Constraints on $2 \ell 2 q$ operators from $\mu-e$ flavour-changing meson decays

Sacha Davidson, Albert Saporta

To cite this version:

Sacha Davidson, Albert Saporta. Constraints on $2 \ell 2 q$ operators from $\mu-e$ flavour-changing meson decays. Physical Review D, 2019, 99 (1), pp.015032. 10.1103/PhysRevD.99.015032 . hal-01861994

HAL Id: hal-01861994
https://hal.science/hal-01861994
Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constraints on $2 \ell 2 q$ operators from $\mu \leftrightarrow e$ flavor-changing meson decays

Sacha Davidson ${ }^{1}$ and Albert Saporta ${ }^{2}$
${ }^{1}$ LUPM, CNRS, Université Montpellier, Place Eugène Bataillon, F-34095 Montpellier, Cedex 5, France
${ }^{2}$ Université de Lyon, France; Université Lyon 1 CNRS/IN2P3 IPNL, 69622 Villeurbanne cedex, France

(Received 19 November 2018; published 24 January 2019)

Abstract

We study lepton-flavor-violating two- and three-body decays of pseudoscalar mesons in effective field theory. We give analytic formulas for the decay rates in the presence of a complete basis of QED \times QCDinvariant operators. The constraints are obtained at the experimental scale, then translated to the weak scale via one-loop renormalization group equations. The large renormalization-group mixing between tensor and (pseudo)scalar operators weakens the constraints on scalar and pseudoscalar operators at the weak scale.

DOI: 10.1103/PhysRevD.99.015032

I. INTRODUCTION

The discovery of neutrino oscillations [1,2] established nonzero neutrino masses and mixing angles [3]. If neutrinos are taken massless in the Standard Model (SM), then new physics (NP) is required to explain the oscillation data. There are several possibilities to search for NP signatures, such as looking for new particles at the LHC [4,5]. Another possibility is to look for new processes among known SM particles, such as charged lepton flavor violation (CLFV) [6,7], which we define to be a contact interaction that changes the flavor of charged leptons. If neutrinos have renormalizable masses via the Higgs mechanism, then their contribution to CLFV rates is suppressed via the Glashow-Iliopoulos-Maiani mechanism by a factor $\propto\left(m_{\nu} / M_{W}\right)^{4} \sim$ 10^{-48}. However, various extensions of the Standard Model that contain heavy new particles (see e.g., Refs. [6-9] and references therein), can predict CLFV rates comparable to the current experimental sensitivities. Indeed, low-energy precision experiments searching for forbidden SM modes, are sensitive to NP scales $\gg \mathrm{TeV}$ [6]. Many experiments search for CLFV processes; for example, the $\mu \leftrightarrow e$ flavor change can be probed in the decays $\mu \rightarrow e \gamma$ [10] and $\mu \rightarrow$ $3 e$ [11,12], in $\mu \rightarrow e$ conversions on nuclei [13-15] and also in meson decays such as $K, D, B \rightarrow \bar{\mu} e$ [3,16-22].

In this paper, we focus on leptonic and semileptonic pseudoscalar meson decays with a $\mu^{ \pm} e^{\mp}$ in the final

[^0]state [3]. We assume that these decays could be mediated by two-lepton, two-quark contact interactions, induced by heavy new particles at the scale $\Lambda_{N P}>m_{W}$. The contact interactions are included in a bottom-up effective field theory (EFT) [23-25] approach, as a complete set of dimension-six, QED \times QCD-invariant operators [6], containing a muon, an electron and one of the quark-flavorchanging combinations $d s, b s, b d$ or $c u$.

Many studies on related topics can be found in the literature. The experimental sensitivity to the coefficients of four-fermion operators (sometimes referred to as one-operator-at-a-time bounds), evaluated at the experimental scale, has been compiled by various authors [26-28]. Reference [29] compared the sensitivities of the LHC vs low-energy processes, to quark flavor-diagonal scalar operators. The constraints on combinations of lepton-flavorchanging operator coefficients, which can be obtained from the decays of same-flavor mesons, were studied in Ref. [30], and the radiative decays of B, D and K mesons were discussed in Ref. [31]. Lepton flavor-conserving, but quark flavor-changing meson decays (which occur in the Standard Model), are widely studied [32]. In particular, B decays attract much current interest, due to the observed anomalies [33-37] which suggest lepton universality violation [38-44]. Lepton flavor changes have been widely studied in various models (see e.g., references in Refs. [6,7,45]). More modelindependent studies, that take into account loop corrections (or equivalently, renormalization group running) have also been performed for the $\mu \leftrightarrow e$ flavor change [46,47]. Finally, with respect to the calculations in this manuscript, the leptonic branching ratio of pseudoscalar mesons is well known, and can be found in Refs. [26,28,48,49] and semileptonic branching ratios in various scenarios can be found in Refs. [50-58].

The aim of this paper is to obtain constraints on the operator coefficients describing meson decays at the experimental scale, and then transport the bounds to the weak scale [59]. The four-fermion operators that could induce the meson decays are listed in Sec. II. Section III gives the branching ratios for the leptonic and semileptonic decays as a function of the operator coefficients. In Sec. IV, we then use the available bounds to constrain the coefficients at the experimental scale ($\Lambda_{\text {exp }} \sim 2 \mathrm{GeV}$) by computing a covariance matrix, which allows us to take into account the interferences among the operators. The bounds are then evolved from the experimental scale to the weak scale ($\Lambda_{W} \sim m_{W}$) in Sec. V, using the renormalization group equations (RGEs) of QED and QCD for four-fermion operators [46,47]. As discussed in the final section, these equations give a significant mixing of tensor operators to the (pseudo)scalars between $\Lambda_{\exp }$ and Λ_{W}, which significantly weakens the bounds on (pseudo)scalar coefficients at Λ_{W}.

II. A BASIS OF $\mu-e$ INTERACTIONS AT LOW ENERGY

We are interested in four-fermion operators involving an electron, a muon and two quarks of different flavors, which are constructed with chiral fermions, because the lepton masses are frequently neglected, and it simplifies the matching at the weak scale onto $\mathrm{SU}(2)$-invariant operators. The operators are added to the Lagrangian as

$$
\begin{equation*}
\delta \mathcal{L}=+2 \sqrt{2} G_{F} \sum_{O} \sum_{\zeta} C_{O}^{\zeta} \mathcal{O}_{O}^{\zeta}+\text { H.c. } \tag{1}
\end{equation*}
$$

where the subscript O identifies the Lorentz structure, the superscript $\zeta=l_{1} l_{2} q_{i} q_{j}$ gives the flavor indices, and both run over the possibilities in the lists below, extrapolated from Refs. [6,60]:

$$
\begin{align*}
& \mathcal{O}_{V, Y Y}^{\text {eиис }}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{u} \gamma_{\alpha} P_{Y} c\right), \quad \mathcal{O}_{V, Y X}^{\text {енис }}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{u} \gamma_{\alpha} P_{X} c\right), \\
& \mathcal{O}_{V, Y Y}^{e \mu c u}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{c} \gamma_{\alpha} P_{Y} u\right), \quad \mathcal{O}_{V, Y X}^{e \mu c u}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{c} \gamma_{\alpha} P_{X} e\right), \\
& \mathcal{O}_{S, Y Y}^{\text {eнис }}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{u} P_{Y} c\right), \quad \mathcal{O}_{S, Y X}^{\text {eرис }}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{u} P_{X} c\right), \\
& \mathcal{O}_{S, Y Y}^{e \mu c u}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{c} P_{Y} u\right), \quad \mathcal{O}_{S, Y X}^{e \mu c u}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{c} P_{X} u\right), \\
& \mathcal{O}_{T, Y Y}^{e \mu и с}=\left(\bar{e} \sigma P_{Y} \mu\right)\left(\bar{u} \sigma P_{Y} c\right), \\
& \mathcal{O}_{T, Y Y}^{e \mu c u}=\left(\bar{e} \sigma P_{Y} \mu\right)\left(\bar{c} \sigma P_{Y} u\right), \tag{2}\\
& \mathcal{O}_{V, Y Y}^{e \mu d s}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{d} \gamma_{\alpha} P_{Y} s\right), \quad \mathcal{O}_{V, Y X}^{e \mu d s}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{d} \gamma_{\alpha} P_{X} s\right), \\
& \mathcal{O}_{V, Y Y}^{e \mu s d}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{s} \gamma_{\alpha} P_{Y} d\right), \quad \mathcal{O}_{V, Y X}^{e \mu s d}=\left(\bar{e} \gamma^{\alpha} P_{Y} \mu\right)\left(\bar{s} \gamma_{\alpha} P_{X} d\right), \\
& \mathcal{O}_{S, Y Y}^{e \mu d s}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{d} P_{Y} s\right), \quad \mathcal{O}_{S, Y X}^{e \mu d s}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{d} P_{X} s\right), \\
& \mathcal{O}_{S, Y Y}^{e \mu s d}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{s} P_{Y} d\right), \quad \mathcal{O}_{S, Y X}^{e \mu d s}=\left(\bar{e} P_{Y} \mu\right)\left(\bar{d} P_{X} s\right), \\
& \mathcal{O}_{T, Y Y}^{e \mu d s}=\left(\bar{e} \sigma P_{Y} \mu\right)\left(\bar{d} \sigma P_{Y} s\right), \\
& \mathcal{O}_{T, Y Y}^{e \mu s d}=\left(\bar{e} \sigma P_{Y} \mu\right)\left(\bar{s} \sigma P_{Y} d\right), \tag{3}
\end{align*}
$$

where $Y Y \in\{L L, R R\}, X Y \in\{L R, R L\}$, and the list is given explicitly for the kaon and D meson operators. The lists for the B_{d} and B_{s} are obtained from Eq. (3) by replacing $d s \rightarrow d b, s b$. The operators are normalized such that the Feynman rule will be $+i C / \Lambda^{2}$. The operators in the lists (2) and (3) transform a muon into an electron; the $e \rightarrow \mu$ operators arise in the + H.c. term of Eq. (1). So in these conventions, the lepton flavor indices are always $e \mu$, and do not need to be given. In the following sections, we give the decay rates of pseudoscalar mesons, composed of constituent quarks \bar{q}_{i} and q_{j}, into $e^{+} \mu^{-}$or $e^{-} \mu^{+}$. Then we obtain constraints on the operator coefficients by comparing to the experimental upper bounds on the branching ratios, e.g., $\mathrm{BR}\left(P_{1} \rightarrow e^{ \pm} \mu^{\mp}\right)=\mathrm{BR}\left(P_{1} \rightarrow e^{+} \mu^{-}\right)+\mathrm{BR}\left(P_{1} \rightarrow\right.$ $\left.e^{-} \mu^{+}\right)<\ldots$ which we assume apply independently to both decays.

This gives independent and identical bounds on $\epsilon^{e \mu q_{i} q_{j}}$ and $\epsilon^{e \mu q_{j} q_{i}}$.

In this work, we choose an operator basis with nonchiral quark currents, which is convenient for the nonchiral hadronic matrix elements involved in meson decays. Thus, the operators describing the contact interactions that can mediate leptonic ($\left.\bar{q}_{i} q_{j} \rightarrow \bar{\mu} e\right)$ and semileptonic $\left(q_{i} \rightarrow q_{j} \bar{\mu} e\right)$ CLFV pseudoscalar meson decays at a scale $\Lambda_{\text {exp }} \sim 2 \mathrm{GeV}$ ($\Lambda_{\text {exp }} \sim m_{b} \simeq 4.2 \mathrm{GeV}$ for $b \mathrm{~s}$ and $b \mathrm{~d}$) are written as

$$
\begin{align*}
\mathcal{O}_{S, X}^{e \mu q_{i} q_{j}} & =\left(\bar{e} P_{X} \mu\right)\left(\bar{q}_{i} q_{j}\right), \\
\mathcal{O}_{P, X}^{e \mu q_{i} q_{j}} & =\left(\bar{e} P_{X} \mu\right)\left(\bar{q}_{i} \gamma^{5} q_{j}\right), \\
\mathcal{O}_{V, X}^{e \mu q_{i} q_{j}} & =\left(\bar{e} \gamma^{\alpha} P_{X} \mu\right)\left(\bar{q}_{i} \gamma_{\alpha} q_{j}\right), \\
\mathcal{O}_{A, X}^{e \mu q_{i} q_{j}} & =\left(\bar{e} \gamma^{\alpha} P_{X} \mu\right)\left(\bar{q}_{i} \gamma_{\alpha} \gamma^{5} q_{j}\right), \\
\mathcal{O}_{T, X}^{e \mu q_{i} q_{j}} & =\left(\bar{e} \sigma^{\alpha \beta} P_{X} \mu\right)\left(\bar{q}_{i} \sigma_{\alpha \beta} P_{X} q_{j}\right), \tag{4}
\end{align*}
$$

where $q_{i, j} \in\{u, d, s, c, b\}, P_{X}=P_{R, L}=\frac{1 \pm \gamma_{5}}{2}$ and $\sigma^{\mu \nu}=$ $\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

In this case, the coefficients ϵ of the operators in Eq. (4) are
$\epsilon_{S, X}^{e \mu q_{i} q_{j}}=\frac{1}{2}\left(C_{S, X R}^{e \mu q_{i} q_{j}}+C_{S, X L}^{e \mu q_{i} q_{j}}\right), \quad \epsilon_{P, X}^{e \mu q_{i} q_{j}}=\frac{1}{2}\left(C_{S, X R}^{e \mu q_{i} q_{j}}-C_{S, X L}^{e \mu q_{i} q_{j}}\right)$,
$\epsilon_{V, X}^{e \mu q_{i} q_{j}}=\frac{1}{2}\left(C_{V, X R}^{e \mu q_{i} q_{j}}+C_{V, X L}^{e \mu q_{i} q_{j}}\right), \quad \epsilon_{A, X}^{e \mu q_{i} q_{j}}=\frac{1}{2}\left(C_{V, X R}^{e \mu q_{i} q_{j}}-C_{V, X L}^{e \mu q_{i} q_{j}}\right)$,
$\epsilon_{T, X}^{e \mu q_{i} q_{j}}=C_{T, X X}^{e \mu q_{i} q_{j}}$.
In the next section, we compute the branching ratio for the (semi)leptonic decays as a function of the coefficients of Eq. (5).

III. LEPTONIC AND SEMILEPTONIC PSEUDOSCALAR MESON DECAYS

There are a multitude of bounds on rare meson decays coming from precision experiments [3,28]. The aim of this paper is to use these bounds to constrain the coefficients of Eq. (5). Thus, in this section, we compute the leptonic
and semileptonic pseudoscalar meson decay branching ratio as a function of these coefficients.

A. Leptonic decay branching ratio

We are interested in decays such as $P_{1} \rightarrow l_{1} \bar{l}_{2}$ where $\left\{l_{1}, l_{2}\right\}$ are leptons of mass m_{1}, m_{2} and P_{1} is a pseudoscalar meson of mass $\mathrm{M}\left(P_{1} \in\left\{K_{L}^{0}\left(\frac{\bar{d} s+\bar{s} d}{\sqrt{2}}\right), D^{0}(\bar{u} c), B^{0}(\bar{b} d)\right\}\right)$. In the presence of new physics, the leptonic decay branching ratio of a pseudoscalar meson P_{1} of mass M is written as [26,28,49]

$$
\begin{align*}
& \frac{\operatorname{BR}\left(P_{1} \rightarrow l_{1} \bar{l}_{2}\right)}{C_{2 \text { body }}} \\
& =\left(\left|\epsilon_{P, L}\right|^{2}+\left|\epsilon_{P, R}\right|^{2}\right) \tilde{P}^{\prime 2}\left(M^{2}-m_{1}^{2}-m_{2}^{2}\right) \\
& +\left(\left|\epsilon_{A, L}\right|^{2}+\left|\epsilon_{A, R}\right|^{2}\right) \tilde{A}^{\prime 2}\left[\left(M^{2}-m_{1}^{2}-m_{2}^{2}\right)\left(m_{1}^{2}+m_{2}^{2}\right)\right. \\
& \left.+4 m_{1}^{2} m_{2}^{2}\right]-2\left(\epsilon_{P, L} \epsilon_{A, R}+\epsilon_{P, R} \epsilon_{A, L}\right) \tilde{P}^{\prime} \tilde{A}^{\prime} m_{2}\left(M^{2}+m_{1}^{2}-m_{2}^{2}\right) \\
& +2\left(\epsilon_{P, L} \epsilon_{A, L}+\epsilon_{P, R} \epsilon_{A, R}\right) \tilde{P}^{\prime} \tilde{A}^{\prime} m_{1}\left(M^{2}+m_{2}^{2}-m_{1}^{2}\right) \\
& -4 \epsilon_{P, L} \epsilon_{P, R} \tilde{P}^{\prime 2} m_{1} m_{2}-4 \epsilon_{A, L} \epsilon_{A, R} \tilde{A}^{\prime 2} M^{2} m_{1} m_{2} \tag{6}
\end{align*}
$$

where $C_{2 \text { body }}=\frac{\tau r^{*} G_{F}^{2}}{\pi M^{2}}, r^{*}=\frac{1}{2 M} \sqrt{\left(M^{2}-\left(m_{1}+m_{2}\right)^{2}\right)\left(M^{2}-\left(m_{1}-m_{2}\right)^{2}\right)}, m_{1,2}$ are the masses of the leptons and τ is the lifetime of P_{1}. For simplicity, we dropped the flavor superscript $\left(\zeta=l_{1} l_{2} q_{i} q_{j}\right)$ of the coefficients.

The expectation values of the quark current for a pseudoscalar meson are written as $[28,49]$

$$
\begin{equation*}
\tilde{P}^{\prime}=\frac{1}{2}\langle 0| \bar{q}_{i} \gamma^{5} q_{j}\left|P_{1}\right\rangle=\frac{f_{P_{1}} M^{2}}{2\left(m_{i}+m_{j}\right)}, \quad \quad A^{\prime} k^{\mu}=\frac{1}{2}\langle 0| \bar{q}_{i} \gamma^{\mu} \gamma^{5} q_{j}\left|P_{1}\right\rangle=\frac{f_{P_{1}} k^{\mu}}{2} \tag{7}
\end{equation*}
$$

where $m_{i, j}$ are the masses of the quarks, $f_{P_{1}}$ is the decay constant of the meson and k^{μ} is the momentum of the meson. These formulas are used for pions, kaons, and D and B mesons. The values of the constants are given in Appendix A. Note that tensor operators do not contribute to the leptonic decay, because the trace of the product of the Dirac matrices contained in the tensor operator vanishes in this case.

B. Semileptonic decay branching ratio

We are interested in decays such as $P_{1} \rightarrow l_{1} \bar{l}_{2} P_{2}$ where $\left\{l_{1}, l_{2}\right\}$ are leptons of mass m_{1}, m_{2} and $\left\{P_{1}, P_{2}\right\}$ are pseudoscalar mesons of mass $M, m_{3}\left[P_{1} \in\left\{K^{+}(u \bar{s})\right.\right.$, $\left.D^{+}(c \bar{d}), B^{+}(u \bar{b}), B_{s}^{+}(s \bar{b})\right\}$ and $\left.P_{2} \in\left\{\pi^{+}(u \bar{d}), K^{+}(u \bar{s})\right\}\right]$. The semileptonic decay branching ratio is written as [61]

$$
\begin{align*}
& \operatorname{BR}\left(P_{1} \rightarrow l_{1} \bar{l}_{2} P_{2}\right) \\
& =\frac{\tau}{512 \pi^{3} M^{3}} \frac{1}{2 J+1} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\left(M-m_{3}\right)^{2}} d q^{2} \\
& \quad \times \int_{-1}^{1} d \cos \theta \frac{|\mathcal{M}|^{2} \sqrt{\lambda\left(M^{2}, m_{3}^{2}, q^{2}\right)} \sqrt{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{q^{2}} \tag{8}
\end{align*}
$$

where $q=\left(p_{1}+p_{2}\right)$ is the transferred momentum, θ is the angle between the direction of propagation of the lighter meson $\left(P_{2}\right)$ and the antilepton $\left(l_{2}\right)$ in the lepton's reference frame, τ and J are the lifetime and the spin of P_{1} and $|\mathcal{M}|^{2}$ is the matrix element of the semileptonic decay. The Källén function is defined as $\lambda(x, y, z)=(x-y-z)^{2}-4 y z$.

In the presence of new physics, the matrix element in the semileptonic decay branching ratio of Eq. (8) is written as

$$
\begin{aligned}
\frac{|\mathcal{M}|^{2}}{8 G_{F}^{2}}= & 2\left(\left|\epsilon_{S, L}\right|^{2}+\left|\epsilon_{S, R}\right|^{2}\right) \tilde{S}^{2}\left(p_{1} \cdot p_{2}\right) \\
& +\frac{1}{4}\left(\left|\epsilon_{V, L}\right|^{2}+\left|\epsilon_{V, R}\right|^{2}\right)\left[f_{+}^{2}\left(4\left(p_{1} \cdot P\right)\left(p_{2} \cdot P\right)-2 P^{2}\left(p_{1} \cdot p_{2}\right)\right)+f_{-}^{2}\left(4\left(p_{1} \cdot q\right)\left(p_{2} \cdot q\right)-2 q^{2}\left(p_{1} \cdot p_{2}\right)\right)\right. \\
& \left.+4 f_{+} f_{-}\left(\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)+\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)-\left(p_{1} \cdot p_{2}\right)(P \cdot q)\right)\right] \\
& +4\left(\left|\epsilon_{T_{R}}\right|^{2}+\left|\epsilon_{T_{L}}\right|^{2}\right) \tilde{T}^{\prime 2}\left[4\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)(P \cdot q)+4\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)(P \cdot q)-2\left(p_{1} \cdot p_{2}\right)(P \cdot q)^{2}\right. \\
& \left.+2 P^{2} q^{2}\left(p_{1} \cdot p_{2}\right)-4 P^{2}\left(p_{1} \cdot q\right)\left(p_{2} \cdot q\right)-4 q^{2}\left(p_{1} \cdot P\right)\left(p_{2} \cdot P\right)\right] \\
& -2\left(\epsilon_{S, L} \epsilon_{V, R}+\epsilon_{S, R} \epsilon_{V, L}\right) \tilde{S} m_{2}\left[\left(f_{+}\left(p_{1} \cdot P\right)+f_{-}\left(p_{1} \cdot q\right)\right)\right] \\
& +2\left(\epsilon_{S, L} \epsilon_{V, L}+\epsilon_{S, R} \epsilon_{V, R}\right) \tilde{S} m_{1}\left[\left(f_{+}\left(p_{2} \cdot P\right)+f_{-}\left(p_{2} \cdot q\right)\right)\right] \\
& +8\left(\epsilon_{S, R} \epsilon_{T_{R}}+\epsilon_{S, L} \epsilon_{T_{L}}\right) \tilde{S} \tilde{T}^{\prime}\left[\left(\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)-\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& -4 \epsilon_{S, L} \epsilon_{S, R} \tilde{S}^{2} m_{1} m_{2}-\epsilon_{V, L} \epsilon_{V, R} m_{1} m_{2}\left[f_{-}^{2} q^{2}+f_{+}^{2} P^{2}+2 f_{+} f_{-}(P \cdot q)\right] \\
& +4\left(\epsilon_{V, L} \epsilon_{T_{R}}+\epsilon_{V, R} \epsilon_{T_{L}}\right) \tilde{T}^{\prime} m_{2}\left[f_{+}\left(\left(p_{1} \cdot q\right) p^{2}-\left(P \cdot p_{1}\right)(P . q)\right)+f_{-}\left(\left(p_{1} \cdot q\right)(P \cdot q)-\left(p_{1} \cdot P\right) q^{2}\right)\right] \\
& +4\left(\epsilon_{V, R} \epsilon_{T_{R}}+\epsilon_{V, L} \epsilon_{T_{L}}\right) \tilde{T}^{\prime} m_{1}\left[\left(f_{+}\left(\left(P^{2}\right)\left(p_{2} \cdot q\right)-\left(p_{2} \cdot P\right)(P \cdot q)\right)+f_{-}\left(\left(p_{2} \cdot q\right)(P \cdot q)-q^{2}\left(p_{2} \cdot P\right)\right)\right)\right] \\
& +16 \epsilon_{T_{R}} \epsilon_{T_{L}} \tilde{T}^{\prime 2} m_{1} m_{2}\left[(P . q)^{2}-P^{2} q^{2}\right] \tag{9}
\end{align*}
$$

where p_{1}, p_{2}, k, p_{3} are respectively the 4 -momenta of leptons 1 and 2, and the 4 -momenta of P_{1} and $P_{2}, P=$ $k+p_{3}$ and the hadronic matrix elements are written as [28,49-52]

$$
\begin{align*}
\tilde{V}^{\mu} & =\frac{1}{2}\left\langle P_{2}\right| \bar{q}_{i} \gamma^{\mu} q_{j}\left|P_{1}\right\rangle=\frac{1}{2}\left(P^{\mu} f_{+}^{P_{1} P_{2}}\left(q^{2}\right)+q^{\mu} f_{-}^{P_{1} P_{2}}\left(q^{2}\right)\right) \\
\tilde{S} & =\frac{1}{2}\left\langle P_{2}\right| \bar{q}_{i} q_{j}\left|P_{1}\right\rangle=\frac{1}{2} \frac{\left(M^{2}-m_{3}^{2}\right)}{\left(m_{q_{i}}-m_{q_{j}}\right)} f_{0}^{P_{1} P_{2}}\left(q^{2}\right) \\
\tilde{T}^{\mu \nu} & =\frac{1}{2}\left\langle P_{2}\right| \bar{q}_{i} \sigma^{\mu \nu} q_{j}\left|P_{1}\right\rangle \\
& =-\frac{i}{2} \frac{\left(f_{+}^{P_{1} P_{2}}\left(q^{2}\right)-f_{-}^{P_{1} P_{2}}\left(q^{2}\right)\right)}{M^{*}}\left(P^{\mu} q^{\nu}-P^{\nu} q^{\mu}\right) \\
\tilde{T}^{\prime} & =\frac{1}{2} \frac{\left(f_{+}^{P_{+} P_{2}}\left(q^{2}\right)-f_{-}^{P_{1} P_{2}}\left(q^{2}\right)\right)}{M^{*}} \tag{10}
\end{align*}
$$

For simplicity, we suppressed the q^{2} dependence of the form factors $f_{+,-, 0}$ in Eq. (9), and the flavor superscript $\left(\zeta=l_{1} l_{2} q_{i} q_{j}\right)$ of the coefficients. Notice that there is no interference between $\epsilon_{S, L}\left(\epsilon_{S, R}\right)$ and $\epsilon_{T_{R}}\left(\epsilon_{T_{L}}\right)$ because the trace of the product of Dirac matrices involved in tensor and scalar operators of different chirality vanishes. The form factors and the scalar product in Eq. (9) are given in Appendix B.

For simplicity, we do not give the analytic expression of the integrated semileptonic decay branching ratio, but only perform the integrals numerically.

IV. COVARIANCE MATRIX

In this section, we use the branching ratios (BRs) of Eqs. (6) and (8) to compute a covariance matrix, that will
give constraints on the coefficients that account for possible interferences. We note that $B R_{2}^{\text {exp }}\left[\mathrm{BR}_{3}^{\text {exp }}\right]$ is the experimental upper limit on the leptonic decay $P_{1} \rightarrow \bar{l}_{1} l_{2}$ [semileptonic decay $P_{1} \rightarrow P_{2} \bar{l}_{1} l_{2}$] branching ratio and $M_{2}\left[M_{3}\right]$ is the associated covariance matrix.

We can write the decay branching ratio of Eqs. (6) and (8) in the form

$$
\begin{equation*}
\vec{\epsilon}^{T} M^{-1} \vec{\epsilon}=1 \tag{11}
\end{equation*}
$$

where $\vec{\epsilon}^{T}(\vec{\epsilon})$ is a row (column) vector of coefficients, and M^{-1} is the inverse of the covariance matrix.

The explicit forms of the 4×4 and 6×6 matrices are given in Appendix D. The diagonal elements of the covariance matrix M represents the squared bounds on our coefficients, and the off-diagonal elements represent the correlations between coefficients.

A. Bounds on the coefficients

In this section, we give constraints on the coefficients for the kaon, D and B meson leptonic and semileptonic decays. As explained in Sec. III, tensor operators do not contribute to the leptonic decays of mesons. Thus, the available upper limits on leptonic [semileptonic] pseudoscalar meson branching ratios will give constrains on the $\epsilon_{P, X}$ and $\epsilon_{A, X}\left[\epsilon_{S, X}, \epsilon_{V, X}\right.$ and $\left.\epsilon_{T, X}\right]$ coefficients. Indeed, hadronic matrix elements with scalar, vector or tensor quark current structure vanish in the leptonic case, while hadronic matrix elements with pseudoscalar or axial structure vanish in the semileptonic case. We consider the CLFV decays with the associated experimental upper limits given in Table I [3].

TABLE I. Experimental bounds on leptonic and semileptonic decays.

Decay	Leptonic	Semileptonic
K	$\mathrm{BR}_{2}^{\exp }\left(K_{L}^{0} \rightarrow \mu^{ \pm} e^{\mp}\right)<4.7 \times 10^{-12}[16]$	$\mathrm{BR}_{3}^{\exp }\left(K^{+} \rightarrow \pi^{+} \bar{\mu} e\right)<1.3 \times 10^{-11}$
	\cdots	$\mathrm{BR}_{3}^{\exp }\left(K^{+} \rightarrow \pi^{+} \bar{e} \mu\right)<5.2 \times 10^{-10}[19]$
D	$\mathrm{BR}_{2}^{\exp }\left(D^{0} \rightarrow \mu^{ \pm} e^{\mp}\right)<1.3 \times 10^{-8}[17]$	$\mathrm{BR}_{3}^{\exp }\left(D^{+} \rightarrow \pi^{+} \bar{\mu} e\right)<3.6 \times 10^{-6}$
D_{s}	\cdots	$\mathrm{BR}_{3}^{\exp }\left(D^{+} \rightarrow \pi^{+} \bar{e} \mu\right)<2.9 \times 10^{-6}[20]$
	\cdots	$\mathrm{BR}_{3}^{\exp }\left(D_{S}^{+} \rightarrow K^{+} \bar{\mu} e\right)<9.7 \times 10^{-6}$
B	\cdots	$\mathrm{BR}_{3}^{\exp }\left(D_{S}^{+} \rightarrow K^{+} \bar{e} \mu\right)<1.4 \times 10^{-5}[20]$
	$\mathrm{BR}_{2}^{\exp }\left(B^{0} \rightarrow \mu^{ \pm} e^{\mp}\right)<2.8 \times 10^{-9}[18]$	$\mathrm{BR}_{3}^{\exp }\left(B^{+} \rightarrow \pi^{+} \mu^{ \pm} e^{\mp}\right)<1.7 \times 10^{-7}[21]$
B_{s}	\cdots	$\mathrm{BR}_{3}^{\exp }\left(B^{+} \rightarrow K^{+} \mu^{ \pm} e^{\mp}\right)<9.1 \times 10^{-8}[22]$

The bounds in Table I will be used to constrain the coefficients at $\Lambda_{\exp }$ and at Λ_{W} after the RGE evolution of the coefficients (see Sec. V). The covariance matrices at $\Lambda_{\text {exp }}$ for the (semi)leptonic meson decays are given in Appendix E, and the bounds on coefficients are summarized in Tables II-IV.

TABLE II. Constraints on the dimensionless four-fermion coefficients $\epsilon_{P, X}^{l_{1} l_{2} q_{i} q_{j}}$ and $\epsilon_{S, X}^{l_{1} l_{2} q_{i} q_{j}}$ at the experimental ($\Lambda_{\text {exp }}$ for K and D meson decays and $\Lambda_{m_{b}}$ for B meson decays) and weak $\left(\Lambda_{W}\right)$ scale after the RGE evolution. The last two columns are the sensitivities, or SO-at-a-time bounds; see Sec. V D. All bounds apply under permutations of the lepton and/or quark indices.

$\underline{\epsilon_{P, X}^{l_{1} l_{2} q_{i} q_{j}}}$	$\Lambda_{\text {exp }}$	Λ_{W}	$\mathrm{SO}, \Lambda_{\text {exp }}$	SO, Λ_{W}
$\epsilon_{P, X}^{e \mu d s}$	2.32×10^{-7}	4.06×10^{-7}	1.28×10^{-8}	7.82×10^{-9}
$\epsilon_{P, X}^{\text {eиcu }}$	1.75×10^{-3}	1.08×10^{-3}	7.92×10^{-5}	4.84×10^{-5}
$\epsilon_{P, X}^{e \mu b d}$	2.35×10^{-4}	1.66×10^{-4}	5.13×10^{-6}	3.61×10^{-6}
$\epsilon_{P, X}^{e \mu b s}$	1.75×10^{-4}	1.23×10^{-4}	8.27×10^{-6}	5.83×10^{-6}
$\epsilon_{S, X}^{l_{1} l_{2} q_{i} q_{j}}$	$\Lambda_{\text {exp }}$	Λ_{W}	$\mathrm{SO}, \Lambda_{\text {exp }}$	SO, Λ_{W}
$\epsilon_{S, X}^{e \mu d s}$	1.05×10^{-6}	5.68×10^{-7}	7.67×10^{-7}	4.68×10^{-7}
$\epsilon_{S, X}^{\text {eqcu }}$	1.34×10^{-3}	8.25×10^{-4}	1.33×10^{-3}	8.1×10^{-4}
$\epsilon_{S, X}^{e \mu b d}$	1.44×10^{-5}	1.01×10^{-5}	1.44×10^{-5}	1.01×10^{-5}
$\epsilon_{S, X}^{e \mu b s}$	2.25×10^{-5}	1.59×10^{-5}	2.24×10^{-5}	1.58×10^{-5}

TABLE III. Constraints on the dimensionless four-fermion coefficients $\epsilon_{A, X}^{l_{1} l_{2} q_{i} q_{j}}$ and $\epsilon_{V, X}^{l_{1} l_{2} q_{i} q_{j}}$ at the experimental ($\Lambda_{\text {exp }}$ for K and D meson decays and $\Lambda_{m_{b}}$ for B meson decays) and weak $\left(\Lambda_{W}\right)$ scale after the RGE evolution. The last two columns are the sensitivities, SO-at-a-time bounds; see Sec. V D. All bounds apply under permutations of the lepton and/or quark indices.

$\underline{\epsilon_{A, X}^{l_{1} l_{1} q_{i} q_{j}}}$	$\Lambda_{\text {exp }}$	Λ_{W}	$\mathrm{SO}, \Lambda_{\text {exp }}$	SO, Λ_{W}
$\epsilon_{A, X}^{e \mu d s}$	5.45×10^{-6}	5.45×10^{-6}	3.01×10^{-7}	3.01×10^{-7}
$\epsilon_{A, X}^{e \mu c u}$	4.51×10^{-2}	4.52×10^{-2}	2.04×10^{-3}	2.04×10^{-3}
$\epsilon_{A, X}^{e \mu b d}$	1.48×10^{-2}	1.48×10^{-2}	3.23×10^{-4}	3.23×10^{-4}
$\epsilon_{A, X}^{e \mu b s}$	1.11×10^{-2}	1.11×10^{-2}	5.27×10^{-4}	5.27×10^{-4}
$\underline{\epsilon_{V, X}^{l_{1} l_{1} q_{i} q_{j}}}$	$\Lambda_{\text {exp }}$	Λ_{W}	SO, $\Lambda_{\text {exp }}$	SO, Λ_{W}
$\epsilon_{V, X}^{\text {ends }}$	4.94×10^{-6}	4.94×10^{-6}	2.93×10^{-6}	2.93×10^{-6}
$\epsilon_{V, X}^{\text {ercu }}$	1.45×10^{-3}	1.64×10^{-3}	1.39×10^{-3}	1.39×10^{-3}
$\epsilon_{V, X}^{e \mu b d}$	1.49×10^{-5}	1.03×10^{-4}	1.48×10^{-5}	1.48×10^{-5}
$\stackrel{\epsilon_{V, X}^{\text {eubs }}}{ }$	2.56×10^{-5}	8.05×10^{-5}	2.54×10^{-5}	2.54×10^{-5}

TABLE IV. Constraints on the dimensionless four-fermion coefficients $\epsilon_{T_{X}}^{l_{1} l_{2} q_{i} q_{j}}$ at the experimental ($\Lambda_{\text {exp }}$ for K and D meson decays and $\Lambda_{m_{b}}$ for B meson decays) and weak (Λ_{W}) scale after the RGE evolution. The last two columns are the sensitivities, or SO-at-a-time bounds; see Sec. V D. All bounds apply under permutations of the lepton and/or quark indices.

$\Lambda_{l_{X}}^{l_{1} l_{2} q_{j}}$	$\Lambda_{\exp }$	Λ_{W}	$\mathrm{SO}, \Lambda_{\exp }$	SO, Λ_{W}
$\epsilon_{T_{X}}^{e \mu d s}$	1.23×10^{-5}	1.45×10^{-5}	8.76×10^{-6}	1.03×10^{-5}
$\epsilon_{T_{X}}^{e \mu c u}$	2.01×10^{-3}	2.37×10^{-3}	1.93×10^{-3}	2.28×10^{-3}
$\epsilon_{T_{X}}^{e \mu}$	2.01×10^{-5}	2.26×10^{-5}	2×10^{-5}	2.25×10^{-5}
$\epsilon_{T_{X}}^{e \mu b d}$	2.010^{-5}			
$\epsilon_{T_{X}}^{e \mu b s}$	3.89×10^{-5}	4.37×10^{-5}	3.87×10^{-5}	4.35×10^{-5}

V. RENORMALIZATION GROUP EQUATIONS

In this section, we review the evolution of operator coefficients from the experimental scale ($\Lambda_{\text {exp }} \sim 2 \mathrm{GeV}$) up to the weak scale $\left(\Lambda_{W} \sim 80 \mathrm{GeV}\right)$ via the one-loop RGEs of QED and QCD $[46,47]$. We only consider the QED \times QCD-invariant operators of Eq. (4). The matching onto the SMEFT basis [62] and the running above m_{W} [63] will be studied at a later date.

A. Anomalous dimensions for meson decays

Figure 1 illustrates some of the one-loop diagrams that renormalize our operators below the weak scale. Operator mixing is induced by photon loops, whereas the QCD corrections only rescale the S, P and T operator coefficients. After including one-loop corrections in the $\overline{\mathrm{MS}}$ scheme, the operator coefficients will run with scale μ according to [46]

$$
\begin{equation*}
\mu \frac{\partial}{\partial \mu} \vec{\epsilon}=\frac{\alpha_{e}}{4 \pi} \vec{\epsilon} \Gamma^{e}+\frac{\alpha_{s}}{4 \pi} \vec{\epsilon} \Gamma^{s} \tag{12}
\end{equation*}
$$

where Γ^{e} and Γ^{s} are the QED and QCD anomalous dimension matrices and $\vec{\epsilon}$ is a row vector that contains the operator coefficients of Eq. (5). In this work, we use the approximate analytic solution [64] of Eq. (12) to compute the running and mixing of the coefficients between $\Lambda_{\text {exp }}$ and Λ_{W} :

$$
\begin{equation*}
\epsilon_{I}\left(\Lambda_{\exp }\right)=\epsilon_{J}\left(\Lambda_{W}\right) \lambda^{a_{J}}\left(\delta_{J I}-\frac{\alpha_{e} \tilde{\Gamma}_{J I}^{e}}{4 \pi} \log \frac{\Lambda_{W}}{\Lambda_{\exp }}\right) \tag{13}
\end{equation*}
$$

where I and J represent the super- and subscripts which label operator coefficients, λ encodes the QCD corrections, and $\tilde{\Gamma}_{J I}^{e}$ is the "QCD-corrected" one-loop, anomalous dimension matrix for QED $[65,66]$. The elements of $\tilde{\Gamma}_{J I}^{e}$ are defined as
$\tilde{\Gamma}_{J I}^{e}=\Gamma_{J I}^{e} f_{J I}, \quad f_{J I}=\frac{1}{1+a_{J}-a_{I}} \frac{\lambda^{a_{I}-a_{J}}-\lambda}{1-\lambda}$,
$\Gamma^{e}=\left[\begin{array}{cc}\Gamma_{\mathrm{SPT}} & 0 \\ 0 & \Gamma_{V A}\end{array}\right]$

FIG. 1. Examples of one-loop gauge vertex corrections to four-fermion operators. The wave-function renormalization diagrams are missing.
where there is no sum on $I, J, \lambda=\frac{\alpha_{s}\left(\Lambda_{w}\right)}{\alpha_{s}\left(\Lambda_{\text {exp }}\right)}$, and $a_{J}=\frac{\Gamma_{J}^{s}}{2 \beta_{0}}=$ $\left\{-\frac{12}{23},-\frac{12}{23}, \frac{4}{23}\right\}$ for $J \in\{S, P, T\}$. The QED anomalous dimensions are

$$
\begin{align*}
& \Gamma_{\text {SPT }}=\left[\begin{array}{ccc}
\gamma_{P P}^{l_{1} l_{2} q_{i} q_{j}} & 0 & \gamma_{P T}^{l_{1} 2 q_{i} q_{j}} \\
0 & \gamma_{S S}^{l_{1} l_{i} q_{i} q_{j}} & \gamma_{S T}^{l_{1} l_{i} q_{i} q_{j}} \\
\gamma_{T P}^{l_{1} l_{2} q_{i} q_{j}} & \gamma_{T S}^{1} l_{1} l_{i} q_{i} q_{j} & \gamma_{T T}^{l_{1} l_{2} q_{i} q_{j}}
\end{array}\right], \\
& \Gamma_{V A}=\left[\begin{array}{cc}
\gamma_{A A}^{l_{1} l_{i} q_{i} q_{j}} & \gamma_{A V}^{l_{1} l_{2} q_{i} q_{j}} \\
\gamma_{V A}^{l_{1}} \\
\gamma_{V A}^{1} q_{i} q_{j} & \gamma_{V V}^{l_{1} l_{2} q_{i} q_{j}}
\end{array}\right] \tag{15}
\end{align*}
$$

where the matrix elements in $\Gamma_{S P T}$ and $\Gamma_{V A}$ are defined in Sec. V.

Combining the first and second diagrams of Fig. 1 with the wave function diagrams renormalize the scalars and pseudoscalars, while the last four diagrams mix the tensors to the scalars and pseudoscalars:

$$
\begin{align*}
& \gamma_{S S}^{q, q}=\begin{array}{c|cc}
& \epsilon_{S, L}^{q q} & \epsilon_{S, R}^{q q} \\
\epsilon_{S, L}^{q q} & -6\left(1+Q_{q}^{2}\right) & 0 \\
\epsilon_{S, R}^{q q} & 0 & -6\left(1+Q_{q}^{2}\right)
\end{array} \\
& \gamma_{T S}^{q, q}=\begin{array}{c|cc}
& \epsilon_{S, L}^{q q} & \epsilon_{S, R}^{q q} \\
\hline \epsilon_{T, L}^{q q} & 48 Q_{q} & 0 \\
\epsilon_{T, R}^{q q} & 0 & 48 Q_{q}
\end{array} \tag{16}\\
& \gamma_{P P}^{q, q}=\begin{array}{c|cc}
& \epsilon_{P, L}^{q q} & \epsilon_{P, R}^{q q} \\
\hline \epsilon_{P, L}^{q q} & -6\left(1+Q_{q}^{2}\right) & 0 \\
\epsilon_{P, R}^{q q} & 0 & -6\left(1+Q_{q}^{2}\right)
\end{array} \\
& \gamma_{T P}^{q, q}=\begin{array}{c|cc}
& \epsilon_{P, L}^{q q} & \epsilon_{P, R}^{q q} \\
\epsilon_{T, L}^{q q} & -48 Q_{q} & 0 \\
\epsilon_{T, R}^{q q} & 0 & 48 Q_{q}
\end{array} \tag{17}
\end{align*}
$$

Similarly, the last four diagrams mix the (pseudo)scalars into the tensors. Only the wave-function diagrams renormalize the tensors, because for the first and second diagrams $\gamma^{\mu} \sigma \gamma_{\mu}=0$. We obtain

$$
\gamma_{T T}^{q, q}=\begin{array}{c|cc}
& \epsilon_{T, L}^{q q} & \epsilon_{T, R}^{q q} \\
\hline \epsilon_{T, L}^{q q} & 2\left(1+Q_{q}^{2}\right) & 0 \tag{18}\\
\epsilon_{T, R}^{q q} & 0 & 2\left(1+Q_{q}^{2}\right) \\
& & \epsilon_{T, L}^{q q} \\
\gamma_{S(P) T}^{q, q}= & \epsilon_{T, R}^{q q} \\
\hline \epsilon_{S(P), L}^{q q} & (-) 2 Q_{q} & 0 \\
\epsilon_{S(P), R}^{q q} & 0 & 2 Q_{q}
\end{array}
$$

Finally, for the vectors and axial vectors, there is no running, but the last four diagrams contribute to the mixing of vector and axial coefficients

$$
\gamma_{A V}^{q, q}=\begin{array}{c|cc}
& \epsilon_{V, L}^{q q} & \epsilon_{V, R}^{q q} \\
\hline \epsilon_{A, L}^{q q} & 12 Q_{q} & 0 \tag{19}\\
\epsilon_{A, R}^{q q} & 0 & -12 Q_{q} \\
& \epsilon_{A, L}^{q q} & \epsilon_{A, R}^{q q} \\
\gamma_{V A}^{q, q}= & \begin{array}{c}
V, L \\
\epsilon_{V, L}^{q q} \\
\\
\\
\epsilon_{V, R}^{q q}
\end{array} & 12 Q_{q} \\
0 & 0 \\
\hline 12 Q_{q}
\end{array}
$$

B. RGEs of operator coefficients

In this section we compute the evolution of the bounds from $\Lambda_{\text {exp }}$ to Λ_{W}. In the previous section, we found a mixing between pseudoscalar and tensor coefficients, and between vector and axial coefficients. Thus, the coefficients that contributed only to the leptonic (semileptonic) decays at $\Lambda_{\text {exp }}$ will also contribute to the semileptonic (leptonic) decays at Λ_{W} via the mixing.

The matrices describing the evolution of the coefficients from $\Lambda_{\text {exp }}$ to Λ_{W} for all the decays were obtained with Eq. (13) and are given in Appendix C.

C. Evolution of the bounds

In order to constrain the coefficients at Λ_{W}, the constraints needs to be expressed in terms of coefficients at Λ_{W}. However, the mixing of the pseudoscalar (axial) into the tensor (vector), and vice versa, implies that leptonic and semileptonic branching ratios can both depend on any of the ten coefficients, which we arrange in a vector as $\overrightarrow{\epsilon^{\prime}}=\left(\epsilon_{P, L}, \epsilon_{A, L}, \epsilon_{P, R}, \epsilon_{A, R}, \epsilon_{S, L}, \epsilon_{V, L}, \epsilon_{T_{L}}, \epsilon_{S, R}, \epsilon_{V, R}, \epsilon_{T_{R}}\right)_{\Lambda_{W}}$. The 10×10 matrix we need to invert to compute the bounds at Λ_{W} is now written as

$$
\left(M^{\prime}\right)^{-1}=\mathcal{R}^{T}\left(\begin{array}{ll}
M_{2}^{-1} & 0_{4 \times 6} \tag{20}\\
0_{6 \times 4} & M_{3}^{-1}
\end{array}\right) \mathcal{R}
$$

where M_{2}^{-1} and M_{3}^{-1} are the 4×4 and 6×6 matrices defined in Appendix D that we inverted to obtain the bounds at $\Lambda_{\exp }$ (see Sec. IV) and \mathcal{R} has the form of the matrices defined in Eqs. (C1), (C2) and (C3). Finally, Eq. (11) is written in the new basis as

$$
\begin{equation*}
\vec{\epsilon}^{T}\left(M^{\prime}\right)^{-1} \vec{\epsilon}^{\prime}=1 \tag{21}
\end{equation*}
$$

where $\vec{\epsilon}^{\prime}$ is the vector of coefficients at $\Lambda_{W},\left(M^{\prime}\right)^{-1}$ is the matrix in Eq. (20) and the superscript T means matrix transposition. All the covariance matrices at Λ_{W} can be found in Appendix E. In Tables II-IV we summarize all the bounds on the coefficients at $\Lambda_{\exp }$ and Λ_{W}.

In the leptonic decays, the evolution of the bounds on the pseudoscalar coefficients between $\Lambda_{\exp }$ and Λ_{W} is the most important effect of the RGEs as shown in the first two columns of the left panel of Table II. As can be seen in Eqs. (C1), (C2) or (C3), the running of the (pseudo)scalar coefficients is $\sim 1.6(1.4)$, which means that if we neglect the mixing of the tensor into (pseudo)scalar coefficients, the bounds on ϵ_{S} and ϵ_{P} will be better at Λ_{W} for all the decays we considered. However, the large mixing of the tensor coefficients into the (pseudo)scalar ones [see Eqs. (16), (17) and (C1)-(C3)] weaken the bounds on pseudoscalar coefficients at Λ_{W} for the kaon decay. This is due to the fact that the bounds on $\epsilon_{T}^{\text {euds }}$ (see the first two columns of Table IV) are much weaker than the bounds on $\epsilon_{P}^{e \mu d s}$ at $\Lambda_{\text {exp }}$ (see the first two columns of the left panel of Table II). Thus, the mixing of ϵ_{T} into ϵ_{P} will lead to weaker bounds on ϵ_{P} at Λ_{W} for the kaon decay.

For the D, B and B_{s} meson decays, the bounds on ϵ_{P} are a bit closer to the bound on ϵ_{T} at $\Lambda_{\text {exp }}$. Even with the large mixing of the tensor into the pseudoscalar coefficients, the bounds on $\epsilon_{P}^{e \mu c u}, \epsilon_{P}^{e \mu b d}$ and $\epsilon_{P}^{e \mu b s}$ will be slightly better at Λ_{W} because the running will be larger than the mixing.

In the semileptonic decays, there is also a mixing between scalar and tensor coefficients, but the bounds on scalar coefficients at Λ_{W} increase a bit because, similarly to $\epsilon_{P}^{e \mu c u}, \epsilon_{P}^{e \mu b d}$ and $\epsilon_{P}^{e \mu b s}$, the bounds on all the scalar coefficients (first two columns of the right panel of Table II) are close to the bounds on the tensor coefficients at $\Lambda_{\text {exp }}$. The running of the scalars will be stronger than the mixing of the tensors into the scalars, and thus, the bounds on ϵ_{S} are better at Λ_{W} for all the decays.

For the axial and vector coefficients, there is no running and the mixing is small. The bounds on $\epsilon_{A}^{e \mu d s}$ and $\epsilon_{V}^{e \mu d s}$ at $\Lambda_{\text {exp }}$ are very close (see Table III); this explains why there is no evolution of these bounds at Λ_{W}. However, for the D, B and B_{s} decays, the bounds on ϵ_{A} are much weaker than the bounds on ϵ_{V} at $\Lambda_{\text {exp }}$, especially for the B and B_{s} decays. Thus, the bounds on $\epsilon_{A}^{e \mu c u}, \epsilon_{A}^{e \mu b d}$ and $\epsilon_{A}^{e \mu b s}$ do not evolve significantly at Λ_{W}, but the mixing of the axial into vector coefficients will lead to weaker bounds on $\epsilon_{V}^{e \mu c u}, \epsilon_{V}^{e \mu b d}$ and $\epsilon_{V}^{e \mu b s}$ at Λ_{W} as shown in the first two columns of the two panels of Table III.

Finally, the running of tensor coefficients is tiny, and the mixing of the (pseudo)scalar coefficients into the tensor ones is small. Thus, the evolution of the bounds is small for the tensor coefficients (first two columns of Table IV) similarly to the bounds on vector and axial coefficients in the kaon decay (first two columns of Table III). Finally, the matching at Λ_{W} along with the evolution of the bounds between Λ_{W} and $\Lambda_{N P}$ will be given in a future publication [67].

D. Single operator approximation

We also computed the sensitivities of the various decays to the coefficients at $\Lambda_{\text {exp }}$, and these are given in the third columns of Tables II to IV. The sensitivity is the value of the coefficient below which it could not have been observed, and is calculated as a "single operator" (SO)-at-a-time bound, that is by allowing only one nonzero coefficient at a time in the branching ratio [see Eqs. (6) and (9)]. This is different from setting bounds on coefficients (first two columns of Tables II to IV), which are obtained with all coefficients nonzero, and exclude the parameter space outside the allowed range. It is clear that the sensitivities are sometimes an excellent approximation to the bounds, and sometimes differ by orders of magnitude.

To compute the evolution of the sensitivities of the decays to the coefficients at Λ_{W} (given in the last columns of Tables II-IV), we still kept only one nonzero coefficient at $\Lambda_{\text {exp }}$ and considered only the running of the coefficients [the diagonal terms in Eqs. (C1)-(C3)]. For example, computing the sensitivity of the leptonic kaon decay to a pseudoscalar coefficient at Λ_{W} in the SO approximation requires multiplying the first term in Eq. (D3) by the first (or third) diagonal term squared in Eq. (C1). Then,
inverting the product and taking the square root will give the sensitivity of the decay to the coefficient at Λ_{W}.

E. Updating the bounds

In future years, the experimental data on LFV meson decays could improve, so in this section, we consider how to update our bounds, without inverting large matrices.

The bounds on coefficients at $\Lambda_{\text {exp }}$ obtained in this work are of the form $|\epsilon|<\sqrt{\mathrm{BR}^{\mathrm{exp}}} \times$ constant. Thus, all the bounds at $\Lambda_{\text {exp }}$ given in Tables II-IV can be updated by rescaling by $\sqrt{\left(\mathrm{BR}_{\text {new }}^{\text {exp }}\right) /\left(\mathrm{BR}_{\text {old }}^{\text {exp }}\right)}$ when the data improves. However, in principle, the 10×10 matrix of Eq. (20) must then be inverted to obtain the bounds at Λ_{W}. So we now describe approximations that allow to obtain the bounds at Λ_{W} with manageable matrices.

For the semileptonic decay, the bounds at $\Lambda_{\text {exp }}$ can be obtained by neglecting all the interference terms between the scalar, vector and tensor coefficients of either chirality [see Eq. (9)]. The 6×6 matrix in Eq. (D2) then becomes diagonal and easy to invert. This approximation will give bounds at $\Lambda_{\text {exp }}$ on $\epsilon_{S, X}, \epsilon_{V, X}$ and $\epsilon_{T, X}$ close to those obtained in the first columns of Tables II-IV (which include the interference terms).

In the leptonic decay [Eq. (6)], a reasonable approximation for the bounds at $\Lambda_{\text {exp }}$ is to keep the interference between axial and pseudoscalar coefficients of opposite chirality [with $m_{2}=m_{\mu}$ in Eq. (6)]. The other interference terms, proportional to $m_{1}=m_{e}$, can be neglected. Thus, bounds on ϵ_{A} and ϵ_{P} at $\Lambda_{\text {exp }}$, which are a reasonable approximation to the first columns of Tables II and III, can be obtained by inverting a 2×2 matrix in the basis $\left(\epsilon_{P, X}, \epsilon_{A, Y}\right)$ where $X \in L, R$ and $Y \in R, L$, instead of the 4×4 matrix in Eq. (D1).

To obtain bounds at Λ_{W}, it is necessary to keep the mixing between $\epsilon_{S}, \epsilon_{P}, \epsilon_{T}$, and between ϵ_{V} and ϵ_{A}. Then, the bounds on $\epsilon_{S}, \epsilon_{P}, \epsilon_{T}, \epsilon_{V}$ and ϵ_{A} at Λ_{W} can be obtained by considering $M^{1^{\prime}}$ in Eq. (20) as a product of 5×5 matrices in the basis ($\epsilon_{P, X}, \epsilon_{S, X}, \epsilon_{T, X}, \epsilon_{V, Y}, \epsilon_{A, Y}$) where X and Y are the chiralities. However, $\epsilon_{S}, \epsilon_{P}$ and ϵ_{T} must have the same chirality, but different from the chirality of ϵ_{V} and ϵ_{A} in order to take into account the mixing induced by the RGEs, that occurs only for coefficients of the same chirality [see Eqs. (13) and (C1)-(C3)]. This is due to the fact that it is necessary to keep the interference between axial and pseudoscalar coefficients of different chiralities to compute the bounds on $\epsilon_{P, X}$ and $\epsilon_{A, Y}$.

VI. CONCLUSION

In this paper, we considered operators which simultaneously change lepton and quark flavor, and obtain constraints on the coefficients using available data on (semi)leptonic pseudoscalar meson decays. Section II listed the dimension-six, two lepton-two quark operators and their associated coefficients at the experimental scale
$\Lambda_{\text {exp. }}$. Scalar, pseudoscalar, vector, axial and tensor operators were included. The leptonic and semileptonic branching ratios of pseudoscalar mesons, as a function of the operator coefficients, were given in Sec. III. We found that tensor operators do not contribute to the leptonic decays but only to the semileptonic decays, in which the interference between $\epsilon_{S, L}\left(\epsilon_{S, R}\right)$ and $\epsilon_{T_{R}}\left(\epsilon_{T_{L}}\right)$ vanishes. The constraints on operator coefficients, evaluated at the experimental scale, are given in Tables II-IV and discussed in Sec. IV. The bounds are obtained via the appropriate covariance matrices, which allows to take into account the interferences among operators [see Eqs. (6), (9), (D1) and (D2)]. The matrices are given in Appendix B. Section V gave the renormalization group evolution of the coefficients from the experimental to the weak scale Λ_{W}, and the formalism used to compute the covariances matrices at Λ_{W}. The weak-scale constraints on the coefficients are given in Tables II-IV. The large mixing of tensor coefficients into (pseudo)scalar coefficients has important consequences on the evolution of the bounds on scalar and pseudoscalar coefficients. Indeed, in the case of the kaon decay, the experimental-scale bounds on tensor coefficients are significantly weaker than those on pseudoscalars. As a result, the pseudoscalar bounds are weaker at Λ_{W}, compared to the bounds at $\Lambda_{\text {exp }}$. The bounds on scalar coefficients at Λ_{W} are slightly stronger than at $\Lambda_{\text {exp }}$. There is no running for the vector and axial coefficients, due to the fact that we considered quark-flavor-changing operators, and the mixing is small, but the bounds on axial coefficients are much weaker than the bounds on vector coefficients for the D, B and B_{s} decays. This leads to much weaker bounds on vector coefficients at Λ_{W}. Similarly, the running and mixing of tensor coefficients are small. As a result, the bounds on the axial and tensor coefficients do not evolve significantly between the experimental and weak scales.

We conclude by noting the importance of including interferences among operators in computing the bounds on their coefficients. As shown in Sec. V D, the sensitivities of the decays to ϵ_{P} and ϵ_{A} obtained at $\Lambda_{\text {exp }}$ and to $\epsilon_{P}, \epsilon_{A}$ and ϵ_{V} at Λ_{W} in the single-operator approximation are better by several orders of magnitude compared to the bounds obtained by keeping the interferences among operators. We found that the renormalization group running between the experimental and weak scales has an important effect on the evolution of the bounds, especially the large mixing of the tensor (axial) into the pseudoscalar (vector), which lead to weaker bounds on pseudoscalar (vector) coefficients at Λ_{W} for the kaon (D, B and B_{s}) decay.

APPENDIX A: CONSTANTS

In this appendix, we give all the constants used in our calculations:

P_{1}	K_{L}^{0}	K^{+}	D^{0}	D^{+}	D_{S}^{+}	B^{0}	B_{S}^{0}	B^{+}
$f_{P_{1}}(\mathrm{MeV})$	$155.72[68,69]$	$155.6[68,69]$	$211.5[68,70]$	$212.6[68,70]$	$249.8[70]$	$190.9[68]$	$230.7[70]$	$187.1[68]$
$f_{+}^{P_{1} / \pi}(0)$	$0.966[69]$	$0.966[69]$	$0.666[69]$	$0.666[69]$	$0.666[69]$	$0.25[71]$	$0.25[71]$	$0.25[71]$
$f_{+}^{P_{1} K}(0)$	\ldots	\ldots	$0.747[69]$	$0.747[69]$	$0.747[69]$	$0.31[71]$	$0.31[71]$	$0.31[71]$
λ_{+}	$2.82 \times 10^{-2}[3]$	$2.97 \times 10^{-2}[3]$	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
λ_{0}	$1.8 \times 10^{-2}[3]$	$1.95 \times 10^{-2}[3]$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots

All the masses and lifetimes can be found in Ref. [3].

APPENDIX B: KINEMATICS AND FORM FACTORS FOR SEMILEPTONIC DECAYS

In this appendix, we give the form factor and the detailed scalar product of Eq. (9).
The q^{2} dependence of the form factors for the kaon is given by [50]

$$
\begin{equation*}
f_{+, 0}^{K \pi}\left(q^{2}\right)=f_{+}^{K \pi}(0)\left(1+\lambda_{+, 0} \frac{q^{2}}{M_{\pi}^{2}}\right), \quad f_{-}^{K \pi}\left(q^{2}\right)=f_{+}^{K \pi}(0)\left(\lambda_{0}-\lambda_{+}\right) \frac{M_{K^{+}}^{2}-M_{\pi^{+}}^{2}}{M_{\pi^{+}}^{2}} \tag{B1}
\end{equation*}
$$

and for the D and B mesons they are given by $[51,52]$

$$
\begin{equation*}
f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{1-q^{2} / m_{1^{-}}^{2}}, \quad f_{0}\left(q^{2}\right)=\frac{f_{0}(0)}{1-q^{2} / m_{0^{+}}^{2}}, \quad f_{-}\left(q^{2}\right)=\left(f_{0}\left(q^{2}\right)-f_{+}\left(q^{2}\right)\right) \frac{M^{2}-m_{3}^{2}}{q^{2}} \tag{B2}
\end{equation*}
$$

where $\lambda_{+, 0}$ are constants, and $m_{J^{P}}$ is the mass of the lightest resonance with the right quantum numbers to mediate the transition $\left(D_{s}^{+}\right.$and D_{s}^{*+} for example). We took $q^{2}=q_{\max }^{2}=\left(M-m_{3}\right)^{2}$ to compute the form factors f_{+}, f_{-}and f_{0}. All these values can be found in Appendix A.

Finally, the scalar products in Eq. (9) can be written as functions of the two kinematical variables q^{2} and $\cos \theta[3,61]$ in the phase space integrals of Eq. (8):
$p_{1} \cdot p_{2}=\frac{q^{2}-m_{1}^{2}-m_{2}^{2}}{2}, \quad p_{1} \cdot q=\frac{q^{2}+m_{1}^{2}-m_{2}^{2}}{2}, \quad p_{2} \cdot q=\frac{q^{2}+m_{2}^{2}-m_{1}^{2}}{2}$,
$p_{3} \cdot q=\frac{M^{2}-m_{3}^{2}-q^{2}}{2}, \quad p_{1} \cdot p_{3}=p_{3} \cdot q-p_{2} \cdot p_{3}, \quad p_{1} \cdot P=p_{1} \cdot q+2 p_{1} \cdot p_{3}, \quad p_{2} \cdot P=p_{2} \cdot q+2 p_{2} \cdot p_{3}$,
$p_{2} \cdot p_{3}=\frac{1}{4 q^{2}}\left(M^{2}-m_{3}^{2}-q^{2}\right)\left(q^{2}+m_{2}^{2}-m_{1}^{2}\right)+\frac{1}{4 q^{2}} \sqrt{\lambda\left(M^{2}, m_{3}^{2}, q^{2}\right)} \sqrt{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)} \cos \theta$,
$k . p_{3}=\frac{M^{2}+m_{3}^{2}-q^{2}}{2}, \quad P . q=M^{2}-m_{3}^{2}, \quad P^{2}=2 M^{2}+2 m_{3}-q^{2}$.

APPENDIX C: RGEs

In this appendix, we give the 10×10 matrices obtained with Eq. (13) we used to obtain the bounds at Λ_{W} [with Eq. (20)].
For the decay of light quarks (kaon and D meson decays), the experimental scale is taken as 2 GeV because most of the time, it is the renormalization scale chosen to obtain the lattice form factors.

The evolution of the coefficients ($\epsilon^{e \mu d s}$) involved in the kaon decays is given by

$$
\begin{align*}
& \left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right)_{\Lambda_{\exp }}=\left(\begin{array}{cccccccccc}
1.64 & 0 & 0 & 0 & 0 & 0 & -0.0429 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0.00857 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.64 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0429 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -0.00857 & 0 \\
0 & 0 & 0 & 0 & 1.64 & 0 & 0.0429 & 0 & 0 & 0 \\
0 & 0.00857 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-0.00162 & 0 & 0 & 0 & 0.00162 & 0 & 0.849 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.64 & 0 & 0.0429 \\
0 & 0 & 0 & -0.00857 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0.00162 & 0 & 0 & 0 & 0 & 0.00162 & 0 & 0.849
\end{array}\right) \\
& \times\left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right)_{\Lambda_{W}} \tag{C1}
\end{align*}
$$

For the D meson decays, the evolution of the coefficients $\left(\epsilon^{e \mu c u}\right)$ is given by

$$
\begin{align*}
& \left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right)_{\Lambda_{\exp }}=\left(\begin{array}{cccccccccc}
1.64 & 0 & 0 & 0 & 0 & 0 & 0.0857 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -0.0171 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.64 & 0 & 0 & 0 & 0 & 0 & 0 & -0.0857 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0.0171 & 0 \\
0 & 0 & 0 & 0 & 1.64 & 0 & -0.0857 & 0 & 0 & 0 \\
0 & -0.0171 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0.00325 & 0 & 0 & 0 & -0.00325 & 0 & 0.847 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.64 & 0 & -0.0857 \\
0 & 0 & 0 & 0.0171 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -0.00325 & 0 & 0 & 0 & 0 & -0.00325 & 0 & 0.847
\end{array}\right) \\
& \times\left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right) . \tag{C2}
\end{align*}
$$

In the B and B_{s} meson decays, the reference scale is the b quark mass ($\Lambda_{m_{b}} \sim 4.18 \mathrm{GeV}$). Thus, the evolution of the coefficients ($\epsilon^{e \mu b d}$ and $\epsilon^{e \mu b s}$) is slightly smaller.

In fact, in Eq. (13), the part with the anomalous dimension that gives the matrix element in Eq. (C1) is multiplied by a factor $\log \left(\frac{\Lambda_{W}}{\Lambda_{m_{b}}}\right) / \log \left(\frac{\Lambda_{W}}{\Lambda_{\text {exp }}}\right) \sim 0.8$. Moreover, the strong coupling constant at $\Lambda_{m_{b}}$ will also be smaller $\left[\alpha_{s}\left(\Lambda_{m_{b}}\right) \sim 0.23\right.$ and $\left.\alpha_{s}\left(\Lambda_{\text {exp }}\right) \sim 0.3\right]$. Thus, for the B and B_{s} meson decays, the evolution of the coefficients ($\epsilon^{e \mu b d}$ and $\left.\epsilon^{e \mu b s}\right)$ is given by

$$
\begin{align*}
& \left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right)_{\Lambda_{\text {exp }}}\left(\begin{array}{ccccccccc}
1.42 & 0 & 0 & 0 & 0 & 0 & -0.0317 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0.00686 & 0 & 0 & 0 \\
0 & 0 & 1.42 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -0.00686 \\
0 & 0 & 0 & 0 & 1.42 & 0 & 0.0317 & 0 & 0 \\
0 & 0.00686 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
-0.00126 & 0 & 0 & 0 & 0.00126 & 0 & 0.890 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.42 & 0 \\
0 & 0 & 0 & -0.00686 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0.00126 & 0 & 0 & 0 & 0 & 0.00126 & 0 \\
0
\end{array}\right) \\
& \times\left(\begin{array}{c}
\epsilon_{P, L} \\
\epsilon_{A, L} \\
\epsilon_{P, R} \\
\epsilon_{A, R} \\
\epsilon_{S, L} \\
\epsilon_{V, L} \\
\epsilon_{T_{L}} \\
\epsilon_{S, R} \\
\epsilon_{V, R} \\
\epsilon_{T_{R}}
\end{array}\right)_{\Lambda_{W}} . \tag{C3}
\end{align*}
$$

APPENDIX D: COVARIANCE MATRIX

In this appendix, we give details of the formalism introduced in Eq. (11) of Sec. IV. The matrices in the basis $\left(\epsilon_{P, L}, \epsilon_{A, L}, \epsilon_{P, R}, \epsilon_{A, R}\right)$ and $\left(\epsilon_{S, L}, \epsilon_{V, L}, \epsilon_{T_{L}}, \epsilon_{S, R}, \epsilon_{V, R}, \epsilon_{T_{R}}\right)$ are written as

$$
\begin{align*}
& M_{2}^{-1}=\frac{1}{\mathrm{BR}} 2 \mathrm{\exp }\left[\begin{array}{cccc}
S P_{+}^{\prime} & \frac{1}{2} S P_{+} V A_{+}^{\prime} & \frac{1}{2} S P_{+} S P_{-}^{\prime} & \frac{1}{2} S P_{+} V A_{-}^{\prime} \\
\frac{1}{2} S P_{+} V A_{+}^{\prime} & V A_{-}^{\prime} & \frac{1}{2} S P_{-} V A_{+}^{\prime} & \frac{1}{2} V A_{+} V A_{-}^{\prime} \\
\frac{1}{2} S P_{+} S P_{-}^{\prime} & \frac{1}{2} S P_{-} V A_{+}^{\prime} & S P_{-}^{\prime} & \frac{1}{2} S P_{-} V A_{-}^{\prime} \\
\frac{1}{2} S P_{+} V A_{-}^{\prime} & \frac{1}{2} V A_{+} V A_{-}^{\prime} & \frac{1}{2} S P_{-} V A_{-}^{\prime} & V A_{+}^{\prime}
\end{array}\right], \tag{D1}\\
& M_{3}^{-1}=\frac{1}{\mathrm{BR}} \mathrm{exp}^{\operatorname{ex}}\left[\begin{array}{cccccc}
S P_{+} & \frac{1}{2} S P_{+} V A_{-} & \frac{1}{2} S P_{+} T_{+} & \frac{1}{2} S P_{+} S P_{-} & \frac{1}{2} S P_{+} V A_{+} & \frac{1}{2} S P_{+} T_{-} \\
\frac{1}{2} S P_{+} V A_{-} & V A_{-} & \frac{1}{2} V A_{-} T_{+} & \frac{1}{2} S P_{-} V A_{-} & \frac{1}{2} V A_{+} V A_{-} & \frac{1}{2} V A_{-} T_{-} \\
\frac{1}{2} S P_{+} T_{+} & \frac{1}{2} V A_{-} T_{+} & T_{+} & \frac{1}{2} S P_{-} T_{+} & \frac{1}{2} V A_{+} T_{+} & \frac{1}{2} T_{+} T_{-} \\
\frac{1}{2} S P_{+} S P_{-} & \frac{1}{2} S P_{-} V A_{-} & \frac{1}{2} S P_{-} T_{+} & S P_{-} & \frac{1}{2} S P_{-} V A_{+} & \frac{1}{2} S P_{-} T_{-} \\
\frac{1}{2} S P_{+} V A_{+} & \frac{1}{2} V A_{+} V A_{-} & \frac{1}{2} V A_{+} T_{+} & \frac{1}{2} S P_{-} V A_{+} & V A_{+} & \frac{1}{2} V A_{+} T_{-} \\
\frac{1}{2} S P_{+} T_{-} & \frac{1}{2} V A_{-} T_{-} & \frac{1}{2} T_{+} T_{-} & \frac{1}{2} S P_{-} T_{-} & \frac{1}{2} V A_{+} T_{-} & T_{-}
\end{array}\right] . \tag{D2}
\end{align*}
$$

Inverting $M_{2}^{-1}\left(M_{3}^{-1}\right)$ will give the bounds on the coefficients involved in the leptonic (semileptonic) decays. Finally, note that for semileptonic kaon and D meson decays, the experimental upper limits are not the same for $\mu^{+} e^{-}$and $\mu^{-} e^{+}$in the final state. In this case, we sum the M_{3}^{-1} for each bound and then invert it to obtain the covariance matrix of Sec. IV. The matrix elements of Eq. (D1) are written as

$$
\begin{align*}
S P_{+}^{\prime} & =S P_{-}^{\prime}=C_{2 \text { body }} \tilde{P}^{\prime 2}\left(P_{1}^{2}-m_{i}^{2}-m_{j}^{2}\right), \\
V A_{-}^{\prime} & =V A_{+}^{\prime}=C_{2 \text { body }} \tilde{A}^{\prime 2}\left[\left(P_{1}^{2}-m_{i}^{2}-m_{j}^{2}\right)\left(m_{i}^{2}+m_{j}^{2}\right)+4 m_{i}^{2} m_{j}^{2}\right], \\
S P_{+} V A_{-}^{\prime} & =S P_{-} V A_{+}^{\prime}=-2 C_{2 \text { body }} \tilde{P}^{\prime} \tilde{A}^{\prime} m_{j}\left(P_{1}^{2}+m_{i}^{2}-m_{j}^{2}\right), \\
S P_{+} V A_{+}^{\prime} & =S P_{-} V A_{-}^{\prime}=2 C_{2 \text { body }} \tilde{P}^{\prime} \tilde{A}^{\prime} m_{i}\left(P_{1}^{2}+m_{j}^{2}-m_{i}^{2}\right), \\
S P_{+} S P_{-}^{\prime} & =-4 C_{2 \text { body }} \tilde{P}^{\prime 2} m_{j} m_{i}, \\
V A_{+} V A_{-}^{\prime} & =-4 C_{2 \text { body }} \tilde{A}^{\prime 2} P_{1}^{2} m_{j} m_{i}, \\
C_{2 \text { body }} & =\frac{\tau_{P_{1}} r^{*} G_{F}^{2}}{\pi P_{1}^{2}} . \tag{D3}
\end{align*}
$$

For simplicity we note that $d \phi=\int_{\left(m_{1}+m_{2}\right)^{2}}^{\left(M-m_{3}\right)^{2}} d q^{2} \int_{-1}^{1} d \cos \theta \frac{\sqrt{\lambda\left(M^{2}, m_{3}^{2}, q^{2}\right)} \sqrt{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{q^{2}}$ and the matrix elements of Eq. (D2) are written as

$$
\begin{align*}
S P_{+}= & S P_{-}=2 C_{3 \text { body }} \tilde{S}^{2}\left(p_{1} \cdot p_{2}\right) d \phi, \\
V A_{+}= & V A_{-}=\frac{1}{4} C_{3 \text { body }}\left[f_{+}^{2}\left(4\left(p_{1} \cdot P\right)\left(p_{2} \cdot P\right)-2 P^{2}\left(p_{1} \cdot p_{2}\right)\right)+f_{-}^{2}\left(4\left(p_{1} \cdot q\right)\left(p_{2} \cdot q\right)-2 q^{2}\left(p_{1} \cdot p_{2}\right)\right)\right. \\
& \left.+4 f_{+} f_{-}\left(\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)+\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)-\left(p_{1} \cdot p_{2}\right)(P \cdot q)\right)\right] d \phi, \\
T_{+}= & T_{-}=4 C_{3 \text { body }} \tilde{T}^{\prime 2}\left[4\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)(P \cdot q)+4\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)(P \cdot q)-2\left(p_{1} \cdot p_{2}\right)(P \cdot q)^{2}\right. \\
& \left.+2 P^{2} q^{2}\left(p_{1} \cdot p_{2}\right)-4 P^{2}\left(p_{1} \cdot q\right)\left(p_{2} \cdot q\right)-4 q^{2}\left(p_{1} \cdot P\right)\left(p_{2} \cdot P\right)\right] d \phi, \\
S P_{+} V A_{-}= & S P_{-} V A_{+}=-2 C_{3 \text { body }} \tilde{S}_{2} m_{2}\left[\left(f_{+}\left(p_{1} \cdot P\right)+f_{-}\left(p_{1} \cdot q\right)\right)\right] d \phi, \\
S P_{+} V A_{+}= & S P_{-} V A_{-}=2 C_{3 \text { body }} \tilde{S} m_{1}\left[\left(f_{+}\left(p_{2} \cdot P\right)+f_{-}\left(p_{2} \cdot q\right)\right)\right] d \phi, \\
S P_{+} S P_{-}= & -4 C_{3 \text { body }} \tilde{S}^{2} m_{1} m_{2} d \phi, \\
V A_{+} V A_{-}= & -C_{3 \text { body }} m_{1} m_{2}\left[f_{-}^{2} q^{2}+f_{+}^{2} P^{2}+2 f_{+} f f_{-}(P \cdot q)\right] d \phi, \\
T_{+} T_{-}= & 16 C_{3 \text { body }} \tilde{T}^{\prime 2} m_{1} m_{2}\left[(P \cdot q)^{2}-P^{2} q^{2}\right] d \phi, \\
S P_{+} T_{+}= & S P_{-} T_{-}=8 C_{3 \text { body }} \tilde{S} \tilde{T}\left[\left(\left(p_{1} \cdot P\right)\left(p_{2} \cdot q\right)-\left(p_{1} \cdot q\right)\left(p_{2} \cdot P\right)\right)\right] d \phi, \\
S P_{+} T_{-}= & S P_{-} T_{+}=0, \\
V A_{+} T_{-}= & V A_{-} T_{+}=4 C_{3 \mathrm{body}} \tilde{T}^{\prime} m_{2}\left[f_{+}\left(\left(p_{1} \cdot q\right) p^{2}-\left(P \cdot p_{1}\right)(P \cdot q)\right)+f_{-}\left(\left(p_{1} \cdot q\right)(P \cdot q)-\left(p_{1} \cdot P\right) q^{2}\right)\right] d \phi, \\
V A_{+} T_{+}= & V A_{-} T_{-}=4 C_{3 \mathrm{body}} \tilde{T}^{\prime} m_{1}\left[\left(f_{+}\left(\left(P^{2}\right)\left(p_{2} \cdot q\right)-\left(p_{2} \cdot P\right)(P \cdot q)\right)+f_{-}\left(\left(p_{2} \cdot q\right)(P \cdot q)-\left(q^{2}\right)\left(p_{2} \cdot P\right)\right)\right)\right] d \phi, \\
C_{3 \mathrm{body}}= & \frac{\tau_{P_{1}}}{\pi^{3}} \frac{8 G_{F}^{2}}{512 M^{3}} . \tag{D4}
\end{align*}
$$

APPENDIX E: COVARIANCE MATRICES AT $\boldsymbol{\Lambda}_{\text {exp }}$ AND $\boldsymbol{\Lambda}_{W}$

In this appendix, we give the covariance matrices at $\Lambda_{\exp }$ and Λ_{W}, after the RGE evolution.

1. Kaon decays

Using the upper limit of Table I, for the leptonic kaon decays, we compute the associated covariance matrix in the basis $\left(\epsilon_{P, L}^{e \mu d s}, \epsilon_{A, L}^{e \mu d s}, \epsilon_{P, R}^{e \mu d s} \epsilon_{A, R}^{e \mu d s}\right)$:

$$
\left(\begin{array}{cccc}
5.38 \times 10^{-14} & -2.33 \times 10^{-14} & -1.25 \times 10^{-15} & 1.26 \times 10^{-12} \tag{E1}\\
-2.33 \times 10^{-14} & 2.97 \times 10^{-11} & 1.26 \times 10^{-12} & -4.03 \times 10^{-13} \\
-1.25 \times 10^{-15} & 1.26 \times 10^{-12} & 5.38 \times 10^{-14} & -2.33 \times 10^{-14} \\
1.26 \times 10^{-12} & -4.03 \times 10^{-13} & -2.33 \times 10^{-14} & 2.97 \times 10^{-11}
\end{array}\right) .
$$

Then we use the bounds on the semileptonic kaon decay to compute the covariance matrix for the semileptonic decays in the basis $\left(\epsilon_{S, L}^{e \mu d s}, \epsilon_{V, L}^{e \mu d s}, \epsilon_{T_{L}}^{e \mu d s}, \epsilon_{S, R}^{e \mu d s}, \epsilon_{V, R}^{e \mu d s}, \epsilon_{T_{R}}^{e \mu d s}\right)$:

$$
\left(\begin{array}{cccccc}
1.09 \times 10^{-12} & 3.51 \times 10^{-12} & 6.11 \times 10^{-12} & 1.39 \times 10^{-14} & 1.96 \times 10^{-13} & 7.49 \times 10^{-13} \tag{E2}\\
3.51 \times 10^{-12} & 2.44 \times 10^{-11} & 4.26 \times 10^{-11} & 1.96 \times 10^{-13} & 2.10 \times 10^{-12} & 6.50 \times 10^{-12} \\
6.11 \times 10^{-12} & 4.26 \times 10^{-11} & 1.51 \times 10^{-10} & 7.49 \times 10^{-13} & 6.50 \times 10^{-12} & 1.58 \times 10^{-11} \\
1.39 \times 10^{-14} & 1.96 \times 10^{-13} & 7.49 \times 10^{-13} & 1.09 \times 10^{-12} & 3.51 \times 10^{-12} & 6.11 \times 10^{-12} \\
1.96 \times 10^{-13} & 2.10 \times 10^{-12} & 6.50 \times 10^{-12} & 3.51 \times 10^{-12} & 2.44 \times 10^{-11} & 4.26 \times 10^{-11} \\
7.49 \times 10^{-13} & 6.50 \times 10^{-12} & 1.58 \times 10^{-11} & 6.11 \times 10^{-12} & 4.26 \times 10^{-11} & 1.51 \times 10^{-10}
\end{array}\right)
$$

The diagonal elements give the bounds on $|\epsilon|^{2}$. The bounds on the coefficients are the square roots of the diagonal elements. For instance, $\epsilon_{S, L}^{\text {euds }}$ is excluded above $\sqrt{1.09 \times 10^{-12}}$.

The covariance matrix in the basis $\left(\epsilon_{P, L}^{e \mu d s}, \epsilon_{A, L}^{e \mu d s}, \epsilon_{P, R}^{e \mu d s}, \epsilon_{A, R}^{e \mu d s}, \epsilon_{S, L}^{e \mu d s}, \epsilon_{V, L}^{e \mu d s}, \epsilon_{T_{L}}^{e \mu d s}, \epsilon_{S, R}^{e \mu d s}, \epsilon_{V, R}^{e \mu d s}, \epsilon_{T_{R}}^{e \mu d s}\right)_{\Lambda_{W}}$ is
$\left(\begin{array}{cccccccccc}1.64 \times 10^{-13} & -2.55 \times 10^{-14} & -1.55 \times 10^{-14} & 7.73 \times 10^{-13} & -2.91 \times 10^{-14} & 1.31 \times 10^{-12} & 5.51 \times 10^{-12} & -9.15 \times 10^{-16} & 2.07 \times 10^{-13} & 5.75 \times 10^{-13} \\ -2.55 \times 10^{-14} & 2.97 \times 10^{-11} & 7.73 \times 10^{-13} & -4.03 \times 10^{-13} & -7.10 \times 10^{-15} & -4.64 \times 10^{-13} & -4.30 \times 10^{-13} & 7.35 \times 10^{-16} & -2.15 \times 10^{-14} & -6.72 \times 10^{-14} \\ -1.55 \times 10^{-14} & 7.73 \times 10^{-13} & 1.64 \times 10^{-13} & -2.55 \times 10^{-14} & 9.15 \times 10^{-16} & -2.07 \times 10^{-13} & -5.75 \times 10^{-13} & 2.91 \times 10^{-14} & -1.31 \times 10^{-12} & -5.51 \times 10^{-12} \\ 7.73 \times 10^{-13} & -4.03 \times 10^{-13} & -2.55 \times 10^{-14} & 2.97 \times 10^{-11} & -7.35 \times 10^{-16} & 2.15 \times 10^{-14} & 6.72 \times 10^{-14} & 7.10 \times 10^{-15} & 4.64 \times 10^{-13} & 4.30 \times 10^{-13} \\ -2.91 \times 10^{-14} & -7.10 \times 10^{-15} & 9.15 \times 10^{-16} & -7.35 \times 10^{-16} & 3.22 \times 10^{-13} & 8.29 \times 10^{-13} & -1.11 \times 10^{-12} & -8.03 \times 10^{-15} & -8.12 \times 10^{-14} & -3.49 \times 10^{-14} \\ 1.31 \times 10^{-12} & -4.64 \times 10^{-13} & -2.07 \times 10^{-13} & 2.15 \times 10^{-14} & 8.29 \times 10^{-13} & 2.44 \times 10^{-11} & 5.02 \times 10^{-11} & -8.12 \times 10^{-14} & 2.10 \times 10^{-12} & 7.66 \times 10^{-12} \\ 5.51 \times 10^{-12} & -4.30 \times 10^{-13} & -5.75 \times 10^{-13} & 6.72 \times 10^{-14} & -1.11 \times 10^{-12} & 5.02 \times 10^{-11} & 2.10 \times 10^{-10} & -3.49 \times 10^{-14} & 7.66 \times 10^{-12} & 2.19 \times 10^{-11} \\ -9.15 \times 10^{-16} & 7.35 \times 10^{-16} & 2.91 \times 10^{-14} & 7.10 \times 10^{-15} & -8.03 \times 10^{-15} & -8.12 \times 10^{-14} & -3.49 \times 10^{-14} & 3.22 \times 10^{-13} & 8.29 \times 10^{-13} & -1.11 \times 10^{-12} \\ 2.07 \times 10^{-13} & -2.15 \times 10^{-14} & -1.31 \times 10^{-12} & 4.64 \times 10^{-13} & -8.12 \times 10^{-14} & 2.10 \times 10^{-12} & 7.66 \times 10^{-12} & 8.29 \times 10^{-13} & 2.44 \times 10^{-11} & 5.02 \times 10^{-11} \\ 5.75 \times 10^{-13} & -6.72 \times 10^{-14} & -5.51 \times 10^{-12} & 4.30 \times 10^{-13} & -3.49 \times 10^{-14} & 7.66 \times 10^{-12} & 2.19 \times 10^{-11} & -1.11 \times 10^{-12} & 5.02 \times 10^{-11} & 2.10 \times 10^{-10}\end{array}\right)$.

2. \boldsymbol{D} meson decays

The bounds of Table I on leptonic D meson decays give the following covariance matrix in the basis $\left(\epsilon_{P, L}^{e \mu c u}, \epsilon_{A, L}^{e \mu c u}, \epsilon_{P, R}^{e \mu c u}, \epsilon_{A, R}^{e \mu c u}\right):$

$$
\left(\begin{array}{cccc}
3.07 \times 10^{-6} & -3.55 \times 10^{-7} & -2.86 \times 10^{-8} & 7.91 \times 10^{-5} \tag{E4}\\
-3.55 \times 10^{-7} & 2.04 \times 10^{-3} & 7.91 \times 10^{-5} & 7.30 \times 10^{-7} \\
-2.86 \times 10^{-8} & 7.91 \times 10^{-5} & 3.07 \times 10^{-6} & -3.55 \times 10^{-7} \\
7.91 \times 10^{-5} & 7.30 \times 10^{-7} & -3.55 \times 10^{-7} & 2.04 \times 10^{-3}
\end{array}\right)
$$

Using bounds on the semileptonic decays of D and D_{s} mesons in the basis $\left(\epsilon_{S, L}^{e \mu c u}, \epsilon_{V, L}^{e \mu c u}, \epsilon_{T_{L}}^{e \mu c u}, \epsilon_{S, R}^{e \mu c u}, \epsilon_{V, R}^{e \mu c u}, \epsilon_{T_{R}}^{\text {eиси }}\right)$ gives

$$
\left(\begin{array}{cccccc}
1.80 \times 10^{-6} & 1.32 \times 10^{-7} & -3.19 \times 10^{-8} & -2.10 \times 10^{-8} & -1.61 \times 10^{-7} & 1.79 \times 10^{-8} \tag{E5}\\
1.32 \times 10^{-7} & 2.10 \times 10^{-6} & 3.65 \times 10^{-7} & -1.61 \times 10^{-7} & 9.7 \times 10^{-8} & 7.06 \times 10^{-7} \\
-3.19 \times 10^{-8} & 3.65 \times 10^{-7} & 4.03 \times 10^{-6} & 1.79 \times 10^{-8} & 7.06 \times 10^{-7} & 2.30 \times 10^{-7} \\
-2.10 \times 10^{-8} & -1.61 \times 10^{-7} & 1.79 \times 10^{-8} & 1.80 \times 10^{-6} & 1.32 \times 10^{-7} & -3.19 \times 10^{-8} \\
-1.61 \times 10^{-7} & 9.7 \times 10^{-8} & 7.06 \times 10^{-7} & 1.32 \times 10^{-7} & 2.10 \times 10^{-6} & 3.65 \times 10^{-7} \\
1.79 \times 10^{-8} & 7.06 \times 10^{-7} & 2.30 \times 10^{-7} & -3.19 \times 10^{-8} & 3.65 \times 10^{-7} & 4.03 \times 10^{-6}
\end{array}\right) .
$$

The covariance matrix in the basis $\left(\epsilon_{P, L}^{e \mu c u}, \epsilon_{A, L}^{e \mu c u}, \epsilon_{P, R}^{e \mu c u}, \epsilon_{A, R}^{e \mu c u}, \epsilon_{S, L}^{e \mu c u}, \epsilon_{V, L}^{e \mu c u}, \epsilon_{T_{L}}^{e \mu c u}, \epsilon_{S, R}^{e \mu c u}, \epsilon_{V, R}^{e \mu c u}, \epsilon_{T_{R}}^{e \mu c u}\right)_{\Lambda_{W}}$ is

$$
\left(\begin{array}{cccccccccc}
1.15 \times 10^{-6} & -2.16 \times 10^{-7} & -1.15 \times 10^{-8} & 4.81 \times 10^{-5} & -1.45 \times 10^{-8} & -2.62 \times 10^{-8} & -2.97 \times 10^{-7} & -1.55 \times 10^{-9} & -8.69 \times 10^{-7} & -1.68 \times 10^{-8} \tag{E6}\\
-2.16 \times 10^{-7} & 2.04 \times 10^{-3} & 4.81 \times 10^{-5} & 7.31 \times 10^{-7} & 1.81 \times 10^{-9} & 3.50 \times 10^{-5} & 8.22 \times 10^{-9} & 8.70 \times 10^{-9} & -1.09 \times 10^{-8} & 1.99 \times 10^{-7} \\
-1.15 \times 10^{-8} & 4.81 \times 10^{-5} & 1.15 \times 10^{-6} & -2.16 \times 10^{-7} & 1.55 \times 10^{-9} & 8.69 \times 10^{-7} & 1.68 \times 10^{-8} & 1.45 \times 10^{-8} & 2.62 \times 10^{-8} & 2.97 \times 10^{-7} \\
4.81 \times 10^{-5} & 7.31 \times 10^{-7} & -2.16 \times 10^{-7} & 2.04 \times 10^{-3} & -8.70 \times 10^{-9} & 1.09 \times 10^{-8} & -1.99 \times 10^{-7} & -1.81 \times 10^{-9} & -3.50 \times 10^{-5} & -8.22 \times 10^{-9} \\
-1.45 \times 10^{-8} & 1.81 \times 10^{-9} & 1.55 \times 10^{-9} & -8.70 \times 10^{-9} & 6.80 \times 10^{-7} & 1.03 \times 10^{-7} & 2.73 \times 10^{-7} & -5.58 \times 10^{-9} & -5.42 \times 10^{-8} & 2.96 \times 10^{-8} \\
-2.62 \times 10^{-8} & 3.50 \times 10^{-5} & 8.69 \times 10^{-7} & 1.09 \times 10^{-8} & 1.03 \times 10^{-7} & 2.70 \times 10^{-6} & 4.31 \times 10^{-7} & -5.42 \times 10^{-8} & 9.66 \times 10^{-8} & 8.36 \times 10^{-7} \\
-2.97 \times 10^{-7} & 8.22 \times 10^{-9} & 1.68 \times 10^{-8} & -1.99 \times 10^{-7} & 2.73 \times 10^{-7} & 4.31 \times 10^{-7} & 5.62 \times 10^{-6} & 2.96 \times 10^{-8} & 8.36 \times 10^{-7} & 3.21 \times 10^{-7} \\
-1.55 \times 10^{-9} & 8.70 \times 10^{-9} & 1.45 \times 10^{-8} & -1.81 \times 10^{-9} & -5.58 \times 10^{-9} & -5.42 \times 10^{-8} & 2.96 \times 10^{-8} & 6.80 \times 10^{-7} & 1.03 \times 10^{-7} & 2.73 \times 10^{-7} \\
-8.69 \times 10^{-7} & -1.09 \times 10^{-8} & 2.62 \times 10^{-8} & -3.50 \times 10^{-5} & -5.42 \times 10^{-8} & 9.66 \times 10^{-8} & 8.36 \times 10^{-7} & 1.03 \times 10^{-7} & 2.70 \times 10^{-6} & 4.31 \times 10^{-7} \\
-1.68 \times 10^{-8} & 1.99 \times 10^{-7} & 2.97 \times 10^{-7} & -8.22 \times 10^{-9} & 2.96 \times 10^{-8} & 8.36 \times 10^{-7} & 3.21 \times 10^{-7} & 2.73 \times 10^{-7} & 4.31 \times 10^{-7} & 5.62 \times 10^{-6}
\end{array}\right) .
$$

3. B meson decays

The bound on the leptonic decay of the B meson (see Table I) gives the following covariance matrix in the basis $\left(\epsilon_{P, L}^{e \mu b d}, \epsilon_{A, L}^{e \mu b d}, \epsilon_{P, R}^{e \mu b d}, \epsilon_{A, R}^{e \mu b d}\right):$

$$
\left(\begin{array}{cccc}
5.53 \times 10^{-8} & 9.23 \times 10^{-8} & 1.20 \times 10^{-9} & 3.48 \times 10^{-6} \tag{E7}\\
9.23 \times 10^{-8} & 2.20 \times 10^{-4} & 3.48 \times 10^{-6} & 6.89 \times 10^{-6} \\
1.20 \times 10^{-9} & 3.48 \times 10^{-6} & 5.53 \times 10^{-8} & 9.23 \times 10^{-8} \\
3.48 \times 10^{-6} & 6.89 \times 10^{-6} & 9.23 \times 10^{-8} & 2.20 \times 10^{-4}
\end{array}\right)
$$

The covariance matrix in the basis $\left(\epsilon_{S, L}^{e \mu b d}, \epsilon_{V, L}^{e \mu b d}, \epsilon_{T_{L}}^{e \mu b d}, \epsilon_{S, R}^{e \mu b d}, \epsilon_{V, R}^{e \mu b d}, \epsilon_{T_{R}}^{e \mu b d}\right)$ is

$$
\left(\begin{array}{cccccc}
2.07 \times 10^{-10} & 1.21 \times 10^{-11} & 1.52 \times 10^{-12} & -3.90 \times 10^{-15} & -5.74 \times 10^{-14} & 5.18 \times 10^{-15} \tag{E8}\\
1.21 \times 10^{-11} & 2.23 \times 10^{-10} & 2.81 \times 10^{-11} & -5.74 \times 10^{-14} & 2.87 \times 10^{-14} & 2.32 \times 10^{-13} \\
1.52 \times 10^{-12} & 2.81 \times 10^{-11} & 4.03 \times 10^{-10} & 5.18 \times 10^{-15} & 2.32 \times 10^{-13} & 3.50 \times 10^{-14} \\
-3.90 \times 10^{-15} & -5.74 \times 10^{-14} & 5.18 \times 10^{-15} & 2.07 \times 10^{-10} & 1.21 \times 10^{-11} & 1.52 \times 10^{-12} \\
-5.74 \times 10^{-14} & 2.87 \times 10^{-14} & 2.32 \times 10^{-13} & 1.21 \times 10^{-11} & 2.23 \times 10^{-10} & 2.81 \times 10^{-11} \\
5.18 \times 10^{-15} & 2.32 \times 10^{-13} & 3.50 \times 10^{-14} & 1.52 \times 10^{-12} & 2.81 \times 10^{-11} & 4.03 \times 10^{-10}
\end{array}\right)
$$

The covariance matrix in the basis $\left(\epsilon_{P, L}^{\text {eubd }}, \epsilon_{A, L}^{\text {eubd }}, \epsilon_{P, R}^{\text {eubd }}, \epsilon_{A, R}^{\text {eubd }}, \epsilon_{S, L}^{\text {eubd }}, \epsilon_{V, L}^{\text {eubd }}, \epsilon_{T_{L}}^{\text {eubd }}, \epsilon_{S, R}^{\text {eubd }}, \epsilon_{V, R}^{\text {eubd }}, \epsilon_{T_{R}}^{\text {eubd }}\right)_{\Lambda_{W}}$ is

$\left(2.74 \times 10^{-8}\right.$	6.51×10^{-8}	5.94×10^{-10}	2.45×10^{-6}	-1.10×10^{-12}	-4.46×10^{-10}	5.02×10^{-11}	1.89×10^{-14}	1.68×10^{-8}	-8.41×10^{-13}
6.51×10^{-8}	2.20×10^{-4}	2.45×10^{-6}	6.89×10^{-6}	-2.11×10^{-12}	-1.51×10^{-6}	9.19×10^{-11}	7.76×10^{-11}	4.73×10^{-8}	-3.47×10^{-9}
5.94×10^{-10}	2.45×10^{-6}	2.74×10^{-8}	6.51×10^{-8}	-1.89×10^{-14}	-1.68×10^{-8}	8.41×10^{-13}	1.10×10^{-12}	4.46×10^{-10}	-5.02×10^{-11}
2.45×10^{-6}	6.89×10^{-6}	6.51×10^{-8}	2.20×10^{-4}	-7.76×10^{-11}	-4.73×10^{-8}	3.47×10^{-9}	2.11×10^{-12}	1.51×10^{-6}	-9.19×10^{-11}
-1.10×10^{-12}	-2.11×10^{-12}	-1.89×10^{-14}	-7.76×10^{-11}	1.03×10^{-10}	7.83×10^{-12}	-1.03×10^{-11}	-2.10×10^{-15}	-5.78×10^{-13}	3.15×10^{-15}
-4.46×10^{-10}	-1.51×10^{-6}	-1.68×10^{-8}	-4.73×10^{-8}	7.83×10^{-12}	1.06×10^{-8}	3.09×10^{-11}	-5.78×10^{-13}	-3.24×10^{-10}	2.41×10^{-11}
5.02×10^{-11}	9.19×10^{-11}	8.41×10^{-13}	3.47×10^{-9}	-1.03×10^{-11}	3.09×10^{-11}	5.10×10^{-10}	3.15×10^{-15}	2.41×10^{-11}	4.30×10^{-14}
1.89×10^{-14}	7.76×10^{-11}	1.10×10^{-12}	2.11×10^{-12}	-2.10×10^{-15}	-5.78×10^{-13}	3.15×10^{-15}	1.03×10^{-10}	7.83×10^{-12}	-1.03×10^{-11}
1.68×10^{-8}	4.73×10^{-8}	4.46×10^{-10}	1.51×10^{-6}	-5.78×10^{-13}	-3.24×10^{-10}	2.41×10^{-11}	7.83×10^{-12}	1.06×10^{-8}	3.09×10^{-11}
$\left(-8.41 \times 10^{-13}\right.$	-3.47×10^{-9}	-5.02×10^{-11}	-9.19×10^{-11}	3.15×10^{-15}	2.41×10^{-11}	4.30×10^{-14}	-1.03×10^{-11}	3.09×10^{-11}	5.10×10^{-10}

(E9)

4. \boldsymbol{B}_{s} meson decays

The bound on the leptonic decay of the B_{s} meson in the basis $\left(\epsilon_{P, L}^{\text {eubs }}, \epsilon_{A, L}^{\text {eubs }}, e_{P, R}^{\text {eubs }}, \epsilon_{A, R}^{\text {eubs }}\right)$ gives

$$
\left(\begin{array}{cccc}
3.06 \times 10^{-8} & -1.22 \times 10^{-8} & -3.40 \times 10^{-10} & 1.94 \times 10^{-6} \tag{E10}\\
-1.22 \times 10^{-8} & 1.24 \times 10^{-4} & 1.94 \times 10^{-6} & -1.80 \times 10^{-7} \\
-3.40 \times 10^{-10} & 1.94 \times 10^{-6} & 3.06 \times 10^{-8} & -1.22 \times 10^{-8} \\
1.94 \times 10^{-6} & -1.80 \times 10^{-7} & -1.22 \times 10^{-8} & 1.24 \times 10^{-4}
\end{array}\right) .
$$

The bound on the B_{s} meson decaying into a kaon (Table I) in the basis $\left(\epsilon_{S, L}^{\text {eubs }}, \epsilon_{V, L}^{\text {eubs }}, \epsilon_{T_{L}}^{\text {eubs }}, \epsilon_{S, R}^{\text {eubs }}, \epsilon_{V, R}^{\text {eubs }}, e_{T_{R}}^{e \mu b s}\right)$ gives

$$
\left(\begin{array}{cccccc}
5.05 \times 10^{-10} & 3.47 \times 10^{-11} & 5.07 \times 10^{-12} & -1.13 \times 10^{-14} & -1.65 \times 10^{-13} & 1.73 \times 10^{-14} \tag{E11}\\
3.47 \times 10^{-11} & 6.53 \times 10^{-10} & 9.54 \times 10^{-11} & -1.65 \times 10^{-13} & 8.78 \times 10^{-14} & 7.90 \times 10^{-13} \\
5.07 \times 10^{-12} & 9.54 \times 10^{-11} & 1.51 \times 10^{-9} & 1.73 \times 10^{-14} & 7.90 \times 10^{-13} & 1.38 \times 10^{-13} \\
-1.13 \times 10^{-14} & -1.65 \times 10^{-13} & 1.73 \times 10^{-14} & 5.05 \times 10^{-10} & 3.47 \times 10^{-11} & 5.07 \times 10^{-12} \\
-1.65 \times 10^{-13} & 8.78 \times 10^{-14} & 7.90 \times 10^{-13} & 3.47 \times 10^{-11} & 6.53 \times 10^{-10} & 9.54 \times 10^{-11} \\
1.73 \times 10^{-14} & 7.90 \times 10^{-13} & 1.38 \times 10^{-13} & 5.07 \times 10^{-12} & 9.54 \times 10^{-11} & 1.51 \times 10^{-9}
\end{array}\right) .
$$

The covariance matrix in the basis $\left(\epsilon_{P, L}^{\text {eubs }}, \epsilon_{A, L}^{\text {eubs }}, \epsilon_{P, R}^{\text {eubs }}, e_{A, R}^{\text {eubs }}, \epsilon_{S, L}^{\text {eubs }}, \epsilon_{V, L}^{\text {eubs }}, \epsilon_{T_{L}}^{\text {eubs }}, \epsilon_{S, R}^{\text {eubs }}, \epsilon_{V, R}^{\text {eubs }}, \epsilon_{T_{R}}^{\text {eubs }}\right)_{\Lambda_{W}}$ is

$\left(1.52 \times 10^{-8}\right.$	-8.62×10^{-9}	-1.69×10^{-10}	1.37×10^{-6}	-1.35×10^{-12}	6.16×10^{-1}	6.41×10^{-11}	-5.11×10^{-15}	9.39×10^{-1}	2.42×10^{-13}
-8.62×10^{-9}	1.24×10^{-4}	1.37×10^{-6}	-1.80×10^{-7}	1.21×10^{-13}	-8.51×10^{-7}	-1.29×10^{-11}	4.33×10^{-11}	-1.24×10^{-9}	-1.94×10^{-9}
-1.69×10^{-10}	1.37×10^{-6}	1.52×10^{-8}	-8.62×10^{-9}	5.11×10^{-15}	-9.39×10^{-9}	-2.42×10^{-13}	1.35×10^{-12}	-6.16×10^{-11}	-6.41×10^{-11}
1.37×10^{-6}	-1.80×10^{-7}	-8.62×10^{-9}	1.24×10^{-4}	-4.33×10^{-11}	1.24×10^{-9}	1.94×10^{-9}	-1.21×10^{-13}	8.51×10^{-7}	1.29×10^{-11}
-1.35×10^{-12}	1.21×10^{-13}	5.11×10^{-15}	-4.33×10^{-11}	2.51×10^{-10}	2.21×10^{-11}	-3.90×10^{-11}	-6.11×10^{-15}	-4.33×10^{-13}	9.78×10^{-15}
6.16×10^{-11}	-8.51×10^{-7}	-9.39×10^{-9}	1.24×10^{-9}	2.21×10^{-11}	6.49×10^{-9}	1.07×10^{-10}	-4.33×10^{-13}	8.57×10^{-12}	1.42×10^{-11}
6.41×10^{-11}	-1.29×10^{-11}	-2.42×10^{-13}	1.94×10^{-9}	-3.90×10^{-11}	1.07×10^{-10}	1.91×10^{-9}	9.78×10^{-15}	1.42×10^{-11}	1.74×10^{-13}
-5.11×10^{-15}	4.33×10^{-11}	1.35×10^{-12}	-1.21×10^{-13}	-6.11×10^{-15}	-4.33×10^{-13}	9.78×10^{-15}	2.51×10^{-10}	2.21×10^{-11}	-3.90×10^{-11}
9.39×10^{-9}	-1.24×10^{-9}	-6.16×10^{-11}	8.51×10^{-7}	-4.33×10^{-13}	8.57×10^{-12}	1.42×10^{-11}	2.21×10^{-11}	6.49×10^{-9}	1.07×10^{-10}
(2.42×10^{-13}	-1.94×10^{-9}	-6.41×10^{-11}	1.29×10^{-11}	9.78×10^{-15}	1.42×10^{-11}	1.74×10^{-13}	-3.90×10^{-11}	1.07×10^{-10}	1.91×10^{-9}

(E12)
[1] Y. Fukuda et al. (S.-K. Collaboration), Evidence for Oscillation of Atmospheric Neutrinos, Phys. Rev. Lett. 81, 1562 (1998).
[2] Q. R. Ahmad et al., Direct Evidence for Neutrino Flavor Transformation from Neutral Current Interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002).
[3] K. Olive et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 38, 090001 (2014).
[4] V. Khachatryan et al. (CMS Collaboration), Search for heavy Majorana neutrinos in $\mathrm{e}^{ \pm} \mathrm{e}^{ \pm}+$jets and $\mathrm{e}^{ \pm} \mu^{ \pm}+$jets events in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$, J. High Energy Phys. 04 (2016) 169.
[5] G. Aad et al. (ATLAS Collaboration), Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$, J. High Energy Phys. 07 (2015) 162.
[6] Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73, 151 (2001).
[7] L. Calibbi and G. Signorelli, Charged lepton flavour violation: An experimental and theoretical introduction, Riv. Nuovo Cimento 41, 71 (2018).
[8] E. Arganda, A. M. Curiel, M. J. Herrero, and D. Temes, Lepton flavor violating Higgs boson decays from massive seesaw neutrinos, Phys. Rev. D 71, 035011 (2005).
[9] M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57, 13 (2008).
[10] A. Baldini et al. (MEG Collaboration), Search for the lepton flavour violating decay $\mu^{+} \rightarrow e^{+} \gamma$ with the full dataset of the meg experiment, Eur. Phys. J. C 76, 434 (2016).
[11] U. Bellgardt et al. (SINDRUM Collaboration), Search for the decay $\mu \rightarrow 3 \mathrm{e}$, Nucl. Phys. B299, 1 (1988).
[12] A. Perrevoort (Mu3e Collaboration), Status of the Mu3e experiment at PSI, EPJ Web Conf. 118, 01028 (2016).
[13] W. Bertl et al. (SINDRUM II Collaboration), A search for μ-e conversion in muonic gold, Eur. Phys. J. C 47, 337 (2006).
[14] Y. Kuno (COMET Collaboration), A search for muon-toelectron conversion at J-PARC: The COMET experiment, Prog. Theor. Exp. Phys. (2013) 022C01.
[15] R. M. Carey et al. (Mu2e Collaboration), Proposal to search for $\mu^{-} N \rightarrow e^{-} N$ with a single event sensitivity below 10^{-16}, Report No. FERMILAB-PROPOSAL-0973.
[16] D. Ambrose et al. (BNL E871 Collaboration), New Limit on Muon and Electron Lepton Number Violation from $K_{L}^{0} \rightarrow$ $\mu^{ \pm} e^{\mp}$ Decay, Phys. Rev. Lett. 81, 5734 (1998).
[17] R. Aaij et al. (LHCb Collaboration), Search for the leptonflavour violating decay $D^{0} \rightarrow e^{ \pm} \mu^{\mp}$, Phys. Lett. B 754, 167 (2016).
[18] R. Aaij et al. (LHCb Collaboration), Search for the Lepton-Flavor-Violating Decays $B_{s}^{0} \rightarrow e^{ \pm} \mu^{\mp}$ and $B^{0} \rightarrow e^{ \pm} \mu^{\mp}$, Phys. Rev. Lett. 111, 141801 (2013).
[19] R. Appel et al., Search for Lepton Flavor Violation in K^{+} Decays into a Charged Pion and Two Leptons, Phys. Rev. Lett. 85, 2877 (2000).
[20] J. P. Lees et al. (BABAR Collaboration), Searches for rare or forbidden semileptonic charm decays, Phys. Rev. D 84, 072006 (2011).
[21] B. Aubert et al. (BABAR Collaboration), Search for the Rare Decay $B \rightarrow \pi l^{+} l^{-}$, Phys. Rev. Lett. 99, 051801 (2007).
[22] B. Aubert et al. (BABAR Collaboration), Measurements of branching fractions, rate asymmetries, and angular
distributions in the rare decays $B \rightarrow K l^{+} l^{-}$and $B \rightarrow K^{*} l^{+} l^{-}$, Phys. Rev. D 73, 092001 (2006).
[23] H. Georgi, Effective field theory, Annu. Rev. Nucl. Part. Sci. 43, 209 (1993).
[24] A. V. Manohar, Introduction to effective field theories, in Les Houches Summer School: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, 2017 (Oxford University Press, 2018).
[25] A. Pich, Effective field theory with Nambu-Goldstone modes, in Les Houches Summer School: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, 2017 (Oxford University Press, 2018).
[26] S. Davidson, D. C. Bailey, and B. A. Campbell, Model independent constraints on leptoquarks from rare processes, Z. Phys. C 61, 613 (1994).
[27] D. Black, T. Han, H.-J. He, and M. Sher, $\tau-\mu$ flavor violation as a probe of the scale of new physics, Phys. Rev. D 66, 053002 (2002).
[28] M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70, 1071 (2010).
[29] Y. Cai and M. A. Schmidt, A case study of the sensitivity to LFV operators with precision measurements and the LHC, J. High Energy Phys. 02 (2016) 176.
[30] D. E. Hazard and A. A. Petrov, Lepton flavor violating quarkonium decays, Phys. Rev. D 94, 074023 (2016).
[31] D. E. Hazard and A. A. Petrov, Radiative lepton flavor violating B, D, and K decays, Phys. Rev. D 98, 015027 (2018).
[32] G. Buchalla, A. Buras, and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996).
[33] R. Aaij et al., Test of Lepton Universality Using $B^{+} \rightarrow$ $K^{+} \ell^{+} \ell^{-}$Decays, Phys. Rev. Lett. 113, 151601 (2014).
[34] R. Aaij et al., Test of lepton universality with $B^{0} \rightarrow$ $K^{* 0} \ell^{+} \ell^{-}$decays, J. High Energy Phys. 08 (2017) 055.
[35] R. Aaij et al. (LHCb Collaboration), Measurement of the Ratio of Branching Fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{v}_{\tau} /\right.$ $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}\right)$, Phys. Rev. Lett. 115, 111803 (2015); Erratum 115, 159901 (2015).
[36] Y. Sato et al. (Belle Collaboration), Measurement of the branching ratio of $\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}$ relative to $\bar{B}^{0} \rightarrow D^{*+} l \bar{\nu}_{l}$ decays with a semileptonic tagging method, Phys. Rev. D 94, 072007 (2016).
[37] J. P. Lees et al. (BABAR Collaboration), Measurement of an excess of $\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ decays and implications for charged Higgs bosons, Phys. Rev. D 88, 072012 (2013).
[38] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global analysis of $b \rightarrow$ slC anomalies, J. High Energy Phys. 06 (2016) 092.
[39] M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini, and M. Valli, $B \rightarrow K^{*} \ell^{+} \ell^{-}$decays at large recoil in the standard model: A theoretical reappraisal, J. High Energy Phys. 06 (2016) 116.
[40] S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the $B \rightarrow K^{*} \ell^{+} \ell^{-}$decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93, 014028 (2016).
[41] L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren, and R.-X. Shi, Towards the discovery of new physics
with lepton-universality ratios of $b \rightarrow s \ell l$ decays, Phys. Rev. D 96, 093006 (2017).
[42] G. Hiller and M. Schmaltz, R_{K} and future $b \rightarrow s \ell \ell$ physics beyond the standard model opportunities, Phys. Rev. D 90, 054014 (2014).
[43] C. Bobeth, G. Hiller, and D. van Dyk, General analysis of $\bar{B} \rightarrow \bar{K}^{(*)} \ell^{+} \ell^{-}$decays at low recoil, Phys. Rev. D 87, 034016 (2013).
[44] W. Altmannshofer, P. Paradisi, and D. M. Straub, Modelindependent constraints on new physics in $b \rightarrow s$ transitions, J. High Energy Phys. 04 (2012) 008.
[45] S. Davidson, M. L. Mangano, S. Perries, and V. Sordini, Lepton flavour violating top decays at the LHC, Eur. Phys. J. C 75, 450 (2015).
[46] S. Davidson, $\mu \rightarrow \mathrm{e} \gamma$ and matching at m_{W}, Eur. Phys. J. C 76, 370 (2016).
[47] A. Crivellin, S. Davidson, G. M. Pruna, and A. Signer, Renormalisation-group improved analysis of $\mu \rightarrow \mathrm{e}$ processes in a systematic effective-field-theory approach, J. High Energy Phys. 05 (2017) 117.
[48] O. Shanker, Flavour violation, scalar particles and leptoquarks, Nucl. Phys. B206, 253 (1982).
[49] M. Herz, Bounds on leptoquark and supersymmetric, R-parity violating interactions from meson decays, arXiv:hep-ph/ 0301079.
[50] J. Bijnens, G. Colangelo, G. Eckerand, and J. Gasser, Semileptonic kaon decays, arXiv:hep-ph/9411311v1.
[51] R. Gupta, Calculations of hadronic matrix elements using lattice qcd, arXiv:hep-lat/9308002.
[52] D. Du, A. X. El-Khadra, S. Gottlieb, A. S. Kronfeld, J. Laiho, E. Lunghi, R. S. V. de Water, and R. Zhou, Phenomenology of semileptonic B-meson decays with form factors from lattice QCD, Phys. Rev. D 93, 034005 (2016).
[53] J. A. Bailey et al. (Fermilab Lattice and MILC Collaborations), $\left|V_{u b}\right|$ from $B \rightarrow \pi l \nu$ decays and $(2+1)$-flavor lattice QCD, Phys. Rev. D 92, 014024 (2015).
[54] J. A. Bailey et al., $B \rightarrow K l^{+} l^{-}$decay form factors from three-flavor lattice QCD, Phys. Rev. D 93, 025026 (2016).
[55] P. Ball and R. Zwicky, New results on $B \rightarrow \pi, K, \eta$ decay formfactors from light-cone sum rules, Phys. Rev. D 71, 014015 (2005).
[56] X.-D. Guo, X.-Q. Hao, H.-W. Ke, M.-G. Zhao, and X.-Q. Li, Looking for new physics via semi-leptonic and leptonic rare decays of D and D_{s}, Chin. Phys. C 41, 093107 (2017).
[57] A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski, and J. Rosiek, Lepton-flavour violating B decays in generic Z' models, Phys. Rev. D 92, 054013 (2015).
[58] A. Crivellin, G. D'Ambrosio, M. Hoferichter, and L. C. Tunstall, Violation of lepton flavor and lepton flavor universality in rare kaon decays, Phys. Rev. D 93, 074038 (2016).
[59] In a future publication, we will give the evolution from the weak scale to the NP scale, and discuss the prospects for reconstructing the fundamental Lagrangian of the New Physics from the operator coefficients.
[60] R.Kitano, M. Koike, and Y. Okada, Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei, Phys. Rev. D 66, 096002 (2002); Erratum, Phys. Rev. D76, 059902(E) (2007).
[61] V. Ilisie, Concepts in Quantum Field Theory (Springer, New York, 2016).
[62] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-six terms in the standard model Lagrangian, J. High Energy Phys. 10 (2010) 085.
[63] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization group evolution of the standard model dimension six operators III: Gauge coupling dependence and phenomenology, J. High Energy Phys. 04 (2014) 159.
[64] V. Cirigliano, S. Davidson, and Y. Kuno, Spin-dependent $\mu \rightarrow$ e conversion, Phys. Lett. B 771, 242 (2017).
[65] S. Bellucci, M. Lusignoli, and L. Maiani, Leading logarithmic corrections to the weak leptonic and semi-leptonic low-energy hamiltonian, Nucl. Phys. B189, 329 (1981).
[66] G. Buchalla, A. J. Buras, and M. K. Harlander, The anatomy of $\varepsilon \varepsilon$ in the standard model, Nucl. Phys. B337, 313 (1990).
[67] S. Davidson and A. Saporta (to be published).
[68] J. Rosner, S. Stone, and R. S. V. de Water, Leptonic decays of charged pseudoscalar mesons, arXiv:1509.02220.
[69] FLAG Working Group, Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77, 112 (2017).
[70] A. Bazavov, C. Bernard, N. Brown, C. DeTar, A. El-Khadra, S. G. E. Gámiz, U. Heller, J. Komijani, A. Kronfeld, J. Laiho, P. Mackenzie, E. Neil, J. Simone, R. Sugar, D. Toussaint, and R. V. de Water, B-and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018).
[71] A. Khodjamirian, T. Mannel, and N. Offen, Form factors from light-cone sum rules with B-meson distribution amplitudes, Phys. Rev. D 75, 054013 (2007).

[^0]: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

