. However, most studies are
not comparable because they use different datasets
or protocols [8,9].

3 Keystroke dynamics genera-
tive model

First, we define many terms to build the proposed
model:

e Digraph: D = [Cy, (1], array of two characters.

e DigraphTime: DT = [dy,d1, ds, ds, ds, ds], as
shown in Figure 2, array of 6 durations from 4
times corresponding to the pressure (P) and re-
lease (R) times of each character of a Digraph
D. A DigraphTime DTp is defined as partially
consistent if the following equations are verified,
consistent if the following equations and inequal-
ities are verified, and inconsistent otherwise:

o do =dy —dy; e dp>0
e dy = di — ds; e d >0
o dy = dy — ds; e ds >0
o d3=dy—ds;

e Text: T, = {Di}icpon], an array of n Di-
graphs D;. A text T, is said consistent if Vi €
]]0,71[[, Dl_l[l] = DZ[O]

e Keystroke dynamics: K = [{DT;}ic[o,n]; Tnls
an array of n DigraphTime DT; associated to
the Digraph T,[i]. Keystroke is said consistent
(or partially consistent) if T, and all DT; are
consistent (or partially consistent), and if Vi €
]]0, Tl[[, DTi_1[5] = DTL [O]
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We propose in this paper a generative keystroke
dynamics model. We explain its different components
(see also Figure 1 and 2):

e DigraphGen: DGp() = DT, generates a Di-
graphTime for a given Digraph.

e User: U(T,) = K, generates a Keystroke dy-
namics from a given Text. A User is composed
of a set of DigraphGen.

e DigraphGen?: DG%() = DGp, generates a
DigraphGen for a given Digraph.

e UserGen: UG() = U, generates a User. A
UserGen is composed of a set of DigraphGen?.

e DigraphGen?: DG?*(D) = DG?%, generates a
DigraphGen? for a given digraph.

4 Evaluation

In the scope of this study, two datasets are used :
Datal (GREYC-KeyStroke Dataset [16]) & Data2
(GREYC-Web based KeyStroke dynamics dataset
[17]). These datasets are listed in [4] and are enough
representative of real world keystroke dynamics data.
From these two datasets, the following sub-datasets
are created:

e Data{1,2}D: DigraphTimes for each User and
Digraph extracted from Data{l,2}.

o Data{1,2}K: a fixed Text’s Keystrokes for each
User, extracted from Data{1l,2}. Two fixed
Texts being present in Data2, extracted sub-
datasets are thus Data2K1 and Data2K2.

The comparison between keystroke dynamics sam-
ples is evaluated in this paper through 4 distance
functions:

We suppose to compute a distance between two
templates K4 and Kpg, these functions are defined as
follows:

e Blesha [18]: We suppose that the template K4
is associated by p the average value of biometric
samples:

(Kp—p)' (Kp — p)

STAT1 =
KB ][]

(1)

e Hocquet [19]: We suppose that the template K4
is associated by p and o the average value of
biometric samples and the standard deviation:

1 n |Kp (i) —p;l

STAT2=1-— — D

S

i=1

(2)

e Monrose [20]: The function is given as follows:

STAT3 = XH:(KB(z‘)—IQx(i))2 (3)

i=1

e BioHashing: This algorithm is a template pro-
tection scheme [21] where the biometric template
is projected given a key and quantized. The com-
parison is realized with the Hamming distance.
We apply this protection scheme and compare
the templates in the transformed domain.

In the scope of this paper, the BioHashing and Mon-
rose distances between a template (sample) and a set
of templates (references) are computed as the mini-
mal distance of the sample with each template in the
reference gallery.

5 Analysis of keystroke dynam-
ics data

As previously seen, generating a keystroke dynamics
template from a given Text T, consists in generat-
ing an array of DigraphTime, i.e. generating 6 x n
durations. To be able to generate a keystroke dy-
namics similar to that one user could type, these
6 * n durations have to be transformed into a set of
assumed independent variables which laws and pa-
rameters can then be estimated for a user, enabling
their random generation, and thus the computation
of a synthetic keystroke dynamics corresponding to a
given user. In the scope of this paper, only the linear
(in)dependency of variable is considered.

5.1 Variables (in)dependency

Linearly correlated variables can be transformed into
a set of non-linearly correlated variables, through



PCA (Principal component analysis), first introduced
by Pearson in 1901 [22]. However, we show that dura-
tions are not strongly correlated between them, and
thus, in the scope of this article, assume them to be
independent. Even if the usage of PCA is irrelevant
in such a case, its first step enables the computa-
tion of the inter-correlations of two variables by the
computation of a correlation matrix. In a correlation
matrix C' = {C; ;}{ijrefon)z, Cij is the linear cor-
relation between the variables i and j. A correlation
matrix C' = {Cj ; }{i jye[o,n[2, With C; ; the linear cor-
relation between the variables i and j, is computed as
follows:

1. Given a matrix M = {My}repo,x] of K entries
My, = {Mg,i}icfon], With My ; the realization of
the variable i for the entry k.

2. M = {Mkol_:u” }ie[[O,nﬂJCE[[QK[[ where i is the

mean of {Mg i }refo, k[, and o;, its standard de-
viation.

3. C=1/K+«M" xM

In the scope of this paper, we arbitrary consider
that sets with less than a certain number of elements
cannot provide pertinent results, and are thus dis-
carded. We used 23 as arbitrary value in this paper
(cf section 5.2).

To qualify presence of specific correlations between
two variables i, j inside m subsets of entries, m corre-
lations matrix C!,1 € [0, m[ are computed from such
subsets. Fach element C;; of the final correlation
matrix C is then computed as the mean of each Cf,j
Gy = %Eﬁgle,j. If each subset corresponds to,
e.g. a User, M will be said, in this paper, ”splitted
by User”, and C will qualify the presence of User-
specifics correlations across all Users.

To qualify presence of the same correlations be-
tween two sets of variables {i}se[o,m[> {7z }oe[o,m]>
of length m, entries are splitted in m sub-entries
M} ke = {Mk.o, }oetij3- The correlation matrix
C is then computed from M’. If each x corresponds
to, e.g. a Digraph, M will be said, in this paper,
"merged by Digraph”, and C will qualify the pres-
ence of non-Digraphs-specifics correlations across all
Digraphs.

5.2 Laws followed by Variables

Once the variables assumed independent, or trans-
formed in such a way, laws followed by each variable
are searched through the following process:

1. Given the realizations of a variable X, and a law
law, with unknown parameters p;

2. Estimate p from the median, mean, min, max,
or/and standard deviation of X;

3. Compute the x?(X,law, p) score qualifying the
capacity of X to match the values that would be
expected if X follows law, through a x? test.

The x? test qualifies the capacity of a set of ob-
served values to match a set of expected values. The
x? test returns x?(X, law,p) = 1 — «, in which « is
the p-value, i.e. the probability to obtain the same
1 — o score if X follows law,. If the p-value is below
an arbitrary threshold (s.a. 0.05), the hypothesis ”X
follows law),” can then be rejected.

However, in the scope of this paper, we do not
aim to reject the hypothesis, but to select laws that
seem to best represent X. The x?(X,law,p) score
can then be seen as a score of distance between ob-
served values of X, and the expected values. We
compute x2(X,law,p) as follows:

1. Let Card(S) be the cardinal of S;
2. Let a%b be the rest of the division of a by b;

3. R is divided in n = [Card(X)/5]| subspaces
E;,i € [0,n], each expected to contain 5 el-
ements of X. FE,_ 1 is expected to contain
Card(X)%5 elements of X if 5 Card(X);

4. Let Xl :XQEZ,

5. Let Card(E;) = 5, and Card(E,—1) =
Card(X)%5 if 51 Card(X);

6. Let Sum =
Card(X;))?/Card(E;).

S (Card(B)  —

7. Let cdf ; be the cumulative distribution function
of the law x? of freedom f;

8. XZ(X7 la'wap) = CdfnfCard(p)fl(Sum)'



In the scope of this paper, we arbitrary consider
that sets with less than a certain number of elements
cannot provide pertinent results, and are thus dis-
carded. We used 23 as arbitrary value in this paper,
thus having at least 5 subspaces and 100 users.

From tested laws, the best 3 are selected i.e.
the 3 laws that minimize the score of distance
X2(X,law,p). These laws are tested with and with-
out exclusion of aberrant values (here, X values that
differ from +30 from the median value of X). When
the parameters p have different estimations, only the
one that minimizes the score of distance is kept. A
set of 19 laws have been tested in this paper:

e in Data{1,2}D datasets, if their content are
equals.

As shown in Table I, no strong stable correlation
has been found between durations of DigraphTime
from different Digraph, (Out: Data{1,2}K, Out_U:
Data{1,2}K splitted by User). DigraphTime will be
thus assumed independent. Also, no strong stable
correlation implying durations dy and ds of a same
DigraphTime has been found (05_K: Data{l,2}K
splitted by User, 05_D: Data{1,2}D merged and split-
ted by Digraph 05: Data{1,2}D merged by Digraph).

e arcsine e cosine e gumbel e normal
e beta e crlang e laplace e rayleigh Stable correlations have been detected between du-
rations di, dg, ds, d4 of a same DigraphTime (05:
° . e logistic et Data{1,2}D merged by Digraph). This may be due
betaprime exponential. . to the fact each of theses durations can be written as
e chi of lognormal triangulacf"x = dy ki xdo+ Lo xds with I € {0, 13, ks € {0,1},
and o(dz) =~ 3 * o(dg + d5). In the scope of this pa-
° e gamma e uniform per, DigraphTime is assumed to be computable from
chisquare 3 independent durations (ideally dy, ds, d3).

To qualify the capacity of n subsets of X, X;,7 €
[0, n[, to follow a same law law, but each with differ-
ent parameters p;, the score of distance x?(X, law) is
computed as the mean of the x? test applied on each
X;: %En_olxz(Xi,law,pi).

7=

6 Experimental observations

In this section, we analyze the statistics of real
keystroke dynamics from the datasets presented in
section IV.

6.1 Durations correlations

First, diagonals of correlation matrix are discarded.
Correlations between two durations DTp,[5], and
DTp,[0] are discarded if j = i + 1 in Data{1,2}K
datasets, or if Dy[1] = D2[0] in Data{1,2}D datasets,
as they are in fact, or might be, the same duration.
Digraph are considered equal:

e in Data{1,2}K datasets, if their positions in the
Keystroke are equals.

6.2 Durations laws

For the 6 DigraphTime durations DTpli], ¢ € [0, 6],
the 5 best laws that minimize x?(DTpl[i], law), with
parameters depending on the Digraph and User, are
presented in Table 2. DigraphTime durations will
then be assumed to best follow either a gumbel, nor-
mal, or logistic law, which parameters depends on the
User and Digraph. In order to reduce the number of
possible combinations, if a DigraphTime duration is
generated with a given law, all other durations will
be generated by the same law, but with different pa-
rameters.

We can see clearly in Table 2 that the estimated
laws and parameters for all DigraphTime durations
are quite similar for the two datasets we used in this
study. Thanks to these statistical observations, we
propose a generative model of keystroke dynamics
data in the next section.



05D 05 05 05K Out_U Out
Card({C;; € C,|Ci;] > 0.95}) | 0/0 0/0 12/12 0/0/0 0/0/0 0/0/0
Card({C;,; € C,|C; ;| > 0.75}) | 0/0 0/0 12/12 0/0/0 0/0/0 0/0/0
Card({C;; € C,|C;;| > 050}) | 0/0 0/0 12/12 0/4/0 0/4/0 12/42]12
Card({C;; € C}) 18/18 18/18 | 12/12 | 270/288/90 | 7532/8610/712 | 7532/8610,/712
max({|C;;],Ci, € C}) 0.4/0.39 | 0.38/0.39 | 1/1 | 0.31/0.54/0.34 | 0.31/0.54/0.66 | 0.6/0.72/0.66

Table 1: Correlations found in DatalD/Data2D, and in DatalK/Data2K1/Data2K2 datasets.

Datasets‘Rank‘ do % ‘ dy % ‘ do X2 ‘ ds % ‘ dy X2 ‘ ds X2
1 |[cosine (30) 0.964|gumbel (30) 0.808|gumbel (30) 0.795/gumbel (30) 0.820|gumbel (30) 0.820|cosine (30) 0.965
2 |normal (30) 0.966\normal (30) 0.822/normal (30) 0.809/normal (30) 0.834|normal (30) 0.833|cosine 0.968

DatalD| 3 |cosine 0.967|logistic (30) 0.831|logistic (30) 0.812|cosine (30) 0.842|logistic (30) 0.841|normal (30) 0.969
4 |logistic 0.967|gamma (30)  0.836|betaprime (30) 0.820[logistic (30) 0.842|cosine (30) 0.844|normal 0.969
5 |normal 0.967 |cosine (30) 0.839|cosine (30) 0.820|gamma (30)  0.863|gamma (30)  0.863|logistic 0.970
1 |normal (30) 0.869|gumbel (30) 0.810|gumbel (30) 0.781|gumbel (30) 0.835|gumbel (30) 0.82 |[normal (30) 0.874
2 |cosine (30) 0.872|normal (30) 0.820/normal (30) 0.794|normal (30) 0.838|normal (30) 0.832[logistic (30) 0.881

Data2D| 3 |logistic (30) 0.880|logistic (30) 0.880|betaprime (30) 0.800|logistic (3c) 0.848|betaprime (3¢) 0.835|cosine (30) 0.884
4 |gamma (30) 0.893|gamma (30) 0.834|gamma (30)  0.804|cosine (30) 0.858|gamma (30)  0.836|gamma (30)  0.900
5 |gumbel (30) 0.893|betaprime (30) 0.834|logistic (30) 0.807|betaprime (30) 0.890|logistic (30) 0.839|betaprime (30) 0.879

Table 2: Top 5 results of x? test with 19 laws, with (3¢) and without exclusion of abherant values

7 Keystroke dynamics genera-
tive model

7.1 Principles

As seen in the previous sections, DigraphTime du-
rations follow either a gumbel, a normal, or a logis-
tic law which parameters can be estimated for each
known User and Digraph. For a given User and Di-
graph, a DigraphGen can be then implemented as a
set of 6 random engines generating the 6 Digraph-
Time durations with the chosen law and estimated
parameters.

We propose 10 consistency strategies, 1 for incon-
sistent DigraphTime, in which all durations are ran-
domly generated (u), and 9 for partially-consistent
DigraphTime, in which 3 durations are computed
from the 3 others. The durations to compute
can be chosen among the 8 following lists, and
be used for all Digraph and User, or be randomly
chosen (n) for each new DigraphTime to generate:

e (: ° 2: o 4. o 6:
dsdyds dodsdy dydsdy didady

o 1: o 3: e 5: o 7:
dadzds dydads dydads dad:d3

Once the DigraphGen created for a given User, the
keystroke dynamics of a given Text T, is generated
through the following process:

2. Vi € [0,n[, K[0][i] = DTr, ;) = DGr,[;)()-
Before the consistency strategy application, and
if Keystroke is expected to be consistent (or par-
tially consistent), the DigraphTime first dura-
tion K[0][¢][0] is settled, if exists (i.e. if ¢ > 0),
to the last duration of the previous DigraphTime
K[0][i — 1][5).

7.2 Results analysis protocol

Synthetic datasets, SData{l,2}K_L_CS, are gener-
ated, for each law L, and consistency strategy CS,
from each dataset Data{1,2}K. For each User of
Data{1,2}K, the same number of entries (Keystroke
dynamics) it has in Data{1,2} are generated (as
seen in the previous section) and inserted into
SData{1,2}K_L_CS. For each User, the first 10 en-
tries are used as reference templates, the others as



samples. User with less than 25 entries are discarded
(i.e. with less than 15 samples).

For each dataset SData{1,2}K_L_CS, and distance
function DistFct, 3 datasets are computed:

e DataSU: to qualify the capacity of synthetic
Keystroke dynamics to be indistinguishable from
real Keystroke dynamics;

e DataU: to qualify the KDS performance with
real Keystroke dynamics data;

e DataS: to qualify, in comparison with DataU,
the capacity of synthetic datasets to match the
KDS performance that would be expected with
real Keystroke dynamics data.

These datasets are composed of legitimate and im-
postor scores, computed with the distance function
DistFct. Legitimate scores are obtained by compar-
ing the reference template with samples from the
same user. Impostors scores are obtained by compar-
ing the reference template of users with samples from
other users. DataU is computed from Data{1,2}K,
and DataS, from SData{1,2}K_L_CS. In DataSU, le-
gitimate scores are legitimate scores of DataU, and
impostors scores are the distance, for each User, be-
tween real user templates, and its synthetic samples.

We consider the False Acceptance Rate (FAR) de-
scribing the ratio of accepted impostor data, the False
Rejection Rate (FRR) describing the ratio of falsely
rejected legitimate users. The Equal Error Rate
(EER) corresponds to configuration of the biomet-
ric system when FAR equals FRR. The FAR/FRR
points, and the EER are computed from EvaBio [23]
considering 25,000 thresholds. Each final indicator
is computed by averaging the computed indicators of
each Data{1,2}K datasets.

7.3 Usurpation of keystroke dynamics

The EER value computed from DataSU is used to
qualify the capacity of synthetic Keystroke dynam-
ics data to be indistinguishable from real Keystroke
dynamics data. An EER of x% means that it is not
possible to choose a threshold, such as rejecting less

BioHashing

Blesha

Hocquet

Monrose

gumbel6 50.4%
normal6 49.9%
gumbel7 49.6%
gumbeld 49.2%
normal7 48.7%

gumbelu 52.5%
gumbeld 52.4%
gumbel2 52.3%
gumbel6 52.3%
normal6 52.3%

gumbelu 54.1%
logisticu 53.1%
normalu 52.0%
gumbel2 51.8%
logistic2 50.9%

gumbel6 52.9%
normal6 52.2%
gumbel7 51.9%
gumbel4 51.6%
normal7 51.2%

Table 3: Mean of DataSU EER, (Top 5)

than x% genuine users, without accepting less than
x% EER impostors. Thus, an EER of 50% means
that, for this threshold, the choice to accept or reject
a user is not better than random. An EER > 50%
means that, for this threshold, more impostors will
be accepted than genuine users.

As shown in table 3, synthetic Keystroke dynam-
ics data are indistinguishable from real one (FER ~
50%), when using the chosen distance functions, and
are even more, for some configurations, more ac-
cepted than real Keystrokes. The fact that synthetic
data are more accepted than real data, can be ex-
plained either by a lesser intra-score variance, or by a
lesser intra-score mean, for synthetic data compared
to real data.

Consistency strategy seems to matter more than
the used law. Strategies that computes ds (0, 1, 3, 5)
instead of randomly generating it have a worst EER
value than the strategy which randomly choose the
durations to be computed, which is worst than other
strategies. Results can also be divided into 4 groups
in which the laws giving the greater EER values are,
in order of superiority, gumbel, normal, and logistic
laws.

As shown by the symmetric of the FAR/FRR
curves in Figure 3, our proposed Keystroke genera-
tion method is thus able to produce synthetic samples
that enable identity usurpation of a known user, by
imitating its keystroke dynamics.

7.4 Scores estimations

A ? test is performed, in a similar way than previ-
ously, between the legitimate and the impostor scores
of DataSU, to qualify the capacity of synthetic sam-
ples of having the same scores than real samples.
However, as it can be seen in Figure 4, synthetic sam-
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Figure 3: FAR/FRR Figure 4: Hocquet
curves of synthetic sam- distances of real
ples against real samples (grey) and  synthetic
compared to real ref- (black) Keystrokes

erences with Hocquet samples with real tem-
distance (DataSU from plates (DataSU  from
SData2K1_gumbel _6) SData2K2_gumbel_6)

ples scores are close to real samples scores, but not
enough for a x2 test to return a score different from
1.

We thus demonstrate that even being close to real
samples scores, our Keystroke generation method
is not able yet to produce synthetic samples which
scores would match real samples.

7.5 EER and FAR/FRR estimations

The absolute and relative distances between the EER
values, computed from the synthetic (DataS) and real
(DataU) entries, qualify the capacity of the synthetic
datasets to estimate the EER value of the real one.

As shown in Table 4, the EER value can be esti-
mated with a variable accuracy (errors from 0.34 to
28.43). The logic found in previous sections is not
respected, and even inverted. Indeed, consistency
strategies 0, 1, 3, 5 and n, best estimate the EER
value than strategies 7, 6, 4, and 2, the worst strat-
egy being u.

As shown in Figures 5 and 6, our proposed
Keystroke generation is thus able to estimate EER
values of real dataset. However, as shown in Table 4,
the best consistency strategies to estimate EER value
are the worst to generate synthetic samples scores
close to real samples scores.

Figure 5: FAR/FRR Figure 6: FAR/FRR
curves for a real dataset curves for a synthetic
with  BioHashing dis- dataset with BioHashing
tances  (DataU  from distances (DataS from
Data2K1) SData2K1 logistic_0)

8 Conclusion

In this paper, we presented a method that enables
the generation of synthetic keystroke dynamics data
from known Users, to either usurp real user KD, or to
estimate EER value of a KDS. These methods have
been tested on fixed text, but could be as well applied
to free text.

This work constitutes a first step towards the
generation of large synthetic Keystroke dynamics
datasets. The following step would be the genera-
tion of keystroke dynamics data for an unknown user.
Such large synthetic Keystroke dynamics datasets
could then be used to fairly compare KDS perfor-
mances, as well as to improve learning-based KDS’
performances.

We also aim to improve the current method with a
better estimation of laws parameters, either through
an non-User specific PCA on DigraphTime durations,
a better estimation of statistics, or the usage of sev-
eral laws (e.g. cosine for dy, ds, and gumbel for d3).

References

[1] R. Giot, M. El-Abed, and C. Rosenberger,
“Keystroke dynamics overview,” in Biometrics
/ Book 1, D. J. Yang, Ed. InTech, Jul. 2011,
vol. 1, ch. 8, pp. 157-182. [Online]. Available:

http://www.intechopen.com/articles/show/title/keystroke-

dynamics-overview



Rank | BioHashing 19.14/29.28% | Blesha 31.67/50.00% Hocquet 15.92/33.76% | Monrose 21.44/27.35%
1 logisticO  0.34 1.44% | logisticl  6.82 17.96% | normal0 3.16 14.31% | gumbeln 1.84  7.39%
2 gumbel0  0.93 4.18% | normal3 7.09 18.70% | normal5 3.61 16.18% | normaln 2.04  8.29%
3 normal)  1.28 5.81% | logistic3 7.11 18.75% | logistic0 4.01 18.02% | logisticn ~ 2.10  8.49%
4 logistich  1.89 7.85% | gumbeld 7.50 19.51% | logistics 4.45 19.12% | logisticO  2.69 10.78%
5 gumbeln  1.82 8.58% | gumbell 7.68 20.03% | gumbel0 5.12 22.98% | gumbel0 3.41 13.85%

Table 4: Absolute and relative distance between synthetic and real EER (Top 5)
[2] S. Mondal and P. Bours, “A study on continuous inferences?” in 4Jth Workshop on Cyber Secu-

authentication using a combination of keystroke
and mouse biometrics,” Neurocomputing, vol.
230, pp. 1-22, 2017.

B. Li, H. Sun, Y. Gao, V. V. Phoha, and
Z. Jin, “Enhanced free-text keystroke continu-
ous authentication based on dynamics of wrist
motion,” in Information Forensics and Security
(WIFS), 2017 IEEE Workshop on. TEEE, 2017,

pp. 1-6.

V. DMonaco, “Public keystroke dynam-
ics datasets,”  2018. [Online]. Available:
http://www.vmonaco.com/keystroke-datasets

R. Giot, B. Dorizzi, and C. Rosenberger, “A
review on the public benchmark databases for
static keystroke dynamics,” Computers & Secu-
rity, vol. 55, pp. 46—61, 2015.

E. Learned-Miller, G. B. Huang, A. RoyChowd-
hury, H. Li, and G. Hua, “Labeled faces in the
wild: A survey,” in Advances in face detection
and facial image analysis. Springer, 2016, pp.
189-248.

R. Cappelli, D. Maio, and D. Maltoni, “Sfinge:
an approach to synthetic fingerprint genera-
tion,” in International Workshop on Biometric
Technologies (BT2004), 2004, pp. 147-154.

R. Giot, M. El-Abed, B. Hemery, and C. Rosen-
berger, “Unconstrained keystroke dynamics au-
thentication with shared secret,” Computers &
Security, vol. 30, no. 6-7, pp. 427-445, Sep. 2011.

K. S. Killourhy and R. A. Maxion, “Should secu-
rity researchers experiment more and draw more

[10]

[13]

[15]

[16]

rity Experimentation and Test (CSET’11), Aug.
2011, pp. 1-8.

R. Gaines, W. Lisowski, S. Press, and
N. Shapiro, “Authentication by keystroke tim-
ing: some preliminary results,” Rand Corpora-
tion, Tech. Rep. R-2567-NSF, May 1980.

R. Spillane, “Keyboard apparatus for personal
identification,” IBM Technical Disclosure Bul-
letin, Apr. 1975.

D. Umphress and G. Williams, “Identity verifi-
cation through keyboard characteristics,” Inter-
nat. J. Man Machine Studies, vol. 23, pp. 263—
273, 1985.

F. Monrose and A. Rubin, “Keystroke dynamics
as a biometric for authentication,” Future Gen-
eration Computer Syststems, vol. 16, no. 4, pp.
351-359, 2000.

K. Revett, F. Gorunescu, M. Gorunescu,
M. Ene, S. d. M. Tenreiro, and H. M. D. San-
tos, “A machine learning approach to keystroke
dynamics based user authentication,” Interna-
tional Journal of Electronic Security and Digital
Forensics, vol. 1, pp. 55-70, 2007.

H. Lee and S. Cho, “Retraining a keystroke
dynamics-based authenticator with impostor
patterns,” Computers & Security, vol. 26, no. 4,
pp. 300-310, 2007.

R. Giot, M. El-Abed, and C. Rosenberger, “Gr-
eyc keystroke: a benchmark for keystroke dy-
namics biometric systems,” in IEEE Interna-
tional Conference on Biometrics: Theory, Ap-



[17]

[18]

[19]

[20]

[21]

[22]

[23]

plications and Systems (BTAS 2009), 2009, pp.
1-6.

——, “Web-Based Benchmark for Keystroke
Dynamics Biometric Systems: A Statistical
Analysis,” in The FEighth International Confer-
ence on Intelligent Information Hiding and Mul-
timedia Signal Processing (IIHMSP 2012), 2012.

S. Bleha, C. Slivinsky, and B. Hussien,
“Computer-access security systems using
keystroke dynamics,” IEEE Transactions on

pattern analysis and machine intelligence,
vol. 12, no. 12, pp. 1217-1222, 1990.

S. Hocquet, J.-Y. Ramel, and H. Cardot, “User
classification for keystroke dynamics authentica-
tion,” in The Sizth International Conference on
Biometrics (ICB2007), 2007, pp. 531-539.

F. Monrose and Rubin, “Authentication via
keystroke dynamics,” in Proceedings of the 4th
ACM conference on Computer and communica-
tions security, 1997, pp. 48-56.

A. Teoh, D. Ngo, and A. Goh, “Biohashing: two
factor authentication featuring fingerprint data
and tokenised random number,” Pattern recog-
nition, vol. 40, 2004.

L. KPFRS, “On lines and planes of closest fit to
systems of points in space,” in Proceedings of the
17th ACM SIGACT-SIGMOD-SIGART sympo-
stum on Principles of database systems (SIG-
MOD), 1901.

J. Mahier, B. Hemery, M. El-Abed, M. T. El-
Allam, M. Y. Bouhaddaoui, and C. Rosenberger,
“Computation evabio: A tool for performance
evaluation in biometrics,” vol. 3, pp. 51-60, 01
2011.

10



