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We study lepton-flavor-violating two- and three-body decays of pseudoscalar mesons in effective field
theory. We give analytic formulas for the decay rates in the presence of a complete basis of QED x QCD-
invariant operators. The constraints are obtained at the experimental scale, then translated to the weak
scale via one-loop renormalization group equations. The large renormalization-group mixing between
tensor and (pseudo)scalar operators weakens the constraints on scalar and pseudoscalar operators at the

weak scale.
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I. INTRODUCTION

The discovery of neutrino oscillations [1,2] established
nonzero neutrino masses and mixing angles [3]. If neu-
trinos are taken massless in the Standard Model (SM), then
new physics (NP) is required to explain the oscillation data.
There are several possibilities to search for NP signatures,
such as looking for new particles at the LHC [4,5]. Another
possibility is to look for new processes among known
SM particles, such as charged lepton flavor violation
(CLFV) [6,7], which we define to be a contact interaction
that changes the flavor of charged leptons. If neutrinos have
renormalizable masses via the Higgs mechanism, then their
contribution to CLFV rates is suppressed via the Glashow-
Tliopoulos-Maiani mechanism by a factor « (m, /My )*~
10~%8. However, various extensions of the Standard Model
that contain heavy new particles (see e.g., Refs. [6-9] and
references therein), can predict CLFV rates comparable to
the current experimental sensitivities. Indeed, low-energy
precision experiments searching for forbidden SM modes,
are sensitive to NP scales > TeV [6]. Many experiments
search for CLFV processes; for example, the u <> e flavor
change can be probed in the decays 4 — ey [10] and y —
3e [11,12], in u — e conversions on nuclei [13-15] and
also in meson decays such as K, D, B — pe [3,16-22].

In this paper, we focus on leptonic and semileptonic
pseudoscalar meson decays with a uTe™ in the final
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state [3]. We assume that these decays could be mediated
by two-lepton, two-quark contact interactions, induced
by heavy new particles at the scale Ayp > my. The
contact interactions are included in a bottom-up effective
field theory (EFT) [23-25] approach, as a complete set of
dimension-six, QED x QCD-invariant operators [6], con-
taining a muon, an electron and one of the quark-flavor-
changing combinations ds, bs, bd or cu.

Many studies on related topics can be found in the
literature. The experimental sensitivity to the coefficients
of four-fermion operators (sometimes referred to as one-
operator-at-a-time bounds), evaluated at the experimental
scale, has been compiled by various authors [26-28].
Reference [29] compared the sensitivities of the LHC vs
low-energy processes, to quark flavor-diagonal scalar oper-
ators. The constraints on combinations of lepton-flavor-
changing operator coefficients, which can be obtained from
the decays of same-flavor mesons, were studied in Ref. [30],
and the radiative decays of B, D and K mesons were
discussed in Ref. [31]. Lepton flavor-conserving, but quark
flavor-changing meson decays (which occur in the Standard
Model), are widely studied [32]. In particular, B decays
attract much current interest, due to the observed anomalies
[33-37] which suggest lepton universality violation [38—44].
Lepton flavor changes have been widely studied in various
models (see e.g., references in Refs. [6,7,45]). More model-
independent studies, that take into account loop corrections
(or equivalently, renormalization group running) have also
been performed for the 4 <> e flavor change [46,47]. Finally,
with respect to the calculations in this manuscript, the
leptonic branching ratio of pseudoscalar mesons is well
known, and can be found in Refs. [26,28,48,49] and semi-
leptonic branching ratios in various scenarios can be found in
Refs. [50-58].

Published by the American Physical Society
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The aim of this paper is to obtain constraints on the
operator coefficients describing meson decays at the exper-
imental scale, and then transport the bounds to the weak
scale [59]. The four-fermion operators that could induce the
meson decays are listed in Sec. II. Section III gives the
branching ratios for the leptonic and semileptonic decays as
a function of the operator coefficients. In Sec. IV, we then
use the available bounds to constrain the coefficients at the
experimental scale (Agy, ~ 2 GeV) by computing a covari-
ance matrix, which allows us to take into account the
interferences among the operators. The bounds are then
evolved from the experimental scale to the weak scale
(Aw ~my) in Sec. V, using the renormalization group
equations (RGEs) of QED and QCD for four-fermion
operators [46,47]. As discussed in the final section, these
equations give a significant mixing of tensor operators to the
(pseudo)scalars between A, and Ay, which significantly
weakens the bounds on (pseudo)scalar coefficients at Ayy.

II. A BASIS OF p—e INTERACTIONS
AT LOW ENERGY

We are interested in four-fermion operators involving an
electron, a muon and two quarks of different flavors, which
are constructed with chiral fermions, because the lepton
masses are frequently neglected, and it simplifies the
matching at the weak scale onto SU(2)-invariant operators.
The operators are added to the Lagrangian as

5L = +2V2Gp Yy Y CH0% + Hee. (1)
o ¢

where the subscript O identifies the Lorentz structure, the
superscript { = [;1,q,q; gives the flavor indices, and both
run over the possibilities in the lists below, extrapolated
from Refs. [6,60]:

OViyy = (@r*Pyp)(ity Pyc), OYyy=(2y*Pyu)(ity,Pxc),
OVyy = (er*Pyp)(CroPyu). Oyyy=(2r*Pyu)(Cr.Pxe).
Ofyy=(ePyu)(aPyc), Ofyy=(ePyu)(aPxc),
Ofyy=(ePyu)(Pyu), Of'yy=(ePyu)(cPxu),
Of'yy=(eoPyp)(iicPyc),

Oy =(eaPyu)(coPyu), (2)

ds
O;MY;( (eyaPYﬂ)(dVaPXS)

eusd
OVﬂYX (ey PYﬂ)(SYaPXd)

Oy = (2r*Pyu) (dy.Pys),
O3 = (7" Pyu) (574 Pyd),
O3y = (@Pyu)(dPys), Oy =(ePyu)(dPys),

SYY:(EPY/‘)(_ yd), O;{‘;i)s'(:(éPyﬂ)(ZiPXs),
Ofyy =(20Pyp)(doPys),
O3y =(20Pyu)(5oPyd), (3)

where YY € {LL,RR}, XY € {LR,RL}, and the list is
given explicitly for the kaon and D meson operators. The
lists for the B; and B, are obtained from Eq. (3) by
replacing ds — db, sb. The operators are normalized such
that the Feynman rule will be +iC/A?. The operators in
the lists (2) and (3) transform a muon into an electron; the
e — p operators arise in the +H.c. term of Eq. (1). So in
these conventions, the lepton flavor indices are always ep,
and do not need to be given. In the following sections, we
give the decay rates of pseudoscalar mesons, composed of
constituent quarks g; and ¢, into e*u~ or e”u*. Then we
obtain constraints on the operator coefficients by compar-
ing to the experimental upper bounds on the branching
ratios, e.g., BR(PI —e*uT)=BR(P,—> e u™)+BR(P, —
e~u") <... which we assume apply independently to both
decays.

This gives independent and identical bounds on e“#4i4;
and €44,

In this work, we choose an operator basis with nonchiral
quark currents, which is convenient for the nonchiral
hadronic matrix elements involved in meson decays. Thus,
the operators describing the contact interactions that can
mediate leptonic (¢;q; — jie) and semileptonic (g; — ¢;fie)
CLFV pseudoscalar meson decays at a scale Aqy, ~2 GeV
(Aexp ~my =4.2 GeV for bs and bd) are written as

Oy = (ePxu)(d:4;);

PXM)(Q!Y CIJ)
aPX)u)( z}/aq])

eﬂq q; __

= (e
= (e
eﬂq 4 _ —(z
= (
= (

e”q'q’ ey Pxu)(qivar’q;),

el“]:qj = eaaﬂPX,u) (qzo-aﬂPXq]) (4)
where ¢, ; € {u.d,s,c,b}, Py = Pg; = ?’5 and " =
Lyp
sl vl

In this case, the coefficients € of the operators in Eq. (4)
are

epqiq; 1

epqiq; 1 epqiq; epqiq; CHGid; _ ~CHGidj
€s.x _E(CS,XR +Csxr ), €px _E(CS,XR CsxL ),
1 1
enqiq; _ o ~enqiq; enqiq; enq;q; CHGid)  ~eH]iq;
€y x _Z(CV,XR +CyxL ), €A x —Z(Cv xg —Cvxr ),
enqiqj _ ~€Hqiq;
erx  =Crxy'. (5)

In the next section, we compute the branching ratio for
the (semi)leptonic decays as a function of the coefficients
of Eq. (5).

III. LEPTONIC AND SEMILEPTONIC
PSEUDOSCALAR MESON DECAYS

There are a multitude of bounds on rare meson decays
coming from precision experiments [3,28]. The aim of this
paper is to use these bounds to constrain the coefficients
of Eq. (5). Thus, in this section, we compute the leptonic
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and semileptonic pseudoscalar meson decay branching
ratio as a function of these coefficients.

A. Leptonic decay branching ratio
We are interested in decays such as P, — I;], where
{l;, 1, } are leptons of mass m,, m, and P, is a pseudoscalar
meson of mass M (P, € {KOL(dSLﬁ‘d), D(iic), B’(bd)}). In
the presence of new physics, the leptonic decay branching

ratio of a pseudoscalar meson P; of mass M is written as
[26,28,49]

BR(P, = I, 1,)
Cabody
= (lep.L* +lepr*) P> (M? —mi—m3)
+(lear +lear A [(M? = m3 —m3) (m] +m3)
+am3m3] = 2(ep rear+eprear)P' A my(M? +m? —m3)
+2(eprear+eprear)P'Amy(M*+m3—m?)

—dep rep pP?mymy—4ey peq gAPMPmim, (6)

(2
Gy i

— | 2
where CZbOdy = =M \/(M -

(my + my)*) (M -

—m5)?), m , are the masses of the leptons and 7 is the

lifetime of P;. For simplicity, we dropped the flavor superscript (¢ = [;/,4,q;) of the coefficients.
The expectation values of the quark current for a pseudoscalar meson are written as [28,49]

fp,M?
01g:7°q;|Py) = =~

l\.)l>—‘

where m; ; are the masses of the quarks, fp is the decay
constant of the meson and k* is the momentum of the
meson. These formulas are used for pions, kaons, and D
and B mesons. The values of the constants are given in
Appendix A. Note that tensor operators do not contribute to
the leptonic decay, because the trace of the product of the
Dirac matrices contained in the tensor operator vanishes in
this case.

B. Semileptonic decay branching ratio

We are interested in decays such as P, — [,1,P, where
{l;,1,} are leptons of mass m;, m, and {P,P,} are
pseudoscalar mesons of mass M,ms; [P, € {K"(u3),
D*(cd), B*(ub), B (sb)} and P, € {n*(ud), K*(u5)}].
The semileptonic decay branching ratio is written as [61]

M?
8G2

=2(les | + lesk*)S*(pi-pa)

+ 3 (leva P+ levaP) 72 (4001 -P) (b P)

+4f f-((p1-9)(p2-P) + (p1.P)(p2-q) —
+4(ler, I* + ler, IHT*[4(p1.9) (p2-P)(P.

+2P?¢*(p1-p2) — 4P*(p1.q)(p2-q) — 4
—2(esevr T €sgey..)Smo[(f 4 (p1.P)
+2(es ey + esrey.g)Sm[(f1(p2.P)
+ 8(esrer, + escer,)ST[((p1-P)(p2-q) —

2(m; +m;)’

= 2P*(py.p2)) + f2(4(p1.9)(P2-q)

(p1 p2)(P-q))]

q (Pl- )(P2
+f_
+f

fo R

ATt = 5 (7)

Olgir"r’q;|Py) =

N =

BR(P, = [,1,P,)

: 1w
P TLI VLY ] dq
5127°M°2J + 1 (my+my )2
\/ﬁ(q mi, m3)

1 2 M2
x/ dcos€|M| \//1 m3. g 3
-1 q

(8)

where ¢ = (p; + p,) is the transferred momentum, @ is the
angle between the direction of propagation of the lighter
meson (P,) and the antilepton (/,) in the lepton’s reference
frame, 7 and J are the lifetime and the spin of P; and | M ?
is the matrix element of the semileptonic decay. The Kéllén
function is defined as A(x,y,z) = (x —y — z)* — 4yz.

In the presence of new physics, the matrix element in the
semileptonic decay branching ratio of Eq. (8) is written as

-24*(p1-p2))

)
+4(p1.P)(p2-q)(P.q) = 2(p1.p2)(P.q)*
P)]

(p1-9))]

~(p2-9))]
(P1-9)(p2-P))]
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- 4€S,L€S,R§2mlm2 — ey ey gmimy[f2q® + fAP* +2f . f_(P.q))
+4(evrer, +evrer, ) Tmylf ((p1-g)p* — (P.p1)(P.q)) + f-((p1-9)(P.q) — (p1.P)g?)]
+4(ev.gery, +ever, ) Tm[(f((P*)(pa2-q) = (p2-P)(P.q)) + f-((p2-9)(P.q) — ¢*(p2-P)))]

+ 16er, €7, T’zmlmz[(P.q)2 - P2q2}

where p;, p,, k, p; are respectively the 4-momenta of
leptons 1 and 2, and the 4-momenta of P; and P,, P =
k + p3 and the hadronic matrix elements are written as
[28,49-52]

- 1 _ 1
Vit =2 (Paldirq;|P1) = E(P"fi‘Pz(qz) +q" 27 (q)),
~ 1 1 (M2 —mz) P, P
§ == (P2|giq;|P1) =5 7——25 10" 2 (dP).
2 / 2(mg, —myg) 0
T 1 5 UV
™ :§<P2|qi6" q;1P1)
s (PP 2 PPy (2
(7)) — (g —
_ DI (g
7 _ LU = 27 (4) 0

For simplicity, we suppressed the g*> dependence of the
form factors f, _o in Eq. (9), and the flavor superscript
(¢ = Li1hq;q;) of the coefficients. Notice that there is no
interference between eg; (€5z) and e, (e7,) because the
trace of the product of Dirac matrices involved in tensor
and scalar operators of different chirality vanishes. The
form factors and the scalar product in Eq. (9) are given in
Appendix B.

For simplicity, we do not give the analytic expression of
the integrated semileptonic decay branching ratio, but only
perform the integrals numerically.

IV. COVARIANCE MATRIX

In this section, we use the branching ratios (BRs) of
Egs. (6) and (8) to compute a covariance matrix, that will

€))

give constraints on the coefficients that account for possible
interferences. We note that BR5™" [BRS™®] is the exper-
imental upper limit on the leptonic decay P; — I,/, [semi-
leptonic decay P, — P,l,1,] branching ratio and M, [M;]
is the associated covariance matrix.

We can write the decay branching ratio of Egs. (6)
and (8) in the form

ME=1 (11)

where €7 (€) is a row (column) vector of coefficients, and
M~" is the inverse of the covariance matrix.

The explicit forms of the 4 x 4 and 6 x 6 matrices are
given in Appendix D. The diagonal elements of the
covariance matrix M represents the squared bounds on
our coefficients, and the off-diagonal elements represent
the correlations between coefficients.

A. Bounds on the coefficients

In this section, we give constraints on the coefficients
for the kaon, D and B meson leptonic and semileptonic
decays. As explained in Sec. III, tensor operators do not
contribute to the leptonic decays of mesons. Thus, the
available upper limits on leptonic [semileptonic] pseudo-
scalar meson branching ratios will give constrains on
the ep x and €4 x €5 x, €y x and er x] coefficients. Indeed,
hadronic matrix elements with scalar, vector or tensor
quark current structure vanish in the leptonic case, while
hadronic matrix elements with pseudoscalar or axial
structure vanish in the semileptonic case. We consider
the CLFV decays with the associated experimental upper
limits given in Table I [3].

TABLE I. Experimental bounds on leptonic and semileptonic decays.

Decay Leptonic Semileptonic

K BRYP(KY — pteT) < 4.7 x 10712 [16] BRYP(K™ — ntje) < 1.3 x 107!
BRYP(KT — nfeu) <5.2x 10710 [19]

D BRYP(D° - p*eT) < 1.3 x 1078 [17] BRYP(D" — ntjie) <3.6 x 1076
BRP (DT — zteu) < 2.9 x 107 [20]

D, BRSP(D§ — K'jie) <9.7x107°
BRYP(DE - KTeu) < 1.4 x 107 [20]

B BRYP(BY - uFeT) < 2.8 x 107 [18] BRYP (Bt — ntute®) < 1.7x 1077 [21]
BRYP(B* - KTuFeT) < 9.1 x 1078 [22]

B, BRJ¥(BY — pre™) < 1.1 x 1078 [18] -
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The bounds in Table I will be used to constrain the
coefficients at A, and at Ay after the RGE evolution of
the coefficients (see Sec. V). The covariance matrices at
Aeyp for the (semi)leptonic meson decays are given in
Appendix E, and the bounds on coefficients are summa-
rized in Tables II-IV.

TABLE II. Constraints on the dimensionless four-fermion
I 11Lyq; .
coefficients eP' f(q’q’ and eg qq’ at the experimental (A, for

K and D meson decays and Amb for B meson decays) and weak
(Aw) scale after the RGE evolution. The last two columns are
the sensitivities, or SO-at-a-time bounds; see Sec. VD. All
bounds apply under permutations of the lepton and/or quark
indices.

l PYRH

€px Aexp Ay SO, Aepy SO, Ay
e;")‘? 232 x 1077 4.06 x 1077 128 x 1078 7.82 x 107°
€Rx 1.75x 1073 1.08 x 1073 792 x 107> 4.84 x 107°
ey’ 235x 107" 166 x 107* 5.13x 107 3.61 x 107°
ey LI5x 107 123x 107 827x107° 5.83x 107
€U Ay Ay SO, Awy SO, Ay
g?‘)‘(b 1.05x107% 5.68x1077 7.67x1077 4.68 x 1077
e 134 x 1073 8.25x107* 133 x10% 81x10™*
6?‘;‘1 1.44x1075 1.01 x10™ 144 x107° 1.01 x 107
ey’ 225x107 1.59% 107 224 %107 158 x 107
TABLE III. Constraints on the dimensionless four-fermion
coefficients ¢ Al Xq’q’ and el' 'Y at the experimental (A, for K

and D meson decays and A,,,b for B meson decays) and weak
(Ay) scale after the RGE evolution. The last two columns
are the sensitivities, SO-at-a-time bounds; see Sec. V D. All
bounds apply under permutations of the lepton and/or quark
indices.

e 2t Aexp Ay SO, Ay SO, Ay
e 545%107° 5.45% 107 3.01x 107 3.01 x 107
el 451x1072 452x 1072 2.04x107% 2.04x 1073
efpt 148 x 107 1.48x 1077 323x 107 323 x 107
e;ﬂ;;‘ 1.11 x 1072 1.11x 1072 527 x10™* 527 x10™*

ey 2 Aexp Ay SO, Ay SO, Ay
e 494 %1070 4.94x107° 2.93x 107 2.93 %107
e"V’f;;” 145x 1073 1.64x 107 1.39x107° 139x 107
ey’ 149x 107 1.03x 107" 148 x 107 1.48x 107
€y 256107 8.05x 1070 2.54x 107 2.54 %107

TABLE IV. Constraints on the dimensionless four-fermion
coefficients ell[ﬂm/ at the experimental (A, for K and D meson
decays and A for B meson decays) and weak (Ay) scale after
the RGE evolutlon The last two columns are the sensitivities,
or SO-at-a-time bounds; see Sec. V D. All bounds apply under
permutations of the lepton and/or quark indices.

nglizquIj Aexp Ay SO, Aexp SO, Ay

e 123x107 1.45x 1077 876 x 10 1.03x 107
¢ 201x 107 237x 107 1.93x 107 228 x 1073
e 201x 107 226 x 107 2x1075 225x107°
™ 389x 107 437x107° 3.87x 107 435x 107

V. RENORMALIZATION GROUP EQUATIONS

In this section, we review the evolution of operator
coefficients from the experimental scale (A, ~2 GeV)
up to the weak scale (Ay ~ 80 GeV) via the one-loop
RGEs of QED and QCD [46,47]. We only consider the
QED x QCD-invariant operators of Eq. (4). The matching
onto the SMEFT basis [62] and the running above my, [63]
will be studied at a later date.

A. Anomalous dimensions for meson decays

Figure 1 illustrates some of the one-loop diagrams that
renormalize our operators below the weak scale. Operator
mixing is induced by photon loops, whereas the QCD
corrections only rescale the S, P and T operator coefficients.
After including one-loop corrections in the MS scheme, the
operator coefficients will run with scale y according to [46]

0. «a a
T =Zegre y Ligrs 12
(?,ue 4r¢ +47r€ (12)

where I'* and I™* are the QED and QCD anomalous dimension
matrices and € is a row vector that contains the operator
coefficients of Eq. (5). In this work, we use the approximate

analytic solution [64] of Eq. (12) to compute the running and
mixing of the coefficients between A, and Ay:

aefjl Ay
I 13
4r % A (13)

where I and J represent the super- and subscripts which label
operator coefficients, A encodes the QCD corrections, and ¢,
is the “QCD-corrected” one-loop, anomalous dimension
matrix for QED [65,66]. The elements of I, are defined as

€1(Aexp) = €7(Aw)AY (511 -

= 1 A= — 4,
Uy =51 s fj]zl—f—a,—a, -1
r 0
re = { o } (14)
0 Tva

015032-5
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e ju
s d
e Iz e o
S d S d
FIG. 1.
missing.

where there is no sum on I, J, 4 = ZAw) L7,

as(Aexp) 2ﬁ0
{—%, —%,%} for J € {S,P,T}. The QED anomalous
dimensions are

,and a; =

lllZ‘IiCIj lllzqz’q]’
Ypp 0 Ypr
I — 0 lilq;q; l11q,q;
SPT Vss Vst ’
l1q;q; Lil2qiq; l1hqiq;
L Yrp rrs rYrr
l1q:q; lil2q;q;
I, — YAA AV (15)
VA l12qiq; lil2qiq;
Yva Yvy

where the matrix elements in ['gpy and Iy, are defined
in Sec. V.

Combining the first and second diagrams of Fig. 1 with
the wave function diagrams renormalize the scalars and
pseudoscalars, while the last four diagrams mix the tensors
to the scalars and pseudoscalars:

€51 €5k
yid = elf | —6(1+02) 0
e, 0 —6(1+ 02)
eg,qL €§,qR
vy =€t | 480, 0 (16)
et 0 480,
G%?L 65’)(.1R
vih =€ty | —6(1+07) 0
ety 0 —6(1+ Q2%)
€pL €pr
vig=erL | 480, O (17)
€3 0 480,

€ K
S d

e 7 e v
s d s d

Examples of one-loop gauge vertex corrections to four-fermion operators. The wave-function renormalization diagrams are

Similarly, the last four diagrams mix the (pseudo)scalars
into the tensors. Only the wave-function diagrams renorm-
alize the tensors, because for the first and second diagrams
y*oy, = 0. We obtain

| €T €7k
piod, | 20+0) 0
€ 0 2(1+03)
| G 6?,1R
J’?((;)T = €§E’p>.L (=20, O (18)
GZ‘E]P)‘R 0 20,

Finally, for the vectors and axial vectors, there is no
running, but the last four diagrams contribute to the mixing
of vector and axial coefficients

VL €V
viv =€ | 120, 0
A 0 -120,
€ €A
vui=el | 120, 0 (19)
el 0 -120,

B. RGEs of operator coefficients

In this section we compute the evolution of the bounds
from A, to Ay. In the previous section, we found a
mixing between pseudoscalar and tensor coefficients, and
between vector and axial coefficients. Thus, the coefficients
that contributed only to the leptonic (semileptonic) decays
at Ay, will also contribute to the semileptonic (leptonic)
decays at Ay, via the mixing.
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The matrices describing the evolution of the coefficients
from Ay, to Ay for all the decays were obtained with
Eq. (13) and are given in Appendix C.

C. Evolution of the bounds

In order to constrain the coefficients at Ay, the constraints
needs to be expressed in terms of coefficients at Ay.
However, the mixing of the pseudoscalar (axial) into the
tensor (vector), and vice versa, implies that leptonic and
semileptonic branching ratios can both depend on any of
the ten coefficients, which we arrange in a vector as

o

€ = (€P,L’€A,Lv€P.Rv€A,RaeS,L»GV,L’eTLaeS.Rv€V.Rv€TR )/\w'
The 10 x 10 matrix we need to invert to compute the bounds
at Ay is now written as

M;' 04,
(M) = RT< P )R (20)
06><4 M3

where M5! and M5! are the 4 x 4 and 6 x 6 matrices defined
in Appendix D that we inverted to obtain the bounds at A,
(see Sec. IV) and R has the form of the matrices defined in
Egs. (C1), (C2) and (C3). Finally, Eq. (11) is written in the
new basis as

dT(MN)TE =1 (21)

where €’ is the vector of coefficients at Ay, (M')~! is the
matrix in Eq. (20) and the superscript 7 means matrix
transposition. All the covariance matrices at Ay can be
found in Appendix E. In Tables [I-IV we summarize all the
bounds on the coefficients at Ay, and Ay.

In the leptonic decays, the evolution of the bounds on the
pseudoscalar coefficients between A, and Ay is the most
important effect of the RGEs as shown in the first two
columns of the left panel of Table II. As can be seen in
Egs. (C1), (C2) or (C3), the running of the (pseudo)scalar
coefficients is ~1.6(1.4), which means that if we neglect
the mixing of the tensor into (pseudo)scalar coefficients,
the bounds on €5 and e¢p will be better at Ay, for all the
decays we considered. However, the large mixing of the
tensor coefficients into the (pseudo)scalar ones [see
Egs. (16), (17) and (C1)—(C3)] weaken the bounds on
pseudoscalar coefficients at Ay, for the kaon decay. This is
due to the fact that the bounds on €%“ (see the first two

columns of Table IV) are much weaker than the bounds on
1S at Aeyp (see the first two columns of the left panel of
Table II). Thus, the mixing of e into ep will lead to weaker
bounds on €p at Ay for the kaon decay.

For the D, B and B, meson decays, the bounds on ¢p are
a bit closer to the bound on e at A.,. Even with the large
mixing of the tensor into the pseudoscalar coefficients, the

bounds on €%“, ¢%** and ¢%** will be slightly better at Ay

because the running will be larger than the mixing.

In the semileptonic decays, there is also a mixing
between scalar and tensor coefficients, but the bounds

on scalar coefficients at Ay, increase a bit because, similarly

bd b
to ex”, 7" and €7, the bounds on all the scalar

coefficients (first two columns of the right panel of Table II)
are close to the bounds on the tensor coefficients at Ay,
The running of the scalars will be stronger than the mixing
of the tensors into the scalars, and thus, the bounds on ey
are better at Ay, for all the decays.

For the axial and vector coefficients, there is no running
and the mixing is small. The bounds on ¢%“ and ¢ at
Acxp are very close (see Table IID); this explains why there is
no evolution of these bounds at Ay,. However, for the D, B
and B, decays, the bounds on ¢4 are much weaker than the

bounds on ey at A, especially for the B and B, decays.

bd b
Thus, the bounds on €““, " and €7 do not evolve

significantly at Ay, but the mixing of the axial into vector

. . bd
coefficients will lead to weaker bounds on €{/““, €}/" and

™ at Ay as shown in the first two columns of the two
panels of Table III.

Finally, the running of tensor coefficients is tiny, and
the mixing of the (pseudo)scalar coefficients into the
tensor ones is small. Thus, the evolution of the bounds is
small for the tensor coefficients (first two columns of
Table IV) similarly to the bounds on vector and axial
coefficients in the kaon decay (first two columns of
Table III). Finally, the matching at Ay along with the
evolution of the bounds between Ay and Ayp will be
given in a future publication [67].

D. Single operator approximation

We also computed the sensitivities of the various decays
to the coefficients at Ay,, and these are given in the third
columns of Tables I to IV. The sensitivity is the value of the
coefficient below which it could not have been observed,
and is calculated as a “single operator” (SO)-at-a-time
bound, that is by allowing only one nonzero coefficient at a
time in the branching ratio [see Eqs. (6) and (9)]. This is
different from setting bounds on coefficients (first two
columns of Tables II to IV), which are obtained with all
coefficients nonzero, and exclude the parameter space
outside the allowed range. It is clear that the sensitivities
are sometimes an excellent approximation to the bounds,
and sometimes differ by orders of magnitude.

To compute the evolution of the sensitivities of the
decays to the coefficients at Ay, (given in the last columns
of Tables II-1V), we still kept only one nonzero coefficient
at A, and considered only the running of the coefficients
[the diagonal terms in Egs. (C1)-(C3)]. For example,
computing the sensitivity of the leptonic kaon decay to a
pseudoscalar coefficient at Ay in the SO approximation
requires multiplying the first term in Eq. (D3) by the
first (or third) diagonal term squared in Eq. (C1). Then,
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inverting the product and taking the square root will give
the sensitivity of the decay to the coefficient at Ay .

E. Updating the bounds

In future years, the experimental data on LFV meson
decays could improve, so in this section, we consider how
to update our bounds, without inverting large matrices.

The bounds on coefficients at A, obtained in this work
are of the form |e| < vBR®P x constant. Thus, all the
bounds at A, given in Tables II-IV can be updated by

rescaling by /(BRpew)/(BR()}) when the data improves.
However, in principle, the 10 x 10 matrix of Eq. (20) must
then be inverted to obtain the bounds at Ay. So we now
describe approximations that allow to obtain the bounds at
Ay with manageable matrices.

For the semileptonic decay, the bounds at A, can be
obtained by neglecting all the interference terms between
the scalar, vector and tensor coefficients of either chirality
[see Eq. (9)]. The 6 x 6 matrix in Eq. (D2) then becomes
diagonal and easy to invert. This approximation will give
bounds at Ay, on €5 x, €y x and €7 x close to those obtained
in the first columns of Tables II-IV (which include the
interference terms).

In the leptonic decay [Eq. (6)], a reasonable approxi-
mation for the bounds at A, is to keep the interference
between axial and pseudoscalar coefficients of opposite
chirality [with m, = m,, in Eq. (6)]. The other interference
terms, proportional to m; = m,, can be neglected. Thus,
bounds on €4 and €p at A, which are a reasonable
approximation to the first columns of Tables II and III, can
be obtained by inverting a 2 x 2 matrix in the basis
(epx.€ay) where X € L, R and Y € R, L, instead of the
4 x 4 matrix in Eq. (D1).

To obtain bounds at Ay, it is necessary to keep the
mixing between €g, €p, €7, and between €y and €¢4. Then,
the bounds on €, €p, €7, €y and €4 at Ay, can be obtained
by considering M~" in Eq. (20) as a product of 5 x 5
matrices in the basis (epx, €5x, €r.x:€v.y-€4y) Where X
and Y are the chiralities. However, €g, €p and €7 must
have the same chirality, but different from the chirality of
ey and €, in order to take into account the mixing induced
by the RGEs, that occurs only for coefficients of the same
chirality [see Eqgs. (13) and (C1)—(C3)]. This is due to the
fact that it is necessary to keep the interference between
axial and pseudoscalar coefficients of different chiralities
to compute the bounds on ep x and ¢, y.

VI. CONCLUSION

In this paper, we considered operators which simulta-
neously change lepton and quark flavor, and obtain
constraints on the coefficients using available data on
(semi)leptonic pseudoscalar meson decays. Section II
listed the dimension-six, two lepton—-two quark operators
and their associated coefficients at the experimental scale

Aexp- Scalar, pseudoscalar, vector, axial and tensor oper-
ators were included. The leptonic and semileptonic
branching ratios of pseudoscalar mesons, as a function
of the operator coefficients, were given in Sec. III. We
found that tensor operators do not contribute to the
leptonic decays but only to the semileptonic decays, in
which the interference between eg; (e5x) and e, (er,)
vanishes. The constraints on operator coefficients, evalu-
ated at the experimental scale, are given in Tables [I-IV
and discussed in Sec. IV. The bounds are obtained via the
appropriate covariance matrices, which allows to take
into account the interferences among operators [see
Egs. (6), (9), (DI) and (D2)]. The matrices are given in
Appendix B. Section V gave the renormalization group
evolution of the coefficients from the experimental to the
weak scale Ay, and the formalism used to compute the
covariances matrices at Ay. The weak-scale constraints
on the coefficients are given in Tables II-IV. The large
mixing of tensor coefficients into (pseudo)scalar coeffi-
cients has important consequences on the evolution of the
bounds on scalar and pseudoscalar coefficients. Indeed, in
the case of the kaon decay, the experimental-scale bounds
on tensor coefficients are significantly weaker than those
on pseudoscalars. As a result, the pseudoscalar bounds
are weaker at Ay, compared to the bounds at A.,,. The
bounds on scalar coefficients at Ay, are slightly stronger
than at A.,. There is no running for the vector and axial
coefficients, due to the fact that we considered quark-
flavor-changing operators, and the mixing is small, but the
bounds on axial coefficients are much weaker than the
bounds on vector coefficients for the D, B and B, decays.
This leads to much weaker bounds on vector coefficients
at Ay. Similarly, the running and mixing of tensor
coefficients are small. As a result, the bounds on the
axial and tensor coefficients do not evolve significantly
between the experimental and weak scales.

We conclude by noting the importance of including
interferences among operators in computing the bounds
on their coefficients. As shown in Sec. V D, the sensi-
tivities of the decays to ep and €4 obtained at A.,,, and to
€p, €4 and ey at Ay in the single-operator approximation
are better by several orders of magnitude compared to
the bounds obtained by keeping the interferences among
operators. We found that the renormalization group
running between the experimental and weak scales has
an important effect on the evolution of the bounds,
especially the large mixing of the tensor (axial) into the
pseudoscalar (vector), which lead to weaker bounds on
pseudoscalar (vector) coefficients at Ay for the kaon
(D, B and B,) decay.

APPENDIX A: CONSTANTS

In this appendix, we give all the constants used in our
calculations:
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P, K9 K* DO D* Df B° BY Bt
Sp, MeV) 155.72 [68,69]  155.6 [68,69]  211.5 [68,70] 212.6 [68,70] 249.8 [70] 190.9 [68] 230.7 [70] 187.1 [68]
fil”(o) 0.966 [69] 0.966 [69] 0.666 [69] 0.666 [69]  0.666 [69] 0.25[71] 0.25[71] 0.25 [71]
fil’((o) .- 0.747 [69] 0.747 [69] 0.747 [69] 0.31 [71] 031 [71]  0.31 [71]
/1+ 2.82 x 1072 [3] 297 x 1072 3]

Ao 1.8x 1072 [3] 1.95x 1072 [3]

All the masses and lifetimes can be found in Ref. [3].

APPENDIX B: KINEMATICS AND FORM FACTORS FOR SEMILEPTONIC DECAYS

In this appendix, we give the form factor and the detailed scalar product of Eq. (9).
The ¢* dependence of the form factors for the kaon is given by [50]

2 M2, — M2,
) = 17O (14 At ) I = SO =) TR (B1)
and for the D and B mesons they are given by [51,52]
2\ f+(0) A fO(O) 2\ 2\ _ 2 Mz_m%
f@) =1 mpcy g fola®) =157 = gy f-(@%) = (fo(q®) — f1(q ))—qz (B2)

where 1, ( are constants, and m,r is the mass of the lightest resonance with the right quantum numbers to mediate the
transition (D and D:* for example). We took ¢ = g2, = (M — m3)? to compute the form factors f,, f_ and f,. All
these values can be found in Appendix A.

Finally, the scalar products in Eq. (9) can be written as functions of the two kinematical variables g and cos @ [3,61] in
the phase space integrals of Eq. (8):

2

2 2 2 2 2 2 2 2
q —mp—m; q- +my—mj q- +m; —my

p, =1 "M g=1T""" g=2T"7" B3

P1-P2 5 P1-q 5 P2-q 5 (B3)
M2 —m? — P

P3.q = % p1-P3 =P34 —P2.p3.  P1.-P=p1.q+2pi.ps.  pr.P=pyrq+2pps. (B4)

1 1

Paps = o (M2 =3 = (@2 3 = )+ g\ A2, 3 %) (g2, m ) cos 0, (B5)
e )

k.p3 :W, P.q=M?*-ml, P2 =2M? +2m;5 — ¢°. (B6)

APPENDIX C: RGEs

In this appendix, we give the 10 x 10 matrices obtained with Eq. (13) we used to obtain the bounds at Ay, [with Eq. (20)].

For the decay of light quarks (kaon and D meson decays), the experimental scale is taken as 2 GeV because most of the
time, it is the renormalization scale chosen to obtain the lattice form factors.

The evolution of the coefficients (¢¢““*) involved in the kaon decays is given by
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€pr 1.64 0 0 0 0 0 —0.0429 0 0 0
€Al 0 1 0 0 0 0.00857 0 0 0 0
€pR 0 0 1.64 0 0 0 0 0 0 0.0429
€AR 0 0 0 1 0 0 0 0 —0.00857 0
€51 0 0 0 0 1.64 0 0.0429 0 0 0
€y - 0 0.00857 0 0 0 1 0 0 0 0
er, —0.00162 0 0 0 0.00162 0 0.849 0 0 0
€S R 0 0 0 0 0 0 0 1.64 0 0.0429
EVR 0 0 0 —0.00857 0 0 0 0 1 0
€1/ Ao 0 0 0.00162 0 0 0 0 0.00162 0 0.849

€p.L

€AL

€pR

€AR

| St (C1)

€v.L

€TL

€s.R

€v.R

€T 7 Ay
For the D meson decays, the evolution of the coefficients (¢%#“") is given by
€pL 1.64 0 0 0 0 0 0.0857 0 0 0
€Al 0 1 0 0 0 -0.0171 0 0 0 0
€pR 0 0 1.64 0 0 0 0 0 0 —0.0857
€AR 0 0 0 1 0 0 0 0 0.0171 0
€51 0 0 0 0 1.64 0 —0.0857 0 0 0
€y, - 0 -0.0171 0 0 0 1 0 0 0 0
er, 0.00325 0 0 0 —0.00325 0 0.847 0 0 0
€S R 0 0 0 0 0 0 0 1.64 0 —0.0857
EVR 0 0 0 0.0171 0 0 0 0 1 0
e /) a, 0 0 —0.00325 0 0 0 0 —0.00325 0 0.847

€p.L

€AL

€P.R

€AR

x| (€2)

€v.L

€r,

€s.R

€v.R

€1y /) a,
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In the B and B, meson decays, the reference scale is the b quark mass (A, ~4.18 GeV). Thus, the evolution of the
coefficients (e°**¢ and €°**%) is slightly smaller.

In fact, in Eq. (13), the part with the anomalous dimension that gives the matrix element in Eq. (C1) is multiplied by a
factor IOg(//\\,_:Z) / log(ll\\T”;) ~ 0.8. Moreover, the strong coupling constant at A,,, will also be smaller [a,(A,,, ) ~0.23 and

;(Aexp) ~ 0.3]. Thus, for the B and B, meson decays, the evolution of the coefficients (e*b? and €°"%) is given by
€pL 1.42 0 0 0 0 0 -0.0317 0 0 0
€Al 0 1 0 0 0 0.00686 0 0 0 0
€pR 0 0 1.42 0 0 0 0 0 0 0.0317
€AR 0 0 0 1 0 0 0 0 —0.00686 0
€51 0 0 0 0 1.42 0 0.0317 0 0 0
€y - 0 0.00686 0 0 0 1 0 0 0 0
er, —0.00126 0 0 0 0.00126 0 0.890 0 0 0
€5 R 0 0 0 0 0 0 0 1.42 0 0.0317
€vR 0 0 0 —0.00686 0 0 0 0 1 0
e / a,, 0 0 0.00126 0 0 0 0 0.00126 0 0.890

€pL
€AL
€p.R
€AR
x| 5 (€3)
€v.L
€r,
€s.R
€V.R
€re / o,

APPENDIX D: COVARIANCE MATRIX

In this appendix, we give details of the formalism introduced in Eq. (11) of Sec. IV. The matrices in the basis
(€prs€ar €pri€ar) and (€5, €y 1, €r,, €5, €y g, €7,) Are Written as

[ sp, lsp.vA, lsp.sP. lsp.vAL
L ISP VA VAL 1SP_VA| 1VA,VA_ 1)
> BRYP|ISP.SP. lsp_vAl,  SP.  1SP_VAL
| 3SPLVAL VA VAL ;SP_VA. VA,
[ sP. ISP, VA_ iSP.T, 3iSP.SP_ 1SP.VA, 1SP,T_]|
18P VA_ VA ivA.r, 1sp.vA_ 1vA . VA_ IVA_T_
it = ﬁ I%SP+T+ I%VA_T+ 1 T, 1SP_T, I%VA+T+ I%TJ_ (02)
5 |isp.sp. 1SP.vA_ lsp.T, SP_ 1SP_VA, Llsp.T_
1SP.VA, 1VA . VA_ JVA, T, 1SP VA, VA, VA T_
| isp.r. lvar. ir,t. lspT. lvAT_ T |
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Inverting M5! (M 3‘1) will give the bounds on the coefficients involved in the leptonic (semileptonic) decays. Finally, note
that for semileptonic kaon and D meson decays, the experimental upper limits are not the same for y*e™ and y~e™ in the
final state. In this case, we sum the M5! for each bound and then invert it to obtain the covariance matrix of Sec. IV. The
matrix elements of Eq. (D1) are written as

SP/_,'_ = SP/ = C2b0dyP/2(P2 - m2 - mf)

VAL = VA!. = CopoayA”[(P} = m} — m3)(m} + m3) + 4mim3],

SP,VA. = SP_VA!, = —2Capoqy P'"A'm;(P} + m} — m?),

SP VA, = SP_VAL = 2CoyoqyP'A'm;(P} + m? — m?),
SP+SP/_ = —4C2bodyf’/2mjmi,

VA, VA" = —4CooayA*Pym;m;,

Tp, r*G%

— (D3)
nP}

C2body =

2
For simplicity we note that d¢) = | H}Z J:: dq* [1, dcos® VA 5 0 ‘/'1 R 2) and the matrix elements of Eq. (D2) are
written as

SP, =S8P_= 2C3bodySZ(P1-P2)d¢’
VAL = VAL = Canog [ (401 P) (12-P) = 2P(p1.p2)) + P2 (4(p1.0) (2:4) = 24°(p1.p2)
+4ff-((P1-9)(p2-P) + (p1-P)(P2-q) = (P1-P2)(P-q))|dg
T\ =T_ = 4Cspoay T [4(p1.9)(p2-P)(P.q) + 4(p1-P)(pz-q)(P-LI) ~2(p1-p2)(P.q)?
+2P¢*(p1-p2) = 4P*(p1-9)(P2-q) — 4¢°(p1-P)(p2.P)]dep
SP,VA_ =8P VA, = —2C3body§mz[(f+(l71 P)+ f_(p1-9)dg.
SP,VA, =SP_VA_= 2C3bodysml[(f+(p2' )+ f-(p2-q))]de,
SP,SP_ = —4CspoqyS*m mydgp,
VA VA_ = —=Cspoaym ma|f2¢* + [ P> 4+ 2f . f_(P.q)ld¢
I.T_= 16C3bodyT/2m1m2[(P‘Q>2 — P*q’ldg,
SP. T, =SP.T_= 8C3b0dy§ T[((Pl-P>(P2-CI) = (P1-9)(p2-P))ldg,
SP.T_=SP.T, =0,
VALT_ = VA_T, = 4Csp0q,T'm;[f . ((p1.q)p* — (P.p1)(P.q)) + f-((P1-q)(P.q) — (p.P)¢*)]d¢.

VAT, = VA_T_ = 4Cypoa, T'm[(f{ (P*)(P2-q) = (P2-P)(P.q)) + f-((P2-9)(P.q) = (¢*)(p2-P)))]d¢.
Tp, 8G2.

Civody = 53 51008

APPENDIX E: COVARIANCE MATRICES AT A, AND Ay

In this appendix, we give the covariance matrices at A, and Ay, after the RGE evolution.

1. Kaon decays
Using the upper limit of Table I, for the leptonic kaon decays, we compute the associated covariance matrix in the basis

euds _epds _euds eﬂds
(€pL +€EaL ~€PR EAR ):
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538 x 10714 =233 x107% —1.25x10"1% 126 x 1072
—233x1074 297x 101 126x10712 —4.03x 10713 (ED)
—-1.25x 107 126x 1072 538x 1074 -233x 107

126 x 10712 —4.03x 107 -233x107% 297 x 1071

Then we use the bounds on the semileptonic kaon decay to compute the covariance matrix for the semileptonic decays in
the basi euds epds euds euds _epds eudsy,
e basis (e JEV.L €T, S ESR EVR €T ):

1.09 x 10712 351 x 10712 6.11x 10712 1.39x 1074 1.96x 10713 7.49x 10713
351 x 10712 244 x 10711 426 x 10711 196 x 10713 2.10x 10712 6.50 x 10712
6.11 x 10712 426x 10711 151 x1071% 749x 10718 6.50x 10712 1.58 x 101! (E2)
139 107 1.96x 10713 749 x 1078 1.09x 1072 351 x 10712 6.11 x 10712
1.96 x 10713 2,10 x 10712 6.50 x 10712 351 x 10712 244 x 107! 426 x 107!
749 x 1078 6.50x 10712 1.58 x 107! 6.11 x 10712 426 x 107" 1.51 x 10710

The diagonal elements give the bounds on |e|>. The bounds on the coefficients are the square roots of the diagonal

elements. For instance, e§';" is excluded above v/1.09 x 10-™2.

The covariance matrix in the basis (€55, ej’f,‘f“', el el e e, €7 By s et ) A, 18

164 x 10713 —255x 107 —1.55x 107  7.73x 1072 —291x 107 131 x1072  551x1072 —9.15x 107" 2.07x 107  575x 107"
—2.55%x 107 297x 107" 773 x 1077 —4.03 x 1073 —7.10x 1075  —4.64x 1077 —430x 107  735x 107" —2.15x 107 —6.72x 107"
—1.55x 107" 773 x 1072 164 x 1073 —255x 107 9.15x 1070 —2.07x 1077 —575x 1071 291 x 107 —1.31x10"2 —551x 10712
773 %1073 —4.03x 1073 —2.55x 107 297 x 107" —735x107'®  2.15x 107  672x 107  7.10x 107"  4.64x 10713  430x 107"
—291x 107" -7.10x 1075 9.15x 1071 —735x107¢ 322x 1073 829x 107" —1.11x 1072 —8.03x 1075 —8.12x 107"* -3.49 x 10~
131 x 10712 —4.64x 1073 —2.07x 10713  2.15x 107  829x 103 244 x 107" 502x 10"  -812x 107" 2.10x 1072  7.66 x 10~'2
551x 10712 —430x 107 =575x 1073 6.72x 107  —1.11x 1072 502x 107" 210x 10710  —3.49x 107" 7.66 x 10~ 2.19 x 107!
—9.15x 107" 7.35x 107" 291 x107* 7.10x 107" -8.03x10°5 —8.12x107* —-349x 107" 322x107"% 829x10"® —1.11x10""?
207x 10717 —2.15x 107 —131x 1072 4.64x 1077  -8.12x 107 210x 1072 7.66x 10712 829x 10" 244 x 107"  502x 107"
575x 1078 —6.72x 107* =551 x 1072 430x10™%  -349x 107 7.66x 1072  219x 107" —L11x1072 502x 107" 2.10x 1071

(E3)

2. D meson decays

The bounds of Table I on leptonic D meson decays give the following covariance matrix in the basis
(eﬂcu eypcu _epcu eﬂcu).
€pL »€AL €P.R - CAR )-

3.07x107%  -355x1077 -2.86x10% 7.91x107°
-355x1077 2.04x1073  791x107  7.30x 107’ (E4)
-2.86x 107 791 x107° 3.07x107° —3.55x 1077
791 x 107 730x 1077 —=3.55x 1077 2.04 x 1073
Using bounds on the semileptonic decays of D and D, mesons in the basis (eg';", ey',", 7", ", eV/'%", e7'™)

gives
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1.80 x 107°
1.32 x 1077
-3.19 x 1078
—2.10x 1078
—1.61 x 1077
1.79 x 1078

The covariance matrix in the basis (

The bound on the leptonic decay

eubd _epubd _eubd  eubd\ .
(€pL €41 +€pR +EAg )

The covariance matrix in the basis (

2.07 x 10710
1.21 x 1071
1.52 x 10712
-3.90 x 1071
—5.74 x 10714
5.18 x 10713

1.32 x 1077
2.10 x 107°
3.65 x 1077
—1.61 x 1077
9.7 x 1078
7.06 x 1077

eycu

553 x 1078
9.23 x 1078

1.20 x 107
3.48 x 1070

eubd

1.21 x 1071
2.23 x 10710
2.81 x 1071
—5.74 x 10714
2.87 x 10714
2.32x 10713

-3.19x 1078

3.65 x 1077
4.03 x10°°
1.79 x 1078
7.06 x 1077
2.30 x 1077

epcu _eucu

1.15x 107 =216 x 1077 —1.15x 108  4.81 x 105 —1.45x1078
216 x 1077 2.04x1073  481x10° 731x107 1.81x10™°
—1.15x 107  481x107° 1.15x10° —216x1077 1.55x 107

481 %107  731x107 —216x107 204x1073 —8.70x 107°
—145%x 1078  1.81x107° 155x10° —870x10"% 6.80x 1077

—2.62x107% 350x 107  8.69x 1077  1.09x10%  1.03x 1077

—297x1077 822x10° 1.68x107% —199x 1077 2.73 x 1077

—155%x10™° 870x10™° 145x10™° —1.81x10"° —5.58x 107
—8.69x 1077 —1.09x 1078 262x 108 —3.50x1075 —542x1078
—1.68x 107 1.99x 1077 297x 1077 —822x10™° 2.96x 1078

epcu

3. B meson decays

9.23 x 1078
2.20 x 1074
3.48 x 1076
6.89 x 107°

eubd  eubd

1.52 x 10712
2.81 x 1071
4.03 x 10710
5.18 x 10715
232 x 10713
3.50 x 10714

epubd
€51 -€vL €1, »€sRr €V R €T,

1.20 x 107
3.48 x 107°
5.53 x 1078
9.23 x 1078

epubd

-3.90 x 10713
—5.74 x 10714
5.18 x 10715
2.07 x 10710
1.21 x 1071
1.52 x 10712
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eubd)~

3.48 x 107°
6.89 x 107°
923 x 1078
2.20 x 10~
1S
—5.74 x 10714
2.87 x 10714
232 x 10713
1.21 x 1071
2.23 x 10710
2.81 x 107!

-2.10x 108 —1.61x1077 1.79x 1078
-1.61x1077 9.7x1078 7.06 x 1077
1.79x 1078 7.06 x 1077 230 x 1077
(E5)
1.80x 107 1.32x 1077  -3.19x 1078
1.32x 107 210x107°  3.65x 1077
-3.19x 108 3.65x 1077 4.03x107°
€L €L EPR EAR ESL €V €T, €Sk EVR €T, )y, 18
—2.62x 108 —297x 107 -155x10° —-8.69x107 —1.68x10°%
350x 1075 822x107°  870x107° —1.09 x 10 1.99 x 1077
8.69x 107  1.68x 10"  145x10°  2.62x10°  297x 1077
1.09x 1078 —1.99x 1077 —1.81x107° -3.50x 105 —-8.22x 107°
103 x 107 273x1077  -558x 107 —542x 108 296 x 1078
270x10°%  431x107  —542x10%  9.66x10%  8.36x 1077
431x107  562x107%  296x107%  836x107 321 x 1077
—542x 10 296x 10  680x 107  1.03x 107 273 %1077
9.66x 1078 836x1077  1.03x107  270x10°  4.31x 1077
836x 107  321x107  273x107  431x107  5.62x10°°
(E6)

of the B meson (see Table I) gives the following covariance matrix in the basis

(E7)

5.18 x 10715
232x 10713
3.50 x 10714
1.52 x 10712
2.81 x 1071
4.03 x 10710

(E8)
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The covariance matrix in the basis (€}’ fd, ey fd, €p Zd, €q. ,l;d, €5, Lbd, ey 2‘1, 6?2 bd, g’ ,ifd, €y Zd, e;’; bdy Ay is
274x 1078 651x 10 594x 1070  245x 10 —1.10x 1072 —446x10710 502x 107"  1.89x107*  1.68x 108 —841x 10713
6.51x 1078 220x 10  245x107°  689x10¢ —211x1072 —151x10% 9.19x 107"  776x 107" 473 x108  -3.47 x 107
594x 10710 245x10°  274x 10  651x107% —1.89x 1074 —1.68x 10 841 x 107  1.10x 1072 446x 10710 502 x 10!
245x107°  689x 1070  651x107  220x 10 -7.76x 107" —473x 1078  347x107°  211x1072  1.51x10° —9.19 x 10!
—110x 1072 211 x 10712 —1.89x 107 —7.76 x 101! 1.03x 10710 783 x 1072 —1.03x 107" —2.10x 10715 —578 x 1073 3.15x 10715
—446x 10710 —151x107° —1.68x 10~ —473x10"% 7.83x 1072 1.06 x 107 3.09x 107" 578 x 1073 —324x 10710 241 x 107!
502x 107" 9.19x 107! 841 x 1073 347x 107  -1.03x 107" 3.09x 107" 510x 10710  3.15x 1075 241 x 107" 430x 1071
1.89x 107 776 x 107" 1.10x 1072 2.11x 1072 —2.10x 10" -578 x10"® 3.15x 10"  1.03x 1071 783 x 107> —1.03x 107"
1.68 x 1078 473x 1078 4.46x 10710 151 x 107 =578 x 1073 —324x107'0 241x10°"" 783 x 10712 1.06 x 1078 3.09 x 10~
—841x 1078 —347x107° -5.02x107"" —9.19x 107" 3.15x 10755 241 x 107" 430x 107 —1.03x107'" 3,09 x 107" 5.10x 1070
(E9)
4. B, meson decays
The bound on the leptonic decay of the B, meson in the basis (e}/}", ¢77", ef's’, ¢/'n’) gives
306 x 1078 —1.22x 107 -3.40x 10719  1.94 x 1076
-1.22x107% 124 x10*  194x10% —1.80x 1077
(E10)
-340x1071% 194x10° 3.06x10® —1.22x1078
1.94x107%  —1.80x 1077 -122x10"% 1.24x107*
The bound on the B; meson decaying into a kaon (Table I) in the basis (e?ffs, s, e;’zbs, eg’flgs, e, e?’;bs) gives
5.05 x 10710 347 x 107" 507 x10712 —1.13x 107" —1.65x 1073 1.73x 1074
3.47 x 1071 6.53x 10710 954 x 107" —-1.65x10"13 878 x 107 7.90x 1013
5.07 x 10712 9.54 x 1071 1.51 x 10~° 1.73 x 10714 790 x 10713 1.38 x 10713
(E11)
—L13x 107" —1.65x 10713 1.73x107* 5.05x 1071 347 x 107'"  5.07 x 10712
-1.65x 10717 878 x 107  790x107"% 347x107!"" 653 x 10719  9.54 x 107!
1.73x107%  790x 10713 138 x 10713  507x107"2  954x 107" 1.51 x107°
The covariance matrix in the basis (ef,’flL”, ej’ffs, ef,’f,l?, ej’fzs, eg’_‘fs, ef}ffs, et bs, €g) Ié’s, ef,’f,bf, e;’;bs ) A is
1.52x 107 —-8.62x 107 —-1.69x 10710 137x107° -135x1072 6.16x 107" 641 x 107"  -511x10"" 939x10™°  242x 10713
—8.62x 107  124x107*  137x10° —1.80x1077 121x107% —851x 107 —129x107"" 433x 107" —124x10° —1.94x107°
—169x 10710 137x107°  152x 1078 —8.62x 1070 511x1075  —939x 10 -242x10783 135x1072 —6.16x 107" —6.41 x 107!!
137x 1078 —1.80x 1077 —8.62x107° 124x 10 —433x107""  124x10°  194x10° —121x10"% 851x107  129x 107"
—135x 1072 121 x 1073 511x 1075  —433x107""  251x 10710 221 x 107" -390x 107" —6.11 x 10715 433 x 1073 9.78 x 107'5
6.16 x 1071 —851x 107  —939x 107  124x10° 221x107'"  649x10°  1.07x10710 —433x1073 857x1072  142x 107!
641 x 1071 —129x 107" —242x 1073 1.94x10° —=390x 107" 1.07x107°  191x10® 978x 1075 142x107'"  174x 10783
—511x 1075 433 x 1071 135x 10712 —121x107% —6.11x 1075 —433x1071% 978x 10715 251 x 10710  221x 10711 -390 x 10~!1
939x 107 —124x107° —6.16x10""1 851x 107 —433x10"3 857x10712 142x 107" 221x107"  649x 107  1.07 x 10710
242x 10713 —194x 107 —641x10"""  1.29x 107" 978 x 107"  142x 10" 1.74x 107 -390 107" 1.07x 1071  1.91 x 107°
(E12)
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