Pitman transforms and Brownian motion in the interval viewed as an affine alcove - Archive ouverte HAL
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2022

Pitman transforms and Brownian motion in the interval viewed as an affine alcove

Résumé

Pitman's theorem states that if {Bt, t ≥ 0} is a one-dimensional Brownian motion, then {Bt − 2 inf s≤t Bs, t ≥ 0} is a three dimensional Bessel process, i.e. a Brownian motion conditioned in Doob sense to remain forever positive. In this paper one gives a similar representation for the Brownian motion in an interval. Due to the double barrier, it is much more involved and only asymptotic. This uses the fact that the interval is an alcove of the Affine Lie algebra A 1 1 .
Pitman's theorem states that if {Bt, t ≥ 0} is a one dimensional Brownian motion, then {Bt − 2 inf 0≤s≤t Bs, t ≥ 0} is a three dimensional Bessel process, i.e. a Brownian motion conditioned to remain forever positive. This paper gives a similar representation for the Brownian motion conditioned to remain in a given interval. Due to the double barrier condition , this representation is more involved and only asymptotic. One uses the fact that the interval is an alcove of the Kac-Moody affine Lie algebra A (1) 1 , the Littelmann path approach of representation theory and a dihedral approximation. Résumé. Le théorème de Pitman affirme que si {Bt, t ≥ 0} est un mou-vement brownien unidimensionnel, alors {Bt − 2 inf 0≤s≤t Bs, t ≥ 0} est un processus de Bessel de dimension trois, c'est-à-dire un brownien conditionné a rester positif. Nous donnons dans cet article une représentation analogue pour le brownien conditionnéà rester dans un intervalle donné. En raison de la présence de deux extrémités, cette représentation est plus compliquée que celle du théorème original. Nous utilisons le fait que l'intervalle est une alcôve pour l'algèbre de Kac-Moody affine A (1)
Fichier principal
Vignette du fichier
Affine_Pitman_Mai_arxiv.pdf (453.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01861862 , version 1 (26-08-2018)
hal-01861862 , version 2 (17-10-2018)
hal-01861862 , version 3 (04-09-2019)
hal-01861862 , version 4 (08-06-2020)

Identifiants

Citer

Philippe Bougerol, Manon Defosseux. Pitman transforms and Brownian motion in the interval viewed as an affine alcove. Annales Scientifiques de l'École Normale Supérieure, 2022, 55 (2), pp.429--472. ⟨10.24033/asens.2499⟩. ⟨hal-01861862v4⟩
233 Consultations
543 Téléchargements

Altmetric

Partager

More