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We advocate for an alternative description of gravitational radiation from black holes based on complex
angular momentum techniques (analytic continuation of partial wave expansions, duality of the S-matrix
and effective resummations involving its Regge poles and the associated residues, Regge trajectories,
semiclassical interpretations, etc.). Such techniques, which proved to be very helpful in various areas of
physics to describe and analyze resonant scattering, were only marginally used in the context of black hole
physics. Here, by considering the multipolar waveform generated by a massive particle falling radially from
infinity into a Schwarzschild black hole, we show that they could play a fundamental role in gravitational-
wave physics. More precisely, from the multipole expansion defining the Weyl scalar Ψ4, we extract the
Fourier transform of a sum over Regge poles and their residues, which can be evaluated numerically from
the associated Regge trajectories. This Regge pole approximation permits us to reconstruct, for an arbitrary
direction of observation, a large part of the multipolar waveform Ψ4. In particular, it can reproduce with
very good agreement the quasinormal ringdown as well as with rather good agreement the tail of the signal.
This is achieved even if we take into account only one Regge pole, and if a large number of modes are
excited, the result can be improved by considering additional poles. Moreover, while quasinormal-mode
contributions do not provide physically relevant results at “early times” due to their exponentially divergent
behavior as time decreases, it is not necessary to determine from physical considerations a starting time for
the Regge ringdown.

DOI: 10.1103/PhysRevD.98.064052

I. INTRODUCTION

In the mid-1970s, Chandrasekhar observed that the study
of black hole (BH) perturbations can be reduced to a
problem of resonant scattering (cf. Ref. [1] and references
therein). This point of view puts at the heart of BH
perturbation theory the S-matrix concept. As a conse-
quence, it is an invitation to use systematically, in the
context of BH physics, the various tools developed in the
framework of resonant scattering theory and, in particular,
to fully exploit the dual structure of the S-matrix; indeed,
such a matrix is a double-entry mathematical object that is a
function of both the angular momentum l ∈ N and the
frequency ω ∈ R and that can be analytically extended
(i) for l ∈ N, into the complex ω plane and (ii) for ω ∈ R,
into the complex l plane [the so-called complex angular
momentum (CAM) plane]. It is important to note that this
duality permits us to shed light, from two different points of
view, on a resonant phenomenon and to juggle its two
alternative descriptions.
It is well known that the analytic structure of the

S-matrix in the complex ω plane permits us to physically

interpret the response of a BH to an external excitation.
This was developed in a seminal paper by Leaver [2].
In particular, (i) the poles of the S-matrix and the
associated residues are, respectively, the complex frequen-
cies and the excitation factors of the quasinormal modes
(QNMs), which are involved in the description of the BH
ringdown, that part of the signal that dominates the BH
response at intermediate timescales, while (ii) a branch-
cut integral allows us to describe the tail of the signal,
i.e., the BH response at very late times. Such a point of
view is now widely considered in the literature. On the
other hand, there is very little work based on the analytic
structure of the S-matrix in the complex l plane. This is
really surprising. Indeed, in all the other areas of physics
involving resonant scattering theory (see, e.g., Refs. [3,4]
for quantum mechanics, Refs. [4–8] for electromagnetism
and optics, Refs. [9,10] for acoustics and seismology, and
Refs. [11–14] for high energy physics), it is common to
analyze physical phenomenons by using CAM techniques
and by considering the poles of the S-matrix in the CAM
plane (the so-called Regge poles). Such techniques are
very helpful because they permit us to extract the physical
information encoded into partial wave expansions by
providing (i) powerful tools of resummation of these
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expansions and (ii) “semiclassical” descriptions of reso-
nance phenomenons.
Even if, as we have just noted, the CAM approach has

been neglected in the context of BH physics in favor of
descriptions based on the analytic structure of the S-matrix
in the complex ω plane, there exists, however, a few works
using CAM techniques. Among these works, we could
quote the following ones because they are more or less
relevant to the present article:
(1) Chandrasekar and Ferrari have used the Regge pole

theory to determine the flow of gravitational energy
through a relativistic star [15].

(2) Andersson and Thylwe have provided a CAM
description of the scattering of monochromatic
scalar waves by a Schwarzschild BH and used it
to interpret the BH glory [16,17]. They have, in
particular, considered “surface waves” propagating
close to the unstable circular photon (graviton) orbit
at r ¼ 3M (i.e., near the so-called photon sphere)
and associated them with the Regge poles of the
S-matrix.

(3) For the Schwarzschild BH, we have established
that the complex frequencies of the weakly damped
QNMs are Breit-Wigner–type resonances generated
by the surface waves previously mentioned, and we
have been able to construct semiclassically the
spectrum of the QNM complex frequencies from
the Regge trajectories, i.e., from the curves traced
out in the CAM plane by the Regge poles as a
function of the frequency [18,19]. In this way,
we have established on a “rigorous” basis the
physically intuitive interpretation of the Schwarzs-
child BH QNMs suggested, as early as 1972, by
Goebel [20]. These results have been extended to
other BHs or massive fields in Refs. [21–24].

(4) From the Regge trajectories and the residues of the
greybody factors, we have described analytically
the high-energy absorption cross section for a wide
class of BHs endowed with a photon sphere and
explained its oscillations in terms of the geometrical
characteristics (orbital period and Lyapunov expo-
nent) of the null unstable geodesics lying on the
photon sphere [24–26].

In this article, we show that the CAM machinery
provides an interesting alternative framework for describ-
ing gravitational radiation from perturbed BHs. For that, we
consider the classical problem of a Schwarzschild BH
perturbed by a massive particle falling radially from infinity
with an arbitrary initial kinetic energy. Since the pioneering
works, in the 1970s, concerning this problem [27–33], it
has been regularly revisited (cf., e.g., Refs. [2,34–48]) due
to its canonical importance (it permits us to discuss
theoretical concepts or to test numerical tools) and also
because it provides a simplified model for head-on colli-
sions of BHs. Here, we describe the gravitational radiation

from the Weyl scalar Ψ4 and extract from its multipole
expansion the Fourier transform of a sum over Regge poles
and their residues, which can be evaluated numerically
from the associated Regge trajectories. This Regge pole
approximation of the Weyl scalar Ψ4 permits us to con-
struct, for an arbitrary direction of observation, a large part
of the multipolar waveform. In particular, it can reproduce
with very good (sometimes impressive) agreement the
quasinormal ringdown as well as with rather good agree-
ment the tail of the signal. This is achieved even if we take
into account only one Regge pole, and these agreements
can be improved by considering additional Regge poles. In
fact, using Regge poles to describe the ringdown is
equivalent to extracting the information encoded into the
full quasinormal-mode spectrum by resumming over a
large number of quasinormal frequencies and the associated
quasinormal excitation factors. Moreover, it is interesting to
note that, while QNM contributions do not provide physi-
cally relevant results at early times due to their exponen-
tially divergent behavior as time decreases, it is not
necessary to determine from physical considerations a
starting time for the Regge ringdown.
Our paper is organized as follows. In Sec. II, we first

construct the Weyl scalar Ψ4 describing the outgoing
radiation at infinity, which is generated by the massive
particle falling radially into a Schwarzschild BH. This is
achieved by solving, in the frequency domain and from
standard Green’s function techniques, the Zerilli-Moncrief
equation [27,49] for arbitrary ðl; mÞ partial modes. Here,
we consider both the case of a particle starting at rest from
infinity and of a particle projected with a finite kinetic
energy at infinity. We also extract from the multipole
expansion of Ψ4 the quasinormal ringdown of the BH.
In Sec. III, by means of the Poisson summation formula
[50] and also by means of the Sommerfeld-Watson trans-
form [4–6] and Cauchy’s theorem, we provide two different
CAM representations of the multipolar waveform Ψ4 from
which we extract the Fourier transform of a sum over Regge
poles and their residues. These two Regge pole approx-
imations of the Weyl scalar Ψ4 can be evaluated numeri-
cally if we have at our disposal the Regge trajectories. Here,
by Regge trajectories, we intend the curves traced out in the
CAM plane by the Regge poles, as well as by the associated
residues, as a function of the frequency ω. We obtain
numerically these Regge trajectories in this section. In
Sec. IV, we compare numerically the multipolar waveform
Ψ4 constructed by summing over a large number of partial
modes (this is particularly necessary for a radially infalling
relativistic particle) as well as the associated quasinormal
ringdown with the Regge pole approximations obtained in
Sec. III. This allows us to clearly highlight the benefits of
working with the Regge pole approximations of Ψ4. In the
Conclusion, we summarize our main results, briefly con-
sider possible extensions of our work, and return to the
philosophy underlying the CAM approach of BH physics.
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Throughout this article, we adopt units such that
G ¼ c ¼ 1, and we use the geometrical conventions of
Ref. [51]. We, furthermore, consider that the exterior of
the Schwarzschild BH is defined by the line element
ds2¼−fðrÞdt2þfðrÞ−1dr2þr2dθ2þr2 sin2θdφ2, where
fðrÞ ¼ 1–2M=r and M is the mass of the BH, while
t ∈� −∞;þ∞½, r ∈�2M;þ∞½, θ ∈ ½0; π� and φ ∈ ½0; 2π�
are the usual Schwarzschild coordinates.

II. WEYL SCALAR Ψ4 AND ASSOCIATED
QUASINORMAL RINGDOWN

In this section, we shall construct the Weyl scalar Ψ4

describing the outgoing radiation at infinity due to a point
particle of mass m0 falling radially from infinity into a
Schwarzschild BH. Moreover, we shall extract from the
multipole expansion of Ψ4 the associated ringdown
waveform.

A. Multipole expansion of the Weyl scalar Ψ4

We assume an extreme mass ratio for the system particle-
BH (i.e., that m0 ≪ M), such a hypothesis permitting us to
describe the gravitational radiation in the framework of BH
perturbations (see, for pioneering works on this topic, the
articles by Regge and Wheeler [52], Zerilli [27,53], and
Vishveshwara [54] as well as the article by Martel and
Poisson [55] and the review by Nagar and Rezzolla [56] for
a modern point of view based on gauge invariance
[49,57,58]. Moreover, we recall that, in the context of
BH perturbation theory, it is possible to describe the
radiation contained in the emitted gravitational waves in
the framework of the Newman-Penrose formalism by
means of the Weyl scalar Ψ4 [1,59]. We refer more
particularly to Chap. 8 of Ref. [60] for a short review of
the Newman-Penrose formalism and its use in connection
with the perturbations of the Schwarzschild BH, and we
note that, in this context, the Weyl scalar Ψ4 can be
expressed for r → þ∞ as

Ψ4 ¼
1

2

∂2

∂t2 ðhþ − ih×Þ: ð1Þ

Here, Ψ4 has been defined with respect to the null basis
ðl; n;m;m�Þ, which is normalized such that the only
nonvanishing scalar products involving the vectors of the
tetrad are lμnμ ¼ −1 and mμm�

μ ¼ 1 and which is given by
(it should be noted that our conventions slightly differ from
those of Ref. [60])

lμ ¼
�

1

fðrÞ ; 1; 0; 0
�
; ð2aÞ

nμ ¼ 1

2

�
1;−

1

fðrÞ ; 0; 0
�
; ð2bÞ

mμ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
; ð2cÞ

m�μ ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

−i
sin θ

�
: ð2dÞ

In the rhs of Eq. (1), hþ and h× denote, in the transverse
traceless gauge, the two circularly polarized components of
the emitted gravitational wave [51].
The timelike geodesic followed by the particle falling

radially into the Schwarzschild BH is defined by the
coordinates tpðτÞ, rpðτÞ, θpðτÞ, and φpðτÞ, where τ is
the proper time of the particle. Without loss of generality,
we can consider that the particle moves in the BH
equatorial plane along the positive x axis and in the
negative direction; i.e., we assume that θpðτÞ ¼ π=2,
φpðτÞ ¼ 0 and drpðτÞ=dτ < 0. The functions tpðτÞ,
rpðτÞ as well as the function tpðrÞ can be then obtained
from the geodesic equations (see, e.g., Ref. [1])

fðrpÞ
dtp
dτ

¼ E
m0

ð3aÞ

and

�
drp
dτ

�
2

−
2M
rp

¼
�
E
m0

�
2

− 1: ð3bÞ

Here, E is the energy of the particle. It is a constant of
motion which can be related to the velocity v∞ of the
particle at infinity and to the associated Lorentz factor γ by

E
m0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv∞Þ2

p ¼ γ: ð4Þ

We also recall that the radially infalling particle only
excites the even (polar) modes of the Schwarzschild BH
and that, in the transverse traceless gauge, the two
circularly polarized components ðhþ; h×Þ of the emitted
gravitational wave can be expanded on the (scalar) spheri-
cal harmonics Ylmðθ;φÞ in the form [56]

hþ ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψlm

�
2
∂2

∂θ2 þ lðlþ 1Þ
�
Ylm; ð5aÞ

h× ¼ 1

r

Xþ∞

l¼2

Xþl

m¼−l
ψlm

�
2

sin θ

� ∂2

∂θ∂φ −
cos θ
sin θ

∂
∂φ
��

Ylm:

ð5bÞ

In these equations, we have introduced the gauge-
invariant master functions ψlmðt; rÞ of Moncrief [49]
and Cunningham et al. [57,58]. They can be written in
the form
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ψlmðt; rÞ ¼
1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωψωlmðrÞe−iωt; ð6Þ

where their Fourier components ψωlmðrÞ satisfy the Zerilli-
Moncrief equation (a radial Schrödinger-like equation)

�
d2

dr2�
þ ω2 − VlðrÞ

�
ψωlmðrÞ ¼ SωlmðrÞ: ð7Þ

Here, r� denotes the tortoise coordinate, which is defined in
terms of the radial Schwarzschild coordinate r by dr=dr� ¼
fðrÞ and is given by r�ðrÞ ¼ rþ 2M ln½r=ð2MÞ − 1� while
VlðrÞ is the Zerilli-Moncrief potential given by

VlðrÞ ¼ fðrÞ

×

�
Λ2ðΛþ 2Þr3 þ 6Λ2Mr2 þ 36ΛM2rþ 72M3

ðΛrþ 6MÞ2r3
�

ð8Þ

with

Λ ¼ ðl − 1Þðlþ 2Þ ¼ lðlþ 1Þ − 2: ð9Þ

The functions SωlmðrÞ appearing on the rhs of the Zerilli-
Moncrief equation (7) are source terms depending on the
components, in the basis of tensor spherical harmonics,

of the stress tensor inducing the perturbations of the
Schwarzschild spacetime. Their general expression can be
found in the review by Nagar and Rezzolla (cf. Eq. (4) of the
erratum of Ref. [56]), and we have used it in connection with
the geodesic equations (3). We have obtained

SωlmðrÞ ¼ ½Ylmðπ=2; 0Þ��S̃ωlðrÞeþiωtpðrÞ; ð10Þ

where, for the particle starting at rest from infinity (i.e.,
for γ ¼ 1),

S̃ωlðrÞ ¼
8πm0ffiffiffiffiffiffi

2π
p ðΛþ 2ÞðΛrþ 6MÞ fðrÞ

×

�
−iω

r2

M
þ

ffiffiffiffiffiffiffi
r
2M

r �
24M

Λrþ 6M
− ðΛþ 1Þ

��
ð11aÞ

and

tpðrÞ
2M

¼ −
2

3

�
r
2M

�
3=2

− 2

�
r
2M

�
1=2

þ ln

 ffiffiffiffiffi
r
2M

p þ 1ffiffiffiffiffi
r
2M

p
− 1

!

þ t0
2M

; ð11bÞ

and where, for a particle projected with a finite kinetic
energy at infinity (i.e., for γ > 1),

S̃ωlðrÞ ¼
8πm0ffiffiffiffiffiffi

2π
p ðΛþ 2ÞðΛrþ 6MÞ fðrÞ

�
−iω

2γr2

ðγ2 − 1Þrþ 2M

−
ffiffiffi
r

p fΛðΛþ 2Þðγ2 − 1Þr2 − 2M½12ðγ2 − 1Þ2 − 2ðΛ − 3Þðγ2 − 1Þ − ΛðΛþ 1Þ�r − 12M2½5ðγ2 − 1Þ − ðΛ − 3Þ�g
ðΛrþ 6MÞ½ðγ2 − 1Þrþ 2M�3=2

�
ð12aÞ

and

tpðrÞ
2M

¼ −
γ

ðγ2 − 1Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðγ2 − 1Þ r

2M

��
ðγ2 − 1Þ r

2M
þ 1

�s

−
γð2γ2 − 3Þ
ðγ2 − 1Þ3=2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M
þ 1

r �
þ ln

2
64γ

ffiffiffiffiffi
r
2M

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M þ 1
q

γ
ffiffiffiffiffi
r
2M

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2 − 1Þ r

2M þ 1
q

3
75þ t0

2M
: ð12bÞ

In Eqs. (11b) and (12b), t0 is an arbitrary integration
constant.

B. Zerilli-Moncrief equation and the S-matrix

The Zerilli-Moncrief equation (7) can be solved by using
the machinery of Green’s functions (see, e.g., Ref. [61] for
its use in the context of BH physics). Mutatis mutandis,

taking into account (10), the reasoning of Sec. II. C of
Ref. [62] permits us to obtain the asymptotic expression,
for r → þ∞, of the partial amplitudes ψωlmðrÞ. We
have

ψωlmðrÞ ¼ eþiωr�ðrÞ K½l;ω�
2iωAð−Þ

l ðωÞ
½Ylmðπ=2; 0Þ�� ð13aÞ
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with

K½l;ω� ¼
Z þ∞

2M

dr0

fðr0Þϕ
in
ω;lðr0ÞS̃ωlðr0Þeiωtpðr

0Þ: ð13bÞ

Here, we have introduced the solution ϕin
ω;lðrÞ of the

homogeneous Zerilli-Moncrief equation

�
d2

dr2�
þ ω2 − VlðrÞ

�
ϕin
ω;l ¼ 0; ð14Þ

which is defined by its behavior at the event hori-
zon r ¼ 2M (i.e., for r� → −∞) and at spatial infinity
r → þ∞ (i.e., for r� → þ∞):

ϕin
ω;lðr�Þ ∼

� e−iωr�ðr� → −∞Þ
Að−Þ
l ðωÞe−iωr� þ AðþÞ

l ðωÞeþiωr�ðr� → þ∞Þ:
ð15Þ

The coefficients Að−Þ
l ðωÞ and AðþÞ

l ðωÞ appearing in
Eqs. (13) and (15) are complex amplitudes. By evalua-
ting, first for r� → −∞ and then for r� → þ∞, the
Wronskian involving the function ϕin

ωl and its complex
conjugate, we can show that they are linked by

jAð−Þ
l ðωÞj2 − jAðþÞ

l ðωÞj2 ¼ 1: ð16Þ

Moreover, with the numerical calculation of the Weyl
scalar Ψ4 as well as the study of its properties in mind, it
is important to note that

ϕin
−ω;lðrÞ ¼ ½ϕin

ω;lðrÞ��; ð17aÞ

Að�Þ
l ð−ωÞ ¼ ½Að�Þ

l ðωÞ�� ð17bÞ

and, as a consequence of the expressions (11a) and (12a)
of the sources, that

K½l;−ω� ¼ ½K½l;ω��� ð17cÞ

and

K½l;−ω�=Að−Þ
l ð−ωÞ ¼ ½K½l;ω�=Að−Þ

l ðωÞ��: ð17dÞ

It is worth pointing out that the expression (13) of the
partial amplitudes ψωlmðrÞ involves the S-matrix defined
by (see, e.g., Ref. [63])

SlðωÞ ¼
 

1=Að−Þ
l ðωÞ AðþÞ

l ðωÞ=Að−Þ
l ðωÞ

−½AðþÞ
l ðωÞ��=Að−Þ

l ðωÞ 1=Að−Þ
l ðωÞ

!
:

ð18Þ

We can note that, due to (17b), this matrix satisfies the
symmetry property Slð−ωÞ ¼ ½SlðωÞ�� and that, due
to (16), it is in addition unitary; i.e., it satisfies
SS† ¼ S†S ¼ 1. Here, it is interesting to recall that, in

Eq. (18), the term 1=Að−Þ
l ðωÞ and the term AðþÞ

l ðωÞ=Að−Þ
l ðωÞ

are, respectively, the transmission coefficient TlðωÞ and
the reflection coefficient Rin

l ðωÞ corresponding to the
scattering problem defined by (15). As far as the coefficient

−½AðþÞ
l ðωÞ��=Að−Þ

l ðωÞ is concerned, it can be considered as
the reflection coefficient Rup

l ðωÞ involved in the scattering
problem defining the modes ϕup

ω;lðrÞ [63].

C. Compact expression for the multipole
expansion of the Weyl scalar Ψ4

We now substitute (6) and (13) into (5a) and (5b).
Furthermore, without loss of generality, we can assume that
the gravitational wave is observed in a direction lying in the
BH equatorial plane and making an angle φ ∈ ½0; π� with
the trajectory of the particle (due to symmetry consider-
ations, we can restrict our study to this interval). By then,
using the addition theorem for scalar spherical harmonics in
the form

Xþl

m¼−l
Ylmðθ;φÞ½Ylmðπ=2; 0Þ�� ¼ 2lþ 1

4π
Plðsin θ cosφÞ;

ð19Þ
where PlðxÞ denotes the Legendre polynomial of degree l
[64], we obtain, for r → þ∞,

rhþðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼2

2lþ 1

4π

K½l;ω�
2iωAð−Þ

l ðωÞ
ZlðcosφÞ

�
ð20Þ

and

rh×ðt; r; θ ¼ π=2;φÞ ¼ 0: ð21Þ

In Eq. (20), we have introduced the angular function

ZlðcosφÞ ¼
��

2
∂2

∂θ2 þ lðlþ 1Þ
�
Plðsin θ cosφÞ

�
θ¼π=2

;

ð22aÞ
which, by using the properties of the Legendre polynomials
[64], can be written in the form

ZlðcosφÞ ¼
lþ 1

sin2φ
f2 cosφPlþ1ðcosφÞ

− ½ðlþ 2Þcos2φ − l�PlðcosφÞg: ð22bÞ

ALTERNATIVE DESCRIPTION OF GRAVITATIONAL … PHYS. REV. D 98, 064052 (2018)

064052-5



By inserting finally (20) and (21) into (1), we can write for
r → þ∞

rΨ4ðt; r;θ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼2

2lþ 1

4π

iωK½l;ω�
4Að−Þ

l ðωÞ
ZlðcosφÞ

�
:

ð23Þ
It should be noted that, due to the relation (17d), the term in
squared brackets in the previous equation satisfies the
Hermitian symmetry property and, as a consequence, the
Weyl scalar Ψ4 is a purely real quantity.

D. Two alternative expressions for the multipole
expansion of the Weyl scalar Ψ4

It is very important to realize that (23) can also be
written as

rΨ4ðt; r;θ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼0

2lþ 1

4π

iωK½l;ω�
4Að−Þ

l ðωÞ
ZlðcosφÞ

�
:

ð24Þ
Indeed, it is possible to start at l ¼ 0, the discrete sum over
l, taking into account the results

Z0ðcosφÞ ¼ 0 and Z1ðcosφÞ ¼ 0; ð25Þ
which are easily obtained from the definition (22) by noting
that P0ðxÞ ¼ 1 and P1ðxÞ ¼ x. Of course, in general, it is
more natural to work with the multipole expansion (23) of
the Weyl scalar Ψ4, but in Sec. III C, we will take (24) as a
departure point because it will permit us to use the Poisson
summation formula in its standard form.
It is moreover interesting to note that (24) can be

rewritten in the form

rΨ4ðt; r; θ ¼ π=2;φÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

l¼0

ð−1Þl 2lþ 1

4π

iωK½l;ω�
4Að−Þ

l ðωÞ
Zlð− cosφÞ

�
: ð26Þ

Indeed, we can recover (24) from (26) by using

Zlð− cosφÞ ¼ ð−1ÞlZlðcosφÞ; ð27Þ

which is a direct consequence of the definition (22), of the
properties of the Legendre polynomials and, in particular,
of the relation [64]

Plð− cosφÞ ¼ ð−1ÞlPlðcosφÞ: ð28Þ

In Sec. III D, we will take (26) as a departure point because
it will permit us to use the Sommerfeld-Watson transform
in its standard form.

E. Quasinormal ringdown associated
with the Weyl scalar Ψ4

We can extract from (23) the quasinormal ringdown
ΨQNM

4 generated by the massive particle falling radially
from infinity into a Schwarzschild BH. This is achieved by
deforming the contour of integration over ω in Eq. (23)
(see, e.g., Ref. [2]). This deformation permits us to capture

the zeros of the coefficients Að−Þ
l ðωÞ lying in the lower part

of the complex ω plane, i.e., the solutions of the equation

Að−Þ
l ðωlnÞ ¼ 0; ð29Þ

where ωln denotes the complex frequencies of the ðl; nÞ
QNMs. We recall that the quasinormal-frequency spectrum
is symmetric with respect to the imaginary axis, i.e., if ωln
is a quasinormal frequency lying in the fourth quadrant,
−ω�

ln is the symmetric quasinormal frequency lying in
the third one. We also recall that, for a given l, n ¼ 1
corresponds to the fundamental QNM (i.e., the least
damped one) and n ¼ 2; 3;… correspond to the overtones.
By using Cauchy’s theorem and introducing the residues of
the S-matrix SlðωÞ [or, more precisely, of the function

1=Að−Þ
l ðωÞ] at ω ¼ ωln and ω ¼ −ω�

ln, we then easily
obtain

rΨQNM
4 ðt; r; θ ¼ π=2;φÞ

¼
ffiffiffiffiffiffi
2π

p
Re

�Xþ∞

l¼2

Xþ∞

n¼1

2lþ 1

4π
Bln

ðωlnÞ2K½l;ωln�
AðþÞ
l ðωlnÞ

× e−iωln½t−r�ðrÞ�ZlðcosφÞ
�
: ð30Þ

In the previous expression,

Bln ¼
�
1

2ω

AðþÞ
l ðωÞ

d
dωA

ð−Þ
l ðωÞ

�
ω¼ωln

ð31Þ

denotes the excitation factor associated with the ðl; nÞ
QNM of complex frequency ωln. Its expression involves

the residue of the function 1=Að−Þ
l ðωÞ at ω ¼ ωln. It should

be noted that, in order to obtain (30), we have gathered the
contributions of the quasinormal frequencies ωln and
−ω�

ln, taking into account the relations (17b) and (17c),
which remain valid in the complex ω plane. As a conse-
quence, the quasinormal ringdown waveform ΨQNM

4

appears clearly as a purely real quantity.

ANTOINE FOLACCI and MOHAMED OULD EL HADJ PHYS. REV. D 98, 064052 (2018)

064052-6



It is important to recall that the ringdown waveform
ΨQNM

4 does not provide physically relevant results at early
times due to the exponentially divergent behavior of each of
its components as t decreases. It is therefore necessary to
determine, from physical considerations (see below), a
starting time tstart for the BH ringdown.

III. WEYL SCALAR Ψ4, ITS CAM
REPRESENTATIONS, AND ITS REGGE

POLE APPROXIMATIONS

In this section, we shall provide two CAM representa-
tions of the Weyl scalar Ψ4. There are exact representations
that are obtained by replacing the discrete sum over integer
values of the angular momentum l by a sum over Regge
poles plus background integrals along the positive real axis
and the imaginary axis of the CAM plane. We shall also
discuss the Regge pole part of these representations as
approximations of the Weyl scalar Ψ4.

A. Some preliminary remarks concerning analytic
extensions in the CAM plane

A CAM representation of the multipolar waveform Ψ4

given by Eq. (23) can be obtained by first applying the
Poisson summation formula [50] to (24), or, equivalently,
the Sommerfeld-Watson transform [4–6] to (26), and then
by using Cauchy’s theorem. As we shall see below, this
requires to replace, into the term

Xþ∞

l¼0

2lþ 1

4π

iωK½l;ω�
4Að−Þ

l ðωÞ
ZlðcosφÞ ð32Þ

of Eq. (24) or into the term

Xþ∞

l¼0

ð−1Þl 2lþ 1

4π

iωK½l;ω�
4Að−Þ

l ðωÞ
Zlð− cosφÞ ð33Þ

of Eq. (26), the angular momentum l ∈ N by the angular
momentum λ ¼ lþ 1=2 ∈ C and to work into the
CAM plane. As a consequence, we need to have at our
disposal the functions Zλ−1=2ðcosφÞ, Zλ−1=2ð− cosφÞ and

K½λ − 1=2;ω�=Að−Þ
λ−1=2ðωÞ, which are “the” analytic exten-

sions of ZlðcosφÞ, Zlð− cosφÞ, and K½l;ω�=Að−Þ
l ðωÞ in

the complex λ plane. In fact, the uniqueness of these
analytic extensions is a difficult mathematical problem that
goes beyond the scope of our study. In general (i.e., in the
context of the resolution of a Schrödinger-like equation
with an arbitrary potential and of the CAM analysis of the
associated resonant scattering), as noted by Newton in
Chap. 13 of Ref. [4], there are infinitely many ways of
constructing an analytic function taking prescribed values
for integers, and the “right” one is justified by the results.
It should be noted, however, that, as far as the determi-

nation of the analytic extension of ZlðcosφÞ and

Zlð− cosφÞ is concerned, the problem can be easily solved.
Indeed, these two angular functions can be expressed in
terms of Legendre polynomials [see Eq. (22)] of which the
analytic extension has been widely discussed in the
literature concerning the CAM approach of resonant
scattering. We recall that the analytic extension of PlðzÞ
usually considered is the hypergeometric function [64]

Pλ−1=2ðzÞ ¼ Fð1=2 − λ; 1=2þ λ; 1; ð1 − zÞ=2�; ð34Þ

and it is worth noting that it satisfies

P−λ−1=2ðzÞ ¼ Pλ−1=2ðzÞ: ð35Þ

From (22), we then can write

Zλ−1=2ð� cosφÞ ¼
��

2
∂2

∂θ2 þ ðλ2 − 1=4Þ
�

× Pλ−1=2ð� sin θ cosφÞ
�

θ¼π=2
ð36aÞ

from which we obtain

Zλ−1=2ð�cosφÞ

¼ λþ 1=2
sin2φ

f�2 cosφPλþ1=2ð�cosφÞ

−½ðλþ 3=2Þcos2φ− ðλ− 1=2Þ�Pλ−1=2ð� cosφÞg: ð36bÞ

We can immediately check that, due to (34) and (35), we
have

Z−λ−1=2ð� cosφÞ ¼ Zλ−1=2ð� cosφÞ ð37Þ

and

Zλ−1=2ð� cosφÞ ¼ ½Zλ�−1=2ð� cosφÞ��: ð38Þ

Here, it is very important to note that, while the angular
functions Zlð� cosϕÞ are well defined for φ ∈ ½0; π�, this is
not the case for their analytic extensions Zλ−1=2ð� cosϕÞ.
Indeed, due to the pathologic behavior of Pλ−1=2ðzÞ at z ¼
−1 [see, Eq. (34)], Zλ−1=2ðcosϕÞ diverges in the limit
φ → π and Zλ−1=2ð− cosϕÞ diverges in the limit φ → 0. We
shall return to these results later due to the problems they
generate on the Regge pole approximation of Ψ4.
An analytic extension K½λ − 1=2;ω�=Að−Þ

λ−1=2ðωÞ of

K½l;ω�=Að−Þ
l ðωÞ must satisfy a generalization of the

relation (17d). We first note that the function ϕin
ω;λ−1=2ðrÞ

and the coefficients Að�Þ
λ−1=2ðωÞ that are defined by the

problem (14), (15), where now l ∈ N is replaced by
λ − 1=2 ∈ C, satisfy
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ϕin
−ω;λ−1=2ðrÞ ¼ ½ϕin

ω;λ�−1=2ðrÞ��; ð39aÞ

Að�Þ
λ−1=2ð−ωÞ ¼ ½Að�Þ

λ�−1=2ðωÞ��: ð39bÞ

We also note that, as a consequence of the expressions
(11a) and (12a) of the sources, we have

K½λ − 1=2;−ω� ¼ ½K½λ� − 1=2;ω���; ð39cÞ

and therefore

K½λ − 1=2;−ω�=Að−Þ
λ−1=2ð−ωÞ

¼ ½K½λ� − 1=2;ω�=Að−Þ
λ�−1=2ðωÞ��: ð39dÞ

B. Regge poles, Regge modes,
and associated excitation factors

In the next two subsections, contour deformations in the
CAM plane will permit us to collect, by using Cauchy’s
residue theorem, the contributions from the Regge poles of
the S-matrix or, more precisely, from the poles, in the
complex λ plane and for ω ∈ R, of the matrix Sλ−1=2ðωÞ. It
should be noted that these poles can be defined as the zeros
λnðωÞ with n ¼ 1; 2; 3;… and ω ∈ R of the coefficient

Að−Þ
λ−1=2ðωÞ [see Eq. (18)]. They therefore satisfy

Að−Þ
λnðωÞ−1=2ðωÞ ¼ 0: ð40Þ

The Regge poles corresponding to the odd-parity per-
turbations of the Schwarzschild BH have been studied in
Refs. [18,21,22]. But, here, we have to consider the Regge
poles corresponding to the even-parity perturbations. While
the odd-parity sector is governed by the Regge-Wheeler
equation, the even-parity one is governed by the Zerilli-
Moncrief equation, and as a consequence, the S-matrix
differs according to the parity sector. However, it is
important to recall that the solutions of the homogeneous
Zerilli-Moncrief and Regge-Wheeler equations are related
by the Chandrasekhar-Detweiler transformation [1,65]. As
a consequence, by using the fact that the coefficients

Að−Þ
l ðωÞ and therefore Að−Þ

λ−1=2ðωÞ are identical in the two
parity sectors, it is obvious that the Regge pole spectrum
does not depend on the parity sector and the results already
obtained for the Regge poles corresponding to the odd-
parity perturbations of the Schwarzschild BH can be used
here without any change. In particular, it should be recalled
that, for ω > 0, the Regge poles lie in the first and third
quadrants of the CAM plane symmetrically, distributed
with respect to the originO of this plane. In this article, due
to the use of Fourier transforms, we must be able to locate
the Regge poles even for ω < 0. In fact, from the symmetry
relation (39b), we have

FIG. 1. Regge trajectories of the first three Regge poles corresponding to the even-parity perturbations of the Schwarzschild BH
(2M ¼ 1). The relation (41) permits us to describe the Regge trajectories for ω < 0 by noting that Re½λnðωÞ� and Im½λnðωÞ� are,
respectively, even and odd functions of ω. We observe, in particular, the migration of the Regge poles in the CAM plane.
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λnð−ωÞ ¼ ½λnðωÞ��; ð41Þ

and we can see immediately that, for ω < 0, the Regge
poles lie in the second and fourth quadrants of the CAM
plane symmetrically, distributed with respect to the origin
O of this plane. Moreover, if we consider the Regge
trajectories λnðωÞ with ω ∈�−∞;þ∞½, we can observe
the migration of the Regge poles. More precisely, as ω
decreases, the Regge poles lying in the first (third) quadrant
of the CAM plane migrate in the fourth (second) one.
It should be noted that the solutions of the problem (14),

(15) with l replaced by λnðωÞ − 1=2 are modes that
are purely outgoing at infinity and purely ingoing at the
horizon. They are the “Regge modes” of the Schwarzschild
BH [21]. Because of the analogy with the QNMs, it is
natural to define excitation factors for these modes. In fact,
they will appear in the CAM representation of the Weyl
scalar Ψ4. By analogy with the excitation factor associated
with the ðl; nÞ QNM of complex frequency ωln [see
Eq. (31)], we define the excitation factor of the Regge
mode associated with the Regge pole λnðωÞ by

βnðωÞ ¼
"
1

2ω

AðþÞ
λ−1=2ðωÞ

d
dλA

ð−Þ
λ−1=2ðωÞ

#
λ¼λnðωÞ

: ð42Þ

Its expression involves the residue of the matrix Sλ−1=2ðωÞ
[or, more precisely, of the function 1=Að−Þ

λ−1=2ðωÞ] at
λ ¼ λnðωÞ. It should be noted that, due to (39b), we have

βnð−ωÞ ¼ −½βnðωÞ��: ð43Þ

It is worth pointing out that, unlike the Regge poles, the
excitation factors (42) depend on the parity sector because

the coefficients AðþÞ
l ðωÞ and therefore AðþÞ

λ−1=2ðωÞ are parity
dependent [1,65].
We have displayed the Regge trajectories of the first

three Regge poles as well as the Regge trajectories of the
corresponding excitation factors in Figs. 1 and 2. These
numerical results have been obtained by using, mutatis
mutandis, the methods that have permitted us to obtain, in
Refs. [66,62], for the electromagnetic field and for the
gravitational waves, the complex quasinormal frequencies
of the QNMs and the associated excitation factors (see, e.g.,
Sec. IV. A of Ref. [62]). The numerical calculations have
been performed using Mathematica [67].
It is important to recall that, in Refs. [18,21], we have

established a connection between the Regge modes and the
(weakly damped) QNMs of the Schwarzschild BH. It will
play a central role in the interpretation of our results in
Sec. IV and in the Conclusion, and we recall that, for a
given n, the Regge trajectory λnðωÞ with ω ∈ R encodes
information on the complex quasinormal frequencies ωln
with l ¼ 2; 3;…. In fact, the index n ¼ 1; 2; 3;… permits
us not only to distinguish between the different Regge poles

but is also associated with the family of quasinormal
frequencies generated by the Regge modes.

C. CAM representation and Regge pole
approximation of the Weyl scalar Ψ4 based

on the Poisson summation formula

By means of the usual “half-range” Poisson summation
formula [50]

Xþ∞

l¼0

Fðlþ 1=2Þ ¼
Xþ∞

p¼−∞
ð−1Þp

Z þ∞

0

dλFðλÞei2πpλ ð44Þ

FIG. 2. Regge trajectories of the Regge-mode excitation factors
(2M ¼ 1). We consider the Regge modes corresponding to the
first three Regge poles of which the behavior has been displayed
in Fig. 1 (2M ¼ 1). The relation (43) permits us to describe the
Regge trajectories for ω < 0 by noting that Re½βnðωÞ� and
Im½βnðωÞ� are, respectively, odd and even functions of ω.
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applied, in Eq. (24), to the discrete sum over the ordinary angular momentum l, we obtain

rΨ4ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

�Z þ∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞ

þ
Xþ∞

p¼1

Z þ∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�Þ
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞei2πpðλ−1=2Þ

þ
Xþ∞

p¼1

Z þ∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞe−i2πpðλ−1=2Þ

�
: ð45Þ

The integrals in the second term of the rhs of (45) can be evaluated by using Cauchy’s residue theorem. This is achieved by
closing the path along the positive real axis with a quarter circle at infinity in the first quadrant of the CAM plane and a path
along the positive imaginary axis going from þi∞ to 0. The integrals in the third term of the rhs of (45) can be evaluated
similarly, but now by closing the path along the positive real axis in the fourth quadrant of the CAM plane. Cauchy’s residue
theorem permits us to collect the contributions from the Regge poles λnðωÞ with n ¼ 1; 2; 3;…, i.e., the zeros for ω ∈ R of

the coefficient Að−Þ
λ−1=2ðωÞ. Here, it should be recalled that these poles of the S-matrix lie in the first quadrant of the CAM

plane for ω > 0 and that they migrate in the fourth one for ω < 0 (see also Sec. III B). By assuming that the contributions
coming from the two quarter circles at infinity vanish [a drastic assumption that implies strong constraints on the choice of

the analytic extension of K½l;ω�=Að−Þ
l ðωÞ in the complex λ plane], we then obtain

rΨ4ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

�Z
∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞ

þ
Xþ∞

p¼1

Z þi∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞei2πpðλ−1=2Þ

þ
Xþ∞

p¼1

Z
−i∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞe−i2πpðλ−1=2Þ

−HðωÞ
Xþ∞

p¼1

Xþ∞

n¼1

λnðωÞβnðωÞ
ω2K½λnðωÞ − 1=2;ω�

2AðþÞ
λnðωÞ−1=2ðωÞ

ZλnðωÞ−1=2ðcosφÞei2πpðλnðωÞ−1=2Þ

þHð−ωÞ
Xþ∞

p¼1

Xþ∞

n¼1

λnðωÞβnðωÞ
ω2K½λnðωÞ − 1=2;ω�

2AðþÞ
λnðωÞ−1=2ðωÞ

ZλnðωÞ−1=2ðcosφÞe−i2πpðλnðωÞ−1=2Þ
�
; ð46Þ

whereH denotes the Heaviside step function. In Eq. (46), we have introduced the excitation factor (42) of the Regge mode
associated with the Regge pole λnðωÞ. We can now simplify (46) by using the relations

Xþ∞

p¼1

ei2πpðz−1=2Þ ¼ −
eiπz

2 cosðπzÞ valid if Imz > 0; ð47aÞ

Xþ∞

p¼1

e−i2πpðz−1=2Þ ¼ −
e−iπz

2 cosðπzÞ valid if Imz < 0: ð47bÞ

We then obtain

Ψ4ðt; r; θ ¼ π=2;φÞ ¼ ΨBðPÞ
4 ðt; r; θ ¼ π=2;φÞ þΨRPðPÞ

4 ðt; r; θ ¼ π=2;φÞ; ð48Þ

where
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rΨBðPÞ
4 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

�Z
∞

0

dλ
λ

2π

iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞ

−
1

4π

Z þi∞

0

dλ
λeiλ

cosðπλÞ
iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞ

−
1

4π

Z
−i∞

0

dλ
λe−iλ

cosðπλÞ
iωK½λ − 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ðcosφÞ

�
ð49aÞ

is a background integral contribution and where

rΨRPðPÞ
4 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�
HðωÞ

Xþ∞

n¼1

λnðωÞβnðωÞeiπλnðωÞ
cos½πλnðωÞ�

ω2K½λnðωÞ − 1=2;ω�
4AðþÞ

λnðωÞ−1=2ðωÞ
ZλnðωÞ−1=2ðcosφÞ

−Hð−ωÞ
Xþ∞

n¼1

λnðωÞβnðωÞe−iπλnðωÞ
cos½πλnðωÞ�

ω2K½λnðωÞ − 1=2;ω�
4AðþÞ

λnðωÞ−1=2ðωÞ
ZλnðωÞ−1=2ðcosφÞ

�
ð49bÞ

is the Fourier transform of a sum over Regge poles. We can
again check that Ψ4 is a real-valued function by now
considering this new expression. Indeed, due to the
relations (38) and (39d), the first term as well as the
sum of the second and third terms into the squared bracket
on the rhs of (49a) satisfy the Hermitian symmetry
property. Such a property is also satisfied by the sum of
the two terms into the squared bracket on the rhs of (49b) as
a consequence of the relations (38), (39b), (39c), (41),
and (43).
It is important to note that (48) provides an exact

expression for the Weyl scalar Ψ4, equivalent to the initial
expression (23). From this CAM representation of Ψ4, we

can extract the contribution denoted byΨRPðPÞ
4 and given by

(49b), which, as a sum over Regge poles, is only an
approximation of Ψ4. In Sec. IV, we shall compare it with
the exact expression (23) of Ψ4. However, when consid-

ering the term ΨRPðPÞ
4 alone, we shall encounter some

problems due to the pathological behavior of
ZλnðωÞ−1=2ðcosφÞ for φ → π. In fact, both the Regge pole

approximation ΨRPðPÞ
4 and the background integral contri-

butionΨBðPÞ
4 are divergent in the limit φ → π, but it is worth

pointing out that their sum (48) does not present any
pathology.

D. CAM representation and Regge pole
approximation of the Weyl scalar Ψ4 based

on the Sommerfeld-Watson transform

By means of the Sommerfeld-Watson transformation
[4–6], which permits us to write

Xþ∞

l¼0

ð−1ÞlFðlÞ ¼ i
2

Z
C
dλ

Fðλ − 1=2Þ
cosðπλÞ ; ð50Þ

we replace in Eq. (26) the discrete sum over the ordinary
angular momentum l by a contour integral in the complex λ
plane (i.e., in the complex l plane with λ ¼ lþ 1=2). We
obtain

rΨ4ðt; r;θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�
i
2

Z
C
dλ

λ

2π cosðπλÞ

×
iωK½λ− 1=2;ω�
4Að−Þ

λ−1=2ðωÞ
Zλ−1=2ð− cosφÞ

�
:

ð51Þ

In Eqs. (50) and (51), the integration contour encircles
counterclockwise the positive real semiaxis of the complex
λ plane; i.e., we take C ¼� þ∞− iϵ;−iϵ� ∪ ½−iϵ;þiϵ� ∪
½þiϵ;þ∞þ iϵ½ with ϵ → 0þ. We can recover (26) from
(51) by using Cauchy’s residue theorem and by noting that
the poles of the integrand in (51) that are enclosed in C are
the zeros of cosðπλÞ, i.e., the semi-integers λ ¼ lþ 1=2
with l ∈ N.
The contour C in Eq. (51) is now opened out to become a

contour running on the imaginary axis of the complex λ
plane (for more details, see, e.g., Ref. [4]). This permits us
to collect, by using Cauchy’s residue theorem, the con-
tributions from the Regge poles λnðωÞ with n ¼ 1; 2; 3;…
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that are crossed over. Here, it should be recalled that these
poles of the S-matrix lie in the first quadrant of the CAM
plane for ω > 0 and that they migrate in the fourth one for

ω < 0 (see also Sec. III B). By again assuming that the
contributions coming from the quarter circles at infinity
vanish, we obtain

Ψ4ðt; r; θ ¼ π=2;φÞ ¼ ΨBðSWÞ
4 ðt; r; θ ¼ π=2;φÞ þΨRPðSWÞ

4 ðt; r; θ ¼ π=2;φÞ; ð52Þ

where

rΨBðSWÞ
4 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

�
−

1

16π

Z þi∞

−i∞
dλ

λ

cosðπλÞ
ωK½λ − 1=2;ω�

Að−Þ
λ−1=2ðωÞ

Zλ−1=2ð− cosφÞ
�

ð53aÞ

is a background integral contribution and where

rΨRPðSWÞ
4 ðt; r; θ ¼ π=2;φÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z þ∞

−∞
dωe−iω½t−r�ðrÞ�

×

�Xþ∞

n¼1

λnðωÞβnðωÞ
4i cos½πλnðωÞ�

ω2K½λnðωÞ − 1=2;ω�
AðþÞ
λnðωÞ−1=2ðωÞ

ZλnðωÞ−1=2ð− cosφÞ
�

ð53bÞ

is the Fourier transform of a sum over the Regge poles. We
can again check that Ψ4 is a real-valued function by now
considering this last expression. Indeed, due to the relations
(38) and (39d), the term in the squared brackets on the rhs
of (53a) satisfies the Hermitian symmetry property. Such a
property is also satisfied by the term in the squared brackets
on the rhs of (53b) as a consequence of the relations (38),
(39b), (39c), (41), and (43).
Of course, Eq. (52) provides an exact expression for the

Weyl scalar Ψ4, equivalent to the initial expression (23) and
to the expression (49) obtained from the Poisson summa-
tion formula. From this CAM representation of Ψ4, we can

extract the contribution denoted by ΨRPðSWÞ
4 and given by

(53b), which, as a sum over the Regge poles, is only an
approximation of Ψ4. In Sec. IV, we shall compare it with
the exact expression (23) of Ψ4 and with the Regge pole

approximation ΨRPðPÞ
4 obtained in Sec. III C. However,

when considering the term ΨRPðSWÞ
4 alone, we shall

encounter some problems due to the pathological behavior
of ZλnðωÞ−1=2ð− cosφÞ for φ → 0. In fact, both the Regge

pole approximation ΨRPðSWÞ
4 and the background integral

contribution ΨBðSWÞ
4 are divergent in the limit φ → 0, but it

is worth pointing out that their sum (52) does not present
any pathology.

IV. COMPARISON OF THE WEYL SCALAR Ψ4
WITH ITS REGGE POLE APPROXIMATIONS

In this section, we shall compare numerically the
multipolar waveform Ψ4 given by (23) and constructed
by summing over a large number of partial modes (this is
particularly necessary for the radially infalling relativist

particle) as well as the associated quasinormal ringdown
ΨQNM

4 given by (30) with the Regge pole approximations

ΨRPðPÞ
4 and ΨRPðSWÞ

4 , respectively, given by (49b) and (53b)
and constructed by considering only one or a small number
of Regge poles. This will allow us to clearly highlight the
benefits of working with the Regge pole approximations
of Ψ4.

A. Numerical methods

To construct numerically theWeyl scalarΨ4 as well as its
QNM and Regge pole approximations:
(1) We have to solve the problem (14), (15) permitting

us to obtain the function ϕin
ω;lðrÞ and the coefficients

Að−Þ
l ðωÞ and AðþÞ

l ðωÞ. This must be achieved (i) for
l ∈ N and ω ∈ R as well as (ii) for l ∈ N and
ω ∈ C (or, more precisely, for the quasinormal
frequencies ω ¼ ωln) and (iii) for l¼ λ−1=2∈C
[or, more precisely, for the Regge poles λ ¼ λnðωÞ]
and ω ∈ R.

(2) We have to determine the quasinormal frequencies
ωln and the Regge poles λnðωÞ, i.e., the solutions of
(29) and (40), and to obtain the corresponding
excitation factors (31) and (42). Let us recall that
this point has been already discussed in Sec. III B.

(3) We have to construct the term K½l;ω� defined by
(13b) (i) for l ∈ N and ω ∈ R as well as (ii) for
l ∈ N and ω ¼ ωln and (iii) for l ¼ λnðωÞ − 1=2
and ω ∈ R.

All these numerical results can be obtained by using,
mutatis mutandis, the methods that have permitted us to
describe, in Refs. [66,62], the electromagnetic field and the
gravitational waves generated by a particle plunging from
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the innermost stable circular orbit (ISCO) into a
Schwarzschild BH (see, e.g., Sec. IV. A of Ref. [62]). It
should be noted, however, that, in these previous works, it
has been necessary to regularize the multipolar waveforms
due to divergences occurring near the ISCO. We do not
encounter such a problem for the particle falling radially
from infinity into a Schwarzschild BH. It should also be
recalled that it is necessary to select a starting time tstart for
the ringdown. By taking tstart ¼ tpð3MÞ, i.e., the moment
the particle crosses the photon sphere, we have obtained
physically relevant results. Finally, it should be noted that
we have performed all the numerical calculations by using
Mathematica [67] and by taking t0 ¼ 0 in Eqs. (11b)
and (12b).

B. Results and comments

We have compared the multipolar waveformΨ4 given by

(23) with its Regge pole approximation ΨRPðPÞ
4 given by

(49b) in Figs. 3–10 and with its Regge pole approximation

ΨRPðSWÞ
4 given by (53b) in Figs. 11–14. We have considered

various values for the angle φ ∈ ½0; π� excluding the cases
φ ¼ 0 and φ ¼ π for which Ψ4 ¼ 0. We have examined
both the case of a particle starting at rest from infinity
(v∞ ¼ 0 and γ ¼ 1) and of a particle projected with a
relativistic velocity at infinity [in that case, we have taken
for the velocity at infinity v∞ ¼ 0.75 (γ ≈ 1.51) and

v∞ ¼ 0.90 (γ ≈ 2.29)]. It is important to note that the
number of partial modes to include in the sum (23) in order
to obtain a numerically stable result strongly depends on
the initial velocity of the particle; the sum over l has been
truncated at l ¼ 10 for v∞ ¼ 0, at l ¼ 15 for v∞ ¼ 0.75,
and at l ¼ 20 for v∞ ¼ 0.90.
As a preliminary remark, it should be recalled that, a long

time ago, Davis et al. [29] described the structure, as a
function of the retarded time t − r�ðrÞ, of the partial
waveforms ψlmðt; rÞ [see our Eqs. (6) and (13)] generated
by the particle falling radially into a Schwarzschild BH.
They identified three main components: a precursor (cor-
responding to the plunge of the particle from infinity), a
burst (emitted when the particle approaches the BH photon
sphere and crosses it), and a ringdown with a tail (emitted
after the crossing of the photon sphere). In the present
work, because we describe mathematically the BH
response by the multipolar Weyl scalar Ψ4 (i.e., by a
superposition of a large number of partial waveforms), the
part of the signal corresponding to the precursors and bursts
of the various modes is blurred due to destructive inter-
ferences (see Figs. 3–14). Hence, the two terms precursor
and burst being now inadequate, we will refer to the
“preringdown phase” to designate the early time response
of the BH. By contrast, we can note that the multipolar
Weyl scalar Ψ4 still involves a ringdown at intermediate
timescales and a tail at very late times.

(a) (b)

(c) (d)

FIG. 3. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Weyl scalar Ψ4 constructed by summing over
the first eight partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 10 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and roughly approximates the
waveform tail. (c) Taking into account an additional Regge pole slightly improves the Regge pole approximation, which is now in
perfect agreement with the Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the additional Regge pole does not
improve the description of the waveform tail.
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(a) (b)

(c) (d)

FIG. 5. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=2. (a) The Regge pole

approximation constructed from only one Regge pole is in rather good agreement with the Weyl scalar Ψ4 constructed by summing over
the first eight partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 10 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well a large part of the ringdown and roughly
approximates the waveform tail. (c) Taking into account an additional Regge pole improves the Regge pole approximation, which is now
in very good agreement with the Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the additional Regge pole
does not improve the description of the waveform tail.

(a) (b)

(c) (d)

FIG. 4. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in good agreement with the Weyl scalar Ψ4 constructed by summing over the
first eight partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 10 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and roughly approximates the
waveform tail. (c) Taking into account an additional Regge pole slightly improves the Regge pole approximation, which is now in very
good agreement with the Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the additional Regge pole does not
improve the description of the waveform tail.
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(a) (b)

(c) (d)

FIG. 6. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ 3π=4. (a) The Regge pole

approximation constructed from only one Regge pole does not match the Weyl scalar Ψ4 constructed by summing over the first eight
partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and l ¼ 2;…; 10 is
also displayed. The discrepancy with the Regge pole approximation is obvious. (b) Semilog graph corresponding to (a) and showing that
the Regge pole approximation describes correctly a small part of the ringdown. (c) Taking into account an additional Regge pole slightly
improves the Regge pole approximation, which is now in rough agreement with the Weyl scalar Ψ4. (d) Semilog graph corresponding to
(c) and showing that the Regge pole approximation correctly describes a rather large part of the ringdown.

(a) (b)

(c) (d)

FIG. 7. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Weyl scalar Ψ4 constructed by summing over
the first 13 partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and correctly the waveform tail.
(c) Taking into account two additional Regge poles slightly improves the Regge pole approximation, which is now in perfect agreement
with the Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the additional Regge poles slightly improves the
description of the waveform tail.
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(a) (b)

(c) (d)

FIG. 8. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0.90 (γ ≈ 2.29) and φ ¼ π=6. (a) The Regge pole

approximation constructed from only one Regge pole is in very good agreement with the Weyl scalar Ψ4 constructed by summing over
the first 18 partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 20 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and the waveform tail. (c) Taking
into account two additional Regge poles slightly improves the Regge pole approximation, which is now in perfect agreement with the
Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the whole signal is impressively described by the Regge pole
approximation.

(a) (b)

(c) (d)

FIG. 9. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ π=3. (a) The Regge pole

approximation constructed from only one Regge pole is in good agreement with the Weyl scalar Ψ4 constructed by summing over the
first 13 partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 15 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and correctly the waveform tail.
(c) Taking into account two additional Regge poles slightly improves the Regge pole approximation, which is now in perfect agreement
with the Weyl scalar Ψ4. (d) Semilog graph corresponding to (c) and showing that the additional Regge poles slightly improves the
description of the waveform.
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In Figs. 3–6, we have displayed the multipolar waveform
Ψ4 generated by a particle initially at rest at infinity, and we
have compared it with the Regge pole approximation

ΨRPðPÞ
4 obtained from the Poisson summation formula. In

Figs. 3–5, for φ ¼ π=6, π=3, and π=2 (let us note that these

values of φ are not too close to π, and recall that ΨRPðPÞ
4 is

divergent in the limit φ → π), the approximation ΨRPðPÞ
4 is

in good or very good agreement with the waveformΨ4 even
if we consider a single Regge pole, and the agreement is
even better if we consider an additional Regge pole. We can
observe that the Regge pole approximation matches the
preringdown part of the signal as well as the ringdown and
roughly describes the waveform tail. It is moreover impor-
tant to note that it provides a description of the ringdown
that does not necessitate determining a starting time. In
Fig. 6, for φ ¼ 3π=4 (i.e., for a value of φ rather close to π),

the Regge pole approximation ΨRPðPÞ
4 is no longer so

interesting. Indeed, it only roughly describes the BH
response. The result can be improved if an additional
Regge pole is taken into account, but we cannot be satisfied
with the result. In fact, for values of φ “near” π, it would be
necessary to consider the background integral contribution

ΨBðPÞ
4 given by (49) to correctly describe the multipolar

waveform Ψ4.
In Figs. 7–10, for φ ¼ π=6, π=3 and π=2, we have

displayed the multipolar waveform Ψ4 generated by a

particle projected with a relativistic velocity at infinity, and
we have compared it with the Regge pole approximation

ΨRPðPÞ
4 obtained from the Poisson summation formula. We

can observe that the Regge pole approximation is even
more effective in the relativistic context. The whole signal
is now impressively described. It should be noted that
the relativistic particle excites many more QNMs than the
particle initially at rest at infinity [it excites not only the
fundamental ðl; n ¼ 1Þ QNMs but also their overtones]
and that the Regge pole approximation permits us to
capture their contribution efficiently.
In Fig. 11, for φ ¼ 3π=4, we have displayed the

multipolar waveform Ψ4 generated by a particle initially
at rest at infinity, and we have compared it with the

Regge pole approximation ΨRPðSWÞ
4 obtained from the

Sommerfeld-Watson transform. It should be recalled that,

while ΨRPðPÞ
4 constructed from the Poisson summation

formula diverges in the limit φ → π, this Regge pole
approximation is regular in the same limit (it only diverges
at φ ¼ 0). As a consequence, it should provide better

results thanΨRPðPÞ
4 for φ “close to π.” This clearly appears if

we compare Fig. 11 with Fig. 6. Now, the Regge pole
approximation constructed from only one Regge pole
does not describe the preringdown phase of the Weyl
scalar Ψ4 but matches a large part of the ringdown and
roughly approximates the waveform tail. In fact, in order

(a) (b)

(c) (d)

FIG. 10. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðPÞ
4 for v∞ ¼ 0.90 (γ ≈ 2.29) and φ ¼ π=2. (a) The Regge pole

approximation constructed from only one Regge pole is in rather good agreement with the Weyl scalar Ψ4 constructed by summing over
the first 18 partial waves. The associated quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 20 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (b) Semilog graph
corresponding to (a) and showing that the Regge pole approximation describes very well the ringdown and correctly the waveform tail.
(c) Taking into account three additional Regge poles improves the Regge pole approximation, which is now in very good agreement with
theWeyl scalarΨ4. (d) Semilog graph corresponding to (c) and showing that a large part of the signal is very well described by the Regge
pole approximation.
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to describe more correctly the multipolar waveform Ψ4

and, in particular, the preringdown phase, it might be
necessary to consider the background integral contribution

ΨBðSWÞ
4 given by (53). It is moreover interesting to note

that additional Regge poles do not improve the approxi-
mation. On the contrary, it seems that the Regge pole

approximation ΨRPðSWÞ
4 , as a series over the Regge poles,

diverges.

(a) (b)

(c) (d)

FIG. 12. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðSWÞ
4 for v∞ ¼ 0 (γ ¼ 1) and φ ¼ 5π=6. (a) and (b) The

preringdown phase of the Weyl scalar Ψ4 constructed by summing over the first eight partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches a large part of the ringdown and roughly
approximates the waveform tail. The quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 10 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c) and (d) Taking into
account an additional Regge pole does not improve the Regge pole approximation.

(a) (b)

(c) (d)

FIG. 11. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðSWÞ
4 for v∞ ¼ 0 (γ ≈ 1) and φ ¼ 3π=4. (a) and (b) The

preringdown phase of the Weyl scalar Ψ4 constructed by summing over the first eight partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. However, this approximation matches a large part of the ringdown and roughly
approximates the waveform tail. The quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 10 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c) and (d) Taking into
account an additional Regge pole does not improve the Regge pole approximation.
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In Figs. 12–14, for φ ¼ 5π=6, we have displayed the
multipolar waveform Ψ4 generated by a particle initially at
rest at infinity and by a particle projected with a relativistic
velocity, and we have compared it with the Regge pole

approximation ΨRPðSWÞ
4 obtained from the Sommerfeld-

Watson transform. Here, again, the Regge pole approxi-
mation constructed from only one Regge pole does not
describe the preringdown phase of theWeyl scalarΨ4, but it

(a) (b)

(c) (d)

FIG. 14. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðSWÞ
4 for v∞ ¼ 0.90 (γ ≈ 2.29) and φ ¼ 5π=6. (a) and (b) The

preringdown phase of the Weyl scalar Ψ4 constructed by summing over the first 18 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches very well the ringdown and describes
rather correctly the waveform tail. The quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and
l ¼ 2;…; 20 is also displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c) and (d) Taking into
account an additional Regge pole only improves the description of the waveform tail.

(a) (b)

(c) (d)

FIG. 13. The Weyl scalar Ψ4 and its Regge pole approximation ΨRPðSWÞ
4 for v∞ ¼ 0.75 (γ ≈ 1.51) and φ ¼ 5π=6. (a) and (b) The

preringdown phase of the Weyl scalar Ψ4 constructed by summing over the first 13 partial waves is not described by the Regge pole
approximation constructed from only one Regge pole. By contrast, this approximation matches very well the ringdown and the
waveform tail. The quasinormal response ΨQNM

4 obtained by summing over the ðl; nÞ QNMs with n ¼ 1 and l ¼ 2;…; 15 is also
displayed. At intermediate timescales, it matches very well the Regge pole approximation. (c) and (d) Taking into account an additional
Regge pole does not improve the Regge pole approximation.
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matches a large part of the ringdown and approximates
rather correctly the waveform tail. The Regge pole approxi-
mation is even more effective in the relativistic context in
which the ringdown and the tail are now impressively
described. It should be noted that it is necessary to limit the
number of Regge poles involved in the sum defining

ΨRPðSWÞ
4 due to the divergence of this series.

V. CONCLUSION

In this article, by using CAM techniques, we have
revisited the problem of the gravitational radiation gen-
erated by a massive particle falling radially from infinity
into a Schwarzschild BH. More precisely, we have
described the emitted gravitational waves by the Weyl
scalar Ψ4, and we have extracted from its multipole
expansion (23), as an approximation, the Fourier transform
of a sum over the Regge poles of S-matrix of the BH also
involving their residues (or, more exactly, the excitation
factors of the Regge modes). In fact, we have obtained two
different Regge pole approximations: the first one, which is
given by (49b), has been constructed from the Poisson
summation formula and provides very good results for
observation directions in a large angular sector around the
particle trajectory; the second one, which is given by (53b),
has been constructed from the Sommerfeld-Watson trans-
form and provides good results in a large angular sector
around the direction opposite to the particle trajectory. By
using these two Regge pole approximations, we have
clearly highlighted the benefits of working within the
CAM framework, and we now briefly summarize the main
results we have numerically obtained concerning the
structure of the Weyl scalar Ψ4:
(1) In general, the Regge pole approximation con-

structed from only one Regge pole describes very
well the ringdown or a large part of the ringdown. In
certain cases, the agreement is impressive. Contrary
to the QNM description of the ringdown, the Regge
pole description does not necessitate a starting time.
Moreover, if a very large number of QMNs is excited
(this is the case if the particle is projected with a
relativistic velocity), the Regge pole description can
be improved by considering a few additional poles,
which permits us to fit the BH response taking into
account the “quasinormal overtones.”

(2) In general, the Regge pole approximation roughly
describes the waveform tail, and in certain circum-
stances (this is the case if the particle is projected
with a relativistic velocity), the description is
very good.

(3) For observation directions close to the particle
trajectory, the Regge pole approximation can be

used to describe the preringdown part of the BH
response, i.e., it matches the superposition of all the
precursors and bursts involved in the partial wave
expansion.

We have, moreover, noted that the multipolar waveform Ψ4

can be entirely described if we add to the Regge pole
approximation (49b) the background integral contribution
(49a) or to the Regge pole approximation (53b) the back-
ground integral contribution (53a). In this article, we have
not taken into account these background integral contri-
butions. They could be helpful to improve the CAM
description of the gravitational radiation generated by
the particle. For this purpose, it would be interesting to
evaluate them numerically or asymptotically and to provide
a physical interpretation of the results.
It is important to recall the philosophy underlying the use

of CAM techniques in the context of BH physics (see also
the Introduction). The information lying in the S-matrix of
the BH can be extracted in two alternative ways: by
considering the analytic structure of the S-matrix in the
complex ω plane or in the CAM plane. So, we can consider
that the information encoded in the QNM spectrum (in
addition, taking into account the branch cut of the S-matrix
elements) and that encoded in the Regge-mode spectrum
are equivalent. As a consequence, it is natural to be able to
describe, from a Regge pole analysis, the ringdown and the
waveform tail of the emitted gravitational radiation.
Moreover, it is worth noting that the high-frequency
behavior of the Regge poles has permitted us to interpret
semiclassically the weakly damped QNMs [18,19,23,25].
In this article, we have increased the role of the high-
frequency contributions by describing the gravitational
radiation from the Weyl scalar Ψ4 (i.e., from a field)
instead of using the metric perturbations hþ and h× (i.e.,
a potential) with, as a consequence, interesting results
provided by the Regge pole approach.
The alternative description of gravitational radiation

from BHs we have proposed in this article could play a
fundamental role in gravitational-wave physics. But, of
course, in order to establish this definitively, it would be
interesting to go beyond the relatively simple problem
examined here (as well as to address unresolved issues). In
particular, it would be interesting to consider the gravita-
tional radiation generated by a particle with an arbitrary
orbital angular momentum plunging into a Schwarzschild
or a Kerr BH.
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