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1 Introduction

Conformal quantum field theories (CFT) have demonstrated their importance for very

diverse fundamental problems in physics, its applications ranging from the physics of phase

transitions (see [1] and citations therein) to various problems of fundamental interactions

and cosmological scenarios (see [2] and citations therein) and QCD [3]. Whereas in d = 2

dimensions the CFTs are well studied and classified [4], for d > 2 both the classification

and the tools for study of CFTs are notoriously incomplete. The supersymmetric QFTs,

and in particular the supersymmetric Yang-Mills theories include a rather large class of

CFTs which are relatively well classified and, at least qualitatively, understood [5–11],

especially due to the discovery of the AdS/CFT correspondence. In rare cases, such as

4-dimensional N = 4 SYM theory or 3-dimensional ABJM theory, the integrability allows

us to study in-depth, at least in the ’t Hooft limit, the basic quantities of operator product

expansion: all-loop anomalous dimensions [12–15], where the comprehensive and efficient

solution is given by the quantum spectral curve (QSC) approach [16, 17] (see also recent

reviews [18, 19]), OPE coefficients (structure constants) can be studied in various limits [20–

23] and even obtain some non-perturbative information on multi-point correlators of local

operators [24, 25], cusped Wilson loops [26, 27] and 1/N -corrections [28].

– 1 –
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G0 G1 G2

Figure 1. Three types of the 4-points functions topologies. These cases differ by the number

of “particles” (red dashed lines) transfered from the bottom to the top. These particles can be

associated in terms of the ABA with magnons in the intermediate states on the OPE. We refer

to them as zero, one and two particle cases correspondingly. The black lines correspond to the

X-particles.

Much less is known about non-supersymmetric four-dimensional CFTs. Mostly, they

are known to be IR or UV fixed points of various renormalization group flows. Usually

these CFTs are strongly coupled at these fixed points and, apart from a few rather exotic

cases, such as the Banks-Zaks CFT [29], their Lagrangian description is unknown. Such

theories have been recently quite efficiently studied by conformal bootstrap methods [30, 31]

(using basic assumptions for CFTs, such as unitarity, crossing, symmetry etc.) which

involve heavy numerical methods and can give very accurate predictions of OPE data.

However, as for any numerical approaches, the physics behind these computations often

remains obscure.

In this respect, various integrable deformations of N = 4 SYM, breaking partially or

even entirely the supersymmetry [6, 7, 32, 33], open a unique window into the dynamics of

four-dimensional CFTs. In particular, the γ-deformed N = 4 SYM, where breaking of the

R-symmetry leads to the complete loss of supersymmetry, is a CFT with the well-defined

classical action. In order for the theory to be consistent at the quantum level, one has

to add to the action a finite number of particular scalar double-trace terms, for which

the couplings have to be fine tuned to special values corresponding to the fixed points

of the underlying beta-functions, or rather functions of the Yang-Mills coupling [34, 35].

The only drawback of such a CFT is the loss of unitarity, since the double-trace couplings

induced by the renormalization [36–39] take complex values at these fixed points. This

poses an interesting challenge of construction of nontrivial unitary non-supersymmetric

CFTs. On the positive side, the γ-deformed N = 4 SYM at the fixed point seems to be a

genuine CFT, well defined by its explicit action, including the double-trace terms [35]. Last

but not the least, quantum integrability property of planar γ-deformed N = 4 SYM [33]

described in terms of γ-deformed quantum spectral curve formalism in [8], occurs precisely

at these fixed points, as was conjectured and argued in [35]. The powerful machinery of

– 2 –
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Figure 2. Feynman rules.

quantum integrability allows us to study in great detail its complicated non-perturbative

dynamics [40, 41].

Moreover, in a specific double scaling limit proposed in [42], combining weak coupling

with strong imaginary γ-twists, the γ-deformed N = 4 SYM drastically simplifies and

gives rise to a family of chiral non-unitary CFTs with 3 effective couplings describing the

scalar and Yukawa interactions of three complex scalars and three fermions. Its spectrum

of anomalous dimensions, scalar and fermion amplitudes have been studied in a series

of papers [35, 42–46]. In the particular, single coupling version of these models, the bi-

scalar “fishnet” CFT, studied in this paper, the four-point correlation function of certain

protected operators was computed in [35], providing a rich non-perturbative OPE data for

the exchange operators with an arbitrary spin. These results have been generalized to any

dimension d in [47], where the d-dimensional version of the bi-scalar model was proposed.

In this paper we extend these results to more general correlators. In addition to the wheel

graphs we also consider single and double spiral graphs as shown on figure 1. We also

analyse the results at weak and strong coupling.

An important feature of such models is the drastic simplification of their weak cou-

pling expansion, where in many particular cases (when we turn on a single coupling) it

is dominated by various kinds of “fishnet” Feynman graphs [43]. These graphs repre-

sent integrable two-dimensional statistical-mechanical systems by themselves [48] and can

be efficiently studied by the quantum spin chain methods and the double-scaled version

QSC [44, 49]. In particular, the individual, so called “wheel” multi-loop Feynman graphs

can be computed exactly in terms of multiple zeta values (MZV) [44].

Importantly, the explicit graph-by-graph integrability property in such models sheds

some light on the origins of the planar integrability of their “mother”-theory — the N =

4 SYM, where the perturbation theory is much more complicated and the reasons for

integrability are still obscure. In particular, in the bi-scalar CFT discussed in this paper

the integrability is manifest due to the explicit integrability of fishnet graphs dominating

the perturbation theory in this model [35].

1.1 The conformal “fishnet” theory

We will focus in this paper on a particular example of strongly γ-deformed N = 4 SYM

— the bi-scalar theory [42]. At the classical level, the Lagrangian of the bi-scalar theory

– 3 –
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Figure 3. Feynman rules for all three types of double-trace vertices.

is given by1

L = Nc tr
(
∂µX̄∂µX + ∂µZ̄∂µZ + (4π)2ξ2X̄Z̄XZ

)
, (1.1)

where X,Z are complex Nc × Nc matrix fields and X̄ ≡ X†, Z̄ ≡ Z† are their hermitian

conjugates. The model retains the SU(Nc) global symmetry which is a remnant of the

gauge symmetry of the original N = 4 SYM theory. The effective coupling constant

ξ2 = g2
YMNc e−iγ3 /(4π)2 is given by the product of the Yang-Mills coupling and the complex

deformation parameter. The general γ−deformed N = 4 SYM theory depends on three

deformation parameters γ1, γ2, γ3. The Lagrangian (1.1) arises in the double scaling limit,

g2 → 0 and Im γ3 → ∞ with ξ2 and γ1,2 fixed. In this limit, all fields except two scalars

get decoupled leading to (1.1).

On the quantum level, to make the theory conformal we have to add various double-

trace terms with well-tuned couplings [34, 35, 38, 39]:

Ldt = (4π)2α2
1

[
tr(X2) tr(X̄2) + tr(Z2) tr(Z̄2)

]
− (4π)2α2

2

[
tr(XZ) tr(X̄Z̄) + tr(XZ̄) tr(X̄Z)

]
, (1.2)

where α2
1 and α2

2 are new induced coupling constants and the factor of (4π)2 is introduced

for the convenience. The corresponding Feynman rules for all types of double-trace vertices

are presented on figure 3.

The relative coefficients between the operators in both lines of (1.2) follow from the

invariance of (1.1) under the transformations of fields

(Z → Z̄, X → X̄) , (X → X̄t , Z → Zt) , (X → Zt , Z → Xt) , (1.3)

with the conjugate fields X̄, Z̄ transforming accordingly. As we show below, these trans-

formations can be used to establish relations between different correlation functions.

The theory with the Lagrangian L + Ldt is renormalizable. The coupling constants

depend on the renormalization scale and the corresponding beta functions have been com-

puted perturbatively in [35] in the planar limit, for Nc → ∞ and ξ2, α2
1, α

2
2 = fixed.

Examining zeros of the beta functions, we find that the theory has two fixed points

(α2
1 = α2

+ , α
2
2 = ξ2) and (α2

1 = α2
− , α

2
2 = ξ2) , (1.4)

1In the literature one also uses notations φ1 = X and φ2 = Z. We use ‘bar’ for the Hermitian conjugation.
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where α2
± is given at weak coupling by the following expression

α2
± = ± iξ

2

2
− ξ4

2
∓ 3iξ6

4
+ ξ8 ± 65iξ10

48
− 19ξ12

10
+O(ξ14) . (1.5)

Notice that the expansion of α2
± runs in powers of iξ2 with real coefficients.

The planar bi-scalar theory (1.1) possesses a conformal symmetry at the fixed

points (1.4) [34, 35] and is integrable [42, 44]. Viewed as a function of ξ2, the relation (1.4)

defines two lines of the fixed points. It has been argued in [35] that the “mother” theory

of the bi-scalar model — the γ−deformed N = 4 SYM — is a nonunitary CFT on a line

of (complex) fixed points of double couplings as functions of the ’t Hooft coupling, also

integrable in planar limit. It is also natural to expect the existence of such a complex

conformal trajectory even at finite N .

The bi-scalar “fishnet” CFT (1.1) is the most studied case of the abovementioned

chiral CFTs proposed in [41]. The spectrum of long local operators of the type

tr(ZmXn)+permutations, can be efficiently investigated by the asymptotic Bethe ansatz

(ABA) equation [43] — the double scaled version of the Beisert-Staudacher ABA equations

for N = 4 SYM [12]. The short operators of this and other types (also with insertions

of derivatives and Z̄, X̄ fields) can be studied by QSC methods [44] and by the quantum

non-compact spin chain methods [42, 44], when the spins take values on conformal group

SU(2, 2). The spin-chain approach to this theory is very promising since it would allow

us to study there non-perturbative physics starting from the first principals, without any

assumptions. Unfortunately, efficient methods of study of non-compact, Heisenberg spin

chains are not very well developed, especially for principal series representation in physical

space and for higher ranks symmetries, such as SU(2, 2), though an important progress

has been made in the study of spectral problem for SL(2, C) spin chain, in relation with

high-energy (Regge) limit of QCD [50, 51]. Another remarkable observation in bi-scalar

theory concerns the planar scalar amplitudes: they are dominated by a single multiloop

fishnet graph with open boundary and obey a Yangian symmetry, potentially allowing for

their computation [45, 46]. A particular, single-trace four-point correlation function given

by such fishnet graph was explicitly computed in [52].2

We refer to the single trace operators tr(XnZm)+perm. for n ≥ m as m-magnon states,

in accordance with the ABA description, where the asymptotic anomalous dimension is

described by the Bethe state with m Bethe roots and conformal spin chain of length n.

The related Feynman graphs have been described in [43]. They have a shape of multi-spiral

when m radial lines of the field Z coming out of the point where the operator is placed, are

“braided” by m parallel spirals, as shown on the figure 1(in the middle for a single spiral,

and on the right for the double spiral).

Correspondingly, the simplest set of non-trivial single trace operators has length n = 2

and numbers of magnons m = 0, 1, 2. In addition, one can also introduce Lorentz spin

S by inserting light-cone derivatives in the following way: tr(Xn(∂−)SZm) + perm. The

2Their result can be interpreted as a correlator of the form tr[Xn(x1)Zm(x2)X̄n(x3)Z̄m(x4)]. Alter-

natively one can interpret it as a leading weak coupling contribution to the 4 point correlator of 4 single

trance operators.

– 5 –
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most efficient way of studying these operators is to extract their conformal data from the

OPE of 4-point functions. Accordingly, we will analyze the 4-point functions of 3 different

topologies, corresponding to the number of the magnons (see figure 5). The simplest,

zero-magnon four-point correlation function was computed to all orders of weak-coupling

expansion in [35]. It is dominated by the wheel graphs containing only two “spikes”. It

was shown in [35] that this quantity has correct conformal properties in the perturbation

theory only if one takes into account the double-trace interactions.

In the current paper, we will review the findings of [35] and continue to study the

properties of the four-point correlation functions. In addition, we compute a few related

four point-functions of short local operators, corresponding to one- and two-magnon cases.

These three types of four-point functions are distinguished by the relative simplicity: for

their computation one does not need to appeal to the integrability — the conformal sym-

metry is enough for this purpose. We then use the obtained results for the four point

correlation functions to extract explicit expressions for the anomalous dimensions and

structure constants.

All these results represent a unique opportunity of study properties of bi-scalar CFT,

in the hope to better understand the non-perturbative structure of non-supersymmetric

CFTs in d > 2 dimensions. They provide rich data for the future integrability based

calculations of the correlation functions.

1.2 Correlation functions and their perturbative structure

In this paper, we exploit conformal symmetry to find exact expressions for correlation

functions of local protected dimension-two operators

OXZ(x) = tr(XZ)(x) , OXZ̄(x) = tr(XZ̄)(x) ,

OX̄Z(x) = tr(X̄Z)(x) , OX̄Z̄(x) = tr(X̄Z̄)(x) , (1.6)

as well as of bi-local operators of a “one-magnon” type

OXZX(x1, x2) = tr(X(x1)Z(x1)X(x2)). (1.7)

The reason for the choice (1.6) is that, in the planar limit, the two-point correlation

functions of operators (1.6) are protected at the fixed points (1.4)

〈OXZ(x)OX̄Z̄(0)〉 = 〈OXZ̄(x)OX̄Z(0)〉 =
c2

(x2)2
+O(1/N2

c ) , (1.8)

where the normalization factor c = 1/(4π2) comes from free scalar propagator.

The pair correlation function of bi-local operators of the type (1.7) defined below as

type C will represent another type of four-point functions, having one-magnon exchange

states in OPE, dominated by single-spiral graphs of the type shown in figure 1.

In what follows we consider the simplest unprotected four-point correlation functions

of the local operators (1.6), of the following two types:

• Type A.

GA = 〈OXZ(x1)OXZ̄(x2)OX̄Z(x3)OX̄Z̄(x4)〉 . (1.9)

– 6 –
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 0 x

(a) (b) (c)

Figure 4. Feynman diagrams contributing to the correlation function 〈OXZ(x)OX̄Z̄(0)〉 in the

Born approximation (a) and at one-loop (b,c). Filled and open circles in diagrams (b) and (c)

denote single- and double-trace vertices, respectively. Black and red lines represent the propagators

of scalar fields X and Z, respectively, with arrows pointing from X to X̄ and from from Z to Z̄.

The sum of diagrams (b) and (c) vanishes at the fixed point (1.4).

• Type B.

GB = 〈OXZ(x1)OXZ(x2)OX̄Z̄(x3)OX̄Z̄(x4)〉 ,
GB′ = 〈OXZ̄(x1)OXZ̄(x2)OX̄Z(x3)OX̄Z(x4)〉 . (1.10)

The remaining four-point correlation functions of the operators (1.6) vanish due to

nonzero total U(1) charge. Notice that type B correlation function expansion in small

x2
12 ≡ (x1−x2)2 limit is saturated by the two-magnon operators. Two such spin-zero

operators, tr(XZXZ) and tr(XXZZ), are not protected and mix with each other, in

such a way that their dimensions are related by the change ξ2 → −ξ2. The analogous

operator in N = 4 SYM theory is Konishi operator tr[X,Z]2, where as the second

operator with the same R-charge, tr(2XXZZ +XZXZ), is protected.3

• Type C.

We will also define the type-C four-point functions containing one-magnon exchange

states:

GC′ = 〈tr(X(x1)Z(x1)X(x2)) tr(X̄(x3)X̄(x4)Z̄(x4))〉 ,
GC′′ = 〈tr(X(x1)Z(x1)X(x2)) tr(Z̄(x3)X̄(x3)X̄(x4))〉 . (1.11)

We can also define a similar pair of correlation functions

〈tr(Z(x1)X̄(x1)X̄(x2)) tr(X(x3)Z̄(x4)X(x4))〉 ,
〈tr(Z(x1)X̄(x1)X̄(x2)) tr(X(x3)Z̄(x3)X(x4))〉 , (1.12)

which, due to the relations (1.3), coincide with GC′ and GC′′ , respectively.

• Type D.

In addition to (1.9) and (1.10), we also consider a four-point correlation function of

scalar fields computed in [35]

GD = 〈tr(X(x1)X(x2)) tr(X̄(x3)X̄(x4))〉 . (1.13)

3This combination is obtained by acting on the 1/2-BPS operator tr(XXXX) with su(2) lowering

operator.
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As will become clear in a moment, its calculation is closely related to that of GA
given by (1.9) (see (2.9) below). The function GD is obtained from GA by Wick

contracting two pairs of Z and Z̄ fields.

At the fixed point (1.4), the correlation functions (1.9), (1.10) and (1.13) are finite

functions of the coupling ξ2. The correlation functions (1.10) are related to each other

through the first of transformations (1.3) and, therefore, they coincide

GB = GB′ . (1.14)

For the correlation function (1.9), the relations (1.3) imply that GA should be invariant

under the exchange of points

GA

∣∣∣
x1↔x3, x2↔x4

= GA

∣∣∣
x2↔x3

= GA . (1.15)

A remarkable feature of all considered correlation functions is their iterative structure:

the (non-zero) contribution at each successive order of perturbation theory can be obtained

from the previous one by action on it by some graph generating integral operators. Thus

the relevant graphs have a chain structure and they can be studied using the Bethe-Salpeter

equation. In addition, the emerging graph generating operators commute with the genera-

tors of the conformal group and their eigenspectrum can be easily found with a help of the

conformal symmetry. Thanks to these features the above mentioned correlation functions

of the bi-scalar model are explicitly computable in a relatively simple way.

2 Relation to skeleton scalar graphs

In this section, we will describe the structure of Feynman graphs for all types of the studied

4-point correlation functions. We express these correlators in terms of the basic generating

functions of the wheel graphs (G0), single (G1) and double spiral graphs (G2) as on figure 5.

In the section 4 we evaluate these 3 types of the graphs by the Bethe-Salpeter method,

by diagonalizing their graph generating kernels. Consequently, we compute all the related

structure constants defining the full explicit OPE representation of each of these 4-point

functions (1.11)–(1.13).

We will first discuss the connected and disconnected parts of all these 4-point functions

and then study the connected planar part of each of them. For the sake of explicitness,

we will restrict our discussion to d = 4 dimensions, but the final formulas will be readily

generalized in section 9 to any d.

2.1 Connected part of the correlation functions

The four-point correlation functions of the types A and B (1.9) – (1.10) receive both

connected G(c) and disconnected (in the sense of factorisation of the coordinate dependence)

contributions G(d). The former are suppressed with respect to the latter by a power of 1/N2
c

G = G(d) +
1

N2
c

G(c) , (2.1)

– 8 –
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x1x2 x3x4 x1x2 x3x4 x1x2 x3x4

G0 G1 G2

Figure 5. Three basic types of the skeleton graphs corresponding to zero, one and two magnons.

They have the structure of wheels, single and double spirals. These basics graphs are the building

block of all correlators we discuss in this paper. Another way to represent the same graphs given

on figure 1.

but all the most interesting physics resides of course in the connected part. The dis-

connected contribution is given by the product of two-point correlation functions (1.8)

leading to

G
(d)
A =

c4

(x2
14x

2
23)2

, G
(d)
B =

c4

(x2
14x

2
23)2

+ (x1 ↔ x2) . (2.2)

For the correlation function of type C ′′ and D the disconnected contribution is

G
(d)
C′′ =

c3

(x2
13)2 x2

24

, G
(d)
D =

c2

x2
13 x

2
24

+ (x3 ↔ x4) . (2.3)

Due to the color structure of bi-local operators in the definition of GC′′ and GD, the

disconnected part in both cases is of the same order in 1/Nc as the connected part.

Finally, the disconnected part of the correlation function of type C ′ is suppressed by

the factor of 1/N2
c as compared with its connected part.

2.2 Relation of 4-point functions of all types to basic fishnet graphs

The computation of all above-mentioned types of 4-point functions can be reduced to the

evaluating Feynman graphs having 3 basic structures of fishnet graphs. They are depicted

on the figure 1 and they are distinguished by the the magnon numbers - 0, 1, 2 - the number

of propagating “particles” (dotted spirals lines on the figure 1) in the exchange channel.

We will denote the related generating functions as G0, G1 and G2 and call them the n-

magnon functions. As we will see shortly, the Feynman graphs for these functions are

computable by the Bethe-Salpeter approach, due to their periodic fishnet structure and

conformal properties.

To be more precise, we will define n-magnon functions as perturbative expansion w.r.t.

the coupling ξ2 as follows.

For zero-magnon case (the “wheels”) we have

G0(x1, x2|x3, x4) =
∑
n≥0

(16π2ξ2)2nG
(n)
0 (x1, x2|x3, x4) , (2.4)
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where G
(n)
0 (x1, x2|x3, x4) denotes the Feynman graph depicted on the left of figures 1 and 5

and having 2n interaction vertices (black dots).

For one-magnon case (“spiral”, or “spiderweb” graphs) the structure function looks as

G1(x1, x2|x3, x4) =
∑
n≥0

(16π2ξ2)nG
(n)
1 (x1, x2|x3, x4) , (2.5)

where G
(n)
1 (x1, x2|x3, x4) denotes the Feynman graph depicted in the middle of figures 1

and 5 and having n interaction vertices (black dots). Each graph takes a shape of a spiral

consisting of propagators of type X wounding around two lines of propagators of type Z.

Note that we have two distinguished structures depending on the parity of expansion term

w.r.t. ξ2: for even powers of ξ2 the spiral on figure 1 starts and ends on the same (black) line

of Z-propagators, whether as for odd powers of ξ2 it starts and ends on different Z-lines.

For two-magnon case (“double spiral”) we have the structure function

G2(x1, x2|x3, x4) =
∑
n≥0

(16π2ξ2)2nG
(n)
2 (x1, x2|x3, x4) , (2.6)

where G
(n)
2 (x1, x2|x3, x4) denotes the Feynman graph depicted on the right of figures 1

and 5 and having 2n interaction vertices (black dots).

Let us relate the correlation functions GA, GB, GC and GD to G0, G1 and G2.

2.2.1 Relations between correlation functions and n-magnon functions

First, we can immediately see from figures 1(left) and 5(left) and from the definitions (1.13)

and (2.4) that

GD(x1, x2|x3, x4) = G0(x1, x2|x3, x4) +G0(x1, x2|x4, x3) . (2.7)

Further on, the correlation function GA is given by the following linear combination of the

functions G0

GA =
c2

x2
12x

2
34

G0(x1, x2|x3, x4) +
c2

x2
12x

2
34

G0(x1, x2|x4, x3)

+
c2

x2
13x

2
24

G0(x1, x3|x2, x4) +
c2

x2
13x

2
24

G0(x1, x3|x4, x2)− c4

x2
12x

2
13x

2
24x

2
34

, (2.8)

where the last term takes care of double counting of the tree-level diagram in the first 4

terms. It is straightforward to verify that the linear combination on the right-hand side

of (2.8) satisfies the symmetry relation (1.15).

Comparing (2.8) and (2.7) we notice that the two correlation functions are related to

each other as

GA =

(
GD
x2

12x
2
34

+ (x2 ↔ x3)

)
− c4

x2
12x

2
13x

2
24x

2
34

. (2.9)

Having determined G0(x1, x2|x3, x4), we can apply (2.7) and (2.8) to find the correlation

functions GA and GD.
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For the one-magnon correlation functions we get the following expressions through the

even and odd in ξ2 parts of the magnon function G1:

GC′ =
1

2
G1(x1, x2|x3, x4)− (ξ2 → −ξ2) ,

GC′′ =
1

2
G1(x1, x2|x3, x4) + (ξ2 → −ξ2). (2.10)

Finally, the two-magnon correlation function (1.10) coincides with the two-magnon

function (2.6):

GB(x1, x2|x3, x4) = G2(x1, x2|x3, x4) . (2.11)

In the next section we review the general method for computing the magnon functions

G0, G1 and G2 based on the Bethe-Salpeter equation and conformal symmetry. The

explicit expressions for these functions are derived in section 4.

3 Conformal symmetry and Bethe-Salpeter equations: generalities

As we saw above and discuss in detail in the next section, the correlation functions in-

troduced in previous sections are given by very specific type of fishnet graphs: in each

graph the periodically repeating configurations of propagators are connected by pairs of

coordinates of the related vertices (see figure 5). Each graph can be cut into two discon-

nected parts by splitting only two vertices. The three cases we are going to consider differ,

in particular, by the values of dimensions of four external (protected) operators. For all

correlation functions under considerations we have ∆1 = ∆4 and ∆2 = ∆3.

This section is based on the observation that three topologically distinct configurations

G0, G1 and G2 can be written, each, in terms of a suitable “graph-building” operator Ĥ.

In each case we find at the level of the operators

Ĝ =

(
c

x2
12

)−d+∆1+∆2 ∞∑
`=0

χ`Ĥ`+n =

(
c

x2
12

)−d+∆1+∆2 Ĥn

1− χĤ
, (3.1)

where n is a nonnegative integer, the constant χ is proportional to a fixed power of the

coupling constant ξ2 (specified below for each case) and d is the dimension of the space-

time. In most of the paper we set d = 4 although, as we will see in the section 9, most

of the equations discussed here have a natural generalization to general d, where the bi-

scalar theory can be also formulated [47]. The operators Ĥ and Ĝ are represented by the

corresponding integration kernels, e.g.

〈x1, x2|Ĝ|x3, x4〉 = G(x1, x2|x3, x4) , (3.2)

in such a way that

〈x0, y0|Ĥm|xm, ym〉 (3.3)

=

ˆ m−1∏
j=1

d4xjd
4yjH(x0, y0|x1, y1)H(x1, y1|x2, x2) . . . H(xm−1, ym−1|xm, ym) .
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The problem of finding G(x1, x2|x3, x4) can be split into two main steps. First, we have to

solve the eigenvalue problem for Ĥ and, then, decompose Ĝ over the complete basis of the

eigenfunctions of Ĥ.

Fortunately, the first step is simple in our case. The eigenfunctions Φµ1,...,µS
ν,x0 (x1, x2) of

Ĥ which are defined by

ˆ
d4x1d

4x2 Φµ1,...,µS
ν,x0 (x1, x2)H(x2, x1|x4, x3) = E∆,SΦµ1,...,µS

ν,x0 (x3, x4) , (3.4)

where x0, ν and S parameterise the eigenstates, are totally symmetric traceless tensors in

4-dimensional indices µ1, . . . , µS . The form of Φµ1,...,µS
ν,x0 (x1, x2) is completely fixed by the

conformal symmetry — if the operator Ĥ commutes with the generators of the conformal

group, its eigenstates should transform covariantly under conformal transformations acting

on xi. As such, Φµ1,...,µS
ν,x0 (x1, x2) can be represented as a conformal “triangle” — three-point

correlation function of two scalar operators at the points x1, x2 and some reference operator

with dimension ∆ = 2 + 2iν and spin S at the point x0. Explicitly

Φν,S,x0(x1, x2) ≡ Φµ1,...,µS
ν,x0 (x1, x2)nµ1 . . . nµS

=
1

x∆1+∆2−t
12 x∆1+t−∆2

10 x∆2+t−∆1
20

(
2(nx02)

x2
02

− 2(nx01)

x2
01

)S
, (3.5)

where4 t = ∆− S and x∆
ab ≡ (x2

ab)
∆/2. In order to simplify tensor structure, we projected

all Lorentz indices onto a light-like vector nµ. In the next section we verify explicitly that

the functions (3.5) diagonalize the graph-building Hamiltonians and find the corresponding

eigenvalues E∆,S .

The scaling dimension ∆ in (3.5) is given by [53]

∆ = 2 + 2iν , (3.6)

where ν is real nonnegative. For such values of ∆ the functions Φµ1,...,µS
ν,x0 (x1, x2) define

the complete orthonormal basis of states on the Hilbert space on which the graph building

kernel Ĥ acts. Viewed as a function of x0, Φµ1,...,µS
ν,x0 belongs to the irreducible principle

series representation of the conformal group labelled by real ν and nonnegative integer

Lorentz spin S. Together with (3.4) this leads to

H(x1, x2|x3, x4) =
∞∑
S=0

(−1)S

(x2
12)4−∆1−∆2

×
ˆ ∞

0

dν

c1(ν, S)
E∆,S

ˆ
d4x0 Φµ1...µS

−ν,x0 (x1, x2)Φµ1...µS
ν,x0 (x4, x3), (3.7)

where c1 is the normalization factor defined in (A.4) and we used that Φ̄µ1...µS
ν,x0 = Φµ1...µS

−ν,x0 .

The values of ν in (3.7) can be restricted to be ν ≥ 0 since the states Φµ1,...,µS
ν,x0 and Φµ1,...,µS

−ν,x0
belong to the same representation and are related to each other through intertwining rela-

tion.

4Following the standard conventions, we shall refer to t at zero value of the coupling constant as twist.
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Inserting (3.7) into (3.1) we get the following expression for the correlation function G

G(x1, x2|x3, x4) =
∞∑
S=0

(−1)S

c4−∆1−∆2

×
ˆ ∞

0

dν

c1(ν, S)

En∆,S
1− χE∆,S

ˆ
ddx0Φµ1...µS

−ν,S,x0(x1, x2)Φµ1...µS
ν,S,x0

(x4, x3) .

(3.8)

The integral over x0 can be evaluated explicitly in terms of four-dimensional conformal

blocks [53–55]

ˆ
d4x0Φµ1...µS

−ν,S,x0(x1, x2)Φµ1...µS
ν,S,x0

(x4, x3) (3.9)

=

(
1

x12x34

)∆1+∆2
(
x13x24

x2
14

)∆1−∆2

[c(ν, S)g∆,S(u, v) + c(−ν, S)g4−∆,S(u, v)] ,

the expression in the brackets depends only on the cross ratios u and v defined as

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

, (3.10)

where z and z̄ are auxiliary complex variables. The conformal block g∆,S(u, v) depends

on ∆1 and ∆2 and it is given explicitly in terms of the hypergeometric functions in (A.1).

The coefficient c(ν, S) is a ratio of the normalisation coefficients c(ν, S) = c1(ν, S)/c2(ν, S)

defined in (A.4) and (A.5).

Combining together (3.8) and (3.9) we obtain5

G(x1, x2|x3, x4) ≡
(

c

x12x34

)∆1+∆2
(
x13x24

x2
14

)∆1−∆2

G(u, v) , (3.11)

where G(u, v) admits the following representation

G(u, v) = c−4
∑
S≥0

(−1)S
ˆ ∞
−∞

dν

c2(ν, S)

En∆,S
1− χE∆,S

g∆,S(u, v) , (3.12)

where ∆ = 2+2iν. Here we combined the two terms on the right-hand side of (3.9) to extend

the integration over ν to the whole real axis and used the identity c(ν, S) = c1(ν, S)/c2(ν, S).

Note that doing so we required that

E4−∆,S = E∆,S . (3.13)

This property follows from the fact that the states with the same Lorentz spin S and the

scaling dimensions ∆ and 4−∆ belong to the same representation of the conformal group.

We will check (3.13) explicitly in each case.

To bring the integral (3.12) to the standard OPE form we examine the short distance

limit x12 → 0, or equivalently u → 0 and v → 1. In this limit, the conformal block

5The constant c = 1
4π

should not be confused with the function c(ν, S).
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scales as g2+2iν,S(u, v) ∼ u1+iν−S/2(1 − v)S and decays exponentially fast for Re(iν) →
∞. This allows us to close the integration contour in (3.12) to the lower half-plane and

compute the integral on the right-hand side of (3.12) by residues. In terms of the OPE,

the condition Re(iν) > 0 is equivalent to the restriction Re ∆ > 2 on the scaling dimension

of exchanged operators.

The integrand in (3.12) has ‘physical’ poles coming from zeros of the denominator

1

E∆,S
= χ , (3.14)

and two series of ‘spurious’ poles generated by the kinematical factor c2(ν, S) and the

conformal block g2+2iν,S(u, v). We show in appendix B that the spurious poles cancel

against each other provided that E∆,S satisfies the following relation

rk(E3+S+k,S − E3+S,S+k) = 0 , (k = 0, 1, 2, . . . ) . (3.15)

with rk defined in (B.1). Then, the correlation function (3.12) is given by the sum of

residues at the physical poles (3.14). Finally, we obtain the following conformal partial

wave expansion of the correlation function (3.12)

G(u, v) =
∑
S,∆

C∆,S g∆,S(u, v) , (3.16)

where the OPE coefficients are given by the residues at the physical poles

C∆,S =
(−1)S

c4
4π res∆

(
1

c2(ν, S)

En∆,S
1− χE∆,S

)
(3.17)

and the sum in (3.16) runs over solutions of (3.14) with Re ∆ > 2.

In the next section, we apply the relations (3.17) and (3.16) to compute the four-point

correlations introduced in the previous section. In each case we shall verify the relations

(3.13) and (3.15) which we assumed in the above derivation.

4 Four-point correlators and the conformal OPE data

In this section, we describe Feynman graphs for the 3 types of 4-point correlation functions

depicted on figure 5, and establish the corresponding graph-building operators Ĥ. In the

previous section, it was shown that the eigenvalue E∆,S of these operators is the only input

needed in order to write a representation of OPE type for the correlation function. We

diagonalize the operators Ĥ and present explicit expressions for the conformal data (scaling

dimensions and the OPE coefficients) for each of these 4-point functions.

4.1 Zero-magnon case and the wheel-graphs (G0)

The zero-magnon correlation function was studied in detail in [35]. Here we re-derive the

results of [35] and show how they fit into the general scheme described in the previous

section.
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x1x2 x3x4 x1x2 x3x4
x5 x6 x1x2 x3x4

x5 x6 x7x8

ξ0 ξ4 ξ8

Figure 6. First 3 orders contributing to the G0 correlator.

As we show below, the zero-magnon case corresponds to the situation when the

correlation function (3.16) receives contribution from magnon-free operators of the type

tr(X(n∂)SX) and tr(X�(n∂)SX).6 We will see that only these two types of operators

with arbitrary spin S contribute.

To find the zero-magnon correlation function we have to summed up diagrams shown

on figure 5(left). These diagrams contain an arbitrary number of wheels attached to the

rest of the diagram at two (single-trace) vertices. It is easy to see that the integral over the

position of these vertices develops a ultraviolet (UV) divergence at short distances. This

seems to be in contradiction with expected UV finiteness of four-point correlation function

of protected operators. We recall however that quantum corrections induce new double-

trace interaction terms (1.2). In particular, the double-trace coupling tr(X2) tr(X̄2) affects

the zero-magnon correlation function. It produces a UV divergent contribution which

cancels against that of the wheel graphs in such a way that the four-point correlation

function remains UV finite at any order in the weak coupling expansion. Due to form of the

double-trace interaction term tr(X2) tr(X̄2), it can only affect the contribution of partial

waves to (3.16) with zero Lorentz spin S = 0. We therefore expect that the contribution

of the wheel graphs to (3.16) is well-defined for S 6= 0 whereas for S = 0 the additional

contribution due to double traces should be taken into account. We discuss this issue in

more detail in section 5.

In this section we proceed without taking the double trace interaction into account

and identify the contrubution of wheels graphs to (3.16). We will see that the double

trace contributions will be automatically taken into account by correct treatment of the

singularity at ξ → 0 in the forthcoming formulas. We start with constructing the graph

building operator and identifying the parameters ∆i, n and χ introduced in (3.1). We

recall that the parameters ∆i define the scaling dimension of the external operators. Since

the wheel graphs have only one propagator attached to each external leg we have ∆1 =

∆4 = ∆2 = ∆3 = 1.

To first two orders of the weak coupling expansion the zero magnon function G0 is

given by the sum of diagrams shown in figure 6. The expressions corresponding to the first

6Interestingly, in our case only single box can appear. In space-time dimension d 6= 4 this is not the case.
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two diagrams are

G
(0)
0 =

c2

x2
24x

2
13

, G
(1)
0 = c6

ˆ
d4x5d

4x6

x2
25x

2
45x

2
16x

2
36x

4
56

, (4.1)

where each scalar propagator brings in the factor of c/x2
ij . These expressions can be

represented as 1st and 2nd powers of the following graph building operator Ĥ0

H0(x1, x2|x3, x4) =
c4

x4
12x

2
13x

2
24

. (4.2)

Indeed, we verify that

G
(0)
0 =

x4
12

c2
H0 , G

(1)
0 =

x4
12

c2

ˆ
d4y5d

4y6H0(x1, x2|y5, y6)H0(y5, y6|x3, x4) , (4.3)

from where it is clear that for a general graph with (n + 1) wheels we get Ĝ0
(n)

=

(4π2)2x4
12Ĥ

n
0 . It is straightforward to verify that the function (4.2) transforms covariantly

under the conformal transformations acting on xi.
7 As a consequence, the corresponding

integral operator Ĥ0 commutes with the generators of the conformal group.

Thus the zero-magnon correlation function G0 can be written as

Ĝ0 =
∞∑
`=0

(16π2ξ2)2`Ĝ0
(`)

= (4π2)2x4
12

Ĥ0

1− (16π2ξ2)2Ĥ0
. (4.4)

Comparing with the general expression (3.1) we deduce that χ = (16π2ξ2)2 and n = 1 in

the zero-magnon case.

4.1.1 Eigenvalue of the zero-magnon graph-building operator

In order to use the general expression for the correlation function (3.16), we have to de-

termine the eigenspectrum of the graph building operator (4.2). In virtue of conformal

symmetry, its eigenstates are given in (3.5) with ∆1 = 1 and ∆2 = 1. Substitution of (4.2)

into (3.4) leads to an integral, which can be evaluated using the star-triangle identity as

explained in appendix C.2. Going through the calculation we obtain the following simple

result [35]

E0 =
16π4c4

(−∆ + S + 2)(−∆ + S + 4)(∆ + S − 2)(∆ + S)
. (4.5)

It is easy to see that E0 is invariant under ∆→ 4−∆, in agreement with (3.13). We can

also check that (4.5) verifies the relation (3.15) that ensures the cancellation of spurious

poles. In the present case, for ∆1 = ∆2 = 1, it follows from (B.1) that r2n+1 = 0 for integer

n and thus (3.15) reduces to

E0|∆=3+s+2n,S=s = E0|∆=3+s,S=s+2n , n, s = 0, 1, 2, . . . , (4.6)

which is indeed satisfied for (4.5).

7The simplest way to check this is to employ inversions xµi → xµi /x
2
i and take into account that x2ij →

x2ij/(x
2
ix

2
j ).
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Figure 7. Structure of the spectrum ∆0(ξ) for S = 0 (left) and S = 2 (right). At weak coupling

(vertical solid line) it consists of two operators with bare dimension 2 + S and 4 +S. As a function

of ξ2 the states can be analytically continued from one to another.

4.1.2 Spectrum for zero-magnon exchange operators

We can now use (4.5) to determine the scaling dimension of the zero-magnon operators

contributing to the correlation function (3.16). Substituting (4.5) into the relation (3.14)

and replacing χ = (16π2ξ2)2 we find that the scaling dimensions ∆ = 2 + 2iν satisfy the

following quartic equation

(ν2 + S2/4)(ν2 + (S + 2)2/4) = ξ4 , (4.7)

subject to the additional condition Im ν < 0. At finite coupling, this yields the following

expressions for the scaling dimensions

∆2(S) = 2 +

√
(S + 1)2 + 1− 2

√
(S + 1)2 + 4ξ4 ,

∆4(S) = 2 +

√
(S + 1)2 + 1 + 2

√
(S + 1)2 + 4ξ4 . (4.8)

The two remaining solutions to (4.7) are related to (4.8) by ∆→ 4−∆ and describe shadow

operators with Re ∆ < 2.

At weak coupling, for ξ2 < 1, and nonzero Lorentz spin, S > 0, the scaling dimen-

sions (4.8) look as

∆2(S) = 2 + S − 2ξ4

S(S + 1)
+

2ξ8((S − 1)S − 1)

S3(S + 1)3
+O

(
ξ12
)
,

∆4(S) = 4 + S +
2ξ4

(S + 1)(S + 2)
− 2ξ8(S(S + 5) + 5)

(S + 1)3(S + 2)3
+O

(
ξ12
)
, (4.9)

and the corresponding operators can be identified as twist-2 and twist-4 operators, respec-

tively.8 They have the following form O2 = tr(X(n∂)SX+. . . andO4 = tr(�X(n∂)SX+. . .

8This explains the meaning of the subscript of ∆t.
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where dots denote similar terms with light-cone derivatives distributed between the fields.

Similarly to [44], the twist 4 operators can be written, due to the equations of motion, as

O4 = trX∂SZ̄XZ + . . . .

Notice that the weak coupling expansion of (4.9) goes in powers of ξ4 which is exactly

what one expects since each wheel in the graph shown in figure 5(left) is attached to the

rest of the diagram through two single-trace vertices. Something special happens at S = 0.

In this case, we find from (4.8)

∆2(S = 0) = 2 +
2i
√

2ξ2√
1 +

√
4ξ4 + 1

, (4.10)

and the weak coupling expansion looks as

∆2(S = 0) = 2iξ2 − iξ6 +
7iξ10

4
+O

(
ξ14
)
. (4.11)

Surprisingly, for S = 0 the weak coupling expansion of the scaling dimension ∆2(S) starts

from the power ξ2, instead of the naively expected ξ4 (the power corresponding to each

insertion of the graph-building operator (4.2)).

To understand the reason for this we examine the eigenvalue of the zero-magnon ker-

nel (4.5) for S = 0 and ∆ = 2 + 2iν

E0

∣∣∣
S=0

=
π4c2

ν2(ν2 + 1)
. (4.12)

We notice that it goes to infinity at small ν. Then, expanding (4.4) in powers of ξ4 we find

that the contribution of the states with S = 0 to the correlation function at order O(ξ4n)

is proportional to
´
dν(E0

∣∣
S=0

)n and it diverges for ν → 0. This is in agreement with our

expectations that the contribution of the wheel graphs is well defined for all states except

those with S = 0. To remove the divergence we have to include the O(ξ4n) contribution of

double traces.

We observe that, in the resummed expression for the correlation function (4.4), the

contribution of the states with S = 0 to G0 involves the integral
´
dν/(1−(16π2ξ2)2E0

∣∣
S=0

)

which is convergent for ν → 0 at finite ξ2 (for the integral to be well-defined we assume

that ξ2 has a small imaginary part). It is easy to see that, at weak coupling, the integration

over small ν produces a square-root singularity at the origin, G0 ∼
√
ξ4. This explains

why the weak coupling expansion of G0 in powers of ξ4 is divergent. At the same time,

this also suggests that the double-trace contribution should be essential only in the weak

coupling regime whereas at finite coupling it can be safely ignored. We discuss this issue

in more detail in section 5.

Arriving at (3.16) we have tacitly assumed that the physical poles (3.14) are located

away from real ν−axis in (3.12). As follows from (4.7), at weak coupling, the two physical

poles located at ν = ±iS/2+O(ξ4) pinch the integration contour at the origin for S → 0 and

produce a divergent contribution. The role of the double-trace contribution is to subtract

this divergence and, thus, make the weak coupling expansion of G0 well defined. Turning
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the logic around, we can say that the double traces provide a nonvanishing contribution

to the scaling dimensions because the eigenvalue (4.5) diverges as E0(ν, 0) ∼ 1/ν2 for

ν → 0. The relation (4.10) is in a perfect agreement with the result of explicit 7−loop

calculation [35].

We recall that the correlation function (3.16) is given by the sum over the solutions

to (3.14) with Re ∆ > 2. In our present case for S = 0 the solution (4.10) satisfy Re ∆ = 2

for real ξ2. As was mentioned above, for the correlation function (3.16) to be well-defined

ξ2 should have a nonvanishing imaginary part (see appendix D for discussion of analytical

properties of (3.16)). The expression (4.10) satisfies Re ∆ = 2 for Im ξ2 < 0. For Im ξ2 > 0,

the scaling dimension is given by the same expression (4.10) upon replacing ξ2 → −ξ2.

Let us examine the properties of the scaling dimensions (4.8). The dependence of

∆2 and ∆4 on ξ4 is shown on figure 7 for S = 0 and S = 2. We observe that the two

functions (4.8) represent in fact two branches of the same analytic function. It has two

branch points located at

ξ4
− = −1

4
(S + 1)2 , ξ4

+ =
1

16
(S(S + 2))2 . (4.13)

For ξ4 = ξ4
− the two operators collide, ∆2(S) = ∆4(S), whereas for ξ4 = ξ4

+ one of

the operators collides with its shadow, ∆2(S) = 2.9. The collision of operators at ξ4 =

ξ4
+ modifies analytic properties of the correlation function G0. According to (D.2), the

correlation function has the cut for ξ4 > 0 that starts at ξ4 = 1/maxν∈RE0(ν, S). It

is easy to see from (4.5) that E0(ν, S) is a decreasing positive-definite function of ν2.

Therefore, the cut starts at ξ4 = ξ4
+ (corresponding to ν = 0) and goes to infinity along

real ξ4−axis. In the vicinity of the branch point, it follows from (4.7) that ν2 ∼ ξ4
+ − ξ4

for S 6= 0 leading to ∆2(S)− 2 ∼
√
ξ4

+ − ξ4 [56].

Strong coupling. At strong coupling, for ξ2 →∞, the relation (4.7) has four solutions

iν = ξ eiπk/2 +O(1/ξ) (with k = 0, . . . , 3). Among them only two satisfy the additional

condition Im ν < 0. The corresponding expressions for the scaling dimensions are

∆ = 2ξ eiπk/2 +2− S2 + (S + 2)2

8 ξ eiπk/2
+O(1/ξ3) , (4.14)

where integer 0 ≤ k ≤ 3 satisfies the condition Re(ξ eiπk/2) > 0 and depends on ξ.

4.1.3 Structure constants for zero-magnon exchange operators

We apply the general relation (3.17) to find the OPE coefficient for zero-magnon opera-

tors [35]

C∆,S =
(S + 1)Γ(S −∆ + 4)Γ

(
1
2(S + ∆− 2)

)
Γ
(

1
2(S + ∆)

)
((4−∆)∆ + S(S + 2)− 2) Γ2

(
1
2(S −∆ + 4)

)
Γ(S + ∆− 2)

. (4.15)

Stricktly speaking, C∆,S is given by the product of (properly normalized) 3−point corre-

lation functions 〈OX̄ZOX̄Z̄O∆,S〉 and 〈OXZOXZ̄Ō∆,S〉. In unitary CFT they are complex

9If the theory were unitary, the scaling dimensions ∆2 and ∆4 would respect the Neumann-Wigner

non-crossing rule and remain to be different from each other for any coupling [56]
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conjugated to each other and, as a consequence, C∆,S is positive definite. This is not the

case for the conformal fishnet theory (1.1) and (1.2). In virtue of the symmetry (1.3) the

above mentioned 3-point functions coincide and, therefore, C∆,S is given by the square of

the 3-point correlation function of two protected and one unprotected operators

C∆,S = (C•◦◦0 )2 . (4.16)

We will generalize this result to a more complicated structure constant involving two non-

protected operators in section 8.

Weak coupling limit. Replacing the scaling dimensions in (4.15) by their expres-

sions (4.8) we can obtain the OPE coefficients at weak coupling.

First, consider twist-2 operators with the scaling dimension ∆2 and non-zero spin

S > 0. In this case we get

C∆t=2,S
=

Γ2(S + 1)

Γ(2S + 1)

[
1 + 2ξ4 (S + 1)(ψ(2S + 1)− ψ(S + 1)) + 1

S(S + 1)2

]
+O

(
ξ8
)
, (4.17)

where ψ(x) is the Euler polygamma-function. Notice that C∆t=2,S
becomes singular for

S → 0. Similar to the situation with the scaling dimension ∆2(S), this happens because

the two limits S → 0 and ξ2 → 0 do not commute. To get the correct result for C∆t=2,S=0

at weak coupling, we should first put S = 0 in (4.15) and, then, expand it in powers of ξ2.

This gives

C∆t=2,S=0
= 1− 2iξ2 − 2ξ4 + iξ6(5− 4ζ3) + ξ8(6− 8ζ3) +O

(
ξ9
)
. (4.18)

In analogy with (4.11), the weak coupling expansion starts at order O(ξ2) indicating that

C∆t=2,S=0
is sensitive to the contribution of the double traces.

For twist−4 operators we find from (4.15) and (4.9)

C∆t=4,S = ξ4 Γ2(S + 2)

2(S + 1)(S + 2)Γ(2S + 3)
+O

(
ξ8
)
. (4.19)

In distinction with (4.18), the weak coupling expansion of C∆t=4,S starts at order O(ξ4)

and runs in powers of ξ4. The latter property is in agreement with our expectations

that twist−4 operators are not affected by double-trace interaction. The twist-4 OPE

coefficient (4.19) is suppressed by the factor of ξ4 as compared with (4.18). Due to the

equation of motion, �X = 16π2ξ2Z̄XZ, the corresponding operator takes the form O4 =

tr(�X(n∂)SX)+· · · = 16π2ξ2 tr(Z̄XZ(n∂)SX))+. . . . The reason for the above-mentioned

suppression is that 〈O4Ō4〉 = O(ξ4) and 〈O4OX̄ZOX̄Z̄〉 = O(ξ4) leading to C∆t=4,S ∼
〈O4OX̄ZOX̄Z̄〉2/〈O4Ō4〉 = O(ξ4).

Strong coupling limit. At strong coupling the dimension ∆ become large according

to (4.14) and we get

C∆,S = 25−2∆S + 1

∆
tan

(
π

∆ + S

2

)(
1 +

3

2∆
+

4(S + 1)2 + 25

8∆2
+O

(
1

∆3

))
. (4.20)

Thus we see that the structure constant at strong coupling is exponentially small

since ∆ ' 2ξ eiπk/2.
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4.1.4 Zero-magnon 4-point correlation function

Having determined the conformal data of the zero-magnon operators, we can apply (3.11)

and (3.16) to compute the four-point correlation function (3.11) and (3.16)

G0(x1, x2|x3, x4) =
c2

x2
12x

2
34

G0(u, v) , (4.21)

where we replaced the scaling dimensions of the external protected operators by their

values, ∆1 = ∆2 = ∆3 = ∆4 = 1, and the function G0(u, v) is given by

G0(u, v) =
∞∑
S=0

∑
∆=∆t=2,∆t=4

C∆,S g∆,S(u, v) , (4.22)

where the sum runs over the states with the scaling dimension (4.8) and the OPE co-

efficients (4.15). Here g∆,S is the four-dimensional conformal block defined in (A.1)

(with ∆i = 1).

The relation (4.22) involves an infinite sum over the conformal blocks and it is not

obvious a priori that one can find a closed expression for G0(u, v) even at weak coupling.

We show in section 5 by explicit two-loop calculation that G0(u, v) can be expressed in

terms of special functions, the so-called harmonic polylogarithms (HPL). In section 6 we

extend this result to any order of the weak coupling expansion. Also in section 7 we analyse

the strong coupling limit of the expression (4.22). The analytic properties of G0(u, v) with

respect to the coupling ξ are discussed in appendix D.

According to (2.7) and (2.8), the correlation functions GA and GD are given by a

linear combination of the zero-magnon functions G0 symmetrized in x3 ↔ x4. Let us see

what effect the exchange of x3 and x4 has on the function G0. As follows from (3.10), the

cross-ratios transform under the exchange of x3 with x4 as u → u/v and v → 1/v. The

corresponding transformation of the conformal blocks looks as

g∆,S(u/v, 1/v) = (−1)Sg∆,S(u, v) . (4.23)

This relation follows from (3.9), it can also be verified directly from the definition (A.1).

Combining together (4.22) and (4.23) we conclude that, in the expressions for GA and GD
the terms in (4.22) with odd S cancel out whereas those with even S get doubled.

4.2 One-magnon case and single spiral graphs (G1)

In this subsection, we consider the one-magnon correlation function G1 described by graphs

shown in figure 5(middle). As we will see shortly, its calculation is simpler than that of G0

and G2. Since the graph contributing to G1 have two propagators attached to x1 and x4

and only one to x2 and x3, we identify the scaling dimensions at the external points as

∆1 = ∆4 = 2 , ∆2 = ∆3 = 1 . (4.24)

To identify the graph-building operator Ĥ0, we consider the first few terms in the weak

coupling expansion of G1 (see figure 8). The expressions corresponding to the first two
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x1x2 x3x4 x1x2 x4x3
x5 x1x2 x3x4

x5 x6

ξ0 ξ2 ξ4

Figure 8. First 3 orders contributing to the G1 correlator. We assume that each of x1 and x4

points are the sources of two propagators, by that reason x4 and x3 are interchanged in the middle

picture in comparison to the right and left.

diagrams are

G
(0)
1 =

c3

x2
24x

2
13x

2
14

,

G
(1)
1 =

ˆ
d4x5

c5

x2
25x

2
53x

2
14x

2
15x

2
45

. (4.25)

Let us show that these expressions can be represented as 2nd and 3rd power of the graph

building operator with the integral kernel

H1(x1, x2|x3, x4) = c2 δ
(4)(x4 − x1)

x2
12x

2
23

. (4.26)

Indeed, we apply (3.3) to get

〈x1, x2|Ĥ2
1 |x3, x4〉 =

ˆ
d4y5d

4y6H1(x1, x2|y5, y6)H1(y5, y6|x3, x4) =
c

x2
12

G
(0)
1 ,

〈x1, x2|Ĥ3
1 |x3, x4〉 =

c

x2
12

ˆ
d4y5d

4y6G
(0)
1 (x1, x2|y5, y6)H1(y5, y6|x3, x4) =

c

x2
12

G
(1)
1 . (4.27)

It is clear from these examples that, in general, Ĝ1
(n)

= 4π2x2
12Ĥ

n+1
1 . Thus the correlation

function G1 can be written as

Ĝ1 =

∞∑
`=0

(16π2ξ2)`Ĝ1
(`)

=
x2

12

c

Ĥ2
1

1− (16π2ξ2)Ĥ1
. (4.28)

Comparing with the general form (3.1) we see that χ = 16π2ξ2 and n = 2.

4.2.1 Eigenvalue of the one-magnon graph-building operator

As in the previous case, we can verify that the integral operator Ĥ1 with kernel given

by (4.26) commutes with the generators of the conformal group acting on the external

points xi and the corresponding conformal weights given by (4.24). As a consequence, its

eigenstates are given by (3.5) with ∆1 = 2 and ∆2 = 1. The eigenvalue equation (3.4)
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Figure 9. Dependence of ∆1 on the coupling constant ξ2 for S = 0 (left) and S = 1 (right). At

weak coupling ∆1 = 3+S+O(ξ2). For ξ2 = (−1)S(S+1)2/4 the function ∆1 approaches the value

∆ = 2 and, then, continues into the complex plane Re∆ = 2 after the collision with the shadow

level 4−∆1.

reduces to an integral which can be evaluated using the star-triangle identity, as explained

in appendix C.3. The result turns out to be quite simple

E1 = (−1)S
4π2c2

(−∆+ S + 3)(∆ + S − 1)
. (4.29)

It is obviously invariant under ∆ → 4−∆ and satisfies (3.13). We can use (4.29) to verify

the condition (3.15). In the present case, for ∆1 = 2 and ∆2 = 1, we find from (B.1) that

r2n = 0 for integer n so that the relation (3.15) takes the form

E1|∆=3+s+2n+1,S=s = E1|∆=3+s,S=s+2n+1 , (4.30)

where n, s = 0, 1, 2, . . . . It is easy to see that it holds indeed.10

4.2.2 Spectrum of one-magnon exchange operators

Substituting (4.29) into (3.14) and taking into account that χ = 16π2ξ2, we determine the

scaling dimension of the one-magnon operators O1 = tr(XZ(n∂)SX)+ . . . contributing to

the correlation function (3.16)

∆1 = 2 +
√

(S + 1)2 − 4(−1)Sξ2 . (4.31)

For S = 0 we have

∆1

∣∣
S=0

= 2 +
√
1− 4ξ2 . (4.32)

10Note that the factor (−1)S in the expression for E1 plays an important role for this equation to be

satisfied.
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Interestingly, this expression coincides with the asymptotic dispersion relation for the one-

magnon state previously found from the double-scaling limit of asymptotic Bethe ansatz

(ABA) in ref. [43]. Following the ABA approach, one could have expected that the asymp-

totic dispersion relation (4.32) should be corrected already at order O(ξ4) by the wrapping

corrections. The relation (4.32) implies that the wrapping corrections to the one-magnon

operator tr(X2Z) vanish. This is indeed the case for the single wrapping contribution

found in [43]. The relation (4.32) is indeed consistent with the ABA, including the known

single wrapping correction!

Weak coupling. At weak coupling, the scaling dimension (4.31) of the one-magnon

states reads

∆1 = 3 + S − ξ2 2(−1)S

S + 1
− ξ4 2

(S + 1)3
− ξ6 4(−1)S

(S + 1)5
+O

(
ξ7
)
. (4.33)

Strong coupling. At strong coupling, we find from (4.31)

∆1 = 2 + (−1)
S+1
2

(
2ξ − (−1)S(S + 1)2

4ξ
− (S + 1)4

64ξ3

)
+O

(
1

ξ5

)
, (4.34)

where the branch of (−1)
S+1
2 is such that Re ∆ > 2. Interestingly, at the leading order we

get the same coefficient as for the zero-magnon case (4.14).

4.2.3 Structure constants with one-magnon exchange operators

We can also employ the general equation (3.17) to find the OPE coefficient

C∆,S = (S + 1)
Γ2
(

1
2(S + ∆− 1)

)
Γ(S −∆ + 4)

Γ2
(

1
2(S −∆ + 5)

)
Γ(S + ∆− 1)

. (4.35)

As in the previous case, it is given by the square of the 3−point function of two protected

and one unprotected operator, C∆,S = (C•◦◦1 )2.

Weak coupling. At weak coupling, we obtain from (4.35) and (4.33)

C∆,S =
Γ(S + 1)Γ(S + 2)

Γ(2S + 2)

[
1− 2ξ2(−1)S

ψ(S + 1)− ψ(2S + 2)

S + 1
+O

(
ξ4
)]

. (4.36)

In particular for S = 0 we find

C∆,0 = 1 + 2ξ2 + 6ξ4 − 4ξ6(ζ3 − 5) + ξ8(70− 20ζ3) +O
(
ξ10
)
. (4.37)

Since the first few coefficients do not involve wrapping it should be possible to compare

with the perturbative ABA based general expressions from [20, 57].

Strong coupling. At strong coupling ∆ becomes large (4.34) and we can use it as a

large expansion parameter since the expressions are more compact

C∆,S = 26−2∆S + 1

∆
cot

(
π
S −∆

2

)(
1 +

5

2∆
+

4S2 + 8S + 53

8∆2
+O

(
1

∆3

))
. (4.38)

The structure constant is again exponentially decaying as it was in the zero-magnon

case (4.20).
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4.2.4 One-magnon four-point correlation function

Substituting (4.24) into (3.11) and (3.16), we obtain the one-magnon 4-point correlation

function

G1(x1, x2|x3, x4) = c3 (x2
13x

2
24)1/2

(x2
12x

2
34)3/2x2

14

G1(u, v) , (4.39)

where

G1(u, v) =
∑

S=0,1,2,...

C∆,S g∆,S(u, v) (4.40)

and the sum runs over the states with the scaling dimensions ∆ and the OPE coefficients

C∆,S given by (4.31) and (4.35), respectively. Notice that in the above sum there is only

one state for each value of the spin S and spin takes all non-negative integer values. In

section 6 we study (4.40) at weak coupling and compare it with the result of perturbative

calculation performed in section 5. Also in section 7 we analyse the strong coupling limit

of (4.40).

Finally, we can use (2.10) and (4.39) to calculate the 4-point correlation functions GC′

and GC′′ .

4.3 Two-magnon case and double-spiral graphs (G2)

The two-magnon correlation function G2 is given by graphs shown in figure 5(right). Since

these graphs have two propagators attached to all four external points, we identify the

scaling dimensions as

∆1 = ∆2 = ∆3 = ∆4 = 2 . (4.41)

As before, in order to construct the graph building operator for the two-magnon case Ĥ2,

we examine the first few orders of the weak coupling expansion of G2 (see figure 10). The

expressions corresponding to the first two diagrams on figure 10 are

G
(0)
2 =

c4

x2
13x

2
14x

2
23x

2
24

,

G
(1)
2 =

ˆ
d4x5d

4x6
c8

x2
25x

2
54x

2
15x

2
53x

2
16x

2
63x

2
26x

2
64

=

[ˆ
d4x5

c4

x2
25x

2
54x

2
15x

2
53

]2

. (4.42)

Note that the two-loop integral entering G
(1)
2 factorizes into a product of one-loop integrals.

This is not the case already at the next O(ξ8) order for the right-most diagram in figure 10.

The kernel H2 generating the two-magnon diagrams is

H2(x1, x2|x3, x4) ≡ c4

x2
13x

2
14x

2
23x

2
24

. (4.43)

Indeed we verify that the convolution of H2 reproduces all the diagrams depicted in fig-

ure 10.

G
(0)
2 = H2(x1, x2|x3, x4) ,

G
(1)
2 =

ˆ
d4y5d

4y6H2(x1, x2|y5, y6)H2(y5, y6|x3, x4) . (4.44)
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ξ0 ξ4 ξ8

Figure 10. First 3 orders contributing to the G2 correlator.

Thus for the sum of all two-magnon diagrams we get

Ĝ2 =

∞∑
`=0

(16π2ξ2)2`Ĝ2
(`)

=
Ĥ2

1− (16π2ξ2)2Ĥ2
. (4.45)

Comparison with the general expression (3.1) shows that χ = (16π2ξ2)2 and n = 1.

4.3.1 Eigenvalue of the graph-building operator

To compute the two-magnon correlation function (4.45) we have to diagonalize the operator

Ĥ2. We can use (4.43) to show that it commutes with the generators of the conformal

group. As a consequence, its eigenstates are given by (3.5) with ∆1 = ∆2 = 2. To

find the corresponding eigenvalue E2, we replace the eigenstates in (3.4) by their explicit

expressions (3.5). This leads to a rather complicated integral on the left-hand side of (3.4).

We can simply its calculation by sending x0 →∞ on the both sides of (3.4). In addition,

we project all Lorentz indices on an auxiliary light-like vector nν (with n2 = 0) and obtain

the following representation for E2

E2(∆, S) =
1

(4π2)4

ˆ
d4x3d

4x4 (nx34)S

x2
13x

2
14x

2
23x

2
24(x2

34)1−iν+S/2
, (4.46)

where ∆ = 2 + 2iν and we put x2
12 = (nx12) = 1 for convenience.

Since the integrand of (4.46) acquires the (−1)S factor under the exchange of the

integration points, x3 ↔ x4, E2 vanishes for odd S. For even S the calculation of (4.46)

yields (see appendix C.4 for details)

E2 =
1

4π4(S + 1)

∞∑
n=0

(−1)n(2n+ S + 2)

(∆− 2n− S − 4)2(∆ + 2n+ S)2

=
ψ(1)

(
1
4(S−∆+4)

)
− ψ(1)

(
1
4(S−∆+6)

)
− ψ(1)

(
1
4(S+∆)

)
+ ψ(1)

(
1
4(S+∆+2)

)
(4π)4(∆− 2)(S + 1)

,

(4.47)

where ψ(1)(x) = dψ(x)/dx.
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Figure 11. Function E2(∆) for S = 0 (solid line), S = 2 (dashed line) and S = 4 (dotted line).

At ∆ = S + 4, S + 6, . . . the function has a double pole. Since we have to impose (4.49) at weak

coupling E2 goes to infinity. We see there are always two values of ∆ for which E2 is large in the

vicinity of ∆ = S + t for t = 4, 6, 8, . . . and thus the tree level spectrum is twice degenerate.

The expression for E2 is manifestly invariant under ∆ → 4 − ∆. Let us verify the

condition (3.15) for cancelling the spurious poles. In the present case, for ∆1 = 2 and

∆2 = 2, it follows from (B.1) that r2n+1 = 0 for integer n, and the relation (3.15) reduces to

E2(∆ = 3 + s+ 2n, S = s) = E2(∆ = 3 + s, S = s+ 2n) , (4.48)

for n, s = 0, 1, 2, . . . . It is easy to check that it is indeed satisfied.

4.3.2 Spectrum

The scaling dimensions of the two-magnon operators satisfy the relation

E2(∆, S) =
1

(16π2ξ2)2
, (4.49)

subject to Re ∆ > 2 and S being even nonnegative.

This time the spectrum of ∆’s has a rich structure since for each value of S there are

infinitely many solutions to (4.49). Indeed, as follows from the first relation in (4.47), the

function (4.47) has an infinite sequence of double poles at ∆ = S + t for t = 4, 6, 8 . . . . As

a consequence, for small ξ the relation (4.49) always has two solutions in the vicinity of

∆ = S + t describing operators with twist t and even spin S.11 Indeed we see on figure 12

that all levels are twice degenerate at weak coupling.

The weak coupling expansion of ∆2 can be found by replacing E2 by its expansion in

the vicinity of the pole. Going through the calculation we obtain

∆2 = S + t± ξ2γ
(0)
t,S + ξ4γ

(1)
t,S +O(ξ6) , t = 4, 6, . . . , (4.50)

11Like in the case of G0 due to the symmetry of the correlation function under the exchange of points x3
and x4 only even spins contribute to G2.
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Figure 12. Spectrum of the scaling dimensions ∆2(ξ) of the two-magnon operators for S = 0 (left)

and S = 2 (right).

with the expansion coefficients given by

γ
(0)
t,S =

4 it/2√
(S + 1)(t+ S − 2)

, γ
(1)
t,S = − 8(−1)t/2

(S + 1)(t+ S − 2)2
. (4.51)

For each t and S, the relations (4.50) and (4.51) yield two scaling dimensions that are

related to each other through the transformation ξ2 → −ξ2. For even t/2, the expansion

coefficients in (4.50) are real. For odd t/2, the leading coefficient γ
(0)
t,S is pure imaginary (see

figure 12). The relations (4.50) and (4.51) describe the scaling dimensions of an infinite set

of operators, two per each twist t = 4, 6, . . . and spin S = 0, 2, . . . .

In particular, for S = 0 and t = 4, for the two-magnon operators of the form tr(X2Z2)+

. . . the scaling dimensions are given at weak coupling by

∆S=0,t=4 =4± 2
√
2ξ2 − 2ξ4 ± ξ6√

2
+ (8− 12ζ3) ξ

8

±
(
30

√
2ζ3 −

513

8
√
2

)
ξ10 + (−96ζ3 − 60ζ5 + 168) ξ12 ±O

(
ξ14

)
. (4.52)

The first 4 terms reproduce the prediction from ABA [58] including the first

Lüscher correction.

Critical coupling. The dependence of the two-magnon scaling dimensions ∆2 on the

coupling constant is shown on figure 12. As can be seen from this figure, for each S the

lowest level approaches the value ∆ = 2 at some finite ξ = ξ∗. Expanding E2 near ∆ = 2

we find the corresponding value of the coupling constant ξ∗

ξ4∗ =
2(S + 1)

ψ(2)
(
S
4 + 1

)
− ψ(2)

(
S+2
4

) . (4.53)
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Numerically, for S = 0, 2, 4, . . . we obtain12

ξ∗ = 0.610212, 1.397, 2.20284, 3.02178, 3.84809, . . . . (4.54)

For ξ > ξ∗, the scaling dimension ∆ develops an imaginary part. As we see in a moment,

it grows linearly with ξ at strong coupling.

Strong coupling. Solving (4.49) at strong coupling, we have to identify the values of

∆ at which E2(∆, S) vanishes. A close examination of (4.47) shows that E2(∆, S) has

infinitely many zeroes in ∆ for any even of S. For example, for S = 0 the first few zeroes

of (4.47) satisfying Re ∆ > 2 can be found numerically as

∆S=0 = 5.0145, 6.6879± 4.08478i, 6.99634, 9.0014, 10.9993, 11.0453 + 5.05341i, . . .

Notice that the real part of most of the zeros is close to integer. They determine the leading

large ξ asymptotics of the scaling dimension of all but two states shown in figure 12.

The remaining two states satisfy Re ∆ = 2 and have an imaginary part that grows

linearly with ξ. They correspond to the solution to (4.49) with ∆ → ∞. Indeed, the

function (4.47) decays at large ∆ as E2 ∼ 1/∆4 and the relation (4.49) is automatically

satisfied. By expanding E2 at large ∆ and solving (4.49) we find

∆2 = 2± i
(

2
4
√

2ξ − S2 + 2S − 2

4 4
√

2ξ
− S4 + 4S3 + 24S2 + 40S − 68

64 23/4ξ3
+O

(
1

ξ4

))
. (4.55)

4.3.3 OPE coefficients

From (3.17) we get for C∆,S :

C∆,S = − π/c4

c2(∆, S)

1

∂∆(1/E2(∆, S))
. (4.56)

where c2 is given by (A.5) for ∆1 = ∆2 = 2. Replacing E2 with (4.47), we obtain a rather

cumbersome expression for C∆,S , we do not present it here.

Weak coupling. Expanding the resulting expression for C∆,S in powers of ξ2, we get

the OPE coefficients for the operators with twist t = (∆− S)|ξ=0 = 4, 6, 8, . . . and Lorentz

spin S = 0, 2, 4, . . .

C∆,S = (−1)t/2
Γ2(t/2− 1)Γ2(S + t/2)

Γ(t− 3)Γ(2S + t− 1)

[
1 + ξ2c

(0)
t,Sγ

(0)
t,S +O(ξ4)

]
. (4.57)

Here γ
(0)
n,S is the one-loop anomalous dimension defined in (4.51) and the coefficient c

(0)
n,S is

given by

c
(0)
t,S = ψ(t/2 + S)− ψ(t+ 2S − 1) + ψ(t/2− 1)− ψ(t− 3)− 1

2(S + t− 2)
. (4.58)

12For comparison, for a different operators with J = 3 with zero spin of the type tr�nX3 we get a very

similar behaviour with the critical points at 0.589884, 1.32836, 2.02683, 2.71805, 3.40652, . . . [44].
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Strong coupling. To analyse the strong coupling behaviour of (4.56) it is convenient to

rewrite it as

C∆,S = − π/c4

c2(∆, S)

∂∆

∂(4πξ)4
, (4.59)

where we used (4.49) to get rid of E2. Since for most of the states ∆ approaches a constant

value at strong coupling, we see from (4.59) that C∆,S should decay as 1/ξ8. For the

two remaining states whose imaginary part grows linearly in ξ, the OPE coefficient (4.59)

decreases slower as 1/ξ for real ξ. We recall however that in order for the correlation

function (3.12) to be well-defined, ξ should have an imaginary part. For ξ with large

imaginary part the structure constant of the lowest level at each S decays exponentially

and thus the OPE expansion at strong coupling should be dominated by the other state,

for which ∆ → const at ξ → ∞. This is rather different behaviour to that of two other

correlators and needs further investigation. We discuss this issue briefly in section 7.

4.3.4 4-point correlation function

Having determined the scaling dimensions and the OPE coefficients we can compute the

two-magnon correlation function

G2(x1, x2|x3, x4) ≡ c4

x4
12x

4
34

G2(u, v) , (4.60)

where

G2(u, v) =
∑

t=4,6,...

∑
S=2,4,...

C∆+,S g∆+,S(u, v) + C∆−,S g∆−,S(u, v) . (4.61)

We note that for each spin S and twist t there are two states, as one can see from the weak

coupling expansion (4.50).

Notice that the weak coupling expansion of (4.50) and (4.57) goes in powers of ξ2.

However, due to the symmetry of the spectrum, the two terms in the sum (4.61) are

related to each other through transformation ξ2 → −ξ2 so that the weak expansion of

G2(u, v) runs in powers of ξ4.

In section 6, we study the equation (4.61) at weak coupling and compare the result

with the predictions from the perturbation theory of section 5.

5 Correlation functions at weak coupling from Feynman diagrams

In the previous sections, we have derived three different types of four-point correlation

functions by applying the operatorial methods. Namely, we have solved the underlying

Bethe-Salpeter equations by diagonalizing the corresponding “graph-building” kernels with

a help of the conformal symmetry. Doing so, we have ignored the double trace countert-

erms (1.2) which are nessesary for the consistent definition of the bi-scalar model (1.1) on

the quantum level and for restoring the conformal symmetry of the theory.

In this section we discuss the role of the double-trace interaction terms (1.2). We show

that they are necessary at weak coupling in order to make each order of the perturbation
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x1

x2

x3

x4

Figure 13. Feynman diagrams contributing to the four-point function G0(x1, x2|x3, x4). Dots

denote double-trace α2
1 vertices, all other quartic vertices describe single-trace ξ2 coupling.

expansion of the correlation functions to be finite. At the same time, they do not affect

the results for the correlation functions at finite coupling obtained in the previous section.

Let us review the role of double-trace couplings α1 and α2 from the action (1.2) in

perturbative computations of the correlation functions GA, GB, GC and GD. Below we

discuss which of the topologies of the Feynman graphs G0, G1 or G2 have to be completed

with the double-trace interactions in order to have meaningful weak coupling expansion of

the abovementioned four-point functions.

5.1 Double-trace contribution to GA, GB

We recall that the four-point functions GA, GB are completely defined, at least for any finite

ξ, by the zero-magnon function G0. The latter is given by sum over the wheel graphs shown

in figure 1. As was already mentioned, each wheel in these graphs develops a ultraviolet

divergence at short distances. We expect that the double-trace contribution should remove

this divergence.

The double-trace interaction is described by the action (1.2). It is easy to see that, due

to the cylindrical topology of the underlying planar graphs, among four different double-

trace interaction terms in (1.2) only one term (4π)2α2
1 tr(X2) tr(X̄2) can contribute to G0 in

the planar limit. It generates a new local quartic scalar vertex. The resulting planar graphs

contributing to G0 are shown in figure 13. They are obtained by gluing together wheel

graphs. Indeed, the insertion of the double-trace vertex 16π2α2
1 tr(X̄)2 trX2 effectively

splits the planar wheel Feynman graph into two disconnected parts, with the single trace

operators, tr(X̄)2 and trX2, attached to each part.

As we demonstrated in the previous section, the wheel graphs can be summed up

by introducing the graph building operators Ĥ0. In the similar manner, we can take

into account the graphs shown in figure 13 by replacing the kernel (16π2ξ2)2Ĥ0 in the

equation (4.22) by a linear combination (16π2α2
1)V + (16π2ξ2)2Ĥ0 of operators V and

Ĥ0 generating double-trace vertices and scalar loops, respectively (see figure 13). Since

the contribution to the correlation function of individual diagram shown in figure 13 is

divergent, we introduce dimensional regularization with d = 4− 2ε. Then, the regularized
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Figure 14. Diagrammatic representation of the graph building operators V and H0 defined in (5.1).

Dashed blue line denotes delta-function, black and dashed red lines stand for free scalar propagators.

operators H0 and V are defined as

H0 Φ(x3, x4) = c4

ˆ
d4−2εx1d

4−2εx2

(x2
13x

2
24(x2

12)2)1−εΦ(x1, x2) ,

V Φ(x3, x4) = 2c2

ˆ
d4−2εx1d

4−2εx2

(x2
13x

2
24)1−ε δ(4−2ε)(x12)Φ(x1, x2) , (5.1)

where Φ(x1, x2) is a test function. They admit a simple diagrammatic representation, see

figure 14(right) and (left), respectively. We would like to emphasize that the operators (5.1)

are well-defined for ε 6= 0.

Making use of the operators (5.1) we obtain the following representation for the zero-

magnon correlation function

G0(x1, x2, x3, x4) = (4π2)2x4
12 lim
ε→0

(x1, x2|
1

1− (16π2α2
1)V − (16π2ξ2)2Ĥ0

Ĥ0|x3, x4) , (5.2)

where α2
1 ≡ α2

±(ξ) is the double-trace coupling at the fixed point (1.4). Expanding (5.2)

in powers of the couplings α2
1 and ξ2 we find that the first few terms of the weak-coupling

expansion of G0 are given by graphs depicted in figure 16 below. We compute them later

in this section. It is easy to see that higher order terms of the weak-coupling expansion

of (5.2) produce graphs shown in figure 13.

Note that for ε 6= 0 the conformal symmetry of the correlation function (5.2) is broken.

To elucidate the mechanism of restoration of the conformal symmetry of G0 and the role

played by the double traces, we present below the two-loop calculation of the correlation

function (5.2).

Applying the identity 1/(x2
34)2−2ε = π2δ(x34)/ε as ε → 0, we find from (5.1) that

H0 Φ(x1, x2) ∼ ε−1
´
d4x3Φ(x3, x3)/(x2

13x
2
23). This means that the operator H0 is singular

on the space of functions Φ(x3, x4) that do not vanish at short distances x34 → 0. Exam-

ining the expression for the eigenfunctions (3.5), we find they scale at short distances as

Φν,S,x0(x3, x4) ∼ 1/x∆1+∆2−∆
34 = 1/x−2iν

34 for ∆1 = ∆2 = 1 and ∆ = 2 + 2iν. We recall that

computing the correlation functions in the previous section we deformed the integration

contour over ν into the lower half-plane. It is easy to see that in this case Φν,S,x0(x3, x4) van-

ishes for x34 → 0 and, as a consequence, the operator H0 does not develop UV divergences.
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x1x2 x3x4

Figure 15. Typical planar graphs producing UV divergent contribution to the four-point correla-

tion function GC . The black blobs denote the single-trace vertices with the coupling ξ2. The white

blobs denote both the single-trace ξ2−vertices and the double-trace α2
2−vertices. Their contribu-

tion is proportional to (ξ2 − α2
2) and it vanishes at the fixed point. Similarly, for the correlation

function GB the contribution of analogous UV divergent planar graphs vanishes at the fixed point

through the same mechanism.

Moreover, as follows from the definition (5.1), the double-trace operator V annihilates the

eigenstates Φν,S,x0(x3, x4) with Im ν < 0 and, therefore, does not contribute. This explains

why the double-trace interaction can be neglected when computing the four-point function

G0 by the Bethe-Salpeter method. The appearance of UV divergences at weak coupling

is a manifestation of analytic properties of G0. As a function of ξ4, it has a square-root

cut at the origin so that its pertubative expansion runs in powers of (−ξ4)1/2. We have

already observed this phenomenon on the example of the scaling dimension (4.11).

5.2 Double-trace contributions to GB and GC

The inspection of Feynman graphs defining GB and GC shows that the double-trace inter-

actions with the coupling α1 do not contribute in the planar limit. On the other hand, the

interactions with the double-trace coupling α2 do contribute to both correlation functions

through the graphs of the type shown on figure 15 on the example of GC . Each vertex de-

picted by white blobes on figure 15 describes both single- and double-trace couplings. The

contribution of each such vertex to GC is UV divergent and it is proportional to (ξ2 −α2
2).

As a result, it vanishes at the fixed point (1.4), so that we are left only with the sums over

UV finite single spiral graphs summed up by the UV finite structure function G1. This

property is not surprising given the fact that the correlation function GC has to be a finite

function of ξ2 whereas the Feynman diagram in figure 15 involves the ultraviolet divergent

scalar loops.

The function GC is regular at ξ2 → 0 and its weak-coupling expansion runs in powers

of ξ2. The expression for GC at arbitrary coupling has been derived in section 4.2 using the

Bethe-Salpeter equation in the form of conformal partial wave expansion, eqs. (2.10), (4.39)

and (4.40).

The correlation function GB also receives UV divergent contribution from planar

graphs similar to those shown in figure 15. Their contribution vanishes at the fixed point

through the same mechanism as in the previous case. This means that GB is defined by the

two-magnon function G2, see eq. (2.11). Since two-magnon graphs contributing to G2 con-
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x1x2 x3x4 x1x2 x3x4 x1x2 x3x4
x5 x6 x1x2 x3x4

G(0,0) α2
1G

(1,0) ξ4G(0,2) α4
1G

(2,0)

Figure 16. Feynman diagrams defining the first few terms of the weak-coupling expansion of G0.

G(n,k) stands for diagram with k single-trace vertices and n double-trace vertices. Dashed blue line

denotes delta-function, black and dashed red lines denote free scalar propagators.

tain even number of single-trace vertices, the weak coupling expansion of G2 runs in powers

of ξ4. At arbitrary coupling, G2 is given by the conformal partial wave expansion (4.60)

and (4.61).

In the rest of this section, we compute the first few terms of the weak coupling expan-

sion of the 4-point correlation functions and, then, compare them with the exact expressions

obtained in section 4.

5.3 Type GD

In the previous sections, GD was defined in terms of the function G0 by (2.7), and G0 is

given by the wheel diagrams shown in figure 6. As we already discussed, this definition

is not complete and has to be supplimented with the double-trace contributions. The

reason for this is that each diagram in figure 6 is UV divergent and the extra double trace

contribution is needed to make each term of the weak coupling expansion to be UV finite.

To illustrate this, we examine the first few terms of the weak coupling expansion of

G0. They are given by Feynman diagrams shown in figure 16

G0 = G(0,0) + 16π2α2
1G

(1,0) + (16π2ξ2)2G(0,2) + (16π2α2
1)2G(2,0) +O(ξ6) , (5.3)

where G(n,k) denotes the contribution of diagram with n double-trace vertices and k single-

trace vertices. We recall that G0 depends on only one double-trace coupling α2
1 whose

value is given by (1.4) at the fixed point.

The first term on the right-hand side of (5.3) has been previously defined in (4.1),

G(0,0) = G
(0)
0 . The O(α2

1) correction to (5.3) can be computed from Feynman graphs

contributing to GD and is given by a finite four-dimensional “cross” integral (see figure 16)

16π2α2
1G

(1,0) =
1

2
× 4× (16π2α2

1)

ˆ
d4x5c

4

x2
15x

2
25x

2
35x

2
45

=
c2

x2
12x

2
34

2α2
1uD(u, v) , (5.4)

where the factor 1
2 comes from the relation (2.7) between GD and G0, 4 is the symmetry

factor, c = 1/(4π2) and D(u, v) has a simple form when expressed in terms of auxiliary

variables defined in (3.10)

D(u, v) =
1

z − z̄

[
2Li2(z)− 2Li2(z̄) + ln

(
1− z
1− z̄

)
ln(zz̄)

]
. (5.5)

The function inside the brackets is known as the Bloch-Wigner function.
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The two-loop corrections G(0,2) andG(2,0) come from last two Feynman diagrams shown

in figure 16. The corresponding Feynman integrals are divergent and require regularization.

In dimensional regularization with d = 4− 2ε we have

G(0,2) = c6I(x1, x3|x2, x4) , G(2,0) = 4c6I(x1, x2|x3, x4) ,

where the notation was introduced for

I(x1, x2|x3, x4) =

ˆ
d4−2εx5d

4−2εx6

[x2
15x

2
25x

2
36x

2
46(x2

56)2]1−ε
. (5.6)

The integral on the right-hand side has a UV divergence coming from integration at short

distances x2
56 → 0. Applying the identity 1/(x2

56)2−2ε = π2δ(4−2ε)(x56)/ε + O(ε0) we find

that the residue of I(x1, x2|x3, x4) at the pole 1/ε is proportional to the same one-loop inte-

gral that enters (5.4). The same is true for the function I(x1, x3|x2, x4). As a consequence,

the divergent part of two loop correction to (5.3) takes the form

(16π2ξ2)2G(0,2) + (16π2α2
1)2G(2,0) = c2 4α4

1 + ξ4

ε

uD(u, v)

x2
12x

2
34

+O(ε0) . (5.7)

Since α4
1 = −ξ4/4 + O(ξ6) at the fixed point (1.4), UV divergences cancel in the sum the

single- and double-trace contributions. We conclude that the two-loop correction to (5.3)

is UV finite as it should be.

Going through the calculation of a finite part of the two-loop contribution we find that

it factorizes into a product of one-loop correction (5.4) and a logarithm of the cross-ratio

(16π2ξ2)2G(0,2) + (16π2α2
1)2G(2,0) =

c2ξ4

2x2
12x

2
34

uD(u, v) lnu . (5.8)

Combining this relation with (5.4) and (5.8) we obtain that the correlation function (5.3)

takes the expected form (4.21) with the function G(u, v) given at two loops by

G0(u, v) = u− iξ2 uD(u, v) + ξ4 uD(u, v)
(

1
2 lnu− 1

)
+O(ξ6) . (5.9)

Here we replaced the double-trace coupling by its value (1.4) at the fixed point α2
1 = α2

−.13

For α2
1 = α2

+, the function G0(u, v) is given by the same expression with ξ2 replaced

with −ξ2.

Notice that the O(ξ2) correction to (5.9) comes entirely from the double-trace contri-

bution. In the next section we show that (5.9) is in a perfect agreement with the exact

expression for G0, eq. (4.22), which was obtained by resumming the wheel graphs shown

in figure 6. This is in agreement with our expectations that the double-trace contribution

to G0 can be ignored at finite coupling.

13This choice is syncronized with the sign convention in (4.10).
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5.4 Type G1

The weak coupling expansion of the one-magnon correlation function G1 is defined by

Feynman diagrams shown in figure 8. The contribution of the first two diagrams is given

by (4.25). In distinction from the previous case, the corresponding integrals are well-defined

in D = 4 dimensions and do not require regularization.

In particular, the one-loop correction G
(1)
1 defined in (4.25) can be expressed in terms

of the “cross” integral (5.4)

16π2ξ2G
(1)
1 = c3ξ2 uD(u, v)

x2
12x

2
14x

2
34

= c3ξ2 (x2
13x

2
24)1/2

(x2
12x

2
34)3/2x2

14

u3/2D(u, v) . (5.10)

Then, the one-magnon correlation function G1 takes the expected form (4.39) with G1(u, v)

given at weak coupling by

G1(u, v) = u3/2 + ξ2u3/2D(u, v) +O(ξ4) . (5.11)

In the next section, we reproduce this expansion from the exact expression (4.40) for G1

and also produce explicit expressions for higher order terms.

5.5 Type G2

The two-magnon correlation function G2 is defined by Feynman diagrams shown in fig-

ure 10. Like in the previous case, the corresponding integrals are well-defined in D = 4

dimensions and do not require regularization.

The weak coupling expansion of G2 runs in powers of ξ4 and first two terms are given

by (4.42). As was mentioned before, the O(ξ4) contribution to G2 is given by a two-

loop Feynman integral (4.42) that factorizes into the product of one-loop integrals. The

latter take the form (5.4) and, as a consequence, it can be expressed in terms of Bloch-

Wigner function

(16π2ξ2)2G
(1)
2 =

ξ4

x4
12x

4
34

[
c2uD(u, v)

]2
. (5.12)

The resulting expression for the two-magnon correlation function takes the expected

form (4.60) with

G2(u, v) =
u2

v
+ ξ4u2D2(u, v) +O(ξ8) . (5.13)

We managed to reproduce both terms of the expansion (5.13) from its expansion over con-

formal blocks (4.61) by expanding it at weak coupling. For that we followed the procedure

explained in the next section 6.

6 Prediction for the 4-point correlation functions at weak coupling from

OPE data

In section 4, we determined the conformal data of the operators that appear in the con-

formal partial wave expansion (3.16) of the correlation functions at finite coupling. This
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expansion takes the form of double infinite sums over spins and dimensions. It is not obvious

a priori that these sums can be evaluated in a closed form. We demonstrate in this section

that, at weak coupling, these sums can be computed order by order in perturbation theory.

For zero- and one-magnon functions, G0 and G1, respectively, the result can be written in

terms of special class of iterated integrals known as single valued harmonic polylogarithm

functions (SVHPL) [59, 60]. The two-magnon function G2 has a more complicated form

and it can be expressed in terms of elliptic polylogarithms.

6.1 Zero-magnon case (Type G0)

As we already emphasized before, an interesting fact about G0 is that it receives corrections

from the double trace interaction. As a result, its expansion goes in powers of ξ2 rather

than in ξ4.

In the previous section we computed the first three terms of the weak-coupling expan-

sion of the function G0 defined in (4.22). Taking into account (5.9) as well as the explicit

expression (5.5) for the function D(u, v), it is natural to look for a general expression for

G0 in the form

G0 =
zz̄

z − z̄

∞∑
n=0

(iξ2)nG(n)
0 (z, z̄) , (6.1)

where z and z̄ are defined in (3.10). The goal of this section is to compute G(n)
0 explicitly

starting from the OPE expansion (4.22).

Note that the dependence on the coupling constant ξ2 enters into (4.22) only through

the scaling dimensions ∆2(S) and ∆4(S) given by (4.8). For general S their weak coupling

expansion only involves powers of ξ4. We recall however, that, due to non-comutativety of

the limits ξ → 0 and S → 0, for S = 0 the weak coupling expansion of ∆2(S = 0) does

contain powers ξ2 powers. This means that all terms on the right-hand side of (6.1) with

odd powers of ξ2 come entirely from the contribution of the twist-2 operator with zero spin.

We would like to emphasize that the scaling dimension of this operator has to satisfy the

condition Re ∆2(0) > 2. Together with (4.10), this implies that ξ2 should have a nonzero

imaginary part Im ξ2 < 0. For Im ξ2 > 0 we have to exchange the operator with its shadow

whose scaling dimension is given by 4−∆2(S) and it can be obtained from (4.10) through

the transformation ξ2 → −ξ2. This ambiguity exactly corresponds to the ambiguity of

choosing the fixed point (1.4). In what follows we assume that Im ξ2 < 0 and apply (4.10).

In order to find the explicit expressions for the coefficient functions G(n)
0 (z, z̄) we

match (6.1) into the OPE expansion (4.22) in the short distance limit, u→ 0 and v → 1, or

equivalently z , z̄ → 0. In this limit, the conformal blocks scale as g∆,S(u, v) ∼ (zz̄)(∆−S)/2

and their expansion in powers of the coupling generates terms of the form znz̄m logk(zz̄)

with k not exceeding the order in the coupling. The small z , z̄ expansion of G(n)
0 (z, z̄)

involves the same terms and their coefficients can be computed for any finite n+m using

the exact expressions for the conformal data of the operators.

A nontrivial property of G(n)
0 (z, z̄) is that for n ≥ 1 they can be expanded over the basis

of special iterated integrals, the so-called harmonic polylogarithms (HPL) (see [61, 62]),
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schematically

G(n)
0 (z, z̄) =

∑
~a,~b

C
~a,~b
Ha1,a2,...(z)Hb1,b2,...(z̄) , (6.2)

where the sum runs over the two sets of indices (including empty sets) ~a = (a1, a2, . . . ) and
~b = (b1, b2, . . . ) with ai and bj taking the values {0, 1}. Most importantly, the number of

terms on the right-hand side of (6.3) is finite for any n thus allowing us to find the expansion

coefficients C
~a,~b

by matching the small z, z̄ expansion of G(n)
0 (z, z̄) into the corresponding

expansion of the basis of HPL functions. Namely, comparing the coefficients in front of

znz̄m logk(zz̄) terms on the both sides of (6.2) with sufficiently large n + m we obtain an

overdetermined system of linear equations for C
~a,~b

. It is remarkable that for any finite n

this system has a unique solution.

For the first few coefficient functions we find

G(0)
0 = z − z̄ ,

G(1)
0 = H1,0 − H̄1,0 +H1H̄0 −H0H̄1 + H̄0,1 −H0,1 ,

G(2)
0 = H1H̄0,0 − H̄1H0,0 + H̄0H1,0 −H0H̄1,0 + H̄1,0 −H1,0 − H̄1,0,0 +H1,0,0

−H1H̄0 +H0H̄1 − H̄0,1 + H̄0,0,1 +H0,1 −H0,0,1 , (6.3)

where we introduced a short-hand notation for Ha1,a2,... = Ha1,a2,...(z) and H̄a1,a2,... =

Ha1,a2,...(z̄). The same expressions can be rewritten in terms of classical (di)logarithm

functions as

G(1)
0 = −2Li2(z) + 2Li2 (z̄)− log

(
1− z
1− z̄

)
log (zz̄) ,

G(2)
0 = −1

2
(log (zz̄)− 2)

(
2Li2(z)− 2Li2 (z̄) + log

(
1− z
1− z̄

)
log (zz̄)

)
. (6.4)

We verify that these expressions coincide with the result of the two-loop calculation (5.9).

It is convenient to assign to each term on the right-hand side of (6.2) and (6.3) the

weight equal to the total length of the sets ~a ∪~b. Then, G(1)
0 is given by a linear combina-

tion of weight−2 functions whereas expansion of G(2)
0 contains both weight−2 and weight−3

functions. We see that the maximal weight of increases by one at each loop order. Corre-

spondingly, the dimension of the basis of the functions increases rapidly at higher loops.

The number of terms in the expression for G(n)
0 at n loops is given by:

loops 3 4 5 6 7

dimension 38 48 154 244 508

The resulting expressions for G(n)
0 in terms of HPLs are rather lengthy and we do not

present them here.

The coefficient functions G(n)(z, z̄) should be single-valued functions of z for z̄ = z∗.

This property is not obvious from (6.2) since HPL functions have, in general, branch cuts

that start at z = 0 and z = 1. We can use this information to restrict the basis of possible
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functions. The HPLs can enter (6.3) through special linear combinations which are free

from the branch cuts. They are known as single-valued harmonic polylogarithms La1,a2,...,
their definition can be found in [59, 60]. The resulting expressions for G(n)

0 in terms of

SVHPLs are14

G(1)
0 = −(L01 − L10) ,

G(2)
0 = (L01 − L10)− L001 + L100 ,

G(3)
0 =

3

2
(L01 − L10)− L0001 + L0010 − L0100 − L0101 + L1000 + L1010 + 4ζ3L1 ,

G(4)
0 = (3− 4ζ3)(L01 − L10)− L00001 + L00010 − L01000 − L01001 + L10000 + L10010 ,

G(5)
0 =

49

8
(L01 − L10) +

1

2
(L0001 − L0010 + L0100 + L0101 − L1000 − L1010)

−2 (ζ3 − 6ζ5)L1 + 4ζ3 (L001 − L010 + L100 + L101)− L000001 + L000010

−L000100 − L000101 + L001000 + L001010 − L010000 − L010001 − L010100

−L010101 + L100000 + L100010 + L101000 + L101010 . (6.5)

Similar expressions up to 7 loops can be found in a Mathematica file attached to this

submission.

6.2 One-magnon case (Type G1)

Going along the same lines as in the previous case, we were able to expand the sum (4.40) in

terms of the SVHPLs. The weak-coupling result (5.11) suggests to look for G1 in the form

G1 =
(zz̄)3/2

z − z̄

∞∑
n=0

ξ2nG(n)
1 . (6.6)

The explicit expressions for the first few coefficient functions are

G(0)
1 = z − z̄ ,
G(1)

1 = −L10 + L01 ,

G(2)
1 = L0100 − L0010 ,

G(3)
1 = L000100 + L000110 − L001000 − L001010 + L010100 + L010110 − L011000

−L011010 − 4ζ3(L001 + L011) ,

G(4)
1 = −L00001000 − L00001010 + L00010000 + L00010010 − L01001000 − L01001010

−4 + L01010000 + L01010010ζ3 (L00001 − L00010 + L01001 − L01010) . (6.7)

We verify that the first two terms reproduce correctly the perturbation theory result (5.11).

6.3 Two-magnon case (Type G2)

In this case we only managed to reproduce the tree level and 2-loop perturbation theory

result (5.13). We found that it is not possilbe to express the 4-loop expression in terms of

14We attach to the arXiv submission an auxilary file containing the expressions for SVHPLs of the weight

up to 8 in terms of the HPLs.
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SVHPLs. We found that it is given by elliptic function. In small z limit the underlying

elliptic curve degenerates and the correlator can be written in terms of HPL’s of z̄ multiplied

by powers and logarithms of z.15

7 Classical (Strong Coupling) Limit of the 4-point Correlators

In this section, we investigate the strong coupling limit of the 4-point correlators. Even

though the world-sheet description of this theory is still not known, it was shown in [44] that

there is a classical limit of the underlying integrability construction for the spectrum where

it reduces to an algebraic curve reminiscent of that of the classical strings in AdS5 × S5 in

the full theory. Similarly, we will see that the leading strong coupling ξ →∞ asymptotics of

the correlation function is saturated by one state with large ∆, S ∼ ξ and the corresponding

result scales as e−ξA(z,z̄), where A(z, z̄) is a certain function of cross-ratios. Moreover, since

ξ = ge−iγ3/2 this classical asymptotics reminds the behavior of the three point correlation

functions for short operators in strongly coupled N = 4 SYM theory in planar limit (see

for example [63, 64]). Whereas it would be premature to conclude that this points to the

dual string description for the bi-scalar model, the observed behaviour looks very much like

an action evaluated on some classical solution. All that constitutes an evidence towards

existence of the classical limit of the fishnet theory at strong coupling ξ →∞. The possible

relation to the recently proposed AdS sigma model description of the ground state of the

fishnet theory for infinite L by [65] is also yet to be understood. In this section we assume

that z takes a generic value in the range 0 < |z| < 1.16 The convergence is not uniform

and the limits z → 0 or z → 1 have to be taken with extra care. We also assume that

ξ = e−iφξ0 where ξ0 is large and real and φ is a small positive phase. This assumption is

necessary as the correlator has poles at real values of ξ which accumulate at infinity and

the limit is not defined.

7.1 Correlation function for zero-magnon case (wheel-graphs)

First we consider the correlation function GD. It is obtained from the zero-magnon function

G0 given by (4.22) via (2.7). As we discussed above, this results in dropping terms with

odd S in the sum (4.22) and doubling the terms with even S. In this subsection, we

compute (4.22) in the limit when ξ →∞.

Our main assumption, which is backed by intensive numerical analysis, is that for

ξ →∞ the sum in (4.22) is saturated by large spins S ∼ ξ. Then, replacing the conformal

blocks in (4.22) by their asymptotic behavior at large S and ∆, we can evaluate the sum over

S by the saddle-point method. In what follows we only evaluate the leading exponential

factor. The pre-exponent and the subleading terms can be computed by the same method,

we leave it to future studies.

15We would like to thank F. Aprile, J. Bourjaily, J. Drummond, P. Heslop and O. Gurdogan for very

useful discussion on related issue.
16As below we find square roots and logariphms for definiteness we also assume in the calculation that

0 < arg z < π/4.
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Before we begin we notice the following property of the structure constant (4.15)

CS,∆ = −C−2−S,∆ . (7.1)

It allows us to write the 4-point function (4.22) in the following way

G0(u, v) =
∑

∆=∆t=2,∆t=4

∞∑
S=−∞

C∆,S (−1)S
zz̄

z − z̄
k(∆ + S, z)k(∆− S − 2, z̄) , (7.2)

where k(∆, z) is given by the hypergeometric function in (A.2). This expression consid-

erably simplifies our analysis as it allows to replace the sum over S by an integral with

exponential precision at large ξ and the evaluate it by the saddle point method.

The asymptotic behavior of the conformal block can be found by using a series repre-

sentation of the hypergeometric functions in (A.2)

2F1

(
∆ + S

2
,
∆ + S

2
; ∆ + S; z

)
=
∞∑
k=0

zk2∆+S−1Γ
(
S
2 + ∆

2 + 1
2

)
Γ
(
k + S

2 + ∆
2

)2
√
πΓ(k + 1)Γ

(
S
2 + ∆

2

)
Γ(k + S + ∆)

. (7.3)

Then rescaling the variables as

∆ = ξ d , S = ξ s , k = ξ w , (7.4)

we expand the expression under the sum at large ξ and extremize in w to obtain

2F1

(
∆ + S

2
,

∆ + S

2
; ∆ + S; z

)
∼ exp

[
∆ + S

2
log

(
4

z

1−
√

1− z
1 +
√

1− z

)]
, (7.5)

in agreement with [66].

Similarly we replace the structure constants (4.15) by their leading asymptotic be-

haviour at large S and ∆ to get from (7.2) and (2.7)

GD(z, z̄) ∼
∑
∆,S

exp

[
∆

2
log

((√
1− z − 1

) (√
1− z̄ − 1

)(√
1− z + 1

) (√
1− z̄ + 1

))

+
S

2
log

((√
1− z − 1

) (√
1− z̄ + 1

)(√
1− z + 1

) (√
1− z̄ − 1

))] . (7.6)

where the sum runs over even spins S, both positive and negative. We recall that for each

S there are only two values of ∆ that contribute to the sum, ∆2(S) and ∆4(S), given

by (4.8). At strong coupling, we apply (7.4) to find that they have different dependence

on the spin

∆t=2 ' ξ
√
s2 − 4 , ∆t=4 ' ξ

√
s2 + 4 . (7.7)

Note that for s < 2 we get purely imaginary ∆t=2/ξ. In order to get a consistent strong

coupling limit we should take ξ to have slightly negative phase, so that Re ∆t=2 → +∞ at
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strong coupling. After that we substitute (7.4) into (7.6) and extremize the expression in

the exponent over s to get

GD(z, z̄) ∼ e−ξAt=2(z,z̄) + e−ξAt=4(z,z̄) , (7.8)

where the two states (7.7) produce two different exponents

At=2 = iAt=4 , At=4(z, z̄) ≡ −i

√
log

(√
1− z − 1√
1− z + 1

)2

log

(√
1− z̄ + 1√
1− z̄ − 1

)2

, (7.9)

where z̄ = z∗. Notice that At=4 is positive whereas At=2 is purely imaginary. As a conse-

quence, −ξAt=2 has a large negative real part and, therefore, the correlation function (7.9)

is exponentially suppressed at strong coupling, as it is expected for the tunneling processes

in the classical limit.

Let us also point out that the state which saturates the sum over S in the sum (7.6)

has the following scaling dimension and spin

∆cl
t = ± 2ξ

At
log

((√
1− z − 1

) (√
1− z̄ − 1

)(√
1− z + 1

) (√
1− z̄ + 1

)) ,

Scl
t = ∓ 2ξ

At
log

((√
1− z − 1

) (√
1− z̄ + 1

)(√
1− z + 1

) (√
1− z̄ − 1

)) , (7.10)

with the upper sign for t = 2 and lower for t = 4. It would be interesting to find a classical

model which reproduces these results.17

As a test of our result we consider the small z limit of (7.8). In this limit, we expect

that the leading contribution to the correlation function should come from the states with

S = 0 leading to GD(z, z̄) ∼ (zz̄)∆t(S=0)/2. Expanding the relations (7.9) and (7.10) at

small z we find

e−ξA4 '
(
zz̄

16

)ξ
, ∆cl

4 ' 2ξ , Scl
4 ' 0 ,

e−ξA2 '
(
zz̄

16

)iξ
, ∆cl

2 ' 2iξ , Scl
2 ' 0 , (7.11)

in a perfect agreement with our expectation.

To further test our result, we computed the 4-point function (7.6) numerically for

ξ = ne−iπ/6 (with n = 100, 105, 110 . . . , 200) and z = eiπ/5/8. Fitting the data we obtained

the following result for the contribution of states with ∆t=2 and ∆t=4

Re log GD
∣∣∣
t=2

= −3.479085434 n+ (0.5000000000 log n− 4.602673564)

−0.3908689558

n
+ . . . ,

Re log GD
∣∣∣
t=4

= −6.025952735 n+ (0.5000000000 log n− 4.602673564) (7.12)

−0.6770048906

n
+ . . . .

17In analogy with sl(2) spin chain we expect that to be some variation of the classical Toda spin chain.
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The leading term on the right-hand side agrees with analytic result (7.9) for

Re(−ξAt=2(z, z̄)) and Re(−ξAt=4(z, z̄)) up to 27 significant digits (i.e. within the fit preci-

sion18). The relation (7.12) clearly indicates that the first subleading correction to log GD
is the same for the two states. It scales as ln ξ/2 and generates

√
ξ in pre-exponents on the

right-hand side of (7.8). This factor could come from some zero modes in the semiclassical

analysis (see very similar prefactors in the expectation values of a circular Wilson loop in

N = 4 SYM [67]).

7.2 Correlation function for one-magnon case (single spiral graphs)

The strong coupling limit of the correlation function G1 happens to be very similar to the

previous case. We immediately observe using (4.31) that the states contributing to G1

have exactly the same strong coupling asymptotics as t = 2 states in G0 from the previous

section, namely, for even S we have

∆ ' ξ
√
s2 − 4 , (7.13)

where s = S/ξ and the odd S have to be considered separately and their contribution

can be obtained by replacing ξ by −iξ. From (7.13), it is not surprising that the leading

asymptotics of the 4−point correlator appears to be also the same as that of GD, eq. (7.8)

G1(z, z̄) ∼ e−ξAt=2(z,z̄) + e−ξAt=4(z,z̄) . (7.14)

where At=2 comes from even spins and At=4 from odd spins. Note, however, that the

pre-exponential factors in (7.8) and (7.14) are different.

To verify our result we computed G1(z, z̄) numerically for fixed values of ξ =

ne−iπ/6, n = 100, 105, 110 . . . , 200 and for fixed z = 1
8e
iπ/5. Fitting this data with

n, log n, 1, 1/n, 1/n2, . . . , 1/n18 we obtain the following result

Re log G1|even S = −3.479085434 n+ (0.5 log n− 4.705957686) (7.15)

+
0.2721446760

n
+ . . . ,

Re log G1|odd S = −6.025952735 n+ (0.5 log n− 4.705957686) (7.16)

+
0.4713684059

n
+ . . .

The leading coefficients agrees with our analytic result −Re(e−iπ/6At=2(z, z̄)) and

−Re(e−iπ/6At=4(z, z̄)) with 27 digits (i.e. within the fit precision).

The analysis of the strong coupling behavior of the two-magnon correlator (double

spiral graphs) is more complicated and we leave it for the future studies. It would be

interesting to guess the “world-sheet” degrees of freedom leading to these classical asymp-

totics, similarly to what was done AdS5×S5 in the full AdS5×S5 duality. A possible way

to further elucidate whether the bi-scalar model has a string dual description is probably

to study the classical behavior of the long operators with many magnons. The finite gap

description of these states in the model can help to identify the string degrees of freedom,

in analogy with the finite gap construction for the full AdS5 × S5 string [68–70].

18For presentation purposes we lowered the precision in (7.12).
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Figure 17. Three-point correlation function of one unprotected operator located at point x1 and

two protected operators at points x2 and x3.

8 Gluing triangles: general structure constants

In the previous section, we computed the OPE coefficients C•◦◦∆,S for the two protected

and one unprotected zero-magnon operator, see (4.16). In this section we generalize

these results to the OPE coefficients of one protected and two unprotected zero-magnon

operators C••◦∆1,S1,∆2,S2
.

We show below that these OPE coefficients can be easily obtained by gluing together

the three-point correlation functions defined by C•◦◦∆,S , schematically19

〈OnS(x1) tr[X̄(x2)X̄(x3)]〉 = C•◦◦∆,S

(1 + (−1)S)c2

x∆−S
12 x∆−S

13 x2−∆+S
23

(
2(n · x13)

x2
13

− 2(n · x12)

x2
12

)S
, (8.1)

where n is an auxiliary light-like vector and

OnS(x) = N Tr
[
X(x)(n · ∂)SX(x) + . . .

]
, (8.2)

with dots denoting terms with derivatives acting on both fields. As usual, the normalization

factor N is fixed by the two-point function, N 2 ∼ 1/〈OnSŌnS〉. The stucture constant C•◦◦∆,S

is given by (4.15) and (4.16) and the scaling dimension ∆ = ∆2(S) is defined in (4.8).

The three-point function (8.1) resums the wheel diagrams shown in figure 17. They

contain two scalar lines connecting x1 with the two external points x2 and x3 dressed by

an abritrary number of wheels incircling x1. We can use this result as a building block for

a more complicated three-point correlation function, involving two twist-2 operators with

an arbitrary spin and one protected operator

TS1,S2(x1, x2, x3) = 〈On1
S1

(x1)Ōn2
S2

(x2) tr[X̄(x3)X(x3)]〉 , (8.3)

where Ōn2
S2

is given by (8.2) with X replaced with X̄ and ni (with i = 1, 2) being light-

like vectors. In the planar limit, this correlation function receives contribution from the

diagrams shown on figure 18. The main observation is that they can obtained by merging

together two wheels depicted in figure 17.

19The factor 1 + (−1)S on the r.h.s. comes from symmetrization in x2 and x3.
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To exemplify the idea we first consider (8.3) for S1 = S2 = 0. In this case, we have

T0,0(x1, x2, x3) = 2c4

ˆ
d4x0

C•◦◦∆1,0

(x2
10)∆1/2(x2

13)∆1/2(x2
03)1−∆1/2

×(−�0)
C•◦◦∆2,0

(x2
20)∆2/2(x2

23)∆2/2(x2
03)1−∆2/2

, (8.4)

where the operator (−�0) amputates an extra propagator and the integration over x0 glues

two sets of wheels together. Here ∆1 = ∆2 are the scaling dimensions of the operators

tr(X2) and tr(X̄2) given by (4.10) but it is convenient to keep ∆1 and ∆2 to be arbitrary.20

Then, after differentiation in x0 the integral becomes

T0,0(x1, x2, x3) = 2c4

ˆ
d4x0

C•◦◦∆1,0
C•◦◦∆2,0

(2−∆2) ∆2

x∆1
01 x

∆2+2
02 x6−∆1−∆2

03 x∆1
13 x

∆2−2
23

. (8.5)

We can employ inversions to verify that the integral transforms under the conformal trans-

formation as a three-point correlation function of scalar operators. This property fixes the

form of T0,0(x1, x2, x3) up to a structure constant

T0,0(x1, x2, x3) = 2c3
C••◦∆1,0;∆2,0

x∆1+∆2−2
12 x∆1−∆2+2

13 x−∆1+∆2+2
23

. (8.6)

The integral in (8.5) can be computed immediately using the star-triangle identity lead-

ing to

C••◦∆1,0;∆2,0 = C•◦◦∆1,0C
•◦◦
∆2,0

Γ
(
2− ∆1

2

)
Γ
(
2− ∆2

2

)
Γ
(

∆1
2 + ∆2

2 − 1
)

Γ
(

∆1
2

)
Γ
(

∆2
2

)
Γ
(
−∆1

2 −
∆2
2 + 3

) . (8.7)

Replacing C•◦◦∆,S with (4.16) we obtain the following expression

(C••◦∆1,0;∆2,0)2 =
4Γ (4−∆1) Γ (4−∆2) Γ2

(
∆1
2 + ∆2

2 − 1
)

((∆1−4) ∆1+2) ((∆2−4) ∆2+2) Γ (∆1−1) Γ (∆2−1) Γ2
(
−∆1

2 −
∆2
2 +3

) ,
(8.8)

which is symmetric in ∆1 and ∆2 as it should be.

So far, we treated ∆1 and ∆2 as arbitrary parameters. We expect that, in the limit

∆2 → 2, when the correlator T0,0 looses all its wheels around x2, it should reduce to the

wheel correlation function (8.1) multiplied by a free scalar propagator connecting x2 and

x3. Indeed, it is easy to see that C••◦∆1,0;2,0 = C•◦◦∆1,0
.

In application to the conformal fishnet theory, we have to replace the scaling dimensions

∆1 = ∆2 in (8.8) with their exact expression (4.10). In this case, the expression (8.8)

simplifies to

(C••◦∆1,0;∆1,0)2 =
4 (∆1 − 3) 2

((∆1 − 4) ∆1 + 2) 2
. (8.9)

20Note that we can in principle take different couplings of wheels around x1 and around x2 (similarly

to [22]), i.e. ξ1 and ξ2, making also ∆1 and ∆2 unequal.
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Figure 18. Three-point correlation function of two unprotected twist-2 operators and one pro-

tected operator tr(XX̄). It can be obtained by gluing together two wheel diagrams shown in

figure 17 through the common external points.

Non-zero spins. It is straightforward to generalize (8.4) to the operators with non-

zero spins

TS1,S2(x1, x2, x3) = 2c4C•◦◦∆1,S1
C•◦◦∆2,S2

ˆ
d4x0ΨS1,n

∆1,1,1
(x1, x0, x3)(−�0)ΨS2,n2

∆2,1,1
(x2, x0, x3) ,

(8.10)

where the notation was introduced for the so-called conformal triangle function

ΨS1,n
∆1,∆2,∆3

(x1, x2, x3) (8.11)

≡ 1

x∆1+∆2−∆3−S1
12 x∆1−∆2+∆3−S1

13 x−∆1+∆2+∆3+S1
23

(
2(nx13)

x2
13

− 2(nx12)

x2
12

)S1

.

In order to perform the x0−integration in (8.10), we make use of the following identity

ΨS1,n
∆1,∆2,∆3

(x1, x0, x3) ≡ fS1
∆1,∆2,∆3

[D∆1,n]S1
1

x∆1+∆2−∆3−S1
10 x∆1−∆2+∆3−S1

13 x−∆1+∆2+∆3+S1
03

,

(8.12)

where D∆1,n is a differential operator acting on x1,21

D∆1,n = (n∂x1) + 2 (∆1 − 1)
(nx13)

x2
13

(8.13)

and the normalization constant is given by

fS1
∆1,∆2,∆3

≡
Γ
(

1
2 (−S1 + ∆1 + ∆2 −∆3)

)
Γ
(

1
2 (S1 + ∆1 + ∆2 −∆3)

) . (8.14)

Replacing the Ψ−functions in (8.10) with (8.12), we can pull out the differential operator

DS∆1,n
outside the x0−integral to obtain

TS1,S2(x1, x2, x3) = fS1
∆1,1,1

fS2
∆2,1,1

[D∆1,n1 ]S1 [D∆2,n2 ]S2 (8.15)

×
ˆ
d4x0

(∆2 − S2) (S2 + 2−∆2)C•◦◦∆1,S1
C•◦◦∆2,S2

x∆1−S1
0,1 x∆2−S2+2

0,2 xS1+S2−∆1−∆2+6
0,3 x∆1−S1

1,3 x∆2−S2−2
2,3

,

where the x0−integral can be again computed using the star-triangle identity.

21A similar operator also appeared in [71].
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In this way, we arrive at the following expression

TS1,S2(x1, x2, x3) = 2c3C••◦∆1,S1;∆2,S2
ΨS1,n1,S2,n2

∆1,∆2
(x1, x2, x3) , (8.16)

where the dependence on xi is carried by the function

ΨS1,n1,S2,n2

∆1,∆2
= [D∆1,n1 ]S1 [D∆2,n2 ]S2

fS1+S2
∆1,∆2,2

x∆1+∆2−2−S1−S2
12 x∆1−∆2+2−S1+S2

13 x−∆1+∆2+2+S1−S2
23

.

(8.17)

The structure constant C••◦∆1,S1;∆2,S2
depends on the scaling dimensions and spins of the

two unprotected operators and reads

(
C••◦∆1,S1;∆2,S2

)2
=

4 (S1 + 1) (S2 + 1)

(− (∆1 − 4) ∆1 + S1 (S1 + 2)− 2) (− (∆2 − 4) ∆2 + S2 (S2 + 2)− 2)

×
Γ (S1 −∆1 + 4) Γ (S2 −∆2 + 4) Γ2

(
1
2 (S1 + S2 + ∆1 + ∆2 − 2)

)
Γ (S1 + ∆1 − 1) Γ (S2 + ∆2 − 1) Γ2

(
1
2 (S1 + S2 −∆1 −∆2 + 6)

) .
(8.18)

This relation constitutes the main result of this section. We can check again that in the

limit S2 → 0 and ∆2 → 2 the general expression (8.18) reduces to (C•◦◦∆1,S1
)2 defined

in (4.15). We note that there is a striking similarity of (8.18) with the expressions for the

cusp structure constants of [22, 72].

The function ΨS1,n1,S2,n2

∆1,∆2,2
describes the xi−dependence of the three-point correlation

function (8.3). Based on the conformal symmetry, we expect that it should have the

following general form [73]

ΨS1,n1,S2,n2

∆1,∆2
=

1

(x2
12)α12(x2

23)α23(x2
13)α13

min(S1,S2)∑
n=0

cnH
n
12(V1,23)S1−n(V2,13)S2−n , (8.19)

where

α12 =
1

2
(S1 + S2 + ∆1 + ∆2 − 2) ,

α13 =
1

2
(S1 − S2 + ∆1 −∆2 + 2) ,

α23 =
1

2
(−S1 + S2 −∆1 + ∆2 + 2) , (8.20)

and the sum runs over the conformal tensors projected onto light-like vectors n1 and n2

H12 = 2(n1n2)x2
12 − 4(n1x12)(n2x12) ,

V1,23 =
x2

12x
2
13

x2
23

[
2(n1x13)

x2
13

− 2(n1x12)

x2
12

]
,

V2,13 =
x2

23x
2
21

x2
31

[
2(n2x23)

x2
23

− 2(n2x21)

x2
21

]
. (8.21)
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The expansion coefficients cn can be found by matching (8.19) into (8.17)

cn =
Γ (S1 + 1) Γ (S2 + 1)

Γ(n+ 1)Γ (−n+ S1 + 1) Γ (−n+ S2 + 1)

×
Γ
(

1
2 (S1 − S2 + ∆1 + ∆2 − 2)

)
Γ
(

1
2 (−S1 + S2 + ∆1 + ∆2 − 2)

)
Γ
(

1
2 (S1 + S2 + ∆1 + ∆2 − 2)

)
Γ
(

1
2 (2n− S1 − S2 + ∆1 + ∆2 − 2)

) . (8.22)

Applying (8.18) we have to replace the scaling dimensions ∆1 and ∆2 by their ex-

plicit expressions. For the twist-two operators (8.2) they are given by the function ∆2(S),

eq. (4.8), evaluated for spin S = S1 and S = S2, respectively. We recall that the scaling

dimensions of twist-2 and twist-4 operators, ∆2(S) and ∆4(S) are two branches of the same

function of the (complexified) coupling constant ξ2. This suggests that depending on the

choice of the branch of the functions ∆1(ξ2) and ∆2(ξ2), the relation (8.16) should also de-

scribe the three-point correlation function of the protected operator with two unprotected

operators each having twist−2 or twist−4.

9 Generalization to any dimension

Many of the results obtained in the previous sections for the bi-scalar theory (1.1) in d = 4

dimensions can be easily generalized to its d−dimensional version proposed in [47]. In

particular, the zero-magnon four-point correlation function GD was computed there for

any d, generalizing the d = 4 results of [35].

The Lagrangian of d−dimensional bi-scalar model is non-local

Ld = Nc tr[X̄ (−∂µ∂µ)
d
4
−ωX + Z̄ (−∂µ∂µ)

d
4

+ω Z + (4π)
d
2 ξ2X̄Z̄XZ] , (9.1)

where the differential operator in an arbitrary power is defined in a standard way, as an

integral operator. For the particular “isotropic” case ω = 0, the action (9.1) should be

supplemented with the same double-trace counterterms (1.2). As before, the theory has

two fixed points with the corresponding values of the double-trace couplings depending on

ξ2 and computable at least at weak coupling. Since the d-dimensional theory (9.1) has the

same chiral interaction vertex as (1.1), we can consider the correlation functions the same

types as those shown on figure 1. An important difference with the d = 4 case is that free

scalar propagators are now given by c/(x2
12)d/4 with c = 1/(2π)d/2.

To compute zero- and one-magnon four-point correlation functions, as it is done in

4 dimensions in the previous sections, we have to find, at any d, the eigenvalues of the

graph-building operators E0 and E1. They are computed in appendix C leading to (see

also [47, 74])

E0 = c4πd
Γ
(
d
4 + S

2 −
∆
2

)
Γ
(
−d

4 + S
2 + ∆

2

)
Γ
(

3d
4 + S

2 −
∆
2

)
Γ
(
d
4 + S

2 + ∆
2

) , (9.2)

E1 = c2πd/2(−1)S
Γ
(

3d
8 + S

2 −
∆
2

)
Γ
(
−d

8 + S
2 + ∆

2

)
Γ
(

5d
8 + S

2 −
∆
2

)
Γ
(
d
8 + S

2 + ∆
2

) . (9.3)

In addition, we also need the expression for the kinematical factor c2 defined in (A.5). It

is given in by (A.5), where we should take ∆1 = ∆2 = d/4 for the zero-magnon case and
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∆1 = 2d/4, ∆2 = d/4 for the one-magnon case. Assuming that all the intermediate steps

are still valid for general d, we find the the following expression for the OPE coefficients

C∆,S =
4π

cd
res∆

(
1

c2(ν, S)

En∆,S
1− χE∆,S

)
. (9.4)

where χ0 = (4π)dξ4, n = 1 and χ1 = (4π)d/2ξ2, n = 2 for zero-magnon and one-magnon

cases, respectively. The dimension ∆ of operator appearing at the corresponding pole is

related to the representation label ν in the following way: ∆ = d
2 + 2iν. For d = 2, the

zero-magnon spectrum looks particularly simple [47]

∆0 = 1 +
√
S2 − 4ξ2 . (9.5)

Interestingly [47], the particular case of d = 2 with ω → 1/2 in (9.1) is relevant for the

BFKL approximation in high-energy QCD.

For general d the structure of the poles in ν could change. In particular the poles

coming from E∆,S = 1/χ will have a different number of solutions for different d (actually,

this number is infinite for odd dimensions, see [47] for the analysis of possible exchange

states in zero-magnon case), and those have to be taken into account when computing

the correlation function. The computations are particularly simple in dimensions d = 4k,

where k is integer. Then the spectral equations become polynomial in ∆. For example, for

one-magnon case, the spectral equation for d = 8 looks as

(−1)S

16
(−∆ + S + 6)(−∆ + S + 8)(∆ + S − 2)(∆ + S) = ξ2 , (9.6)

etc.

We leave the computations of a more complicated two-magnon correlation function, as

well as the detailed study of the general d case, for future investigation.

10 Discussion and conclusions

In this work, we computed exactly and explicitly certain 4-point correlation functions

in bi-scalar CFT (1.1) which represent a specific double scaling limit (combining weak

coupling and strong imaginary twist) of γ-deformed N = 4 SYM theory in ’t Hooft ap-

proximation [42]. Although this theory obeys the integrability properties, related to the

integrability of fishnet Feynman graphs [48] dominating in its planar perturbation the-

ory, we concentrate here on the physical quantities which can be computed without any

appeal to the integrability and utilizing only the conformal symmetry properties. The

three types of such 4-point functions are named as zero-magnon, one-magnon and two-

magnon cases, referring to the exchange operators which are of a type tr(Z2), tr(Z2X) and

tr(Z2X2) + perm., as well as their non-zero spin cousins. The last operator is the analogue

of the famous Konishi operator in N = 4 SYM theory. It is quite remarkable that we man-

aged to compute explicitly the all-loop anomalous dimensions of all these operators, as well

as their structure constants with the external protected operators. These formulas give a

host of very non-trivial non-perturbative OPE data, with a rich analytic structure. To our
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knowledge, this are the first examples of such non-perturbatively and explicitly computed

4-point correlation functions in an interacting CFT in d > 2 dimensions.

The results for 4-point functions are presented in a standard form, as explicit OPE

expansions over conformal blocks. We studied these functions by the weak coupling expan-

sion and found that the results for zero- and one-magnon cases can be presented, in each

order of weak-coupling expansion, in terms of special class of functions called Harmonic

Poly Logariphms (HPL), thus facilitating the study of these functions in the cross channels.

As for the more complicated two-magnon case, we observed that the HPL representation

is only possible in the light-cone limit z → 0, or equivalently u→ 0 with v fixed.

Many interesting questions related to the study of these quantities are left out of

the scope of this paper. In particular, we left for the future the study of the operator

content and the OPE in cross-channels of all three 4-point functions, where the analytic

structure looks more complicated than in the original channel. It would be also interesting

to generalize these 4-point functions to the case of external operators with spins. The

correlation functions we computed could serve as a building block for more complicated

n−point functions by gluining them together. Similar approach was recently developed in

SYK context in [75].22 To demonstrate the procedure we show in section 8 how to obtain

more complicated structure constants starting from the elementary blocks.

Notice that the main common feature of the 4-point functions, which allowed for

the explicit computations using the combination of Bethe-Salpeter techniques and the

conformal symmetry, was the presence of not more than two scalar fields of each species,

Z or X, in the exchange operators. If we want to compute the multi-point correlation

functions with more than two scalars of any of the species in exchange operators, we have to

appeal to the integrability methods, based on the non-compact conformal Heisenberg type

spin chains. All computations become then much more sophisticated, though in many cases

possible. Already the computations of anomalous dimensions of tr(Z3) operator and its

cousins with the same R-charge, necessitated the extraction of the results from the quantum

spectral curve of the full γ-deformed N = 4 SYM theory, in the corresponding double

scaling limit [44]. The alternative method for computations of anomalous dimensions,

is based on the integrable quantum conformal spin chain [77]. For the 3-point and 4-

point correlation functions in bi-scalar theory, this last method seems to be particularly

promising. Recently, in a very similar setup it was shown that the separation of variables

(SOV) approach could be used to get compact expessions for the correlation function

in [22]. The expressions for the structure constants obtained there are very similar to our

results, which indicates that a similar SOV-based approach could work here. There are

also some other options, such as the form factor approach [21], successfully applied in [52]

for the computation of certain 4-point correlation function based on fishnet graphs with

disc topology.

Interestingly, all our current results for 4-point correlation functions in d = 4 dimen-

sions appear to be directly generalizable to the bi-scalar CFT at any d which was recently

formulated in [47]. The d = 2 case is closely related to the BFKL model of reggeized glu-

22See also [76] for a recent review.
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ons describable by the SL(2, C) Heisenberg spin chain [50, 51, 78, 79]. It is worth noticing

that the computations of 4- and 6-point correlation functions of BFKL pomeron light-ray

operators presented in [80–82] look closely related to our current computations. It would

be interesting to compare those results to our current results.

The most interesting, physical questions about the bi-scalar CFT still remain to be

answered. It still remains to be understood whether this theory has a dual string descrip-

tion. The availability of explicit all-loop results, such as presented in this paper, should

allow for some guesses in this direction. Quite intriguingly, the strong coupling limit of the

4 point correlators studied in this paper exhibits typical classical exponential scaling with

the coupling, suggesting existence of the dual strong coupling classical description.

Note added: while this paper was in preparation a paper [83] appeared about SYK

model, which may however have some overlap with our results.
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A Definitions and relations

In the main text we use the following definition of the four-dimensional conformal block [55]

g∆,S = (−1)S
zz̄

z − z̄
[k(∆+S, z)k(∆−S−2, z̄)− k(∆+S, z̄)k(∆−S−2, z)] ,

(A.1)

where k(β,x) = xβ/2 2F1

(
β − (∆1 −∆2)

2
,
β + (∆3 −∆4)

2
, β, x

)
. (A.2)

We also use the following formulas for normalization of the conformal triangles in any

dimension d

h2cm

ˆ
ddx1d

dx2

(x2
12)d−∆1−∆2

Φ−ν,S,x0(x1, x2)Φν′,S′,x′0
(x2, x1) (A.3)

= (−1)Sc1(ν, S)δ(ν − ν ′) δS,S′δ(d)(x00′)(nn
′)S

+ (−1)Sc2(ν, S)δ(ν + ν ′)δS,S′
Y S(x00′)

(x2
00′)

d/2−S−2iν
,
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where Y (x00′) = (n∂x0)(n′∂x0′ ) lnx2
00′ . The coefficients c1 and c2 enter into the general

relations we discuss in the text. They are given by [53]

c1 =
2S+1 S! Γ(+2iν)Γ(−2iν)

(
4ν2 + (d2 + S − 1)2

)−1

π−(3d/2+1)Γ
(
d
2 − 1 + 2iν

)
Γ
(
d
2 − 1− 2iν

)
Γ(d2 + S)

, (A.4)

c2 =
2πd+1(−1)SS!Γ

(
∆− d

2

)
Γ(∆ + S − 1)Γ

(
1
2 (d−∆ + ∆1 −∆2 + S)

)
Γ
(

1
2 (d−∆−∆1 + ∆2 + S)

)
Γ(∆− 1)Γ

(
d
2 + S

)
Γ
(

1
2 (∆ + ∆1 −∆2 + S)

)
Γ
(

1
2 (∆−∆1 + ∆2 + S)

)
(d−∆ + S)

.

(A.5)

The functions Φν,S,x0 form an orthogonal basis for ν > 0. This implies the following

resolution of identity

δ(d)(x1 − x3)δ(d)(x2 − x4) =

∞∑
S=0

(−1)S

(x2
12)d−∆1−∆2

×
ˆ ∞

0

dν

c1(ν, S)

ˆ
ddx0Φµ1...µS

−ν,S,x0(x1, x2)Φµ1...µS
ν,S,x0

(x4, x3) (A.6)

when projected to the functional space spanned by Φν,S,x0 .

B Cancellation of the spurious poles

In this appendix we analyse additional possible contributions in (3.17) due to the extra

poles in g∆,S(u, v) and the measure factor 1/c2. We will see that these contributions cancel

each other if an additional condition is imposed on the eigenvalue E∆,S .

The conformal block g∆,S(u, v) from (A.1) has simple poles at ∆S−n = S+3−n (with

n = 1, 2, . . . , S), or equivalently 2iνn = S + 1 − n. Its residue at the pole ν = νn is given

by rn gS+3,S−n(u, v) where (see for example appendix B in [84]):

rn = (−1)n
inΓ2

(
1
2 (n−∆1 + ∆2 + 1)

)
2Γ(n+ 1)2Γ2

(
1
2 (−n−∆1 + ∆2 + 1)

) . (B.1)

This results in the following extra contribution to (3.17):

RgS,m =

(
rm

c2(∆S−m, S)

En∆S−m,S

1− χE∆S−m,S

)
gS+3,S−m(u, v) , 1 ≤ n ≤ S <∞ . (B.2)

The sum of the above contributions in general is not zero, however, there are also poles at

∆ = S + 3 + k, k = 0, 1, 2, . . . coming from 1/c2(∆, S) factor in (3.12). They can be also

expressed in terms of rn as follows

1

c2(S + 3 + k + 2iε, S)
' −1

ε

rk
c2(S + 3, S + k)

(B.3)

resulting in another contribution

Rc2S,k = −
(

rk
c2(∆S , S + k)

En∆S+k,S

1− χE∆S+k,S

)
gS+3+k,S(u, v) , 0 ≤ S, k <∞ . (B.4)
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Let us show that these poles cancel under certain condition on E∆,S . The sum of the

contributions of Rg can be written as

∞∑
S=0

S∑
m=0

RgS,m =
∞∑
m=0

∞∑
S=m

RgS,m =
∞∑
k=0

∞∑
S=0

RgS+k,k (B.5)

where we use that r0 = 0 and in the last sum we shift the summation index by m and

renamed m to k. Since the other contribution has the form

∞∑
k=0

∞∑
S=0

Rc2S,k (B.6)

we have to consider

Rc2S,k +RgS+k,k = −
(

rk
c2(∆S , S + k)

[
En∆S+k,S

1− χE∆S+k,S
−

En∆S ,S+k

1− χE∆S ,S+k

])
gS+3+k,S(u, v) .

(B.7)

We see that there will be no additional terms in (3.16) if we require

rk(E3+S+k,S − E3+S,S+k) = 0 , k = 0, 1, 2, . . . . (B.8)

We verify in the main text that this requirement is indeed satisfied for each case considered.

C Eigenvalues of the graphs-building operators

In this appendix we give technical details of the derivation of the eigenvalues of the graphs-

building operators H0, H1 and H2.

C.1 Star-triangle identity

The calculation can be simplified by applying the so-called star-triangle identity

ˆ
ddx0 x

a
01x

b
02x

c
03 = πd/2

Γ
(
a
2 + d

2

)
Γ
(
b
2 + d

2

)
Γ
(
c
2 + d

2

)
Γ
(
−a

2

)
Γ
(
− b

2

)
Γ
(
− c

2

) x−a−d23 x−b−d13 x−c−d12 , (C.1)

where the exponents a, b and c satisfy a+ b+ c = −2d. A particular case of it is

ˆ
ddx0 x

a
01x

b
02 = πd/2

Γ
(
a
2 + d

2

)
Γ
(
b
2 + d

2

)
Γ
(
−a

2 −
b
2 −

d
2

)
Γ
(
−a

2

)
Γ
(
− b

2

)
Γ
(
a
2 + b

2 + d
) xa+b+d

12 , (C.2)

which can be obtained from (C.1) by sendind point x3 to infinity.

C.2 Eigenvalue E0

Here we compute the eigenvalue of the graph-building operator H0 corresponding to the

correlation function G0 in the d-dimensional version of the bi-scalar theory.

In virtue of conformal symmetry, the eigenstate of H0 is given by (3.5) with ∆1 =

∆2 = d/4 being scaling dimension of scalars in d−dimensions

Φν,S,x0(x1, x2) = x−∆+S
01 x−∆+S

02 x
∆−S−d/2
12

(
2(nx02)

x2
02

− 2(nx01)

x2
01

)S
. (C.3)

– 53 –



J
H
E
P
0
8
(
2
0
1
9
)
1
2
3

The calculation of the eigenvalue of H0 reduces to the following integral

I =

ˆ
ddx1d

dx2Φν,S,x0(x1, x2)
c4

xd12x
d/2
13 x

d/2
24

= E0Φν,S,x0(x3, x4) , (C.4)

where we used (4.2), generalised to any d.

Firstly, we observe that the integrand simplifies by the change of variables xa (with

a = 1, 2, 3, 4)

xµ0a =
xµ0ā
x2

0ā

, x0a =
1

x0ā
, xab =

xāb̄
x0āx0b̄

, ddxa =
ddxā

x2d
0ā

(C.5)

corresponding to the inversion around x0. This results in the following integral

I = c42S
ˆ
ddx1̄d

dx2̄

(
x03̄x04̄

x1̄3̄x2̄4̄

)d/2
x
− 3d

2
+∆−S

1̄2̄
(n · x2̄1̄)S

= c4

ˆ
ddx1̄d

dx2̄

(
x03̄x04̄

x1̄3̄x2̄4̄

)d/2 Γ
(

3d
4 −

S
2 −

∆
2

)
Γ
(

3d
4 + S

2 −
∆
2

)(n · ∂1̄)Sx
− 3d

2
+∆+S

1̄2̄
, (C.6)

where in the second relation we replaced the factor of (n · x2̄1̄) by derivatives acting on x1̄.

Next integrating by parts we can swap ∂1̄ into the derivative in x3̄ and pull it out of

the integral

I = c4(x03̄x04̄)d/2(n · ∂3̄)S
ˆ
ddx1̄d

dx2̄

(
1

x1̄3̄x2̄4̄

)d/2 Γ
(

3d
4 −

S
2 −

∆
2

)
Γ
(

3d
4 + S

2 −
∆
2

)x− 3d
2

+∆+S

1̄,2̄
. (C.7)

After that the integration can be performed by applying the star-triangle identity (C.2)

twice, leading to

I = c4πd
Γ
(
d
4 −

S
2 −

∆
2

)
Γ
(
−d

4 + S
2 + ∆

2

)
Γ
(

3d
4 + S

2 −
∆
2

)
Γ
(
d
4 + S

2 + ∆
2

) (x03̄x04̄)d/2(n · ∂3̄)Sx
− d

2
+∆+S

3̄,4̄
. (C.8)

Evaluating the derivatives and comparing with (C.4) we arrive at

E0 = c4πd
Γ
(
d
4 + S

2 −
∆
2

)
Γ
(
−d

4 + S
2 + ∆

2

)
Γ
(

3d
4 + S

2 −
∆
2

)
Γ
(
d
4 + S

2 + ∆
2

) . (C.9)

In the particular case d = 4 we obtain (4.5). The last relation agrees with the results of [47]

and generalizes the d = 4 result of [35]

C.3 Eigenvalue E1

The calculation of the eigenvalue of the graph-building operator for the correlation function

G1 is similar to the previous case. As before, we perform the calculation for general d. The

graph-building operator H1 looks as

H1(x1, x2|x3, x4) = c2δ(d)(x4 − x1) (x42x23)−d/2 . (C.10)
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Its eigenstate is given by (3.5) with ∆1 = d/2 and ∆2 = d/4

Φν,S,x0(x1, x2) = x
−∆+S−d/4
01 x

−∆+S+d/4
02 x

∆−S−3d/4
12

(
2(nx02)

x2
02

− 2(nx01)

x2
01

)S
. (C.11)

Like in the previous case, to find the eigenvalue we need to evaluate the integral

I = c2

ˆ
ddx2 (x42x23)−d/2Φν,S,x0(x2, x4) = E1Φν,S,x0(x4, x3) . (C.12)

Again the integrand simplifies after the inversion around x0

I = c22Sx
d/2

03̄
xd04̄

ˆ
ddx2̄ x

−d/2
2̄3̄

x
− 5d

4
+∆−S

2̄4̄
(n · x4̄2̄)S . (C.13)

Again we can absorb the last term under the integral into the derivatives in x4̄ and evaluate

the integral using (C.2)

I = c2πd/2(−1)S
Γ
(

3d
8 −

S
2 −

∆
2

)
Γ
(
−d

8 + S
2 + ∆

2

)
Γ
(

5d
8 + S

2 −
∆
2

)
Γ
(
d
8 + S

2 + ∆
2

) xd/2
03̄
xd04̄(n · ∂4̄)Sx

− 3d
4

+∆+S

3̄4̄
. (C.14)

Finally, computing the derivatives and comparing the result with (C.12) we arrive at

E∆,S = c2πd/2(−1)S
Γ
(

3d
8 + S

2 −
∆
2

)
Γ
(
−d

8 + S
2 + ∆

2

)
Γ
(

5d
8 + S

2 −
∆
2

)
Γ
(
d
8 + S

2 + ∆
2

) , (C.15)

which reduces at d = 4 to (4.29).

C.4 Eigenvalue E2

Introducing for convenience I = (4π)4E2 and defining dual coordinates, p = x12, k1 = x31

and k2 = x41, we can rewrite (4.46) as a two-loop Feynman integral

I(ν, S) =
1

π4

ˆ
d4k1d

4k2 (nk12)S

k2
1(p+ k1)2k2

2(p+ k2)2(k2
12)1−iν+S/2

, (C.16)

where p2 = (pn) = 1 and k12 = k1− k2. Due to symmetry of the integrand under k1 ↔ k2,

I(ν, S) vanishes for odd S.

For S = 0 the integral (4.46) is known as a massless two-loop self-energy Feynman

integral. It can be expressed in a closed form in terms of 3F2−hypergeometric function

(see e.g. review [85])

I(ν, 0) = 2Γ(−iν)Γ(iν)

(
π cot(iπν)− 3F2(1, 2, 1 + iν; 2 + iν, 2 + iν; 1)

(1 + iν)Γ(1− iν)Γ(2 + iν)

)
. (C.17)

This representation is not convenient however to elucidate analytic properties of I(ν, 0),

that why we derive below another equivalent representation.

We start with rewriting (C.16) with all Lorentz indices uncontracted

I(ν, S)p(µ1 . . . pµS) =
1

π4

ˆ
d4k1d

4k2 k
(µ1
12 . . . k

µS)
12

k2
1(p+ k1)2k2

2(p+ k2)2(k2
12)1−iν+S/2

, (C.18)
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where p(µ1 . . . pµS) denotes a symmetric traceless tensor and S is even. Then, we project

all Lorentz indices on the vector p and take into account the identity

k
(µ1
12 . . . k

µS)
12 pµ1 . . . pµS = (pk12)S + c1(pk12)S−2p2k2

12 + . . .+ cS/2(p2k2
12)S/2 . (C.19)

The coefficients ck can be found from the requirement for the expression on the right-hand

side to vanish upon hitting it with ∂2/∂pµ∂pµ. Replacing k12 with p in (C.19) we get

p(µ1 . . . pµS)pµ1 . . . pµS = (p2)S(1 + c1 + . . .+ cS/2) . (C.20)

In this way, we obtain another representation for I(ν, S) that differs from (C.16) in that

(nk12)S is replaced by the expression on the right-hand side of (C.19) divided by the

normalization factor that enters (C.20). The advantage of this representation is that we

can use the identity

2(k12p) = (k1 + p)2 − k2
1 − (k2 + p)2 + k2

2 (C.21)

to express I(ν, S) in terms of scalar Feynman integrals. Some of the integrals coincide

with those contributing to I(ν, 0) whereas the remaining integrals have one propagator less

and can be easily evaluated. As a consequence, I(ν, S) is given by a linear combination of

I(ν, 0) and some rational functions of ν.

Going through the calculation of I(ν, S) for S = 2 and S = 4 we find

I(ν, 2) = −1

3
I(ν, 0) +

8

3 (ν2 + 1)2 ,

I(ν, 4) = −3

5
I(ν, 2) +

16

5 (ν2 + 4)2 . (C.22)

In general, for S = 2`, we have

I(ν, 2`) = −2`− 1

2`+ 1
I(ν, 2`− 2) +

8`

(2`+ 1)(ν2 + `2)2
. (C.23)

The solution to this recurrence relation looks as

I(ν, 2`) =
(−1)`

2`+ 1

[
I(ν, 0) +

∑̀
n=1

8(−1)nn

(n2 + ν2)2

]
. (C.24)

Assuming that I(ν, 2`) vanishes at large ` faster then 1/` (this property can be verified a

posteriori) we find from (C.24) that I(ν, 0) is given by

I(ν, 0) =

∞∑
n=1

8(−1)n−1n

(n2 + ν2)2
=
i
(
ψ(1)

(
1+iν

2

)
− ψ(1)

(
iν
2

))
2ν

+ (ν → −ν) . (C.25)

We verified that the two representations (C.17) and (C.25) are equivalent.

Substituting (C.25) into (C.24) we arrive at

I(ν, 2`) =
1

2`+ 1

∞∑
n=`+1

(−1)n−`−1 8n

(n2 + ν2)2

=
i
[
ψ(1)

(
1
2(`+ iν + 1)

)
− ψ(1)

(
1
2(`+ iν + 2)

)]
2(2`+ 1)ν

+ (ν → −ν) . (C.26)
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D Analytic properties of the correlation functions

We can apply (3.11) and(3.12) to understand analytic properties of G(x1, x2|x3, x4) as a

function of the coupling constant ξ2. The integrand of (3.12) is a meromorphic function of

χ which is just a power of ξ2 dependent on the type of the correlation function.

The integral in (3.12) is well-defined as soon as the physical poles (3.14) are away from

the real axis. As soon as the physical pole (3.14) approaches the real axis, the integral (3.12)

generates a branch cut in χ. The discontinuity across the cut can be found from (3.12)

discχG(u, v) = c−4
∑
S≥0

(−1)S
ˆ ∞
−∞

dν

c2(ν, S)
En∆,Sg∆,S(u, v)δ(1− χE∆,S) . (D.1)

In virtue of (3.13), the integral localizes at two points ∆ = 2 + 2iν? and 4−∆ = 2− 2iν?
satisfying (3.14). Taking into account (3.17) we obtain

discχG(x1, x2|x3, x4) =
∑
S≥0

C2+2iν?,Sg2+2iν?,S(u, v)− C2−2iν?,Sg2−2iν?,S(u, v)

2πi
. (D.2)

According to (4.5) and (4.47), E0 and E2 are positive definite functions of ν and, therefore,

the integral on the right-hand side of (D.1) vanishes for χ < 0 for zero- and two-magnon

functions, G0 and G2, respectively. Moreover, the function E2 satisfies the relation 0 <

E2 ≤ 3ζ(3)/(128π4) on the real ν−axis and, as a consequence, discχG2(u, v) 6= 0 for

χ > 128π4/(3ζ(3)).

E Renormalization group flow of the coupling constants

The γ-deformed N = 4 SYM remains a unitary theory as long as the γ-deformation angles

are real and all the couplings, ’t’Hooft coupling and the double-trace couplings, are real.

On the other hand, this is not a CFT anymore since the real double-scaling couplings run

with the scale even in the leading ’t Hooft limit. Looking at the leading order beta-function

for the interaction term α2
jj tr(φjφj) tr(φ†jφ

†
j) the one-loop beta-function is given by [39]

βα2
jj

=
g4

π2
sin2 γ+

j sin2 γ−j +
α4
jj

4π2
, (E.1)

where γ±1 = ∓1
2(γ2 ± γ3), γ±2 = ∓1

2(γ3 ± γ1), and γ±3 = ∓1
2(γ1 ± γ2) are the parameters of

γ-twist, we expect the critical double-trace couplings at βα2
jj

(αjj) = 0, where the theory is

conformal, to have two complex conjugate fixed points

α2
jj± = ±2ig2 sin γ+

j sin γ−j +O(g4). (E.2)

Using Callan-Symanzik RG equation we arrive, at the critical point, to the following com-

plex anomalous dimension

γJ=2(g) = ∓ ig
2

2π2
sin γ+

j sin γ−j +O(g4). (E.3)
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At a finite g, then two exact (in a given scheme) critical couplings are comnplex conjugate

functions of g :

α2
jj± = ±2iA(g) +B(g). (E.4)

where A(g) and B(g) are real functions of the couplping and γj .

It is interesting to understand how the vicinity of these critical points to the real axis

may influence the RG flow of αjj coupling (we remind that the ’t Hooft coupling g stays

fixed with RG, at least in the large Nc limit). To get a better qualitative picture of what

happens in γ-deformed N = 4 SYM we can study the RG of the similar coupling α1(ξ)

in the bi-scalar model where we have more of the exact data, and only one coupling α2
1 is

running. The beta function for this coupling was computed in [35] up to a few orders of

PT in ε = 4 − D regularisation, in MS scheme, and the result is quadratic in α2
1, as was

predicted in [86] for a generic large N CFT of this type,23 with non-running single-trace

four-scalar interaction and a running double trace coupling:

β1 = a(ξ) + α2
1 b(ξ) + α4

1 c(ξ) = c(α2
1 − α2

1,+)(α2
1 − α2

1,−) , (E.5)

where α2
1,± = − 1

2c(b±
√
b2 − 4ac) and the functions a, b, and c are given by

a = −ξ4 + ξ8 − 4

3
ξ12 +O(ξ16) ,

b = −4ξ4 + 4ξ8 − 88

15
ξ12 +O(ξ16) ,

c = −4− 4ξ4 +
4

3
ξ8 +O(ξ12) . (E.6)

Moreover, there exists the following exact relation between the functions (E.6) and the

scaling dimensions (4.32) at the fixed point [35, 86]:24

b2 − 4ac = 4γ2. (E.7)

where γ = ∆ − 2 is the anomalous dimension of tr(X2) at the corresponding fixed point,

so that

α2
1,± = − 1

2c
(b±

√
b2 − 4ac) = ᾱ2

1 ±
γ(ξ)

c(ξ)
, (E.8)

where we introduced two real functions of ξ

ᾱ2
1 = − b

2c
, γ = 2i

√√
1 + ξ4 − 1 . (E.9)

We can write the RG equation in the following form

∂α2
1

∂ log µ
= c(ξ)

[(
α2

1 − ᾱ2
1 (ξ)

)2 − γ2(ξ)

c2(ξ)

]
. (E.10)

23This mechanism was first established in [87] an the example of non-supersymmetric orbifold theories.
24This relation between the scaling dimension of the operator trX2 at the critical point and the dis-

criminant of quadratic equation on zeros of the beta-function follows directly from the eqs. (2.47-48) of the

paper [86]. It is valid for a generic large N CFT of this type.
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Figure 19. Flow of α2(µ) from µ = 0 (red point) to µ = ∞ (purpule point) for ξ = 1/3 − i/14

on a complex α2−plane. Different curves correspond to different initial conditions, α2(µ = 1) =

−0.1 + 0.01 k with k = 0, 1, . . . , 20.

Let us introduce a new coupling α2 = c α2
1, as well as ᾱ2 = c ᾱ2

1 = − b
2 , which can be

considered as changing the RG scheme. Then the RG equation can be written as

∂α2

∂ log µ
=
(
α2 − ᾱ2 (ξ)

)2 − γ2(ξ) . (E.11)

Solving this equation in this specially chosen renormalization scheme, we find an RG flow:

α2 − ᾱ2 = −γ(ξ) tanh [(γ(ξ) log(µ/µ0)] . (E.12)

which is defined only through the universal quantity - the anomalous dimension γ(ξ). This

type of RG flow for the double-trace coupling also first appeared in the papers [86, 87].

The physical quantities of the theory have a cut along the half-axis ξ > 0 and poles.

For generic complex ξ’s there is no such problem. Assuming the coupling to have a little

negative imaginary ξ → ξ − iε the RG flow (E.12) will avoid the poles in the r.h.s. and

interpolate between two fixed point α1,+ or α1,− (one of them is IR fixed point, another

is the UV fixed point, depending on the sign of ε). We illustrate the possible RG flows in

figure 19.
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