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Abstract

Solid Rocket Motors involve strongly coupled two-phase flow. The presence of a polydisperse spray of particles resulting from the
combustion of aluminized propellant has been shown to have a strong impact on stability and can eventually yield thrust oscillations.
The ability to conduct predictive simulations of such a harsh environment is highly desirable. Euler-Euler models relying on moment
methods for the disperse phase constitute interesting approaches due to their efficiency at coupling both phases and their ability for
high performance computing. A multi-fluid model coupled to a new numerical strategy for the disperse phase is introduced in order to
cope with the natural high stiffness of the resulting systems of conservation laws. The predictive character of the method is strongly
related to the possibility of using accurate methods while preserving stability and robustness in the presence of intrinsic singularities
occurring in the disperse phase equations. The purpose of this contribution is to stress the impact of several numerics and modeling
on the solution. Relevant test cases for solid propulsion involving hydrodynamic instabilities and acoustic coupling are presented. A
strategy is proposed in order to produce reliable predictions.

Keywords: Solid rocket motor, Vortex shedding, Two-way coupling, Euler-Euler simulation, Velocity polydispersion, Anisotropic Gaus-
sian, Realizable high order schemes

1. Introduction

Among the space propulsion technologies, Solid Rocket Mo-
tors (SRM) are known for their reliability, high trust and ability
to be stored during a long period of time. Included their rela-
tively low cost, such engines are first choice possibilities for the
first stages of present and future space launchers[8]. In order to
improve their efficiency, or more particularly their specific im-
pulse, aluminum powder is added to the propellant grain increas-
ing the temperature of the burnt mixture. From this technical
solution results the presence of a massive amount of aluminum
oxide particles that strongly interact with the internal flow of the
motor. Since these particles have a notable impact on thermo-
acoustic, combustion and hydrodynamic instabilities or combi-
nation of these [12], it is a key issue to be able to prevent such
phenomenon in the early development of solid rocket motor and
thus avoid deleterious effects on the launcher mission.

Due to the harsh conditions existing in the internal flow, mea-
surement possibilities are limited and simulations are mandatory.
In addition to the experimental investigations to understand the
complex physic of such flows, the ONERA continually refine the
modeling of both carrier and disperse phase while improving as-
sociated numerical methods of CFD issues. This contribution ex-
hibit the recent progress in the disperse phase modeling including
its two-way interaction with the gaseous carrier phase obtained
thanks to a long term collaboration with the EM2C laboratory of
CentraleSupelec [4, 21]. This work is focused on the Eulerian
representation of polydisperse [4, 14] spray giving solution for

realistic flow of particles taking into account a large spectrum of
size of droplets [6] and more recently statistical droplet trajectory
crossing [25, 20]. The ultimate goal of these works is to produce
models that can efficiently represent particles from low to high
inertia. While being mathematically well posed, such models are
exposed to severe non-linearities and have to rely on dedicated
numerical methods. In order to aim at industrial configurations,
an active research is conducted on accurate and robust numeri-
cal methods for unstructured mesh [15] constantly improving the
reliability of computed solutions. In our recent work, a discrimi-
nant test case under a realistic configuration for SRMs is investi-
gated and will be the key point of this paper. Highly sensitive to
the numerical method, this fictive SRM, namely C1 [17, 18, 11],
possesses an intrinsic purely hydrodynamic instability that can be
either excited, reduced or even suppressed by the single presence
of particles under a condensed form. Through this new analysis
of the problem, we propose to distinguish the spurious phenom-
ena associated to the numerical method from those attributable to
the model.

The contribution is organized as follow. Section 2 is devoted
to the modeling of the disperse phase according to the briefly de-
scribed SRM’s internal flow conditions. From the closure of the
kinetic description of the particles, two Eulerian models are de-
duced and will form our governing equations solved thanks to the
numerical methods proposed in section 3. Special care is taken of
the design of robust schemes conserving the mathematical prop-
erties of the models while keeping a high precision. Then Section
4 introduces the two-phase C1 test case that will assess the relia-
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bility of models and methods. The ability of our configuration to
be predictive will be the subject final discussions leading to the
conclusion of the paper.

2. Model

The internal flow of a SRM involves complex phenomena
that can interact with each other. This includes for instance com-
bustion, turbulence and radiative heat transfer, but in this paper,
acoustics and two-phase flow issues will be our only concern.
This choice of simplicity is motivated by the two-phase C1 test
case that will be introduced in another Section 4. We then focus
on the description of the disperse phase and its interaction with
the carrier phase. After arguing on the choice of an Euler-Euler
model, two kinetic closures are proposed for the disperse phase
and the governing equations obtained thanks to a method of mo-
ment.

2.1. Eulerian model of the flow

Combustion and multi-component gas issues are omitted to
simplify the study. The compressible form of the well known
Navier-Stokes equations is retained. Since it has been proven that
LES models have a marginal impact in the case of a C1 configu-
ration without particles [11], the equations will be solved under a
DNS context.

Combined with their high material density, the small size of
the droplets justify the assumption of point-particle. Through a
diameter lying between several hundred of nanometers and few
hundred of micrometers, their volume fraction in the Navier-
Stokes equations can be neglected. Thus only two kinds of
interactions between the carrier and carried phase are consid-
ered, namely the drag force and the heat exchange. According
to [2], the Reynolds number of the droplets remain under 500
even through the nozzle, where it is the highest, and classical
Schiller-Naumann and Ranz-Marshall corrections are sufficient
to describe the dynamics of an isolated particle. These take the
following form:FSt(ug, c, dp) =

(ug−c)

τstu
, τstu =

ρld
2
p

18µg

F = FSt(1 + 0.15Re0.687
p ) =
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τu
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where F and H are given by unit of mass, ug and c are the ve-
locities of the gas and the particle, ρl is the density of the droplet
material, dp the diameter of the droplet, µg the dynamical vis-
cosity of the gas, Rep the Reynolds number of the particle, Prg
the Prandtl of the gas and finally cp,g and cp,l the heat capacity at
constant pressure of the gas and the droplet material.

The number of particles, that can easily reach 105 per cu-
bic centimeter, induces a non negligible collisions frequency [3].
Such a problem is out of the scope of the paper and will be ne-
glected. The droplets are then consider only to be able to inter-
act between themselves through their coupling with the gaseous
phase.

At this point, two classes of models for the resolution of the
disperse phase can be considered. It can be described through a
Lagrangian method where droplets are tracked, alone or grouped,
in their displacement or thanks to a Eulerian framework by de-
scribing droplets through local quantities. For phenomena driven
by two-way interactions as in the SRMs, one may prefer the Eu-
lerian framework. As a matter of fact such method can accurately
calculate droplet-gas interaction with a precision that does not
depend on their number while avoiding statistical convergence
issues. This last property is a key advantage for two-way cou-
pled unsteady simulations. Moreover, Eulerian closure can be

efficiently parallelized through domain decomposition whereas
Lagrangian methods quickly suffer from memory exchange over-
head in the same situation.

Then, assuming the statistical convergence through an infi-
nite number of particles, the spray can be described thanks to a
Number Density Function (NDF) f that depends on the time t,
position x, velocity c and temperature T . This simplified form
of the Williams-Boltzmann equation assumes a unique particle
size without evaporation nor collision terms and take the follow-
ing form:

∂tf + ∂x.(cf)︸ ︷︷ ︸
free transport

+ ∂c.(Fnf)︸ ︷︷ ︸
drag force

+ ∂T (
Hn
cp,l

f)︸ ︷︷ ︸
thermal transfert

= 0 (3)

where Fn and Hn are the drag force and heat transfer applied to
a single droplet. This model is not solved directly but approxi-
mated through moment methods.

2.2. Kinetic based moment method

Equations are written on moments in velocity and tempera-
ture. Despite our choice of considering only a discrete size of
particles, we wish to be able to extend the presented work to two
size-moment hybrid methods [1, 3, 14]. These methods use a
size discretization into sections [12] and two size-moments in
each section and have reach a mature level but are out of the
scope of this paper (see [6, 14, 1] and references therein for a
broader view on the literature in this field). Then, the number
density n =

∫
fdcdTdS and the mass density m are considered,

despite their redundancy, as proof of feasibility and straightfor-
ward extension of the presented work to such literature. There-
fore, the particle diameter dp will not be considered as a fixed
parameter but as deduced from n and m thanks to the formula
dp = [(6m)/(ρlπn)]1/3.

We propose then to close problem thanks to assumptions on
the NDF according to the velocity and temperature at a time t and
position x. Assuming that these two local variables can be closed
independently, the NDF can be stated as follow:

f(t,x, c, T ) = n(t,x)fc(t,x, c)fT (t,x, T ) (4)

Assuming this explicit form of f , conservation laws can be
obtained thanks to the transport equation (3): from the integra-
tion of (3), one can obtain sets of equations with usual physical
meanings. Thus, the moments of order 1 and 2 in velocity lead to
the conservation of momentum and kinetic energy, the moment
of order 1 in temperature leads to the conservation of the ther-
mal energy and the zeroth order moment to the conservation of
particle number and mass.

For the sake of simplicity, a discrete temperature of the par-
ticle Tp at a point is assumed, which leads to fT (t,x, T ) =
δ (T − Tp(t,x)). After the integration of (3) multiplied by the
temperature T and the heat capacity cp,l, one can obtain the equa-
tion of the transport of the thermal energy h = cp,lTp such as:

∂t (mh) + ∂x · (mhu) = mcp,l
Tg − Tp
τT

(5)

where u is the average velocity obtained for the first moment in
velocity u = n−1

∫
cfdcdTdS.

The form of the velocity distribution will be a key point of
this contribution. It is possible to consider locally a unique ve-
locity such as fc(t,x, c) = δ (c− u(t,x)), which will be called
the monokinetic (MK) assumption [13]. This hypothesis results
in the equations of Pressureless Gas Dynamic (PGD) with a drag
source terms on the right hand side. Combined with the conserva-
tion of energy (5) and particle number, one can obtain the system
that follow:
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∂tn+ ∂x · (nu) = 0

∂tm+ ∂x · (mu) = 0

∂t (mu) + ∂x · (mu⊗ u) = m
ug−u

τu

∂t (mh) + ∂x · (mhu) = mcp,l
Tg−Tp

τT

(6)

The monokinetic assumption finds its limits for relatively in-
ertial droplets for which Particle Trajectory Crossing (PTC) [2]
can occur. In other word, the particles belonging to the same sys-
tem of equations cannot cross each other at a given point. This
uniqueness of the local velocity created in case of PTC a Dirac
delta function in density called δ-shock. To avoid such draw-
back, recent works inspired by the theory of rarefied gas [16] pro-
posed a multivariate Gaussian distribution in velocity [25, 19, 20]
fc(t,x, c) = det(Σ)−1/2

(2π)
1
2
Nd

exp(− 1
2
(u− c)TΣ−1(u− c)) where

Σ is the covariance matrix of the velocity. Using the moment in
velocity up to the order 2, one can obtain:



∂tn+ ∂x · (nu) = 0

∂tm+ ∂x · (mu) = 0

∂t (mu) + ∂x · (mu⊗ u + P) = m
ug−u

τu

∂t (mE) + ∂x · ((mE + P) ∨ u) = m
ug∨u−2E

τu

∂t (mh) + ∂x · (mhu) = mcp,l
Tg−Tp

τT

(7)

where E is the energy matrix and P the granular pressure tensor
defined by P = mΣ = 2mE−mu⊗ u.

This second system, called AG for Anisotropic Gaussian, is
an extension of the MK system. As a matter of fact, the system
(6) based on the MK closure is contained in (7) in the limit of
zero velocity dispersion. A first analysis of the left hand side of
the system (7) shows that the nature of this system of this Partial
Differential Equations (PDE) is hyperbolic as the compressible
Navier-Stokes chosen for the gas. These equations require spe-
cific methods of resolution since they contain intrinsic singulari-
ties such as shock waves. In the case of the system (6), the left
hand side is a weakly hyperbolic PDE, which means that the Ja-
cobian of the matrix is not invertible. From this specificity, result
the strong singularity that is the δ-shock. The remaining part of
the equations that is the right hand side of the chosen system and
its backward action on the carrier phase act as a simple system
of ODEs. Since both models possess their own properties, they
have to rely on adapted numerical methods in order to produce
accurate solutions.

3. Numerical methods

For the sake of genericity, the involved equations (6) or (7)
and the Navier-Stokes equations are split into three operators.
The right hand side of the equations (6) ( or (7) ) as well as their
action on the carrier phase will be treated as a source term op-
erator S and can be written as an ODE dtU = S(U) where
S is the source term function acting on the conservative vector
U . In the same way Tg , Tp will be the transport operators corre-
sponding to the usual Navier-Stokes equations and the left hand
side of the equations (6) ( or (7) ) that can take the generic form
∂tU + ∂x · f(U) = 0, where f is the flux function. After
describing our splitting strategy as well as the treatment of the
source terms, two methods for the resolution of the transport op-
erators are proposed.

3.1. Operator splitting and source terms

Through a Strang splitting, the integration of the source terms
is conducted independently from the resolution of the transport
operators. Expecting steep source terms, we choose to use the

operator S on half a time-step before solving independently the
transport operators Tg and Tp since they are uncorrelated at this
point and then conclude by half a time of source terms. Under a
mathematical formulation, this gives:

UStrang(t+∆t) = S
(

∆t

2

)
[Tg+Tp](∆t)S

(
∆t

2

)
U(t) (8)

For the integration of the source terms, the use of a third or-
der Strong Stability Preserving Runge-Kutta (SSPRK) time in-
tegration [7] is known to be a reliable choice. Combined with
the Strang scheme, it leads to an efficient way to treat the source
terms.

3.2. MacCormack method

Among the second order methods to solve hyperbolic sys-
tems of equations, the MacCormack method, of Lax-Wendroff
class, has been very popular during the 80’s and 90’s thanks to its
easiness of implementation and numerical efficiency. In an one
dimensional framework, the scheme takes the compact predictor-
corrector formulation that follow:

{
U
n
i = uni + ∆t

∆x
(f(Un

i )− f(Un
i−1))

Un+1
i = 1

2

[
Un
i + U

n
i + ∆t

∆x
(f(U

n
i+1)− f(U

n
i )
] (9)

where U
n
i is the solution at the predictor step that is here left

oriented.
To our knowledge, every multidimensional application of the

MacCormack method is linked to a structured mesh and a direc-
tion of the predictor according to the grid directions such as in
[17]. The experience shows that this predictor should be oriented
upstream which for SRMs means toward the propellant grain in
the radial direction or toward the head-end in the axial direction.
Such choice reduces the spurious oscillations but does not solve
this issue. To ensure the quality of the results, an artificial vis-
cosity of Swanson and Turkel [22] is chosen. The sensor is based
on the pressure for the carrier phase but since this value is absent
of the monokinetic closure and irrelevant for the AG, the density
field is chosen instead. Such method fits well the requirement
for the gaseous phase since purely acoustic phenomenon are ex-
pected to be observed and shocks avoided inside the internal flow.
However the possibility of some vacuum area and discontinuity
in the field of particles can lead to stability issues. Despite the so-
lution should be smooth in most of the chamber, an high artificial
viscosity is required to manage local singularities and vacuum.
In consequence, the ability for this scheme to solve the disperse
phase is ambiguous.

3.3. MUSCL method

Form the idea of solving discontinuities at the cell interfaces
in a finite-volume context, the Godunov scheme class is proven to
be able to efficiently tackle singularities. The procedure consists
in estimating in a first time the value at the cell interface, then
solving Riemann problems at the cell interfaces to deduce the
flux while ensuring the entropy condition. In a one-dimensional
framework the scheme takes the form:{
Un+1
i = Un

i + ∆t
∆x

(
f(URi

i+1/2)− f(URi
i−1/2)

)
URi
i+1/2 = URi(x

t
= 0,U l

i+1/2,U
r
i+1/2)

(10)

where URi
i+1/2 is the solution to the Riemann problem between

the left state U l
i+1/2 and right state Ur

i+1/2 solved by the proce-
dure URi.

At order one, piecewise constant values are assumed in each
cell equal to the average quantity contained in the correspond-
ing volume and the extension to multidimensional frameworks is
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straightforward. The resolution of the Riemann problem finds an
explicit solution for the PGD equations [10]. However, such a
procedure is tedious for more complex systems and we will rely
on a HLLC approximate Riemann solver for the gas [24] and the
HLL solver proposed in [25] for the AG equations. Each of them
preserves the realizability as long as the reconstructed values are
realizable states which is obvious at first order.

To obtain higher order schemes of this kind, the distribu-
tion of the value inside the cell have to be estimated. It can be
achieved at the second order, for example, through a linear re-
construction leading to methods called MUSCL. For multidimen-
sional frameworks, several procedures claim to be of MUSCL
type. Among them the multislope method recently developed
at ONERA [15] provides an efficient and robust Local Extrema
Diminishing (LED) reconstruction [9]. When CFL independent,
this LED property ensures that the reconstructed value will be a
convex combination of its neighbors and will not create any ar-
tificial extrema. The key issue to obtain the realizability of such
LED scheme, once the Riemann solver is proven realizable, is to
select the right primitive value for the reconstruction that ensure
the realizability of the deduced state.

LED reconstructions of the density and pressure fields en-
sure the positivity of these variables. Thus for the carrier phase,
the density, the velocity and the pressure are usual choices en-
suring the robustness. For the monokinetic closure, the choice
of density and the velocity as reconstruction variables ensures
the realizability [10]. Compared to the PGD equations, the AG
closure needs, in addition, the positivity of the σij component
of the covariance matrix as well as the positivity of its determi-
nant σiiσjj − σ2

ij > 0 ∀i 6= j. As proposed in [25] the
diagonal terms σii are use for the reconstruction to ensure their
positivity. However, we introduce here the new reconstruction
value σij/

√
σiiσjj that have to be kept in [0, 1[ to ensure the

previous constraints. The value of σij deduced from this variable
is then sure to fulfill the realizability requirement thanks to the
LED procedure for its reconstruction and the positivity σii and
σjj as already provided. Finally, the knowledge acquired in the
field of size polydispersion [10] suggests that the reconstruction
over h and n/m prevent from any spurious border effect on the
temperature and the size deduced from n and m.

Thanks to their design, these upwind methods are built-in re-
alizable and robust with a L∞ stability proven under CFL condi-
tion. This property is preserved through the second order SSPRK
[7] time integration used to keep the convergence orders in space
and time equal. In contrast to the MacCormack scheme where a
case dependent manual tuning of the artificial viscosity is needed,
these method lead to the exact solutions through mesh refinement
without any artificial input. This property will be crucial for the
analysis of the numerical solutions.

4. Two-phase C1 analysis

In industrial applications, propellant grain usually have sharp
edges. The 2D planar C1 test case has been designed in order to
reproduce a critical situation due to this geometrical singularity
and asses the robustness of models and numerical methods. Af-
ter having accurately described the case studied, the specific case
where 20µm particles are injected is investigated.

4.1. Test case presentation

Downstream geometrical discontinuities on the propellant
grain, hydrodynamic instabilities are usually developing and pro-
duce a phenomenon called Angle Vortex Shedding (AVS). In
SRMs, such unsteady flow can be coupled with the acoustic of
the chamber. The original design of the C1 aimed at exciting the
first axial acoustic mode in single phase flow thanks to the AVS
[17]. To do so, a sharp discontinuity is placed at the center of the
combustion chamber. Unexpectedly however, various numerical

simulations [18, 11] proved that the second axial mode is excited
providing a distinctive monochromatic pressure oscillation at the
head-end, independently of the numerical method.

Figure 1: 317× 30 mesh of the C1 with inlet indication

In a preliminary investigation, both MacCormack and
MUSCL methods are used on the single phase case of [17] on the
317 × 30 cells mesh presented in Figure 1. In accordance with
[17, 18, 11] we find a monochromatic instability around 2650Hz .
Negligible differences on this value are obtained using the Mac-
Cormack and MUSCL methods. Moreover, a mesh convergence
analysis until a 2536× 240 mesh leads to the conclusion that the
results using the standard mesh already were of high quality and
can be considered as converged.

Figure 2: Gas rotational field evolution with 5µm particles and
MK model at time (up to bottom) t = 0µs, t = 147µs,
t = 294µs

In [18], particles are injected such that the particle to gas mass
ratio ṁp

ṁg
= 0.396 corresponds to a propellant using 15 % of alu-

minum powder. Such high presence of particles have a notable
impact on the instability amplitude and frequency. As an exam-
ple, the injection of 5µm particles creates a shift in frequency
to approximately 2250Hz as well as a reduction by almost the
half of the oscillation magnitude. The development of the cor-
responding gas rotational field is presented in Figure 2. Using
the two-phase acoustic theory of [23], one can estimate that the
injection of 16µm particles will attenuate the AVS with the high-
est efficiency. Numerical experiments using both a MUSCL type
of scheme [18] and MacCormack scheme [5] on the mesh pre-
sented in Figure 1 reported that the instability completely vanish
for this size. This behavior can be observed on a close range of
particle diameter around to 16µm. For the numerical experiment
presented hereafter, 20µm particles are injected. For such size,
the detection and occurrence of AVS is not ensured creating a
discriminant situation.

4.2. Solutions using the monokinetic closure

In order to validate the results obtained on the standard mesh
of the cited paper, we conduct a mesh refinement for the various
numerical strategies. To stay consistent with the previous inves-
tigation, the equations of pressureless gas dynamics are used. A
first test using a MacCormack scheme for both phases as in [5]
indicates a steady engine. The flow obtained exhibits a local high
mass concentration near the symmetry axis and close to the noz-
zle inlet.

Among the possibilities at our disposal, we chose the com-
binations of upwind schemes (first order and MUSCL) for the
droplets and MUSCL or MacCormack schemes for the carrier



ICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, ItalyICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, ItalyICMF-2016 – 9th International Conference on Multiphase Flow May 22nd – 27th 2016, Firenze, Italy

phase. It is important to note that the computation involving the
MacCormack scheme for gas has been conducted with the in-
house code SIERRA whereas the semi-industrial software CE-
DRE has been used for the fully upwind configurations. The re-
sult on the most refined mesh has been conducted with CEDRE
since it allows us to finalize the simulation within a reasonable
computational time. The characteristics of the AVS, when de-
tected, are given Table 1.

The results shows that the AVS is only detected using an ac-
curate method for the carrier phase and the disperse phase only.
If the first order method is known to be highly diffusive, the Mac-
Cormack scheme is impacted by the artificial viscosity, which is
needed for stability issues. Its effect is especially important close
to high density gradient and vacuum due to the sensor chosen.
At the same locations, the multislope MUSCL method accurately
solves the flow avoiding spurious and dissipative effects. We
conclude that combined with the physical dissipation due to the
presence of the particles, the resulting numerical dissipation has
a strong impact and can make the AVS disappear.

Figure 3: Dynamic PTC in the convergent

Aside the numerical strategy for the disperse phase, the im-
pact of the carrier phase resolution can be observed when the
AVS is detected. Since this MUSCL version is LED and thus
dissipates at extrema, the pressure amplitude obtained are lower
than for the MacCormack scheme. Thanks to the low dissipation
of the setup, a tiny instability can be detect thanks to the coarsest
mesh but only correctly resolved on a refined one. Besides, the
frequency observed indicates that two distinct phenomena are
detected. According to the previous study, frequencies close to
2150Hz matching the second axial mode are expected. However
the 1450Hz instability does not correspond to any acoustic mode
of the chamber. A closer look to the density field in that case in-
dicates the occurrence of δ-shocks that are consequences of PTC,
which can not be represented using a monokinetic model. These
singularities take their origin in two distinct phenomena. On the
one hand, the nozzle geometry leads to the crossing of the parti-
cles coming from the head-end of the engine with those deviated
by the convergent in a quasi-stationary crossing phenomenon. On
the other hand, the AVS causes the ejection of the particles from
the vortices and thus their impact on the wall and symmetry axis
as well as the dynamical crossing of their trajectories as it can be
seen in Figure 3. Even if further studies are to be conducted in
order to obtain firm conclusion, we can anticipate that this last
phenomenon is the main cause of the shift in frequency.

4.3. Solutions using the anisotropic Gaussian closure

In order to go over the influence and limitations of such sin-
gularities, which are only due to model limitations, we propose to
replace the MK equations by the AG model. Due to the additional
realizability constraints compared to the equations of pressureless
gas dynamics, only the MUSCL scheme can be used for the res-
olution of the disperse phase. Moreover since this new model
is not yet implemented in CEDRE, the in-house code SIERRA is
the only one which can be used and thus the MacCormack scheme
solves the carrier phase in our new configuration. We expect reli-
able results from this combination.

A first test on the coarsest mesh does not conduct to the de-
tection of AVS. The possibility of the new model to take into

account trajectory crossing results in a spatial redistribution of
particles, thus avoiding artificial particle high concentrations, but
thus leading to an effect, which is close to the previous artificial
dissipation. The velocity dispersion is mainly observed at the sta-
tionary crossing around the nozzle and in a more marginal way at
the symmetry axis.

Thanks to the refined mesh (634 × 60), the simulation are
conducted starting from an initial condition involving the MK
closure. The action of the velocity dispersion when PTC is en-
countered can be seen in Figure 4. We observe an immediate
transition to a new unsteady regime of approximately 2100Hz at
a lower average pressure with

√
2RMS = 8mbar. Since the

state of the art in this field of research clearly states that the mag-
nitude of oscillations are hard to predict [21], we are not for now
able to clearly assess the obtained improvement. However, the
fields resolved provide less artifact of the model, which supposes
an higher reliability of these new results, even if further detailed
analysis are to be conducted in order to draw some firmer conclu-
sions on the coupled effects of modeling and numerical strategy.

Figure 4: σ22 velocity dispersion in the nozzle

5. Conclusion

In this contribution, we have introduced both a new numerical
strategy as well as a new Eulerian model, able to cope with PTC
while preserving a well-posed mathematical system of PDEs for
which an entropy inequality guarantees a proper treatment of nat-
ural singularities, which are inherent to fully Eulerian modeling
of disperse two-way coupled two-phase flows. A discriminant
test-case in the field of solid propulsion has been adequately cho-
sen in order to conduct a study on the influence of both modeling
and numerical methods.

We conclude this paper by observing the critical influence of
both the modeling and the numerics. The interest of realizable
methods has been pointed out since they are the only ensuring
reliable solution when singularities occur, even locally. As far
as the monokinetic model is concerned, the strong singularities
resulting from the inertia of the particles and from PTC leads to
strong singularities, δ-shocks, the effect of which can not com-
pletely be dealt without using adequate numerical methods. The
AG level of modeling provides an interesting alternative in order
to avoid such singularities but the gain in predictivity for actual
SRMs simulations still requires further investigations.

While the detailed studies we are conducting are of real im-
portance in the C1 configuration in order to draw some firm con-
clusions of the influence of both modeling and numerical meth-
ods for the prediction of instabilities, comparisons and validations
relying on experimental measurements are necessary. We then
have to switch to at least 2D axi-symmetrical configurations or
even 3D axi-symmetrical configurations and this requires some
further development in terms of models and realizable numerical
methods, which is work in progress. It should provide a clear
assessment of the improvement of the predictive character of the
simulations using a tailored strategy involving the right level of
modeling resolved using robust and accurate parameter-free nu-
merical simulations.
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Table 1: Instability characteristics depending on the numerical strategy using the monokinetic closure
Mesh Tp Tg Main frequency

√
2RMS (mbar)

(317× 30) First order MacCormack - -
MacCormack MacCormack - -

Multislope MacCormack 2121± 16Hz 0.2625
Multislope Multislope - -

(634× 60) First order MacCormack - -
MacCormack MacCormack - -

Multislope MacCormack 1463± 13Hz 17.8
Multislope Multislope 2173± 13Hz 6.21

(1268× 120) Multislope Multislope 1430± 35Hz 5.57
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