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We study the question if a helicity transporting current is generated in a rotating photon gas
at finite temperature. One problem is that there is no gauge invariant local notion of helicity or
helicity current. We circumvent this by studying not only the optical helicity current but also the
gauge-invariant “zilch” current. In order to avoid problems of causality, we quantize the system on
a cylinder of a finite radius and then discuss the limit of infinite radius. We find that net helicity-
and zilch currents are only generated in the case of the finite radius and are due to duality violating
boundary conditions. A universal result exists for the current density on the axes of rotation in the
high-temperature limit. To lowest order in the angular velocity, it takes a form similar to the well-
known temperature dependence of the chiral vortical effect for chiral fermions. We briefly discuss
possible relations to gravitational anomalies.

I. INTRODUCTION

The quantum field theory of chiral fermions predicts a
number of exotic transport phenomena such as the gen-
eration of a current in magnetic field or under rotation.
These are known as chiral magnetic and chiral vortical
effects (see [1, 2] for recent reviews). Both effects are re-
lated to the presence of chiral anomalies. In particular,
the chiral vortical effect is present at finite temperature
and can be understood as a signal of (possibly global)
mixed gravitational anomalies [3–9].

From the outset it should be emphasized that in a rela-
tivistic theory rotation can not be implemented by simply
introducing a constant angular velocity in a thermal en-
semble [10]. In infinite space there appears necessarily a
region in which the tangential velocity would exceed the
speed of light. There are two remedies to this. In a hydro-
dynamic setup one can consider either localized vortices
in the fluid or, alternatively, one can restrict the ensem-
ble to a finite space-time region in which no superluminal
velocities arise. In infinite space the CVE can be com-
puted by studying an ensemble of rotating fermions and
concentrating on the region at the center of rotation [10].
Alternatively one can study an ensemble confined with
the boundaries of a rotating cylinder [11–16].

Recently, the question has arisen if and how a similar
effect for ensembles of rotating photons could be made
possible [17–19]. In part, this question can be motivated
by the relation of the CVE to the mixed gravitational
anomalies as well as by the interesting results on the ex-
istence of a similar anomaly for photons [20, 21]. From
a first sight, the case of photons the notion of chirality
could naturally be replaced by the concept of helicity. It
turns out, however, that the definition of a photonic he-
licity current analogous to a fermionic chiral (or axial)
current is much more subtle. A standard way of defin-
ing a photonic helicity current is the so–called magnetic

helicity, which in covariant notations can be written as:

Jµmh = εµνρλAνFρλ . (1)

The drawback of this way of defining helicity is that the
current (1) is neither conserved (since ∂µJ

µ
mh = F̃µνFµν

with F̃µν = 1
2ε
µνρλFρλ) nor gauge invariant. The first

inconvenience can be remedied by defining also the so-
called “optical helicity” [22]

Jµh =
1

2
εµνρλ(AνFρλ − Cν F̃ρλ) , (2)

where Cµ is a dual gauge potential defined via the re-

lation F̃µν = ∂µCν − ∂νCµ. This current is conserved,
∂µJ

µ
h = 0, but now there is a new inconvenience: the

original Aµ and dual Cµ gauge fields are not locally re-
lated to each other. As long as one does not insist in
a Lorentz invariant Lagrangian formulation of Maxwells
equations that might not be considered as a fundamental
problem. However the optical helicity is still not gauge
invariant and now there are even two gauge symmetries
since C ′µ = Cµ + ∂µθ and Cµ are physically equivalent
dual gauge potentials. A gauge invariant global helicity
charge Q =

∫
d3xJ0

h can still be defined, but there is no
covariant expression for the helicity density which could
be local in terms of original Aµ and dual Cµ potential
and gauge invariant with respect to both original and
dual gauge transformations.

Fortunately, there are other candidates for physically
meaningful measures fo helicity. Quite some time ago
Lipkin pointed out that free Maxwell theory allows for
an additional conserved quantity [23] and soon after-
wards Kibble noticed that due to the its nature of a non-
interacting theory there is, in fact, an infinite number
of such conserved charges [24]. Following the nomencla-
ture introduced by Lipkin these charges are known as
”zilches”. The optical helicity can be understood as a
particular, non-gauge invariant version of one of these
zilch charges. It has also been identified as the generator
of electric-magnetic duality transformation [25].

ar
X

iv
:1

80
7.

10
70

5v
1 

 [
he

p-
th

] 
 2

7 
Ju

l 2
01

8



2

The zilches are (classically) conserved quantities
which, except for the optical helicity, have unusual di-
mensions. We will consider here only the original zilch
introduced by Lipkin, a conserved current of dimension
five. While a physical interpretation of the zilch remained
obscure for a long time, recently it was shown that the
zilch measures the asymmetry in the interaction of the
electromagnetic field with small chiral molecules [26] sim-
ilarly to the effects of the optical helicity on chiral and
magnetoelectric media [27, 28] and Weyl semimetals [30].
We therefore take the zilch as a legitimate local measure
of the helicity of light.

In order to study the possible realization of a version
of the chiral vortical effect for photons we will quantize
Maxwell theory on a finite cylinder of radius R and con-
sider an ensemble with a finite fixed angular velocity such
|ΩR| < 1. We calculate the thermal averages for the op-
tical helicity current and zilch current along the direction
of rotation and study the infinite space limit R→∞. It
turns out that this infinite space limit is – in contrast to
the fermionic case – ill defined even if one concentrates
on the current at the center of rotation. For finite radius
and |ΩR| < 1 the ensemble is well defined but the ap-
pearance of a non-vanishing total current depends very
sensitively on the boundary conditions.

We will study three types of boundary conditions:
perfect electric conducting boundary, perfect magnetic
conducting boundary and duality invariant unbounded
space. Our finding is that the integrated helicity and
zilch currents vanish exactly in the duality invariant case
whereas only one type of polarization leads to a non-
vanishing net current in the other two cases. More pre-
cisely, the Dirichlet boundary conditions on the pho-
ton wave functions lead to exactly vanishing net cur-
rent and only Neumann boundary conditions give rise
to a net current. The perfect conducting and dual con-
ducting boundary conditions break however the electric–
magnetic duality and therefore introduce a source of he-
licity or zilch on the boundary. We interpret the net
current therefore not as an intrinsic chiral vortical effect
but as a result of the symmetry breaking boundary con-
ditions.

This work is organized as follows. In the next sec-
tion we introduce our notation, the (non-Lorentz covari-
ant) versions of helicity and zilch and associated currents.
Then in Section 2 we quantize the Maxwell field in the
Coulomb gauge on a cylinder of radius R. In Section 3 we
study the helicity, zilch and energy currents. We show
that the net currents integrated over a cross section of
the cylinder vanish for the Dirichlet boundary conditions
on radial functions of photons. We evaluate numerically
the thermal current distributions for different tempera-
tures and angular velocities. Finally, we study the infinite
space limit and show that in this limit the current at the
axis of rotation is a mathematically ill defined quantity.
Indeed, if one tries to evaluate it by an analytic continu-
ation (using inversion relations for polylogarithms) then
one finds a complex result. While a truncation to lowest

order in angular velocity does give a finite expression it
does not coincide with the results previously reported in
the literature for the photonic CVE.

In any case, the physical significance of such a finite re-
sult for the photonic CVE is questionable since the result-
ing integrals for the thermal averages are mathematically
well defined only in the strict case |Ω| + ε = 1/R with
ε > 0. This requirement means that the zero-rotation
limit, Ω → 0, should precede the infinite-volume limit
R → ∞. We emphasize that this requirement sets a
stronger constraint for the rotating photons as compared
to the case for fermions, because it arises from the es-
sential property of bosons that the Bose-Einstein distri-
bution function can take negative values for effectively
negative energies, signaling a possible instability towards
condensation of low-energy modes. Despite of the dif-
ficulties with the calculation in the unbounded domain
we find numerically that the high temperature limit of
the central current density in the bounded domain does
converge to the result in the unbounded domain at linear
order in the angular velocity.

We present our conclusions in Section 4. Some of our
conventions for vector analysis and useful properties of
the Bessel functions are given in the Appendix.

II. PHOTONS IN NONROTATING CYLINDER

We consider thermalized photon gas at a fixed temper-
ature T in an infinitely long straight cylindrical volume
(often called in the literature as a “waveguide”). The
cylinder has a fixed finite radius R and may rotate around
its symmetry axis with the constant angular velocity Ω.
For the sake of simplicity we work in the vacuum with
permittivity ε = 1 and permeability µ = 1. We also set
the speed of light and the reduced Planck constant to
unity, c = ~ = 1.

A. System of equations

1. Maxwell equations

The electromagnetic fields are described by the
Maxwell’s equations,

∇ ·E = 0 , (3a)

∇ ·B = 0 , (3b)

∇×B − ∂E

∂t
= 0 , (3c)

∇×E +
∂B

∂t
= 0 , (3d)

where the magnetic field B and the electric field E are
related to the gauge potential Aµ = (φ,A) as follows:

B = ∇×A , E = −∇φ− ∂A

∂t
. (4)
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To solve these equations inside a cylinder it is natu-
ral to introduce cylindrical coordinates with the radius
ρ, the azimuthal angle ϕ, the height z, and the time co-
ordinate t (in the laboratory reference frame). Certain
useful formulas of the vector calculus in the cylindrical
system of coordinates are summarized in Appendix A.

Given the geometry of the problem and the linearity
of the Maxwell equations the solutions can be described
in the complexified form:

G(ρ, ϕ, z, t) = e−iωt+imϕ+ikzzG(ρ) , (5)

where G = E,B,A are the positive frequency solutions
for the electromagnetic fields with the energy ω > 0, the
momentum kz along the z axis, and the quantized an-
gular number m ∈ Z, corresponding to the eigenvalue of
angular momentum about the axis z. In Eq. (5) the ra-
dial functions G(ρ) are determined by the Maxwell equa-
tions (3) and by the boundary conditions that will be
specified below.

2. Boundary conditions

The spectrum of solutions of the Maxwell equations (3)
depends on the type of the boundary conditions at the
edge of the cylinder at a fixed radial coordinate ρ = R.
We will consider three kinds of the boundary conditions,
corresponding to the boundary made of a perfect elec-
tric conductor (an ideal metal), its “dual” analogue, a
perfect magnetic conductor and finally duality invariant
”natural” boundary conditions in infinite space.

We will study an ensemble of rotating photons in a
fixed laboratory frame. That means we should have en-
ergy and angular momentum as conserved charges to
which we can couple corresponding Lagrange multipliers,
the temperature T and the angular velocity Ω to define
a grand canonical ensemble.

For the Maxwell field the energy and momentum con-
servation take the form

∂ε

∂t
+ ∇ · P = 0 ,

∂Pl
∂t

+∇mσm l = 0 , (6)

where the energy, momentum density (Poynting vector)
and stress tensor are, respectively, as follows:

ε =
1

2

(
E2 +B2

)
(7)

P = E ×B , (8)

σml = −EmEl −BmBl +
1

2
gml

(
E2 +B2

)
. (9)

Here A ·B ≡
∑3
l=1AlBl is the scalar product and l,m =

1, 2, 3 are the spatial indices.
In the cylindrical geometry the globally conserved

quantities are the energy ε, the momentum along the
cylinder axis Pz and the z component of the angular mo-
mentum Lz ≡ (ρ × P )z = ρPϕ. As we require from

the boundary of the cylinder to respect the conservation
of these quantities, Eqs. (6) imply that these quantities
are conserved provided both the radial component of the
Pointing vector (8) and the radial components of the pho-
ton stress tensor (9) vanish at ρ = R:

Pρ(R) = Eϕ(R)Bz(R)− Ez(R)Bϕ(R) = 0 ,

σρϕ(R) = −Eρ(R)Eϕ(R)−Bρ(R)Bϕ(R) = 0 ,

σρz(R) = −Eρ(R)Ez(R)−Bρ(R)Bz(R) = 0 .

(10)

Therefore one may distinguish three types of the
boundary conditions:

I Ideal electric conductor. An external electromag-
netic field generates dissipationless electric currents
in an ideal electric conductor that lead to vanishing
normal (with respect to the surface element ∂S of
the conductor) component of the external magnetic
field B⊥ and two tangential components E‖ of the
electric field at the surface boundary:

B⊥

∣∣∣∣
x∈S

= 0 , E‖

∣∣∣∣
x∈S

= 0 . (11)

In cylindrical coordinates the boundary conditions
imposed by the perfect electric conductor (11) have
the following form:

Bρ(R) = Ez(R) = Eϕ(R) = 0 . (12)

These conditions ensure conservation of the energy
as well as z components of momentum and angular
momentum (10).

I Ideal magnetic conductor is a dual analogue of the
ideal electric conductor: instead of electric cur-
rents, the perfect magnetic conductor hosts dissipa-
tionless magnetic currents.1 The magnetic bound-
ary conditions are therefore dual to the electric
ones (11):

E⊥

∣∣∣∣
x∈S

= 0 , B‖

∣∣∣∣
x∈S

= 0 . (13)

The magnetic conductor (13) imposes the follow-
ing conditions on the electromagnetic fields which
ensure the physical constraints (10):

Eρ(R) = Bz(R) = Bϕ(R) = 0 . (14)

One can readily observe that the perfect electric
conductor or perfect magnetic conductor impose
the conditions, Eq. (12) and (14), that are mutually
“dual” to each other. These boundary conditions

1 The perfect-magnetic boundary conditions can be viewed as the
electromagnetic analog of the boundary conditions for gluonic
field in the MIT bag model for hadrons in QCD.
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will impose either Dirichlet or Neumann boundary
conditions on a scalar radial function of the photon
field depending on its polarization. The electro-
magnetic duality transformation

E → −B , B → E , (15)

exchanges the boundary conditions between the
two possible polarizations.

I Unbounded flat space. This is the limit R → ∞.
We impose “natural” boundary conditions by re-
quiring that the fields and their products should be
integrable with the measure

∫∞
0
ρdρ. These fields

can be represented by a Fourier–Bessel integral. In
principle, the basis of eigenfunctions for both pre-
viously considered boundary conditions can be also
used for the unbounded flat space. However it turns
out that it is slightly more convenient to introduce
in this case an explicitly helicity–preserving basis in
terms of left- and right-circularly polarized photon
wave functions.

B. Solutions

1. Quantization and normalization of electromagnetic fields

It is convenient to characterize the photon solutions
in the interior of the cylinder by transverse electric and
transverse magnetic polarization modes. The transverse
electric (TE) mode possesses the electric field which is al-
ways perpendicular to the axis of the cylinder, ETE

z = 0.
In the transverse magnetic (TM) mode it is the magnetic
field which is perpendicular to cylinder’s axis, BTE

z = 0.
For the quantization of the gauge field it is convenient

to choose the Coulomb gauge, where the temporal com-
ponent of the gauge field is zero and the spatial part of
the gauge field has a zero divergence:

A0(x) = 0, ∇ ·A(x) = 0. (16)

Then the photon operator is given by

Âµ(x)=
∑
J,λ

ε
(λ)
J√
2ωJ

(
A(λ)
J (x)â

(λ)
J +A(λ),∗

J (x)â
(λ)†
J

)
, (17)

where λ = TE,TM is the polarization of the photon field
and J is a collective notation for other quantum numbers
which will be defined below.

In Eq. (17) the operators â
(λ)
J and â

(λ)†
J annihilate and,

respectively, create a photon with the polarization λ, the

quantum number J , and the wavefunction A(λ)
J,µ. These

operators obey the standard set of bosonic commutation
relations: [

â
(λ)
J , â

(λ′)†
J′

]
= δλλ′δJJ ′ , (18a)[

â
(λ)
J , â

(λ′)
J′

]
=
[
â

(λ)†
J , â

(λ′)†
J′

]
= 0, (18b)

where δJJ ′ is an identity in the phase space of quantum
numbers J with a natural property:∑

J

δJJ ′ = 1 for any J ′. (19)

The photonic vacuum state is annihilated by the oper-

ators â
(λ)
J for all λ and J :

â
(λ)
J |0〉 = 0 . (20)

The photon wavefunctions with a definite polariza-
tion λ

A(λ)
J = ε

(λ)
J A

(λ)
J , (21)

are defined by the orthonormal vectors

ε
(λ)
J · ε

(λ′)
J = δλλ′ , λ = TE, TM, (22)

for each fixed quantum number J . For a fixed polariza-
tion λ, the expansion coefficients of the photon opera-
tor (17) are orthonormalized according to the condition:∫

d3xA(λ)∗
J (x)A(λ)

J′ (x) = δJJ ′ . (23)

In our conventions there are no sums over repeating in-
dices [e.g., over the cumulative index J in Eq. (21)] unless
explicitly indicated.

2. Explicit solutions at finite radius

The (positive frequency) expansion coefficients of the
photon operator (17) may be represented as follows,

A(λ)(ρ, ϕ, z, t) = e−iωt+ikzz+imϕA(λ)(ρ) , (24)

where

ω =
√
k2
z + k2

⊥ , (25)

is the frequency of the mode, kz is the momentum along
the axis of the cylinder andm ∈ Z is the quantum angular
momentum associated with the angular rotations about
the z axis. The quantization of the transverse (radial)
momentum k⊥ > 0 in Eq. (25) depends on the boundary
conditions at the edge of the cylinder.

In the cylindrical coordinates, A ≡ (Aρ, Aϕ, Az)
T , the

radial part of the wave function (24) is given, for the TE
and TM polarizations, respectively, as follows:

ATE(ρ) =


mfTE(ρ)

iρ
∂fTE(ρ)
∂ρ

0

, (26a)

ATM(ρ) =


kz
iω

∂fTM(ρ)
∂ρ

mkz
ω

fTM(ρ)
ρ

−k
2
⊥
ω fTM(ρ)

, (26b)
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where the scalar radial functions fλ = fλ(ρ) obey the
following differential equation (λ = TE, TM):

1

ρ

∂

∂ρ

(
ρ
∂fλ
∂ρ

)
− m2

ρ2
fλ + k2

⊥fλ = 0. (27)

The normalized solutions of Eq. (27) are proportional to
the Bessel functions of the first kind:

fλ = CλJm(k⊥ρ) , λ = TE, TM , (28)

where Cλ are the normalization constants to be defined
below.

In the Coulomb gauge the operators of electric and
magnetic fields are given by the series similar to Eq. (17)
where the expansion coefficients can be determined with
the help of Eq. (4). The electric field modes are propor-
tional to the corresponding gauge field modes (26):

E(λ) = −∂tA(λ) = iωA(λ), (29)

while the magnetic-field modes B(λ) = ∇×A(λ) for the
λ = TE, TM polarizations are as follows:

BTE(ρ) =

 −ikz ∂fTE(ρ)
∂ρ

mkz
fTE(ρ)
ρ

−k2
⊥fTE(ρ)

 , (30a)

BTM(ρ) =

 −imω
fTM(ρ)

ρ

ω ∂fTM(ρ)
∂ρ

0

 . (30b)

The cylinder made of an ideal electric conductor or a
magnetic conductor imposes, respectively, the boundary
conditions (12) or (14) on electromagnetic fields of the
modes. These constraints can be rewritten as conditions
on the radial functions of the corresponding electromag-
netic modes:

∂fTE(ρ)

∂ρ

∣∣∣∣
ρ=R

= fTM(R) = 0 , b = E , (31a)

∂fTM(ρ)

∂ρ

∣∣∣∣
ρ=R

= fTE(R) = 0 , b = M . (31b)

For shortness, we call the boundary conditions corre-
sponding to the perfect metal (12) and the perfect mag-
netic conductor (14) as “electric” (b = E) and “mag-
netic” (b = M) conditions, respectively. A duality of the
electric and magnetic boundary conditions with respect
to the TE and TM modes is clearly seen in Eq. (31).

The explicit form of the solutions (28) indicates that
the boundary conditions (31) impose the following quan-
tization of the radial momentum k⊥ for the photon po-
larizations λ:

J ′m(k⊥R) = 0,

(
λ
b

)
=

(
TE
E

)
,

(
TM
M

)
, (32)

Jm(k⊥R) = 0,

(
λ
b

)
=

(
TE
M

)
,

(
TM
E

)
, (33)

where the prime indicates a derivative of the Bessel func-
tion with respect to its argument. Thus the walls of the
cylinder made of a perfect electric (b = E) or magnetic
(b = M) conductor quantize the transverse momentum
k⊥ of the TE and TM photon modes differently:

kTE
⊥ =

κ′ml
R

, kTM
⊥ =

κml
R

, b = E , (34a)

kTE
⊥ =

κml
R

, kTM
⊥ =

κ′ml
R

, b = M , (34b)

where κml and κ′ml (with m ∈ Z) correspond to the lth
positive root (with l = 1, 2, · · · ∈ N) of the Bessel function
Jm(x) and its derivative J ′m(x), respectively:

Jm(κml) = 0 , J ′m(κ′ml) = 0 . (35)

According to Eq. (25) the corresponding frequencies ω of
the electromagnetic modes are:

ωJ =

√
k2
z +

(κ′ml)
2

R2
,

(
λ
b

)
=

(
TE
E

)
,

(
TM
M

)
,(36a)

ωJ =

√
k2
z +

(κml)2

R2
,

(
λ
b

)
=

(
TE
M

)
,

(
TM
E

)
.(36b)

In a cylinder the photonic modes of a definite polariza-
tion λ are labeled by the collective quantum number (37).

J = {kz,m, l} , kz ∈ R, m ∈ Z, l ∈ N. (37)

An integration over all three momenta k in a phase space
of plane waves in an unrestricted space is reduced, in the
cylinder, to the sum over the collective quantum num-
ber J :∫

d3k

(2π)3
←→

∑
J

=
1

πR2

∫
dkz
2π

∑
m∈Z

∞∑
l=1

. (38)

This sums appears, for example, in Eq. (17).
According to Eq. (19) the identity in the phase space

of the modes with a given polarization λ is as follows:

δJJ ′ = 2π2R2δ(kz − k′z)δmm′δll′ . (39)

An explicit calculation of the orthonormalization con-
dition (23),∫ R

0

dρρ f2
TE(ρ) =

∫ R

0

dρρ f2
TM(ρ) =

R2

2k2
⊥
, (40)

gives us the coefficients Cb
λ:

CETE = CMTM =
R√

(κ′ml)
2 −m2 |Jm(κ′ml)|

, (41a)

CMTE = CETM =
R

κml |Jm+1(κml)|
, (41b)

in the radial functions (28) of the photon polarization
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modes λ = TE, TM obeying the b = E,M boundary
conditions. Here we used the integral orthogonality re-
lations of the Bessel functions (B4) and (B5), as well as
the recurrence relations (B1). Notice that κ′ml > |m|.

The TM and TE modes are always orthogonal to each
other,

R∫
0

dρρATE
J (ρ)·ATM

J (ρ) ∝ [mfTE(ρ)fTM(ρ)]

∣∣∣∣R
0

≡ 0, (42)

due to the boundary conditions (31) and the fact that
mJm(0) ≡ 0 for all m ∈ Z.

The conserved charges of interest in this basis are the
total energy and the angular momentum which are eigen-
values of the Hamiltonian and the angular momentum
operators. In our normalization the normal ordered ex-
pressions of these operators are, respectively, as follows:

H =

∫
d3x

1

2
: (E2 +B2) : =

∑
J,λ

ω
(λ)
J â

(λ)†
J â

(λ)
J , (43)

Lϕ =

∫
d3x : Pϕ : =

∑
J,λ

mâ
(λ)†
J â

(λ)
J . (44)

3. Modes in an unbounded space with R→ ∞

As a final point in this section we will discuss the limit
of an unbounded space R → ∞. First let us note that
without imposing any boundary conditions we have

∇×A(TE,TM)
J = ωA(TM,TE)

J . (45)

We can therefore introduce eigenvectors of the curl oper-
ator

A±J = ATE
J ±ATM

J (46)

with the eigenvalues

∇×A±J = ±ωA±J . (47)

In terms of electric and magnetic fields these modes fulfill
the relations

B±J = ∓iE±J , (48)

which show that these modes correspond to left- and
right-circularly polarized electromagnetic fields. The
gauge potential can now be quantized in this basis as
follows:

A =
∑
J

√
2

√
ωJ

(
A(+)
J α

(+)
J + A(−)∗

J α
(−)†
J

)
. (49)

Similarly to the finite-radius cases, the radial scalar func-
tions fλ are still proportional to a Bessel function (28).
However the radial momentum k⊥ is not quantized in the

absence of the boundaries. The wave functions are still
normalized according to the condition:∫

d3xA(λ)∗
mk (x)A(λ′)

m′,k′(x) = δλλ′δJJ ′ (50)

with the collective quantum number J = (m, k, k⊥) and

δJJ ′ = 4π2δmm′δ(kz − k′z)
δ(k⊥ − k′⊥)

k⊥
, (51)∑

J

=

∫ +∞

−∞

dkz
2π

∑
m∈Z

∫ ∞
0

k⊥dk⊥
2π

. (52)

The normalization constant in this unbounded case is
C = 1√

2k⊥
. Since the wave functions for both circu-

lar polarizations obey the same boundary conditions (see
below), the normalization constant is the same for both
polarizations. The complex field E = E+ iB is then just
E = ∇×A.

Quantization is achieved by

[α
(λ)†
J , α

(µ)
K ] = δJKδ

λµ . (53)

The wave functions form an orthonormal system∫
d3xA(λ)∗

K ·A(µ)
L = δK,Lδ

λ,µ . (54)

We note thatE±iB are eigenvectors of the duality trans-
formation (E,B) → (B,−E) with eigenvalues ±i. The

Hamiltonian is H = 1
2E · E

†. Both polarization modes
have the same frequencies. Therefore the Hamiltonian is

H =
∑
J

ωJ

(
α

(+)†
J α

(+)
J + α

(−)†
J α

(−)
J

)
, (55)

with ω2
J = k2

z + k2
⊥ as in Eq. (25). The projection of the

angular momentum on the z axis can be computed from
the expression of the Poynting vector P = i

2E × E† as

Lϕ =
∑
J

m
(
α

(+)†
J α

(+)
J + α

(−)†
J α

(−)
J

)
, (56)

4. Helicity and zilch

Back in the 60’s Lipkin found a new conserved charge
for free Maxwell theory which he called the ”zilch” [23].
Soon afterwards Kibble pointed out that there are in-
finitely many such zilch currents [24].

The basic observation is the following: if (E,B) and
(H,G) are doublets of fields obeying free Maxwell’s
equations

∇ ·E = ∇ ·B = ∇ ·H = ∇ ·G = 0 , (57)

∇×B − ∂E

∂t
= ∇×E +

∂B

∂t
= 0 , (58)

∇×H − ∂G

∂t
= ∇×G+

∂H

∂t
= 0 , (59)
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then the following expression

ζ = H ·B +G ·E (60)

Jζ = −H ×E +G×B , (61)

fulfill a conservation law

∂ζ

∂t
+∇ · Jζ = 0 . (62)

If we identify H→A with the vector-potential and
G→C and the dual vector potential in the Coulomb
gauge ∇ ·A = ∇ ·C = 0, then

B = ∇×A =
∂C

∂t
, (63)

E = −∂A
∂t

= ∇×C. (64)

The conserved charge (60) in this case is the optical helic-
ity. The inconvenience with these definitions is that they
do depend on the gauge choice. The vector and dual vec-
tor potential define a zilch current only in the Coulomb
gauge (16)!

The original zilch current of Lipkin is distinguished in
that it is gauge invariant and local. It can be defined by
taking

H = ∇×B , (65)

G = ∇×E . (66)

If one allows for non-local expressions one can define
the k-zilch currents by taking

Hs = ∆−s∇×B , (67)

Gs = ∆−s∇×E , (68)

where ∆ is the Laplace operator. If one uses the Coulomb
gauge (16) then the 1-zilch (s = 1) becomes local in terms
of the vector potentials A, C and it coincides with the
“optical helicity” given in a relativistic form in Eq. (2).
The 1-zilch is also distinguished in a sense that it is the
only one of the s-zilches that has a correct dimension of
a conserved current, i.e. dimension 3. In contrast the
gauge invariant local zilch current of Lipkin, the 0-zilch,
has dimension 5, and is often associated with “the optical
chirality flow” [29, 31].

For a finite radius case, the perfect electric (12) and
magnetic (14) conductor boundary conditions do not re-
spect the zilch. The helicity (or zilch) influx

Jh · n ≡ Jh,r(R) (69)

= (EϕAz − EzAϕ + CϕBz − CzBϕ) |ρ=R,

does not vanish identically at the boundary.
In the helicity eigenstate basis in the unbounded do-

main the helicity and the zilch can be expressed by the
complex fields

h =
1

4
(A† · E + A · E†) , (70)

ζ =
1

4
(G† · E + E · G†) . (71)

The normal ordered integrated total charges (helicities
and zilches) are, respectively, as follows:

Qh =

∫
d3x : h :=

∑
J

(
α

(+)†
J α

(+)
J − α(−)†

J α
(−)
J

)
, (72)

Qζ =

∫
d3x : ζ :=

∑
J

ω2
J

(
α

(+)†
J α

(+)
J − α(−)†

J α
(−)
J

)
.

(73)

As expected, helicity in the Coulomb gauge counts the
number of right-circularly polarized photons minus the
number of left-circularly polarized photons. The gauge
invariant zilch charge weights these numbers with the
squares of the frequencies and is therefore a good gauge
invariant observable and local measure of helicity [26].

The expression of the helicity and zilch currents in
terms of the complex fields are

Jh =
i

4

(
A× E† −A† × E

)
, (74)

Jζ =
i

4

(
E × G† − E† × G

)
. (75)

C. Rotations

We will study the rotating ensemble in a vacuum de-
fined with respect to a fixed laboratory frame. In this
case rotation is implemented by defining the statistical
operator

ρ =
1

Z
e−β(H−ΩLϕ) , (76)

where β = 1/T is the inverse temperature, Ω is the angu-
lar frequency corresponding to a uniform rotation with
angular velocity Ω = Ω ezabout the z axis, H is the
Hamiltonian (55) and Lϕ is the projection of the angular
momentum operator on the rotation axis (56). Without
loosing generality we assume that the cylinder rotates
counterclockwise with Ω > 0.

Rotating ensembles of relativistic field theories are no-
toriously ill-defined whenever the tangential velocity at
radius ρ exceeds the speed of light. A well defined ensem-
ble is therefore possible only as long as RΩ < 1, where
the speed of light c = 1 in our conventions. This makes it
immediately clear that the unbounded domain a constant
angular velocity does not give rise to a consistent statis-
tical ensemble. As noted however long ago by Vilenkin,
in the case of fermions it is possible to extract meaning-
ful results for the statistical average of the current at the
center of rotation. As we will discuss in detail, for pho-
tons even this property is not realized beyond a lowest
order in Ω.

In principle one can study the ensemble both in a co-
rotating and in a laboratory (non-rotating) frame and
define two different vacua. A nonrotating vacuum has
been considered by Vilenkin [10] while the rotating vac-
uum has been studied by Iyer [32]. One may show that
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both approaches are equivalent provided the system is
bounded in such a way that the velocity of the rigidly
rotating body does not exceed the speed of light so that
the causality is respected. Technically, the nonrotating
(Vilenkin) vacuum is equivalent to the rotating (Iyer)
vacuum if the energy of each eigenmode in the labora-
tory frame ε and in the co-rotating frame ε̃ satisfy the
relation εε̃ > 0. This relation always holds in the case
if the causality is respected. The causality is lost in a
rigidly rotating unbounded space, in which εε̃ < 0 for
certain modes and, consequently, the nonrotating and
rotating vacua are not equivalent [11]. The unbounded
rotating systems may have several pathologies related to
instabilities and rotation-induced Unruh effect [33, 34].
Further discussions, in particular on a difference between
fermionic and bosonic states, may be found in Ref. [11].

The thermal expectation value of an operator O for a
uniformly rotating ensemble is:

〈Ô(x)〉T,Ω =
∑
J,λ

nB(T,Ω; J, λ)〈Ô(x)〉J , (77)

where 〈Ô(x)〉J ≡ 〈J |O|J〉 corresponds to the value of the
operator O for a photon in the state characterized by the
polarization λ and the kinetic quantum numbers J (37),
and

nB(T,Ω; J, λ) =
1

e(ω
(λ)
J −mΩ)/T − 1

(78)

is the Bose-Einstein distribution function at nonzero tem-
perature T and angular velocity Ω.

In order to calculate the expectation values of the nor-
mal ordered operators of interest we collect the mode
expansions of the different fields

A =
∑
J,λ

1√
2ω

(λ)
J

(
A(λ)
J â

(λ)
J + A(λ),∗

J â
(λ)†
J

)
, (79)

C =
∑
J,λ

i√
2ω

(λ)
J

(
Ã

(λ)

J â
(λ)
J − Ã

(λ),∗
J â

(λ)†
J

)
, (80)

E =
∑
J,λ

i

√
ω

(λ)
J√
2

(
A(λ)
J â

(λ)
J −A(λ),∗

J â
(λ)†
J

)
, (81)

B =
∑
J,λ

√
ω

(λ)
J√
2

(
Ã

(λ)

J â
(λ)
J + Ã

(λ),∗
J â

(λ)†
J

)
, (82)

H =
∑
J,λ

(ω
(λ)
J )3/2

√
2

(
A(λ)
J â

(λ)
J −A(λ),∗

J â
(λ)†
J

)
, (83)

G =
∑
J,λ

i(ω
(λ)
J )3/2

√
2

(
Ã

(λ)

J â
(λ)
J + Ã

(λ),∗
J â

(λ)†
J

)
, (84)

where the dual wave functions Ã are defined via the re-

lation ∇×A(λ)
J = ωÃ

(λ)

J .

Now we can compute the thermal averages of the fol-
lowing normal ordered operators:

optical helicity : J0
h =

1

2
: (A ·B +C ·E) : , (85)

Jh =
1

2
: (E ×A+C ×B) : , (86)

zilch : J0
ζ =

1

2
: (H ·B +G ·E) : , (87)

Jζ =
1

2
: (E ×H +G×B) : , (88)

Poynting vector : J ε =: E ×B : . (89)

We note that all these expression are duality invariant:
(E,B) → (−B,E), (C,A) → (−A,C) etc. They are
taken normal ordered (with creation operators placed to
the left) and we only need the one-particle expectation
values to evaluate the thermal averages.

It is worth mentioning that we quantize the gauge field
Aµ in the Coulomb gauge (16) formulated in the labora-
tory frame. This gauge condition is not satisfied by the
fields in the corotating frame A′µ which are related to the
ones in the laboratory frame by the linear transformation
A′ = A and A′0 = A0 − ΩρAϕ. The spatial part of the
Coulomb gauge is thus respected by the corotating gauge
fields, ∇′ ·A′ = 0, while the temporal component of the
gauge field in the corotating frame is nonzero, A′0 6= 0,
for both TE and TM photon polarizations (26). How-
ever, since all observables of interest are formulated in the
laboratory frame, and the vacua for both laboratory and
rotating frame are the same, the quantization should be
done in the Coulomb gauge (16) with respect to the gauge
fields in the laboratory frame. Moreover, the uniform ro-
tation affects the expectation values of the observables in
laboratory frame via the Bose-Einstein distribution func-
tion (78), which depends on the photon energy spectrum
in the corotating frame, ω′J = ωJ −mΩ. Since the latter
is a gauge-independent quantity, the choice of the gauge
in the corotating frame has no effect on the expectation
values of the observables.

The optical helicity, zilch and their currents have the
single particle expectation values

〈J |J0
h,ζ |J〉 = 2km(ωJ)1−2s fJf

′
J

ρ
, (90)

〈J |Jh,ζ |J〉 =

 0
kk2
⊥(ωJ)−2sfJf

′
J

m(ωJ)2−2s
(

1 + k2

ω2
J

)
fJf
′
J

ρ

 (91)

where s = 1 for the optical helicity and s = 0 for the zilch.
We note that these quantities fulfill the Ward identity

ω〈J |J0
h,ζ |J〉 −

m

ρ
〈J |Jϕh,ζ |J〉 − k〈J |J

z
h,ζ |J〉 = 0 , (92)

associated with the zilch conservation (62) and with a
similar conservation relation for the helicity.
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The expectation value of the Poynting vector is

〈J | ~Jε|J〉 =

 0
m
ρ k

2
⊥f

2
J

k(m
2

ρ2 f
2
J + f ′2J )

 . (93)

For simplicity of notation we have suppressed the polar-
ization index in the above. The expression are formally
the same for both polarizations.

Since the energy ωJ is an even function of the mo-
mentum in z-direction k all thermal expectation values
of expression linear in kz vanish upon integration. The
linearity in kz immediately tells us that h = ζ = Jzε =
Jϕh = Jϕζ = 0 in addition to the obvious absence of the

radial currents Jρε = Jρh = Jρζ = 0.
Furthermore, from the identity

2m

∫ R

0

ρdρ
ff ′

ρ
= mf(R)2 , (94)

it follows that only those modes that obey the Neumann
boundary conditions on the radial photon functions fJ
give us a nonzero net helicity and zilch currents! The
correspondence between the boundary conditions on the
radial photon functions, the photon polarizations and the
type of the boundary conditions can be found in Eq. (31).

In general case, the thermal expectation values can
not be evaluated analytically and therefore we proceed
to their numerical evaluation. For the numerical sum-
mation it is convenient to write the energy and angular
momentum densities as follows:

R4ε =
1

π2

∑
m,l,λ

∫ ∞
0

dq
ν

(λ)
J

e
ν
(λ)
J
−mRΩ

RT − 1

(95)

R3Lϕ =
1

π2

∑
m,l,λ

∫ ∞
0

dq
m

e
ν
(λ)
J
−mRΩ

RT − 1

. (96)

In order to adapt these quantities for a numerical evalu-

ation we used a shorthand notation ν
(λ)
J ≡ Rω(λ)

J for the
dimensionless energy, characterized by the cumulative in-
dex J of Eq. (37) and by the polarization λ = TE/TM
according to the type of the boundary condition (36).

In Fig. 1 we show appropriately normalized en-
ergy (95), angular momentum (96) and moment of in-
ertia

I(Ω, T ) =
Lϕ(Ω, T )

Ω
, (97)

as functions of the angular frequency Ω for various fixed
temperatures T .

The components of the total helicity and zilch currents
along the axis of rotation, given by integration over local
currents (91) over the crosssection of the cylinder,

Jz,tot
s =

∫ R

0

ρdρ

∫ 2π

0

dϕJs(ρ, ϕ) , (98)
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FIG. 1: The energy (95) and angular momentum (96) densi-
ties as function of the dimensionless tangential velocity at the
boundary RΩ. We restrict ourselves to relatively low angular
velocities RΩ < 0.5 to facilitate numerical evaluation. The
plots show that behavior of the dimensionless quantities ε/T 4

(top) and L/(RT 3) (bottom) for a temperature range from
TR = 0.25 up to TR = 2.5 in steps of δ(TR) = 0.25. As it
can be seen from the plots, both these dimensionless quan-
tities collapse on a universal high temperature curve. The
arrow in the upper plot marks the Stefan-Boltzmann value

ε = T4π2

15
. At temperature TR = 2.5 the system is already

within 3% of this value at zero rotation. The inset in the
lower figure shows the moment of inertia (97) with the corre-
sponding Stefan-Boltzmann value.

are as follows:

Jz,tot
s R2−2s=

1

π

∑
m,l

∞∫
0

dq
1 + q2

(ν
(λ)
J )2

(κ′ml)
2−m2

m(ν
(λ)
J )2−2s

e
ν
(λ)
J
−mRΩ

RT − 1

,

(99)
where s = 1 corresponds to the helicity and s = 0 to
the zilch currents (also denoted, respectively, as s = h
and s = ζ below). In Eq. (99) we choose the polariza-
tion λ taking into account the fact (94) that only the
modes with the Neumann boundary conditions on the
radial photon functions fJ(ρ) may contribute.

In Fig. 2 we show the total helicity and zilch cur-
rents (99) which are increasing function of both tem-
perature and angular momentum. Its important to re-
member that the total currents, contrary to the infinite-
volume expression, are non-vanishing only because of the
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Neumann boundary condition imposed on radial photon
functions. The net flux of helicity and zilch is there-
fore to be interpreted as an effect of the duality breaking
boundary conditions. Qualitatively both quantities ex-
hibit increasing flux with increasing angular velocity.
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8

FIG. 2: The total helicity (s = 1) and zilch (s = 0) cur-
rents (99) as function of the dimensionless tangential velocity
at the boundary RΩ. The plots show that behavior of the di-
mensionless quantities Jz,toth /(RT 2) and Jz,totζ /(RT 4) for the
same temperature range as in Fig. 1. The insets show the
currents divided by the frequency Ω.

It is well seen in Fig. 2 that in the limit of small angular
frequencies, Ω→ 0, both the total helicity and the total
zilch currents (99) exhibit a linear dependence on Ω:

Jz,tot
s = Cs(T )T 4−2sΩ +O

(
Ω2
)
. (100)

In Fig. 3 we show the dimensionless coefficients Cs as
the function of temperature T . Both quantities vanish
exponentially in the limit of small temperatures T → 0,
while in the limit of high temperature they approach the
values

Ch(T →∞) ≈ 0.65, Cζ(T →∞) ≈ 5.42, (101)

respectively.
Finally using the series of the Bessel functions,

Jm(x) = (x/2)m + O(xm+2), it follows that the helic-
ity and zilch current densities at the axes of rotation
ρ = 0 receive only contributions from the angular mo-
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0.0

0.2

0.4

0.6

TR

J ζt
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FIG. 3: The dimensionless strength of the helicity (s = 1)
and zilch (s = 0) currents (100) in the limit of small angu-
lar frequencies Ω → 0 as function of temperature T . The
insets show the exponential onset of both currents at small
temperatures.

menta m = ±1:

Jzs (0)R2−2s =
1

π2

∑
l,λ

∞∫
0

dq(ν
(λ)
J )(2−2s)

(
1 +

q2

(ν
(λ)
J )2

)

· C2
λ

(
κλ1,l
2R

)2
 1

e
ν
(λ)
J
−RΩ

RT − 1

− 1

e
ν
(λ)
J

+RΩ

RT − 1

 , (102)

where again s = 1 and s = 0 correspond to the helicity
and the zilch, respectively. The m = ±1 eigennumbers
κλ1,l ≡ κλ−1,l for both polarizations λ = TE/TM can be

read off from Eqs. (34) and (35), and the normalization
coefficients Cλ are given in Eq. (41).

The helicity and zilch currents (102) at the axis of ro-
tation ρ = 0 are shown in Fig. 4 as function of tempera-
ture T . We plot these currents in a limit of slow rotations
Ω→ 0 and normalized them to the corresponding results
obtained in the unbounded domain (105) and (108), to
be discussed in the next section. The high temperature
limit approaches the value of the linear truncation in Ω in
the unbounded domain. Its interesting that this conver-
gence is faster for the zilch current than for the helicity
current. The insets show the exponential onset of the
currents for small temperatures.
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FIG. 4: Values of the helicity (s = 1) and zilch (s = 0)
current densities (102) at the axes of rotation ρ = 0 for very
low angular velocities. The result is plotted as a function of
TR and as fraction of the result in the unbounded domain
(105) and (108) respectively. The insets show the currents at
small temperatures.

D. Unbounded domain

We will now study the problem of the generation of
the helicity and zilch currents at the center of rotation in
an unbounded domain. The analogous problem for chiral
fermions is known to give a well defined expression that
coincides to lowest order in the angular momentum with
the predictions from anomaly induced transport theory,
the chiral vortical effect. It also predicts terms of higher
order in Ω but their status is somewhat less clear. We
will follow the strategy that worked for chiral fermions
as close a possible.

The thermal expectation value of the helicity current
in the unbounded domain is formally

〈Jzh(ρ)〉∞T,Ω =

∞∫
Ω+

dk⊥
2π

∞∫
−∞

dk

2π

∑
m

nB(ω −mΩ, T )

2m

(
1 +

k2

ω2

)
Jm(k⊥ρ)J ′m(k⊥ρ)

ρ
. (103)

where nB(ε, T ) = [exp(ε/T ) − 1]−1 is the occupation
number and the eigenenergy ω is given in Eq. (25). Both
photon polarizations contribute the same in the cur-
rent (103). Since the current (103) should be understood

as the limit R→∞ of the finite radius theory there is in
principle a lower limit on the k⊥ integration. At any fi-
nite radius we have ΩR < 1 and k⊥ = κml

R with κml > m.
Therefore we always have k⊥ > Ω in Eq. (103).

One observation is that the total current vanishes also
in the unbounded domain. Indeed we integrate the cur-
rent (103) over the (infinite) crosssection of the cylinder
as in Eq. (98) and then use the identity (94) to show that
the contribution of every eigenmode fJ(ρ) = Jm(k⊥ρ) is
proportional to J2

m(k⊥R) which vanishes in the infinite-
volume limit R→∞.

If we concentrate on the other hand on the center of
rotation ρ = 0 we find that only the modes with m = ±1
contribute. We can also change the integration variable
from k⊥ to ω and find then

〈Jzh(0)〉∞T,Ω =
1

8π2

∫ ∞
Ω+

dω

∫ ω

−ω
dk

(
ω +

k2

ω

)
[

1

e(ω−Ω)/T − 1
− 1

e(ω+Ω)/T − 1

]
. (104)

We can now expand the integral to lowest order in powers
of Ω/T and find

〈Jzh(0)〉∞T,Ω =
4T 2Ω

3π2

∫ ∞
0

dx
x

ex − 1
=

2T 2

9
Ω . (105)

One can also try to proceed by ignoring the lower
bound on the integration over the frequency ω in the
first integral in Eq. (104). This leads to

〈Jzh(0)〉∞,(formal)
T,Ω =

T 3

3π2

∫ ∞
0

dxx2[
1

ex−Ω/T − 1
− 1

ex+Ω/T − 1

]
. (106)

In order to evaluate this we can use the integral represen-
tation of the polylogarithms together with the Jonquiére
inversion relation

Lin(z) =
1

Γ(n)

∫ ∞
0

tn−1

et/z − 1
,

Lin(z) + (−1)nLin(1/z) = − (2πi)2

n!
Bn

(
1

2
± ln(−z)

2πi

)
.

Here Bn(x) is the n-th Bernoulli polynomial and the sign
is chosen according to z 6∈ [0, 1] or z 6∈]1,∞]. This leads
to the following formal expression:

〈Jzh(0)〉∞,(formal)
T,Ω =

2T 2

9
Ω± i T

3π
Ω2 − 1

9π2
Ω3 , (107)

which is clearly unphysical beyond the leading order in
the angular momentum Ω. The reason is that the in-
tegrand in Eq. (104) has always at least one pole at fre-
quency ω = |Ω|. The analogous integrals for fermions are
well defined since the Fermi-Dirac distribution does not
present a singularity. However even in the fermionic case
the higher order terms do not seem to be universal [7].
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The same considerations go through for the zilch cur-
rent as well. The only difference is an additional insertion
of ω2 under the integral in Eq. (103). We only quote the
infinite-volume result for the on-axis zilch current ob-
tained in the linear order in Ω:〈

Jzζ (0)
〉∞
T,Ω

=
8π2T 4

45
Ω . (108)

III. DISCUSSION AND CONCLUSION

We have studied helicity and zilch photonic currents
in free Maxwell theory induced by rotation in a bounded
cylindrical domain. An important role is played by the
conditions imposed on photons at the boundary of the
cylinder. We have chosen two types of the boundary
conditions corresponding to perfect electric and perfect
magnetic conductors as both these conditions guarantee
that the influx of energy and angular momentum vanishes
at the boundary. The values of the helicity and zilch
photonic currents for both types of boundaries are the
same because these boundary conditions are exchanged
under a discrete electric-magnetic duality transformation
while all expression of interest are duality invariant.

In looking out for an analogue of the well–known CVE
of chiral fermions we studied the current densities at
the axis of rotation. A universal value can reasonably
be expected to arise only in the high temperature limit
in which the boundary conditions play no role for the
physics of photons at the center of rotation. Indeed we
found that in the high–temperature limit the result for
small angular velocity converges to the result obtained
to linear order in Ω in the unbounded domain. How-
ever, a direct calculation in the unbounded domain is
plagued with the difficulty that the integrals over the
Bose-Einstein distributions are well defined only for suf-
ficiently small angular velocities, Ω < 1/R. This fact
means that the angular velocity has to go faster to zero
than 1/R goes. Consequently, the formal result for the
helicity current at the axis of rotation, obtained in the
unbounded domain (107), does not seem to be physically
meaningful as this procedure gives a complex value for
an expectation value of a hermitian operator.

On the contrary, a truncation of the expression for the
current to a lowest order in Ω in unbounded domain pro-
vides us with a still meaningful physical result (105) be-
cause it exactly corresponds to a value to which the cen-
tral current densities converge in the-high temperature
limit in the bounded domain. In this sense (the leading
order truncation of the high-temperature limit) one can
indeed speak of a chiral vortical effect for photons in an
unbounded domain.

It is worth comparing our numerical result for the cen-
tral helicity current (105) to the existing derivations of
the photonic CVE in the literature [17–19]. We note
that Refs. [17, 19] consider the magnetic helicity cur-
rent (with the results, in our notations, Jzh = T 2Ω/6 and
Jzh = (εµ − 1)T 2Ω/12, respectively) and only Ref. [18]

studies a semiclassical evaluation of the optical helicity
current (which gives Jzh = T 2Ω/3). Notice that all these
expressions for the helicity currents differ from each other
(in particular, the helicity current of Ref. [19] is zero in
the vacuum ε = µ = 1). In any case, our value for the
helicity current (105) differs from the results obtained in
all these works.

The disagreement in the literature is probably not sur-
prising since the helicity current is not a gauge invariant
object and, therefore, it can not be considered a good
physical observable. On the other hand Lipkin’s zilch
current is a local and gauge invariant quantity. The zilch
current at the axis of the rotating cylinder in the high-
temperature limit is given in Eq. (108). It would be in-
teresting to evaluate the expectation value of the cen-
tral zilch current via Kubo formulas or in a semiclassical
treatment to compare to our result (108).

Summarizing, we have found the Zilch Vortical Effect
(ZVE) which generates the helicity and zilch currents
along the axis of rotation of a hot gas of photons. We
have calculated these currents in a wide domain of tem-
peratures and angular frequencies (Figs. 2 and 4) in a
causality-preserving setup. For a photon gas in a fixed-
size cavity, the currents vanish exponentially in the limit
of low temperature. At high temperature and low an-
gular frequency of rotation, the currents at the axis of
rotation are given by Eqs. (105) and (108) while the to-
tal currents are estimated in Eqs. (100) and (101).

Both the helicity and zilch currents show qualitatively
similar behavior. They constitute a part of an infinite
tower of conserved charges, zilches, of free electromag-
netic field. Thus, in a general sense, the ZVE is respon-
sible for an infinite tower of anomalous transport effects
in a rotating photon gas.
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Appendix A: Cylindrical coordinates

In the cylindrical coordinates a vector

a = aρ eρ + aϕ eϕ + az ez , (A1)

is represented via the orthonormalized basis vectors of
the cylindrical system:

eρ =

 cosϕ
sinϕ

0

, eϕ =

 − sinϕ
cosϕ

0

, ez =

 0
0
1

, (A2)

where ϕ is the azimuthal angle in the (x, y) plane, related
to the cartesian coordinates as follows:

x = ρ cosϕ , y = ρ sinϕ . (A3)

The basic operations of the vector calculus are:
– The scalar product

a · b = aρbρ + aϕbϕ + azbz . (A4)

– The vector product

(a× b)ρ = (aϕbz − bϕaz) , (A5)

(a× b)ϕ = (azbρ − bzaρ) , (A6)

(a× b)z = (aρbϕ − bρaϕ) . (A7)

– The curl (rotor) operation:

(∇× a)ρ =
1

ρ

∂az
∂ϕ
− ∂aϕ

∂z
, (A8)

(∇× a)ϕ =
∂aρ
∂z
− ∂az

∂ρ
, (A9)

(∇× a)z =
1

ρ

∂(ρaϕ)

∂ρ
− 1

ρ

∂aρ
∂ϕ

. (A10)

– The divergence:

∇ · a =
1

ρ

∂(ρaρ)

∂ρ
+

1

ρ

∂aϕ
∂ϕ

+
∂az
∂z

. (A11)

– The gradient:

∇f =
∂f

∂ρ
eρ +

1

ρ

∂f

∂ϕ
eϕ +

∂f

∂z
ez . (A12)

– The Laplacian:

∆f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂ϕ2
+
∂2f

∂z2
. (A13)

Appendix B: Some properties of Bessel functions

The Bessel functions satisfy the following recurrence
relations:

Jm−1(x) + Jm+1(x) =
2m

x
Jm(x), (B1a)

Jm−1(x)− Jm+1(x) = 2J ′m(x). (B1b)

For arbitrary parameters a and b one gets:∫ 1

0

dxxJm(ax)Jm(bx)

=
bJm(a)Jm−1(b)− aJm(b)Jm−1(a)

a2 − b2
, (B2)∫ 1

0

dxx2Jm(ax)J ′m(ax) =
1

2a
Jm−1(a)Jm+1(a). (B3)

If a = κml and b = κml′ are zeros of the Bessel function,
Jm(κml) = Jm(κml′) = 0, then∫ 1

0

dxxJm(κmlx)Jm(κml′x) =
δll′

2
J2
m+1(κml) . (B4)

If a = κ′ml and b = κ′ml′ are zeros of a derivative of the
Bessel function, J ′m(κ′ml) = J ′m(κ′ml′) = 0, then∫ 1

0

dxxJm(κ′mlx)Jm(κ′ml′x)

=
δll′

2

[
J2
m(κ′ml)− J2

m+1(κ′ml)
]
. (B5)

For real positive k and k′ one gets:∫ ∞
0

dρρ

[
m2

ρ2
Jm(kρ)Jm(k′ρ) + kk′J ′m(kρ)J ′m(k′ρ)

]
≡ k2

∫ ∞
0

dρρJm(kρ)Jm(k′ρ) = kδ(k − k′). (B6)

Finally we note that for large index the asymptotic
expansions of the zeros are

κm1 = m+ 1.8558m1/3 +O(m−2/3) (B7)

κ′m1 ∼ m+ 0.8086m1/3 +O(m−2/3 . (B8)

this makes the divergence of the thermodynamic parti-
tion function for ΩR > 1 explicit.
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