
HAL Id: hal-01861990
https://hal.science/hal-01861990v1

Submitted on 26 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Top-Down Model-Driven Engineering of Web Services
from Extended OpenAPI Models

David Sferruzza

To cite this version:
David Sferruzza. Top-Down Model-Driven Engineering of Web Services from Extended OpenAPI
Models. the 33rd ACM/IEEE International Conference on Automated Software Engineering, Sep
2018, Montpellier, France. �10.1145/3238147.3241536�. �hal-01861990�

https://hal.science/hal-01861990v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Top-Down Model-Driven Engineering of Web Services from
Extended OpenAPI Models

David Sferruzza

LS2N - UMR CNRS 6004

Nantes, France

david.sferruzza@ls2n.fr

ABSTRACT
Web services engineering is a crucial subject, because web services

are often built to be used by other programs; thus they should have

a good documentation targeting developers. Furthermore, when

building a digital product, engineers need to build several programs

that interact with a central instance of web services. OpenAPI, a

popular industry standard, makes possible to document web ser-

vices in order to quickly make a prototype of the product. It allows

a top-down process where developers iterate to build an OpenAPI

model that describes the web services they want, and then imple-

ment both the web services and the programs that will consume

them. However, when doing such rapid prototyping, developers

tend to either skip this design phase and implement web services

right away, or stop updating the OpenAPI model when the product

is released; in both cases they cannot take advantage of having an

OpenAPI model aligned with the implementation. We show how

OpenAPI can be extended to add implementation details inside

models. These extensions link services to assemblies of compo-

nents that describe computations. Hence a top-down development

process that keeps model and implementation aligned. Moreover,

this makes possible for developers to benefit from more support

features while keeping the same flexibility.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Domain specific languages; Software prototyping;

KEYWORDS
Web Services, Model-Driven Engineering, Documentation, Code

Generation, OpenAPI 3.0

ACM Reference Format:
David Sferruzza. 2018. Top-Down Model-Driven Engineering of Web Ser-

vices from Extended OpenAPI Models. In Proceedings of the 2018 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3238147.3241536

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00

https://doi.org/10.1145/3238147.3241536

1 INTRODUCTION
Context. Web services are key elements of many digital products.

Indeed, these products often require to be available on several

platforms (web, Android, iOS, . . .) thus can benefit from separating

concerns: web services centralizing data and business logic have

different life cycles than the several user interfaces that rely on them.

This architecture is quite common; for example, after several years

of coaching startups at Startup Palace
1
, it appears that a lot of them

are using it or should be. One of the difficulties of this approach

is to design and maintain a consistent interface between the web

services and the other programs, which are sometimes developed by

other teams or even unrelated people. Fortunately, many tools and

languages exist to help designing, writing and maintaining such

interfaces. OpenAPI [6] is one of them: it defines a specification

to describe the HTTP APIs of web services in a language-agnostic

way. It is quite famous in the industry and has a rich ecosystem of

tools
2
.

Motivation. Building or fast-prototyping digital products can be

achieved using a top-down approach. First, they design an OpenAPI

model and make sure it is suitable as an interface between the

different actors. Then, they can rely on this model to implement

them independantly using programming languages. Some tools

like Swagger Code Generator [13] provide support to developers in

this process: they generate code based on the OpenAPI model, tar-

geting one of the numerous supported languages and frameworks.

However, because OpenAPI is language-agnostic, the generated

code does not contain implementation details; developers still have

to complete it in a way that respects the contract defined by the

OpenAPI model, so that they obtain a working implementation.

Focusing on web services, this means that, apart from this one-time

generation, the OpenAPI model and the actual implementation will

need to be maintained in a separate manner, which in many cases

results in the implementation being maintained and the OpenAPI

model being outdated. This becomes more problematic when the

digital product evolves a lot (i.e. it is a MVP
3
) because developers

cannot benefit again from the code generation step when doing an-

other top-down cycle as it would override precedently customized

code.

Contributions. To overcome this issue and give even more sup-

port to developers, we extend the OpenAPI 3.0 Specification to

make possible to add some implementation details in models, and

1
https://www.startup-palace.com

2
https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.

md

3
Minimum Viable Product: a finished but lightweight product made to test market

hypotheses.

https://doi.org/10.1145/3238147.3241536
https://doi.org/10.1145/3238147.3241536
https://www.startup-palace.com
https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md
https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md

ASE ’18, September 3–7, 2018, Montpellier, France David Sferruzza

provide a tool to generate working web services from extended

models.

Implementation details added to OpenAPI models consist of

assemblies of components that represent computation units. These

components can be defined in two ways: (i) by a contract and

an implementation in a programming language, or (ii) in term of

already defined components. Every service is linked to a component

whose purpose is to generate an HTTP response.

Our tool, SWSG [10], provides support to automatizes the top-

down development process. It can read these extended models,

check several properties to ensure their consistency, and generate

code of working web services. On top of solving the alignment

problem, this gives even more support to developers.

The article is structured as follows. Section 2 describes the com-

ponent system and how it is integrated in OpenAPI 3.0. Section 3

introduces SWSG and shows how it checks models and generates

code. Section 4 presents related work. Finally, Section 5 concludes

the article with some lessons and future work.

2 EXTENDING OPENAPI
The OpenAPI Specification defines a standard to express interfaces

to HTTP APIs in a language-agnostic way. It aims at allowing “both

humans and computers to discover and understand the capabilities

of the service without access to source code, documentation, or

through network traffic inspection” [6]. As in Model-Driven Engi-

neering (MDE), the point of having such meta-models is to have

tools that can rely on them in order to safely manipulate models

and offer support to developers. Indeed, the growing ecosystem of

OpenAPI contains numerous tools that can be used in a top-down

process, which often means that an OpenAPI is given as input to a

tool that will refine it and produce another artifact. For exemple,

both Swagger Editor [14] and Swagger UI [15] provide an interac-

tive graphical user interface from a model, and Dredd [1] generates

functional tests from a model.

By design, OpenAPI does not contain implementation details

that describe how the web services are to be implemented. As stated

in the introduction, this can lead to a misalignment between the

OpenAPImodel and its implementation. To overcome this limitation

while keeping the benefits of using OpenAPI models in a top-down

process, we extend OpenAPI to add a new layer of information that

describes the implementation of the web services at a high-level

of abstraction. This layer consists of components definitions and

instanciations such as those we introduced in a previous work [12].

Section 2.1 describes this new layer, and Section 2.2 shows how

it is integrated in OpenAPI 3.0.

2.1 The Component System
Components are units of processes and computations that occur in-

side web services and whose purpose is to produce HTTP responses.

Their execution happens in an isolated context, that can contain

variables. They can mutate this context by adding and removing

variables, or return an HTTP response. Components can be of two

kinds: either atomic or composite.

Atomic components are defined by a name and four sets of vari-

ables: parameters, preconditions, additions and removals. Parame-

ters are variables whose values must be provided when instanciat-

ing the component; it allows to design generic components that are

easier to reuse. The other three sets of variables form the contract of

the component: they define what variables it needs to access from

the context (preconditions), what variables it will add to the context

(additions) and what variables it will remove (removals). The point

of this contract is to support a lightweight kind of static verification

we call structural consistency. Atomic components must go along

with an implementation in a programming language, which makes

them very flexible.

Composite components are defined by a name, a set of parame-

ters and a list of instances of components. Parameters work in the

same way as for atomic components. Instances of components refer-

ence a component by its name and provide bindings and aliases, that

are specific to the instance. Bindings associate a parameter of the

component to a value, and aliases allow to rename a variable from

the component’s contract in a local way. Composite components

do not need to be implemented using a programming language

because they are defined in term of other components. Indeed, their

behavior consists of executing their subcomponents sequentially,

each getting the context output by the previous. However, this se-

quential execution is interrupted if any of the components outputs

an HTTP response instead of a new context.

This component system was voluntarily designed to be simple

and offer a good trade-off between expressiveness and ease of sup-

port. That is why, for example, sequential execution is the only way

to combine components.

2.2 Extensions to OpenAPI 3.0
To make it possible to use this component system and describe

implementations of web services from inside an OpenAPI model,

the OpenAPI 3.0 Specification must be extended. Two kinds of in-

formations must be added: definitions of components and, for each

service, an instance of component. Hopefully, OpenAPI provides

an extension mechanism that preserves tools compatibility: most

of the schemas of the specification can be enhanced with more

attributes, if their names start with x-. The full specification of our

extensions is available in [11].

The Listing 1 shows an extract of the Petstore example [7], an

official example of OpenAPI 3.0 model, that has been enhanced

with our extensions. The components object contains two new

properties: x-swsg-cc and x-swsg-ac. The first is a set of com-

posite component definition; here we define a component called

FindPet in terms of two other components named GetPetById
and RenderPet. The second is a set of atomic component definition

that contains the definitions of GetPetById and RenderPet. The
Listing 2 shows how the FindPet component is instanciated from

a service, in the x-swsg-ci attribute.

3 GENERATINGWEB SERVICES
To use our extensions to OpenAPI 3.0, we propose the following

top-down development process:

(1) developers write a standard OpenAPI model that fits their

needs;

Top-Down MDE of Web Services from Extended OpenAPI Models ASE ’18, September 3–7, 2018, Montpellier, France

components:
schemas:

Pet:
allOf:

- $ref: '#/components/schemas/NewPet'
- required:
- id
properties:

id:
type: integer
format: int64

NewPet:
required:

- name
properties:

name:
type: string

tag:
type: string

x-swsg-cc:
- name: FindPet
components:

- component: GetPetById
- component: RenderPet

x-swsg-ac:
- name: RenderPet
pre:

- name: pet
type:

entity: Pet
- name: GetPetById
pre:

- name: id
type: String

add:
- name: pet
type:

entity: Pet

Listing 1: Components Definition

paths:
/pets/{id}:

get:
parameters:

- name: id
in: path
description: ID of pet to fetch
required: true
schema:

type: integer
format: int64

responses:
'200':
description: pet response
content:

application/json:
schema:
$ref: '#/components/schemas/Pet'

x-swsg-ci:
component: FindPet

Listing 2: Service Definition

(2) they use our extensions to design components and associate

them to every web services;

(3) they write an implementation for each atomic component;

(4) they run SWSG to check the model and generate code.

The step (2) is made possible by our extensions and provide a tran-

sitional step between the modelling (1) and the implementation (3)

in the refinement process. It simplifies the implementation (3) by

reducing it to several small functions instead of a whole program.

The step (4) makes use of our tool, SWSG [10], that follows the

process shown in Figure 1. We present this tool in the following

sections: Section 3.1 focuses on the model consistency verification

and Section 3.2 on the code generation.

OpenAPI
model Model parsing Syntax

OK?

Failure

Start Transforming to
SWSG model

Consistent? Consistency
checkingGeneration

AC
implementations

Web
services

Transformation
OK?

Stop

Failure

Failure

yes

yes

yes

no

no

no

1 2

34

Figure 1: Process of SWSG

3.1 Consistency Verification
The third step of the process of SWSG (Figure 1) is a static verifi-

cation of the structural consistency of the model. It consists of a

set of formal rules that check the semantics of models to determine

whether it allows for a safe code generation. This set of rules is

derived from the one we presented in [12, ¶3]. Its purpose is to help

developers to spot inconsistencies in models as earlier as possible.

For example, the model presented in Listings 1 and 2 is inconsis-

tent: SWSG indicates a PreconditionError. Details of the error
tell us that the GetPetById component is not given a variable of

type String called id, as it requires. Indeed, the service definition
shows that the id variable comes from a service parameter that

has the Integer type. This kind of mistakes is quite common in

software development, but having the right tools can mitigate its

consequences. Here, SWSG detected the problem before we even

run the code in production, so we just lost a small amount of time;

we could have lost a lot more time if this code had been deployed

(just for a typo).

When this error is fixed in the model, SWSG can proceed to the

code generation step.

3.2 Code Generation
The process depicted by Figure 1 is generic: it does not rely on a

specific language or technology. Yet the language and technolo-

gies used to implement atomic components must be identical or

compatible with those of the code generation target. Because we

experiment in Startup Palace’s context, the current implementation

of SWSG targets the PHP programming language
4
with the Laravel

web framework
5
, which is a common tool stack.

The generation in itself is done with a model-to-text transfor-

mation that uses a template engine called Twirl6. Apart from some

static classes and from the implementations of atomic components

(that are not altered), SWSG generated two kinds of source files:

implementations of composite components and a route file. The
Listing 3 shows the code generated for the FindPet component

(defined in Listing 1).

We took the approach of generating code that should never be

manually edited. The generated code does not override any existing

4
https://php.net/

5
https://laravel.com/

6
https://github.com/playframework/twirl

https://php.net/
https://laravel.com/
https://github.com/playframework/twirl

ASE ’18, September 3–7, 2018, Montpellier, France David Sferruzza

<?php
// This is a generated file, do not edit
namespace App\Components;
use App\SWSG\Component, App\SWSG\Ctx, App\SWSG\Params;
class FindPet implements Component
{

public static function execute(Params $params, Ctx $ctx)
{

$ctx0 = \App\Components\GetPetById::execute(new \App\SWSG\Params([]),

$ctx);↪→

if ($ctx0 instanceof \Illuminate\Http\Response) return $ctx0;
if ($ctx0 instanceof \SWSG\Ctx) $ctx0 = $ctx0;
$ctx1 = \App\Components\RenderPet::execute(new \App\SWSG\Params([]),

$ctx0);↪→

if ($ctx1 instanceof \Illuminate\Http\Response) return $ctx1;
if ($ctx1 instanceof \SWSG\Ctx) $ctx1 = $ctx1;
return $ctx1;

}
}

Listing 3: Generated Code for the FindPet Component

files in a Laravel’s architecture and can be easily hooked to an

existing web application through configuration.

In case of evolution of the needs (which is likely whenworkingwith

MVPs), developers have to go through the top-down development

process again, but can reuse most of the existing items (parts of the

extended OpenAPI model, implementation of atomic components).

This approach preserves alignment between the model and the web

services, and fosters reuse of components.

4 RELATEDWORK
The use of MDE for development and automatic generation of web

services or web applications is not a new topic [2, 3, 9]. Indeed, this

work is built on top of the approach of SWSG [12] and Reifier [8].

Through SWSG, our process shares themeta-modelling approach

with tools such as M3D (introduced in [2] and extended in [3]) that

also focus on building web services using MDE. One of the main

differences between SWSG and M3D is that SWSG was developed

with a focus on design-time support. Even if SWSG is definitely re-

lated to existing standards such as BPEL [4] or WSDL, our approach

differs on several aspects. First, we want to avoid the shortcomings

described in [5], that is WSDL models contain too much technical

details and are difficult to understand for humans. Indeed our meta-

model is simpler and less expressive than WSDL or BPEL. Second,

this allows SWSG to provide more support to users; the balance

between flexibility and support is discussed in [16].

One of the tools featured in the OpenAPI ecosystem is Swagger
Code Generator [13]. It aims at generating client librairies, server

stubs or documentations from an OpenAPI model. It supports many

languages and frameworks, but only helps developers to write new

services by generated boilerplate code. This automatizes a tedious

task; however they still need to add a lot of code on top of it. More-

over, when services evolve, developer need to manually propagate

evolutions into the codebase because Swagger Code Generator isn’t
able to merge them automatically. Our approach solves this issue

because it gives flexibility to developers before the code generation

step, making useless editing generated code. This ensures alignment

between the (OpenAPI) model and the web services.

5 CONCLUSION
We extended OpenAPI 3.0 with a component system to describe

implementations of web services from a high-level. This establishes

an intermediary artifact that fits well in the top-down development

process, between the abstract OpenAPI model and the concrete im-

plementation of web services. This allows to generate an implemen-

tation of the web services that does not need manual modifications.

As a consequence, alignment between the OpenAPI model and the

implementation is guaranteed. Moreover, this paves the way for

enhanced support features; for example, verification or interactive

visualization. We also presented SWSG, a tool that can check struc-

tural consistency of extended OpenAPI models and generate code

of the web services.

This approach was tested on several case studies
7
, but needs

more testing on bigger projects. Another perspective is to generalize

SWSG to support more languages and technologies. This would

probably lead to the formalization of interfaces to make it possible

to plug external code generators. Also, it would be interesting to

allow SWSG to check the compliance between implementations of

atomic components and their contract. In a similar manner, calling

external tools could be a solution to keep SWSG generic.

REFERENCES
[1] Apiary. 2017. Dredd. https://github.com/apiaryio/dredd.

[2] Mario Luca Bernardi, Marta Cimitile, Giuseppe Di Lucca, and Fabrizio Maria

Maggi. 2012. M3D: a tool for the Model Driven Development of Web Applica-

tions. In Proceedings of the Twelfth International Workshop on Web Information
and Data Management. WIDM 2012. Maui, HI, USA, (Nov. 2, 2012), 73–80.

[3] Mario Luca Bernardi, Marta Cimitile, and Fabrizio Maria Maggi. 2016. Auto-

mated development of constraint-driven web applications. In Proceedings of
the 31st Annual ACM Symposium on Applied Computing. ACM, 1196–1203.

[4] Xiang Fu, Tevfik Bultan, and Jianwen Su. 2004. Analysis of interacting BPEL

web services. In In Proc. 13th Int. World Wide Web Conf. Citeseer.
[5] Roy Gronmo, David Skogan, Ida Solheim, and Jon Oldevik. 2004. Model-driven

web services development. In E-Technology, e-Commerce and e-Service. EEE’04.
IEEE, 42–45.

[6] Open API Initiative. 2017. OpenAPI Specification. (Dec. 7, 2017). https://github.

com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md.

[7] Open API Initiative. 2017. The Petstore Example. Version 3.0.1. (Dec. 7, 2017).

https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/

petstore-expanded.yaml.

[8] Jérôme Rocheteau and David Sferruzza. 2016. Reifier: Model-Driven Engineer-

ing of Component-Based and Service-Oriented JEE Applications. In ACM/IEEE

19th International Conference on Model Driven Engineering Languages and

Systems. Saint-Malo, France, (Oct. 5, 2016).

[9] Markus Scheidgen, Sven Efftinge, and Frederik Marticke. 2016. Metamodel-

ing vs Metaprogramming: A Case Study on Developing Client Libraries for

REST APIs. In European Conference on Modelling Foundations and Applications.
Springer, 205–216.

[10] David Sferruzza. 2017. Safe Web Services Generator. https://gitlab.startup-

palace.com/research/swsg.

[11] David Sferruzza. 2018. Specification of SWSG extensions for OpenAPI. (2018).

https : / /gitlab. startup- palace .com/research/swsg/blob/master /openapi -

extensions-specification/1.0.0.md.

[12] David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix.

2018. A Model-Driven Method for Fast Building Consistent Web Services in

Practice. In 6th International Conference on Model-Driven Engineering and

Software Development. Funchal, Madeira, Portugal, (Jan. 23, 2018).

[13] SmartBear Software. 2018. Swagger Code Generator. Version 3.0.0-rc1. (May 29,

2018). https://github.com/swagger-api/swagger-codegen/.

[14] SmartBear Software. 2018. Swagger Editor. https : / / github. com/swagger -

api/swagger-editor.

[15] SmartBear Software. 2018. Swagger UI. https : / /github.com/swagger- api/

swagger-UI.

[16] Wil M.P. van der Aalst, Maja Pesic, and Helen Schonenberg. 2009. Declara-

tive workflows: Balancing between flexibility and support. Computer Science-
Research and Development, 23, 2, 99–113.

7
https://gitlab.startup-palace.com/research/swsg/tree/master/examples

https://github.com/apiaryio/dredd
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://gitlab.startup-palace.com/research/swsg
https://gitlab.startup-palace.com/research/swsg
https://gitlab.startup-palace.com/research/swsg/blob/master/openapi-extensions-specification/1.0.0.md
https://gitlab.startup-palace.com/research/swsg/blob/master/openapi-extensions-specification/1.0.0.md
https://github.com/swagger-api/swagger-codegen/
https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-UI
https://github.com/swagger-api/swagger-UI
https://gitlab.startup-palace.com/research/swsg/tree/master/examples

	Abstract
	1 Introduction
	2 Extending OpenAPI
	2.1 The Component System
	2.2 Extensions to OpenAPI 3.0

	3 Generating Web Services
	3.1 Consistency Verification
	3.2 Code Generation

	4 Related Work
	5 Conclusion
	References

