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ABSTRACT

Context. Recent observations of unexpected structures in the Galactic cosmic ray (GCR) spectrum and composition, as well as grow-
ing evidence for episodes of intense dynamical activity in the inner regions of the Galaxy, call for an evaluation of the high-energy
particle acceleration associated with such activity and its potential impact on the global GCR phenomenology.
Aims. We investigate whether particles accelerated during high-power episodes around the Galactic centre can account for a significant
fraction of the observed GCRs, or, conversely, what constraints can be derived regarding their Galactic transport if their contributions
are negligible.
Methods. Particle transport in the Galaxy is described with a two-zone analytical model. We solved for the contribution of a Galactic
centre cosmic-Ray (GCCR) source using Green functions and Bessel expansion, and discussed the required injection power for these
GCCRs to influence the global GCR phenomenology at Earth.
Results. We find that, with standard parameters for particle propagation in the galactic disk and halo, the GCCRs can make a signif-
icant or even dominant contribution to the total CR flux observed at Earth. Depending on the parameters, such a source can account
for both the observed proton flux and boron-to-carbon ratio (in the case of a Kraichnan-like scaling of the diffusion coefficient), or
potentially produce spectral and composition features.
Conclusions. Our results show that the contribution of GCCRs cannot be neglected a priori, and that they can influence the global
GCR phenomenology significantly, thereby calling for a reassessement of the standard inferences from a scenario where GCRs are
entirely dominated by a single type of sources distributed throughout the Galactic disk.
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1. Introduction

The sources of Galactic cosmic rays (GCRs) remain elu-
sive in spite of decades of intense observational and theoret-
ical efforts. Supernova remnants (SNR; Blandford & Ostriker
1978; Krymsky et al. 1979; Meyer et al. 1997) and superbub-
bles (Higdon et al. 1998; Binns et al. 2005; Bykov & Fleishman
1992; Parizot et al. 2004) have long been acknowledged as
promising candidates, based on energy considerations, isotopic
composition arguments and a detailed understanding of the
characteristics of particle acceleration. Several issues remain
outstanding, however, including the 22Ne signature of GCRs
and the maximum energy levels that can be accounted for
(Lagage & Cesarsky 1983). Furthermore, while there is no
doubt that these astrophysical environments do accelerate par-
ticles, as shown by the high-energy radiation that they gen-
erate (Koyama et al. 1995), many questions remain about the
magnitude of their actual contribution to the locally observed
GCRs. In addition, new observations of unexpected structures in
the low-energy GCR spectrum and composition (Adriani et al.
2011; Aguilar et al. 2015) raise questions about the respective
contributions of different sources in different energy ranges.

In this context, growing evidence for episodes of intense
dynamical activity in the inner regions of the Galaxy
(Acero et al. 2016; Abramowski et al. 2016) justifies an
evaluation of their potential contributions to GCRs and

implications for the characteristics of high-energy particle
acceleration (Cheng et al. 2012; Tibolla & Blandford 2018).
Indeed, a total energy release of up to 1057 ergs has been
proposed (Guo & Mathews 2012), which is enough to compete
with the average SNR power in the entire Galaxy if the repe-
tition time is of the order of 107 years. From a study of how
so-called Fermi bubbles interact with the Milky Way hot gas
halo, Miller & Bregman (2016) have estimated that the average
energy injection rate is in a 1–7× 1042 erg range, which exceeds
the kinetic power due to SN explosions in the interstellar
medium. These results have motivated us to investigate whether
the particles accelerated during these episodes may account for
a significant fraction of the GCRs, at Earth and/or elsewhere
in the Galaxy, or, conversely, what constraints can be derived
about Galactic transport of these particles if their contribution is
negligible. In the following, we will refer to these particles as
Galactic centre cosmic Rays (GCCRs).

In this paper, we have made a first attempt to address these
important questions by studying the contribution of a contin-
uous source of energetic particles at the centre of the Galaxy
to the local GCRs. Our calculations rely on a simplified propa-
gation model similar to that which is used in generic studies of
GCR phenomenology (Ginzburg 2013; Strong & Moskalenko
1998; Taillet & Maurin 2003; Bringmann & Salati 2007;
Boudaud et al. 2015b; Giesen et al. 2015; Genolini et al. 2015).
This model includes energy-dependent diffusion and advection
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Fig. 1. Geometry of the diffusive volume.

in a Galactic wind, energy losses and particle re-acceleration,
and is described in Sect. 2. The formalism and resolution
scheme are presented in Sect. 3 and results are shown in Sect. 4.
A summary and discussion of the results are proposed in Sect. 5.

2. Model description

For the present exploratory study, we used a classical, simplified,
two-zone model of the Galaxy, consisting of a cylindrical homo-
geneous disk with radius R = 20 kpc and half-thickness h =
100 pc, surrounded by a cylindrical magnetic halo with the same
axis and radius, R, and with a half-thickness L � h (see e.g.
Taillet & Maurin 2003). Cosmic-ray transport is treated through
a standard diffusion equation (see e.g. Strong & Moskalenko
1998; Taillet & Maurin 2003), including a convective term cor-
responding to a wind in the z direction orthogonal to the
Galactic disk, dragging cosmic rays away from the disk with
a velocity Vwind. Diffusion is assumed to be isotropic and
homogeneous over the entire “confinement volume”. Diffusion
coefficient D depends on the magnetic rigidity of the particles
(see e.g. Bringmann & Salati 2007):

D = D0 βRδ
GV, (1)

where β = v/c, RGV is the rigidity in units of GV, D0 is a constant
expressed in kpc2 Myr−1, and δ depends on the type of turbu-
lence underlying the diffusion process. Here, we allow for both
Kolmogorov and Kraichnan turbulence spectra, corresponding
to δ = 1/3 and δ = 1/2, respectively.

It is convenient to use the kinetic energy of the particles, K,
as the primary variable. The particle spectral density at energy
K, Ψ(K, r, t) is written as a function of time t and position with
respect to the Galactic centre r. Neglecting the spallation of
heavier species, it must satisfy the following diffusion equation:

∂

∂t
Ψ − D(K)∆Ψ +

∂

∂z
(VwindΨ)

+
∂

∂K

[
bloss(K)Ψ − χ(K)

∂

∂K
Ψ

]
= Q(K, r, t) − ΓISMΨ, (2)

where Q(K, r, t) is a source term to be specified, ΓISM is the
rate of “catastrophic losses” of the particles (decay or destruc-
tion due to interactions with ambient matter in the interstellar
medium), bloss(K) is the rate of energy loss, and χ(K) is an effec-
tive diffusion coefficient in energy space, associated with a re-
acceleration process accompanying the diffusion of particles in
space. In its simplest form, the latter is traditionally modeled as
a Fermi second-order acceleration process related to the ambient
magnetic turbulence, which is assumed to be isotropic, and can
be expressed in terms of a single parameter, namely the Alfvén
speed, vA. In this model, the diffusion in energy space is thus

inseparable from that in geometric space, and the coefficient
χ(K) can in practice be related to D(K) by (see Maurin et al.
2001):

χ(K) =
2
9

v2
A
β4E2

tot

D(K)
, (3)

where Etot = K + mc2.
Energy loss occurs due to ionization and adiabatic processes,

such that bloss = bion + badiab. We further consider that the inter-
stellar matter only fills the “infinitely thin” disk (with respect
to other dimensions) and use cylindrical co-ordinates centred
on the galactic axis. Assuming cylindrical symmetry, the energy
loss term in Eq. (2) may be written as

bloss(K)Ψ(K, r, t) = bloss(K)Ψ(K, r, z = 0, t) × 2hδ(z), (4)

where r is the galactocentric radius: r = r ur + z uz. If the “dis-
cofugal” wind reaches its nominal velocity Vwind at the top and
bottom of the disk, the overall effect of adiabatic losses can be
written as:

badiab = −
Vwind

3h
p2

Etot
· (5)

It has been also argued by Ptuskin et al. (1997) that re-
acceleration may be mostly efficient within the disk, because it
would not work in the adopted wind model. We do not believe
that this should be necessarily the case, since some degree of re-
acceleration should also accompany diffusion, even in the case
of a non-isotropic turbulence. However, this assumption was
also adopted by Maurin et al. (2001), Taillet & Maurin (2003),
Donato et al. (2004) and Giesen et al. (2015) in their study of
GCR propagation, and we shall use it here for the sake of sim-
plicity and to allow a direct comparison of our results. We thus
write:

χ(K)
∂Ψ

∂K
(K, r, t) = χ(K)

∂Ψ

∂K
(K, r, z = 0, t) × 2hδ(z), (6)

Likewise, the source term can be written Q(K, r, t) =
Q(K, r, z = 0, t) × 2h δ(z) if the sources are distributed in the
Galactic disk, and

Q(K, r, t) =
dN
dK

(K) f (t)δ(r), (7)

for a central source, where f (t) is a function of time allowing
for time changes of the particle injection rate. For dN/dK, we
take a power law in momentum (in some relevant energy range),
with logarithmic index α: dN/dp = N0(p/p0)−α. The normaliza-
tion of this injection term is directly related to the total injection
power from that source:

Pinj(t) = f (t) ×
∫

K
dN
dK

(K) dK. (8)

Boundary conditions follow from the standard assumption
that the magnetic halo has finite dimensions, such that diffu-
sion only confines cosmic rays within a limited volume. Outside
this “volume”, particles escape freely with a velocity close to c,
resulting in a practically vanishing density. We thus impose:

Ψ(K, r = R, z, t) = Ψ(K, r, z = ±L, t) = 0. (9)
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3. Resolution scheme

3.1. Discrete Fourier-Bessel expansion

With these boundary conditions, Eq. (2) can be solved in cylin-
drical co-ordinates by expanding the cosmic-ray spectral den-
sity as a series of Bessel functions (see e.g. Morse & Feshbach
1953):

Ψ(K, r, z, t) =

+∞∑
i=1

Pi(K, z, t) × J0

(
ui

r
R

)
≡

+∞∑
i=1

Ψi(K, r, z, t), (10)

where {ui}i≥1 are the zeros, ranked by increasing order, of the
zeroth-order Bessel function of the first kind, J0(x). J0(uir/R)
is an eigenfunction of the Laplacian operator appearing in the
diffusion equation, with eigenvalue −u2

i /R
2. Thus:

∆Ψi(K, r, z, t) =

 ∂2

∂z2 Pi(K, z, t) −
u2

i

R2 Pi(K, z, t)
× J0(uir/R). (11)

Applying the Fourier-Bessel transform,
∫ R

0 r f (r)J0(uir/R)dr =

fi × J1(u2
i )R2/2, to Eq. (2), one derives equations for each Bessel

“coefficient” of order i, Pi(K, z, t):

∂

∂t
Pi − D

∂2Pi

∂z2 + D
u2

i

R2 Pi +
∂

∂z
(VwindPi)

+
∂

∂K

[
blossPi − χ

∂

∂K
Pi

]
= Qi(K, z, t) − ΓISMPi, (12)

where Qi(K, z, t) is the ith order Bessel coefficient of the source
term, which writes, for a source term as in Eq. (7):

Qi(K, z, t) = f (t)
dN/dK

πR2J1(ui)2 δ(z). (13)

By symmetry, Ψ(K, r, z, t) is expected to be an even function
of z, and so will be Pi(K, z, t), ∀i.

3.2. Steady-state solution

In this paper, we concentrate on steady-state solutions, such that
∂Pi/∂t = 0 in Eq. (12). The resolution follows standard proce-
dures, as in Taillet & Maurin (2003) for example. We first solve
Eq. (12) in the halo, i.e. outside the disk: z , 0, where both the
right-hand side of Eq. (12) and the energy loss/re-acceleration
term vanish. Restricting ourselves to z > 0, where Vwind is
constant, we rewrite the equation as follows (after dividing by
−D(K)):

∂2Pi

∂z2 −
Vwind

D(K)
∂Pi

∂z
−

u2
i

R2 Pi = 0, (14)

Integrating with the boundary conditions Pi(z = L) = 0 yields:

Pi(K, z) = Pi(K, 0) × exp
(

Vwind

2D(K)
z
)
×

sinh(S i(L − z))
sinh(S iL)

, (15)

where S i = [(Vwind/2D(K))2 + (ui/R)2]1/2.
To obtain the solution in the disk plane, Pi(K, 0), one inte-

grates Eq. (12) through the disk between [−ε, ε] and take the
limit as ε → 0. This gives:

2VwindPi(K, 0) − 2D(K)
∂

∂z
Pi(0+)

+ 2h
∂

∂K

[
blossPi(K, 0) − χ(K)

∂

∂K
Pi(K, 0)

]
= f (t)

dN/dK
πR2J1(ui)2 − 2hΓISM(K)Pi(K, 0), (16)

where f (t) = 1 s−1 in steady-state conditions. For non-
radioactive primary particles, ΓISM = nISMσD(K)v, where v is
the particle velocity andσD(K) the total destruction cross section
for that particle due to interactions in the ISM of homogeneous
density nISM.

Equation (16) is then solved by discretizing in energy space,
as detailed in the Appendix, providing Pi(K, 0) and thus Pi(K, z)
for all i, from which the particle spectral density is finally
obtained at all positions (r, z) by summing over a sufficiently
large number of terms (see Eq. (10)). In practice, the trun-
cated series S N =

∑N
i=1 Ψi(K, r, z), is slowly oscillating when N

increases, and we found that accelerated convergence is ensured
by computing the average of a large enough number of terms,
beyond a certain order. Here, we used for most calculations
Ψ(K, r, z) ' (

∑300
n=1 S 2000+n)/300.

3.3. Secondary particles

The above approach can easily be extended to compute the dis-
tribution of secondary particles, produced in flight by the inter-
actions of the primary cosmic rays with the ISM, through the
standard spallation process. The formalism remains the
same with a source term appropriate for spallation. Noting
σI+T→II(K′,K) the differential cross section for the production
of secondary nuclei II at energy K, by the interaction of a pri-
mary cosmic ray of type I of energy K′ with a target nucleus
of type T with density n(ISM)

T , and summing over all spallation
channels, the source term for nuclei S is given by:

Q(II)(K, r, z) =
∑
I,T

n(ISM)
T ×

∫
Ψ(I)(K′, r, t)σI+T→II(K′,K)v(K′)dK′. (17)

For our present purposes, we approximate this source term
by assuming that spallation products in the cosmic rays keep the
same energy per nucleon as its energetic progenitor, and con-
sider only protons in the ISM, with an average density nISM '

1.3 cm−3, with cross sections taken from Silberberg & Tsao
(1973).

This leads to the Fourier-Bessel coefficient of order i for the
source term of secondary nuclei of type II:

Q(II)
i (K, r, z, t) = 2hδ(z) ×

∑
I

nISMσI→II

(
K

AI

AII

)
v
(
K

AI

AII

)
P(I)

i

(
K

AI

AII

)
,

(18)

where AI and AII are the atomic mass numbers of the primary
and secondary particles, respectively.

3.4. Solar modulation

To fully describe CR transport to Earth, one has to include the
influence of the Sun for the very last part of their flight. Close to
Earth, CRs penetrate the Sun’s sphere of influence and are sub-
jected to a phenomenon called Solar Modulation (“Smod”). The
solar wind and associated magnetic field significantly reduce the
kinetic energy of low energy CR (T . 10 GeV/n) and prevent
these from reaching our planet. This effect can be effectively
described by a Fisk potential ΦF in the “force field approx-
imation”. The flux in the local interstellar environment (LIS)
is modulated to obtain the flux on Earth Φ⊕(K) as follows
(Gleeson & Axford 1968; Boudaud et al. 2015b)

Φ⊕(K) = ΦLIS(K + |e|ΦFZ/A) ×
K(K + 2m)

(K + m + |e|ΦFZ/A)2 − m2 (19)
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Table 1. Parameters for the models used in this study as well as the injected power obtained by matching the calculated flux with the observed one.

Model L (kpc) D0 (kpc2 Myr−1) δ Vwind (km s−1) vA (km s−1) α Pinj (erg s−1)
MIN2.4 1.0 0.0016 0.85 13.5 22.4 2.4 2.9× 1045

MED2.2
4.0 0.012 0.7 12.0 52.9

2.2 3.2× 1041

MED2.3 2.3 4.3× 1041

MED2.4 2.4 6.5× 1041

MAX2.2
15.0 0.0765 0.46 5.0 117.6

2.2 6.9× 1040

MAX2.3 2.3 9.2× 1040

MAX2.4 2.4 1.4× 1041

*Kr2.4 10 0.09 0.5 10.0 28.0 2.4 2.8× 1041

*Kol2.55 10 0.23 1/3 12.0 30.0 2.55 6× 1041

Notes. The number appearing in the name of the model corresponds to the value of the logarithmic exponent α in the source term. (*)Models with
a star are described in Sect. 4.2 and reproduce the observed primary fluxes.

For Pamela data, conservative estimates of ΦF are 0.1 GV <
ΦF < 1.1 GV and for AMS 0 GV < ΦF < 2 GV.

4. Results

4.1. Typical expectations

To evaluate contributions from episodes of intense activity at
the Galactic centre, we first evaluate the power that needs
to be injected in GCCRs in these episodes to obtain local
CR fluxes comparable to those observed at Earth. We first
use benchmark values for the propagation parameters, taken
from models that reproduce the observed secondary-to-primary
ratios with a distribution of primary sources corresponding to
supernovae remnants (Case & Bhattacharya 1998; Maurin et al.
2001). These models are called MIN, MED and MAX (for
minimum, medium and maximum, referring primarily to the
thickness of the halo) and are referenced in Table 1. To obtain
the required power injected as CRs at the Galactic centre (see
Eq. (8)), we specify the injection rate dN/dK by specify-
ing values for the logarithmic index α and the normalization
coefficient N0 in the momentum power law. We choose val-
ues between 2.2 and 2.4 (Achterberg et al. 2001) for the for-
mer, and adjust the value of the latter numerically so that the
calculated flux matches the data at high energy (here K =
600 GeV). Thus, coefficient N0 is just a scaling factor which
does not affect trends in the results. The data are taken from
the Cosmic Ray Database (Maurin et al. 2014 and references
therein).

We find that for the MIN model the required injected power
is much larger than that available, due to the small halo size,
L (see Sect. 4.2). However, recent studies based on synchrotron
radio emission (Di Bernardo et al. 2013; Fornengo et al. 2014)
but also positrons (Boudaud et al. 2015a; Lavalle et al. 2014)
and anti-protons (Giesen et al. 2015), do not support the thin
halo of MIN models. For the other two benchmark models
(MED and MAX), a fraction of the global power budget from
high energy events at the Galactic centre (Guo & Mathews 2012;
Miller & Bregman 2016) is sufficient to match the observed flux.

Table 1 gives a list of the parameters of the different models
and the corresponding injection power, as well as the parameters
and injection power for the models of Sect. 4.2. Figure 2 shows
the cosmic-ray spectral densities at Earth obtained from simu-
lations for the three benchmark models, assuming the indicated
injection power, compared to the observed flux.

From Fig. 2, it appears that with only 10% of the matching
injection power (downward shift of the curves by one decade),

Fig. 2. H protons flux Φp at Earth, rescaled by K2, for the three standard
models (at the obtained injection powers) against kinetic energy K. Data
from Pamela and AMS02 are also displayed.

Galactic centre bursts can still be expected to generate features
in the observed flux. With the parameters of the MED or
MAX models, a CR injection power of ∼1–6× 1040 erg s−1,
i.e. merely a few percent at most of the total energy injection
rate of 1–7× 1042 erg s−1 of events leading to Fermi Bubbles
(Guo & Mathews 2012; Miller & Bregman 2016), is sufficient
to make a significant contribution to the locally observed GCR
fluxes, at least in some energy range. We note that these total
injection powers in GCRs are close to those that are derived from
models involving a classical source distribution (Strong et al.
2010).

From this simple estimate, one may conclude that a global
model of the local GCRs should not be limited to standard
sources distributed throughout the Galaxy and should also
include the contribution of GCCRs. For there are only two alter-
natives: the contribution of these cosmic rays is negligible or
significant. In the former case, one must understand why the
high energy sources that are present in the Galaxy centre do
not contribute much to the local GCRs. This could be due to
a very inefficient conversion of the available power into ener-
getic particles or to an unexpectedly thin halo, but this would
likely conflict with previous arguments (Di Bernardo et al. 2013;
Fornengo et al. 2014; Boudaud et al. 2015a; Lavalle et al. 2014).
If the contribution of GCCRs is significant, the “standard param-
eters” derived for the propagation of GCRs should be modified
accordingly. As shown below, GCCRs might even account for
the majority of the observed GCRs for some particular parame-
ter choices, which emphasizes further that common results on

A12, page 4 of 10

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833683&pdf_id=2


E. Jaupart et al.: Contribution of the Galactic centre to the local cosmic-ray flux

Fig. 3. Left panel: H protons flux Φp at Earth, for the Kr2.4 model with and without energy losses and re-acceleration against kinetic energy (K).
Solar modulation was turned off in both cases, such that ΦF = 0. Right panel: timescales ratios against kinetic energy for the Kr2.4 model.

GCR propagation rely on specific assumptions regarding the
acceleration and transport of energetic particles from high-power
events in the central part of the Galaxy.

4.2. Influence of parameters

4.2.1. Energy losses and re-acceleration

Energy losses and re-acceleration play a role in the low
energy range of the GCRs spectrum. The typical timescales for
energy losses, τloss = −K/bloss(K), and diffusive re-acceleration,
τDR = K2/χ(K), can be compared with the typical confinement
timescale either derived from a one dimensional slab model or
from the Leaky Box model (e.g. Boudaud et al. 2015b). In these
models involving a homogeneous distribution of sources, both
energy losses and re-acceleration become negligible at kinetic
energies above of a few GeV.

In the case of a central source, however, the relevant
timescale is the typical time needed to reach the Earth from
the central source by diffusion τDiff , which is of the order of
r2
�/2D(K), where r� ≈ 8.5 kpc the distance of the Solar-system

to the Galactic centre. These timescales are represented in Fig. 3
(right). We find that energy losses are significant up to ∼102 GeV.
This can also be verified with simulations by turning on and off
the energy losses and diffusive re-acceleration. Figure 3 (left)
shows the resulting fluxes for the Kr2.4 model (see Table 1),
with arbitrary normalization. Also shown is the relative differ-
ence ∆Φ/Φ = |Φloss − Φno-loss|/Φloss, which can be seen to drop
below 10% above ∼150 GeV in this configuration. At higher
energies, parameters Vwind and vA have essentially no incidence
on the cosmic ray flux, whose level is then controlled by the
other parameters.

4.2.2. Halo size

As mentioned in Sect. 4.1, the halo size has a large influence
on the power that needs to be injected to obtain CR fluxes com-
parable with the ones observed. More particles indeed escape
the halo before arriving in the Earth’s vicinity as the confine-
ment box gets smaller. This can be seen within a purely dif-
fusive model, which is a good approximation of our complete
model at high energy (see Sect. 4.2.1). Figure 4 shows the cor-
responding density profiles in the Galactic disk as a function of
the galactocentric radius r, for various sizes of the halo, L, and

Fig. 4. Density profiles for a various set of halo size L for a purely
diffusive equation. The profile for an infinite box (in both direction) is
also displayed and is labeled 1/r as Ψ = N0/4πDr in this case.

for a fixed diffusion coefficient D (and thus energy K). As can
be seen, at a distance r� ≈ 8.5 kpc, the size of the halo becomes
critical around L ≤ 2 kpc: for lower values of L, the local spec-
tral density Ψ drops significantly below from that obtained for
L = 5 kpc, L = 10 kpc or for an infinite box case. This explains
why a very large injection power is needed to compete with
locally observed GCR flux in benchmark model MIN with a thin
halo.

4.2.3. Degeneracy in the choice of parameters

By solving Eq. (16) without energy losses and re-acceleration
(which only influence the low-energy part of the spectrum),
one may write Ψ(K, r, z = 0) = N0K−α/D(K) × g(r,R, h, L),
where g is a function of spatial variables only. Consequently, the
power injected as GCCRs, Pinj, required to produce CR fluxes
comparable to the observed ones at Earth is (in our model)
a function of the halo size L, the diffusive coefficient D and
the spectral index α. However, there is some degeneracy in the
choice of parameters, similar to that expressed by the three
benchmark models. More precisely, a negligible influence of
the activity at the Galactic centre on the observed GCRs can
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Fig. 5. H protons flux Φp at Earth, rescaled by K2, for the Kr2.4 model
(see Table 1) against kinetic energy K.

Fig. 6. Carbon flux ΦC at Earth, rescaled by (K/n)2, for the Kr2.4 model
(see Table 1) against kinetic energy per nucleon K/n.

be obtained by invoking either an unusually thin halo or a
particularly large diffusion coefficient for example (since Ψ ∝
1/D(K) at high energy). Conversely, if a source at the Galac-
tic centre turns out to have a significant impact on the observed
fluxes, some degeneracy must be accepted at this stage between
L and D.

With this caveat in mind, we investigated whether it could
even be possible to account for the entire GCR spectrum with
a single central source. Figures 5 and 6 show flux values that
are obtained for the Kr2.4 model, i.e. a model with a source
spectrum in p−2.4 and a Kraichnan-like turbulence scaling for
the energy diffusion coefficient (see above). With the parame-
ters given in Table 1, we find that an injection power Pinj =

2.8× 1041 erg s−1 allows an excellent fit to the observed flux.
Such a power appears accessible in principle, given the aver-
age power range of 1–7× 1042 erg s−1 available from high energy
events at the Galactic centre.

Other sets of parameters can also reproduce the data for rea-
sonable values of the injection power. An example is shown on
Fig. 7, with a model using a Kolmogorov-like diffusion coeffi-
cient (δ = 1/3) and a halo size L = 10 kpc. All the other param-
eters are also displayed.

In addition to reproducing the flux of primary GCR nuclei,
it is instructive to investigate whether the observed ratios of sec-
ondary nuclei to primary nuclei (so called secondary-to-primary
ratios) and secondary radioactive nuclei to secondary stable
nuclei ratios could also be matched by a central source of cosmic
rays. This is addressed in the next sections.

Fig. 7. H protons flux Φp at Earth, rescaled by K2, for a Kolmogorov
model, against kinetic energy K. Propagation parameters are displayed
and we obtain an injection power Pinj = 6× 1041 erg s−1.

Fig. 8. Boron to Carbon (B/C) ratio, at high energy (K ≥ 200 GeV), at
Earth, vs. the kinetic energy per nucleon K/n, for L = 10 kpc, δ = 0.5
(Kraichnan turbulence) and two values of the parameter D0.

4.3. Secondary-to-primary ratios

From the secondary-to-primary ratio (II/I), one classically
constrains the diffusion coefficients parameters (Genolini et al.
2015) using the high energy part of the ratio. Indeed, in that
energy range where energy losses can be neglected, the ratio
(II/I) scales as DI/D2

II where DI and DII are respectively the dif-
fusion coefficient of species I and II at the same given kinetic
energy per nucleon K/n (see Sect. 3.3).

In our case, the energy domain in which energy losses
are inefficient and the diffusion coefficient can be estimated
directly corresponds to K/n & 102 GeV, where the observa-
tional data become scarse and have larger uncertainties. We can
nevertheless estimate the normalisation coefficient, D0, to be of
the order of 0.07–0.1 kpc2 Myr−1, should the GCCR Boron-to-
Carbon (B/C) ratio at Earth be matching the observed one at high
energy (see Fig. 8).

Once D0 is fixed in this way, the B/C ratio of the GCCRs
at Earth can be obtained over the entire energy range, under
the assumption that the other parameters are chosen, say, to
reproduce the observed primary spectra (e.g. protons and car-
bon nuclei). The results are displayed on Fig. 9, where we show
the B/C ratio as a fuction of kinetic energy per nucleon, for
the models Kr2.4 and Kol2.55, corresponding to a Kraichnan-
like and Kolmogorov-like energy scaling of D(K), respectively
(see Table 1). As can be seen, if one adopts the source spectral
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Fig. 9. Boron to Carbon (B/C) ratio at Earth against kinetic energy per nucleon K/n for the Kr2.4 (left panel) and Kol2.55 (right panel) models
(see Table 1).

indices, resp. 2.4 and 2.55, which lead to primary spectra match-
ing the observed ones, the resulting evolution of the B/C ratio
with energy is very different from the observed one in the case
of a Kolmogorov-like scaling (Kol2.55 model), but remarkably
close to it in the case of a Kraichnan-like scaling (Kr2.4 model).

4.4. “Cosmic-ray clocks”

Another important ingredient of GCR phenomenology is related
to the so-called cosmic-ray clocks, i.e. radioactive secondary
nuclei with half-lives comparable with the GCR dynamical
timescales, which can therefore provide some information about
the timescale(s) of cosmic-ray transport in the Galaxy (typi-
cal age, confinement or homogenization time, depending on the
model). The key observable, in the respect, is the radioactive-to-
stable isotopic ratio for appropriate secondary nuclei. A classical
example is the 10Be/9Be ratio: both isotopes are produced exclu-
sively by (inverse) spallation during CR transport, and 10Be has
a half-life of τ1/2 ' 1.4 Myr, while 9Be is stable.

Qualitatively, it is easy to see how such cosmic-ray clocks
can be used in standard GCR phenomenological models to
constrain, for instance, the size of the magnetic halo. At low
energy, the GCR confinement time is large enough (and the
relativistic time dilation effect weak enough) that most 10Be
nuclei produced in flight decay before escaping the Galaxy.
The resulting 10Be/9Be ratio is thus expected to be “low”, at a
level that depends on the size of the halo, L: for thicker halos,
more radioactive nuclei will be able to decay before escap-
ing, thereby reducing the radioactive-to-stable ratio (see e.g.
Strong & Moskalenko 1998). At higher energy, the confinement
time is reduced and the time dilation effect increases, so that
for sufficiently large energies, the observed ratio is essentially
expected to match the production ratio, taken to be the same as
in Strong & Moskalenko (1998) for example. The lack of precise
measurements over a sufficient large energy range, however, pre-
vents an accurate determination of the halo size. Thus, the L/D
degeneracy cannot totally broken, as illustrated by benchmark
models that are still in use. For a more detailed description, see
the review of Strong et al. (2007) and references therein.

The above behaviour of radioactive-to-stable ratios is of
course expected to be similarly observed in the case of GCCRs.
It would be misleading to expect that the resulting 10Be/9Be ratio

be significantly lower in the case of GCCRs, because the typical
propagation time from the central source to the Earth vicinity is
longer than the typical age of cosmic-rays reaching us from more
nearby sources in the case of distributed GCR source scenarios
(spanning the Galactic disk). However, both Be isotopes are sec-
ondary, and even in the case of GCCRs, most of those who are
actually observed on Earth are still produced by spallation in our
local part of the Galactic disk, at a rate and level that essentially
depends on the nearby ISM density and local GCR flux, i.e. not
very different from what occurs in the case of distributed sources.

Quantitatively, it is easy to extend our approach, as described
in Sects. 2 and 3, to compute the distribution of secondary
radioactive nuclei as well: one simply needs to add a term −ΓradΨ
in the right hand side of Eq. (2), where Γrad = ln(2)/(γ τ1/2) is the
decay constant, taking into account time dilation for radioactive
nuclei with Lorentz factor γ = γ(K).

The results are shown in Fig. 10 for the two models Kr2.4
and Kol2.55 models and halo sizes L = 5, 10 and 20 kpc. As
can be seen, 10Be/9Be ratios similar to the observed ones are
obtained, for halo sizes L & 4 kpc, in conformity with the results
of Sect. 4.2.2. This confirms that a significant fraction of GCCRs
could be present among the local cosmic-rays without disturbing
significantly the familiar phenomenology.

5. Summary and discussion

In the absence of a definite model that would be supported by
clear evidence, it appears important to revisit in a broader per-
spective what is often considered common knowledge regarding
cosmic ray origin and propagation in the Galaxy. Most of the
GCR phenomenological studies assume that cosmic ray sources
are distributed throughout the Galatic disk, with a space and time
granularity that can be neglected, at first order, with respect to the
typical source seperation distances and repetition times. While
this is a reasonable assumption, especially since such distributed
sources are indeed known (notably SNRs and superbublles), it
does not exclude that other types of sources may also contribute
to the GCRs.

In the framework of GCR studies assuming distributed
sources, reasonable estimates of the GCR diffusion coefficient
and confinement time could be obtained, which in turn provided
an estimate of the required GCR source power, comparable to a
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Fig. 10. 10Be/9Be ratio at Earth as a function of kinetic energy per nucleon K/n for the Kr2.4 (left panel) and Kol2.55 (right panel) models. The
different curves correspond to different halo size, L = 5, 10 and 20 kpc, as indicated (the other parameters are fixed as in Table 1).

fair fraction of the total power released by SN explosions in the
Galaxy. It turns out, however, that similar or even possibly larger
average power is now known to be released around the Galac-
tic centre through episodic events, and that these events lead to
astrophysical conditions that appear to be potentially propitious
for particle acceleration. According to Guo & Mathews (2012)
and Miller & Bregman (2016), the event that led to the so-called
Fermi bubbles released a total energy of 1057 erg s−1, for an
average injection rate of 1–7× 1042 erg s−1, which exceeds the
total kinetic power of SN explosions in the interstellar medium
by large amounts. It is thus natural to investigate whether such
events could play a role in the global GCR phenomenon, and if
so how the phenomenology would be affected.

The main result of this paper is the confirmation that, with
the same type of parameters as those derived from distributed-
sources GCR studies, the contribution of the GCCRs cannot be
a priori neglected. We found, indeed, that save for models with
very thin halos (e.g. MIN), the required injection power to match
the observed GCR fluxes (Pinj . 1041 erg s−1) is only a frac-
tion of the inferred available power. For some transport parame-
ters, the GCCRs could even dominate the GCR flux over a large
range of energies. If this is the case, then they will have to sat-
isfy the observational constraints directly. To see if this could be
possible, we investigated the caracteristics of the GCCRs as if
they were alone in the Galaxy, and found that, even with simple
generic assumptions and first order modeling (see Sect. 2), it is
indeed possible to reproduce the locally observed primary CR
spectra as well as secondary-to-primary ratios (B/C) and sec-
ondary radioactive-to-stable ratio (10Be/9Be), although the latter
is only true for a Kraichnan-like energy dependence of the diffu-
sion coefficient.

However, even a sub-dominant (but non-negligible) contri-
bution of the GCCRs may have important consequences on the
general CR phenomenology. In particular, the source composi-
tion and source spectrum of the GCCRs may be expected to be
somewhat different from those of the other sources. In regions
of the spectrum where both contributions are roughly similar in
magnitude, this may lead to gradual changes in the composition
(hence different spectra for different nuclei), or to specific fea-
tures in the elemental spectra. Such effects will be studied in a
forthcoming paper.

If the GCCRs are able to contribute at a non-negligible level,
some of the conclusions of the standard approach regarding the
transport parameters of the energetic particles in the Galaxy may
also have to be revised, which can result in the relaxation of some
of the usual constraints. In particular, the modeling of the multi-
wavelength emission of SNRs may not have to be done with the
requirement that the associated energetic particles be also com-
pliant with the entire GCR phenomenology, including the maxi-
mum energy problem or the elemental and isotopic ratios. Like-
wise, it may be possible to relax the constraints associated with
the study of the so-called cosmic-ray clocks (radioactive sec-
ondary nuclei), if two main components with different timescales
are mixed together among the GCRs.

The fact that GCCR typically need more time to reach the
Solar System than the average cosmic ray from more evenly dis-
tributed sources has also some consequences on the link between
CR nuclei and leptons. Since electrons and positrons rapidly lose
energy as they propagate in the Galactic magnetic field, those
observed at Earth must have been generated relatively nearby.
GCCRs can only contribute secondary e±, produced by colli-
sions of high energy protons and helium nuclei on the atoms
of the ISM (see e.g. Delahaye et al. 2009), while the bulk of the
energetic leptons should still be due to local Galactic sources. Of
course, such a “decoupling” between nuclei and lepton sources
is not specific to our approach, and is also suggested for instance
in the context of the observed positron anomaly (Adriani et al.
2009) where nearby pulsar sources can be invoked (Hooper et al.
2009; Profumo 2012; Linden & Profumo 2013). We note that
this decoupling may also alleviate some of the problems that
arise when trying to reconcile observations with models of dark
matter (Boudaud et al. 2015a; Cirelli et al. 2009).

In this paper, we have estimated the average contribution of
the GCCRs in the vicinity of the solar system, assuming steady
state. Because of the very nature of the potential GCCR sources,
the assumption of a constant particle injection is clearly wrong.
However, for not too high energies, i.e. as long as the “confine-
ment time” of the particles is much larger than the repetition time
between acceleration events, the steady state solution provides
an acceptable approximation.

To estimate the energy range where the steady state assump-
tion can be expected to be valid, we can compare the relevant
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timescales. The most recent major event in the Galatic centre is
suggested to have occurred∼3 Myr ago (Miller & Bregman 2016)
and to have lasted for ∼0.1−0.5 Myr (Guo & Mathews 2012),
leading to the so-called Fermi Bubbles (Acero et al. 2016).
Wemay thusassumearepetition timeof theorderofa fewMyr.For
each event, GCCR injection occurs on a much shorter timescale
and can be approximated here as being instantaneous. This gives
rise to a diffusion front propagating outwards from the Galactic
centre. If diffusion were isotropic in a homogeneous medium with
diffusion coefficient D, the density of particles at distance r from
the source, at a time t after injection, would be simply given by the
Green function:

ΨG(r, t > 0) =
N0

(4πDt)3/2 exp
{
−

r 2

4Dt

}
, (20)

where N0 is the number of particles injected at r = 0 at t = 0.
At any given position r, this density rapidly increases to a

maximum and decreases more slowly as the diffusion sphere
expands. The typical duration of the event, as seen at radius r,
can be estimated as the time during which the particle density is
larger than half of its maximum value: ∆t1/2 ' 0.45r2/D.

Thus, at radius r, the steady-state solution provide a good
approximation of the actual GCCR flux at any given time up
to an energy K such that D(K) < 0.45r2/∆ts, where ∆ts is the
typical time interval between two source episodes. Numerically,
at the solar radius, this gives:

D(K) <∼ (12 kpc2 Myr−1) ×
(

∆ts
3 Myr

)−1

×

(
r
r�

)2

· (21)

With the parameterization of the diffusion coefficient
adopted above, D = D0βRδ

GV, with D0 ∼ 0.07–0.1 kpc2 Myr−1,
this corresponds to rigidities

R <∼ (2001/δGV) ×
(

∆ts
3 Myr

)−1/δ

×

(
r
r�

)2/δ

· (22)

In particular, for the Kr2.4 model, the above solution is
roughly valid up to ∼40 TeV, and for the Kol2.55 model, up to
8 PeV.

At higher energy, however, the intermittent nature of the cen-
tral source will affect the main characteristics of the GCCR.
Qualitatively, one should expect a reduction of the high energy
particles at any time when the diffusion front from the last event
at these energies has already passed the solar radius, producing
a knee-like feature. Ankle-like features can also be obtained at
energies where the diffusion front from the last event is arriving
at the solar radius at the time of observation, while the previous
one has already left. These effects will be studied in more detail
together with associated composition features in a forthcoming
paper (Jaupart et al., in prep.).

The previous considerations can be extended to any posi-
tion inside the Galactic disk. For any galactocentric radius r <
20 kpc, there is a critical rigidity Rcrit (given by Eq. (22)) above
which the steady state approximation is no longer valid. More
specifically, in the inner region of the Galaxy, at r ' 1 kpc for
example, this yields Rcrit ∼ 2.81/δ GV, corresponding to a few
GeV of kinetic energy in the Kr2.4 and Kol2.55 models. The dif-
fusive front from the last event has thus gone through the inner

regions of the Galaxy (r . 1 kpc) for GCCRs with a kinetic
energy above the GeV level. Thus, these regions are depleted
in these GCCRs, which acts to flatten the distribution given by
Fig. 4. This is also the energy range which dominates the produc-
tion of gamma-rays from π0 decay. Therefore, in order to com-
pute the gamma-ray background associated with the GCCRs and
compare it to the observation, a more detailed, time-dependent
treatment is needed. This will be addressed in a separate paper.

Acknowledgements. The authors are grateful to Pierre Salati for his useful
advice and comments. They also acknowledge support from Agence Nationale
de la Recherche (grant ANR-17-CE31-0014). This work is partially supported
by an ENS scholarship to EJ from the University of Lyon.

References
Abramowski, A., Aharonian, F., Benkhali, F. A., et al. 2016, Nature, 531, 476
Acero, F., Ackermann, M., Ajello, M., et al. 2016, ApJS, 223, 26
Achterberg, A., Gallant, Y. A., Kirk, J. G., & Guthmann, A. W. 2001, MNRAS,

328, 393
Adriani, O., Barbarino, G., Bazilevskaya, G., et al. 2009, Nature, 458, 607
Adriani, O., Barbarino, G., & Bazilevskaya, G. 2011, Science, 332, 69
Aguilar, M., Aisa, D., Alpat, B., et al. 2015, Phys. Rev. Lett., 114, 171103
Binns, W. R., Wiedenbeck, M. E., Arnould, M., et al. 2005, AJ, 634, 351
Blandford, R. D., & Ostriker, J. P. 1978, AJ, 221, L29
Boudaud, M., Aupetit, S., Caroff, S., et al. 2015a, A&A, 575, A67
Boudaud, M., Cirelli, M., Giesen, G., & Salati, P. 2015b, JCAP, 2015, 013
Bringmann, T., & Salati, P. 2007, Phys. Rev. D, 75, 083006
Bykov, A., & Fleishman, G. 1992, MNRAS, 255, 269
Case, G. L., & Bhattacharya, D. 1998, AJ, 504, 761
Cheng, K.-S., Chernyshov, D. O., Dogiel, V. A., et al. 2012, AJ, 746, 116
Cirelli, M., Kadastik, M., Raidal, M., & Strumia, A. 2009, Nucl. Phys. B, 813, 1
Delahaye, T., Lineros, R., Donato, F., et al. 2009, A&A, 501, 821
Di Bernardo, G., Evoli, C., Gaggero, D., Grasso, D., & Maccione, L. 2013, JCAP,

2013, 036
Donato, F., Maurin, D., Salati, P., et al. 2001, ApJ, 563, 172
Donato, F., Fornengo, N., Maurin, D., Salati, P., & Taillet, R. 2004, Phys. Rev.

D, 69, 063501
Fornengo, N., Lineros, R. A., Regis, M., & Taoso, M. 2014, JCAP, 2014, 008
Genolini, Y., Putze, A., Salati, P., & Serpico, P. 2015, A&A, 580, A9
Giesen, G., Boudaud, M., Génolini, Y., et al. 2015, JCAP, 2015, 023
Ginzburg, S. 2013, The Origin of Cosmic Rays (New-York: Elsevier)
Gleeson, L., & Axford, W. 1968, AJ, 154, 1011
Guo, F., & Mathews, W. G. 2012, AJ, 756, 181
Higdon, J., Lingenfelter, R., & Ramaty, R. 1998, AJ, 509, L33
Hooper, D., Blasi, P., & Serpico, P. D. 2009, JCAP, 2009, 025
Koyama, K., Petre, R., Gotthelf, E., et al. 1995, Nature, 378, 255
Krymsky, G., Kuzmin, A., & Petukhov, S. 1979, Int. Cosmic Ray Conf., 2, 44
Lagage, P., & Cesarsky, C. 1983, A&A, 125, 249
Lavalle, J., Maurin, D., & Putze, A. 2014, Phys. Rev. D, 90, 081301
Linden, T., & Profumo, S. 2013, AJ, 772, 18
Maurin, D., Donato, F., Taillet, R., & Salati, P. 2001, AJ, 555, 585
Maurin, D., Melot, F., & Taillet, R. 2014, A&A, 569, A32
Meyer, J.-P., Drury, L. O., & Ellison, D. C. 1997, AJ, 487, 182
Miller, M. J., & Bregman, J. N. 2016, AJ, 829, 9
Morse, P. M., & Feshbach, H. 1953, Methods of theorical physics (New-York:

McGraw-Hill)
Parizot, E., Marcowith, A., Van Der Swaluw, E., Bykov, A., & Tatischeff, V.

2004, A&A, 424, 747
Profumo, S. 2012, Open Phys., 10, 1
Ptuskin, V., Völk, H., Zirakashvili, V., & Breitschwerdt, D. 1997, A&A, 321,

434
Silberberg, R., & Tsao, C. H. 1973, ApJS, 25, 315
Strong, A. W., & Moskalenko, I. V. 1998, AJ, 509, 212
Strong, A. W., Moskalenko, I. V., & Ptuskin, V. S. 2007, Annu. Rev. Nucl. Part.

Sci., 57, 285
Strong, A., Porter, T., Digel, S., et al. 2010, AJ, 722, L58
Taillet, R., & Maurin, D. 2003, A&A, 402, 971
Tibolla, O., & Blandford, R. D. 2018, ArXiv e-prints [arXiv:1805.11501]

A12, page 9 of 10

http://linker.aanda.org/10.1051/0004-6361/201833683/1
http://linker.aanda.org/10.1051/0004-6361/201833683/2
http://linker.aanda.org/10.1051/0004-6361/201833683/3
http://linker.aanda.org/10.1051/0004-6361/201833683/3
http://linker.aanda.org/10.1051/0004-6361/201833683/4
http://linker.aanda.org/10.1051/0004-6361/201833683/5
http://linker.aanda.org/10.1051/0004-6361/201833683/6
http://linker.aanda.org/10.1051/0004-6361/201833683/7
http://linker.aanda.org/10.1051/0004-6361/201833683/8
http://linker.aanda.org/10.1051/0004-6361/201833683/9
http://linker.aanda.org/10.1051/0004-6361/201833683/10
http://linker.aanda.org/10.1051/0004-6361/201833683/11
http://linker.aanda.org/10.1051/0004-6361/201833683/12
http://linker.aanda.org/10.1051/0004-6361/201833683/13
http://linker.aanda.org/10.1051/0004-6361/201833683/14
http://linker.aanda.org/10.1051/0004-6361/201833683/15
http://linker.aanda.org/10.1051/0004-6361/201833683/16
http://linker.aanda.org/10.1051/0004-6361/201833683/17
http://linker.aanda.org/10.1051/0004-6361/201833683/17
http://linker.aanda.org/10.1051/0004-6361/201833683/18
http://linker.aanda.org/10.1051/0004-6361/201833683/19
http://linker.aanda.org/10.1051/0004-6361/201833683/19
http://linker.aanda.org/10.1051/0004-6361/201833683/20
http://linker.aanda.org/10.1051/0004-6361/201833683/21
http://linker.aanda.org/10.1051/0004-6361/201833683/22
http://linker.aanda.org/10.1051/0004-6361/201833683/23
http://linker.aanda.org/10.1051/0004-6361/201833683/24
http://linker.aanda.org/10.1051/0004-6361/201833683/25
http://linker.aanda.org/10.1051/0004-6361/201833683/26
http://linker.aanda.org/10.1051/0004-6361/201833683/27
http://linker.aanda.org/10.1051/0004-6361/201833683/28
http://linker.aanda.org/10.1051/0004-6361/201833683/29
http://linker.aanda.org/10.1051/0004-6361/201833683/30
http://linker.aanda.org/10.1051/0004-6361/201833683/31
http://linker.aanda.org/10.1051/0004-6361/201833683/32
http://linker.aanda.org/10.1051/0004-6361/201833683/33
http://linker.aanda.org/10.1051/0004-6361/201833683/34
http://linker.aanda.org/10.1051/0004-6361/201833683/35
http://linker.aanda.org/10.1051/0004-6361/201833683/36
http://linker.aanda.org/10.1051/0004-6361/201833683/37
http://linker.aanda.org/10.1051/0004-6361/201833683/38
http://linker.aanda.org/10.1051/0004-6361/201833683/39
http://linker.aanda.org/10.1051/0004-6361/201833683/40
http://linker.aanda.org/10.1051/0004-6361/201833683/40
http://linker.aanda.org/10.1051/0004-6361/201833683/41
http://linker.aanda.org/10.1051/0004-6361/201833683/42
http://linker.aanda.org/10.1051/0004-6361/201833683/43
http://linker.aanda.org/10.1051/0004-6361/201833683/43
http://linker.aanda.org/10.1051/0004-6361/201833683/44
http://linker.aanda.org/10.1051/0004-6361/201833683/45
http://arxiv.org/abs/1805.11501


A&A 619, A12 (2018)

Appendix A: Numerical procedure to account for
energy losses

We start from Eq. (16) and define τD, j and Q̃ j by

τ−1
D, j = ΓISM +

1
2h

{
Vwind + D S j coth

(
S j L/2

)}
(A.1)

Q̃ j(K) =
dN/dK

2πhR2J1(u j)2 · (A.2)

We then re-write Eq. (16) to obtain:

α jP j = α jP j +
d
dx

{
blossP j − γ

d
dx

P j

}
, (A.3)

where α j = K/τD, j, P j = τD, j × Q̃ j, x = log(K) and γ =
χ(K)/K.

We then discretize the previous equation on a logarithmic
scale with N +1 values between Kmin and Kmax with step of ∆x =
1
N log

{
Kmax
Kmin

}
. Hence the kth value on that grid is xk = log (Kmin)+

k ∆x. We obtain the discretized equation:

α j,kP j,k =

−bloss
k−1

2∆x
−
γk−1/2

∆x2

 P j,k−1

+

{
αk +

γk+1/2 + γk−1/2

∆x2

}
P j,k +

bloss
k+1

2∆x
−
γk+1/2

∆x2

 P j,k+1,

(A.4)

that is:

P j,k = akP j,k−1 + bkP j,k + ckP j,k+1 (A.5)

ak =
1
αk

−bloss
k−1

2∆x
−
γk−1/2

∆x2

 (A.6)

bk =
1
αk

{
αk +

γk+1/2 + γk−1/2

∆x2

}
(A.7)

ck =
1
αk

bloss
k+1

2∆x
−
γk+1/2

∆x2

, (A.8)

namely:

[P j] = M(a, b, c)[P j] (A.9)

where M(a, b, c) is a matrix to be inverted.
Regarding the boundary conditions, we need to specify them

on our energy grid to perform the inversion. At high kinetic
energy, we expect that energy losses and diffusive reacceleration
are not significant so that:

P j,N = P j,N . (A.10)

At low energy, we note that the primary cosmic-ray data can be
fitted by power law spectra, and thus impose this as an ad hoc
boundary condition, which can be expressed as:

P j,1−P j,0 = P j,0−P j,−1. (A.11)

These boundary conditions are similar to those found in other
generic studies (Donato et al. 2001) of GCRs phenomenology
and allows to invert the relation [P j] = M(a, b, c)[P j] to obtain
each Bessel order P j.
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