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PITMAN TRANSFORMS AND BROWNIAN MOTION IN THE

INTERVAL VIEWED AS AN AFFINE ALCOVE

PHILIPPE BOUGEROL AND MANON DEFOSSEUX

Abstract. Pitman’s theorem states that if {Bt, t ≥ 0} is a one dimensional
Brownian motion, then {Bt−2 infs≤tBs, t ≥ 0} is a three dimensional Bessel
process, i.e. a Brownian motion conditioned to remain forever positive. This
paper gives a similar representation for the Brownian motion conditioned
to remain in an interval. Due to the double barrier condition, it is more
involved and only asymptotic. One uses the fact that the interval is an alcove

of the Kac-Moody affine Lie algebra A
(1)
1 and the Littelmann path approach

of representation theory.
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1. Introduction

1.1. The probability transition of the Brownian motion conditioned to stay pos-
itive is the difference of two heat kernels. This is a consequence of the reflection
principle at 0. Pitman’s theorem ([32]) of 1975 gives the path representation of
this process as

PB(t) = Bt − 2 inf
0≤s≤t

Bs.

The transform PB is written with the reflection at 0. We consider Zt, t ≥ 0, the
Brownian motion conditioned to stay in the interval [0, 1] forever (see Definition
5.1). It can be seen as the Doob transform of the Brownian motion with Dirichlet
condition at 0 and 1. Its probability transition is an alternating infinite sum
which can be obtained by applying successive principles of reflection at 0 and 1
(method of images). It is therefore natural to ask if Pitman’s theorem has an
analogue for Z, written with an infinite number of transforms at 0 and 1. The
main result of this article is to show that, to our surprise, this is not exactly true.
A small correction (a Lévy transform) has to be added. The same correction
occurs in some asymptotics of the highest weight representations of the affine

Lie algebra A
(1)
1 .

1.2. Let us state our main probabilistic result. We consider, for a continuous
real path ϕ : R+ → R, such that ϕ(0) = 0,

L1ϕ(t) = ϕ(t)− inf
0≤s≤t

ϕ(s),

P1ϕ(t) = ϕ(t)− 2 inf
0≤s≤t

ϕ(s),

that we call the classical Lévy and Pitman transforms of ϕ. We introduce

L0ϕ(t) = ϕ(t) + inf
0≤s≤t

(s− ϕ(s)),

P0ϕ(t) = ϕ(t) + 2 inf
0≤s≤t

(s− ϕ(s)).

The Brownian motion with drift µ is Bµ
t = Bt+tµ, t ≥ 0, where B is the standard

Brownian motion with B0 = 0. For n ∈ N, we let P2n = P0,L2n = L0 and
P2n+1 = P1,L2n+1 = L1. The aim of this paper is the following representation
theorem (see Theorem 3.1).

Theorem. Let µ ∈ [0, 1]. For any t > 0, almost surely,

lim
n→∞

tLn+1Pn · · · P1P0B
µ(1/t) = lim

n→∞
tLn+1Pn · · · P2P1B

µ(1/t) = Zt,

where Z is the Brownian motion conditioned to stay in [0, 1] forever, and Z0 = µ.

1.3. Briefly, the strategy of the proof is the following. We will use the fact that,
when Z0 = µ, Z is the space component of the time inverted process of A(µ),
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where A(µ) is the space-time Brownian motion B
(µ)
t = (t, Bµ

t ), t ≥ 0, conditioned
to stay in the affine cone

Caff = {(t, x) ∈ R2; 0 < x < t},

(see Appendix 5.3). We define a sequence of non-negative functions ξn(t), t ≥
0, n ∈ N, by

ξn(t) = − inf
0≤s≤t

{s12N(n) + (−1)n−1Pn−1 · · · P0B
µ(s)}

Then

Pn · · · P0B
µ(t) = Bµ

t + 2
n∑
k=0

(−1)k+1ξk(t).

When 0 < µ < 1, the random variables ξk(∞) = limt→+∞ ξk(t), k ∈ N, are
finite and we show that their law have a simple explicit representation with
independent exponential random variables. The law of ξk(t), k ∈ N, can be
deduced by a truncation argument. This allows us to show that for all t > 0 the
limit of

Pn · · · P0B
µ(t) + (−1)nξn+1(t)(1.1)

exists a.s. and has the law of the space component of A(µ). We also prove that
ξn(t) tends to 2 when n tends to ∞, which shows the need of the correction.

Actually, to prove these results, we approximate the space-time Brownian
motion B(µ) by planar Brownian motions with proper drifts and A(µ) by these
planar Brownian motions conditioned to remain in a wedge in R2 of dihedral
angle π/m. We use the results of Biane et al. [3] in this situation. Due to the
need of the correction term, the approximation is not immediate.

1.4. Before describing the plan of the paper, let us make an observation. At
the heart of our approach is the fact that the interval [0, 1] is an alcove for

the Kac-Moody affine Lie algebra A
(1)
1 and that A(µ) can be seen as a process

conditioned to remain in a Weyl chamber of A
(1)
1 . This is linked to highest weight

representations of A
(1)
1 through Littelmann path approach. We have chosen to

present the proof of our main probabilistic result without explicit reference to
Kac-Moody algebra, so that it can be read by a probabilist. But let us now
explain the ideas from representation theory behind the scenes because this has
been a source of inspiration. This may be helpful for some readers.

We first recall the link between Littelmann path theory for the Lie algebra
sl2(C) (see [28]) and the classical Pitman’s theorem as explained in Biane et al.
[3]. Consider a real line V = Rα where α is a positive root. A path π in V is
a continuous function π : R+ → V such that π(0) = 0. It can be written, for
s ≥ 0, as π(s) = f(s)α with f(s) ∈ R. A dominant path is a path with values
in the Weyl chamber, which is here R+α, so that π is dominant when f(s) ≥ 0
for all s ≥ 0. We fix a t > 0. An integral path on [0, t] is a path such that 2f(t)
and 2 mins≤t f(s) are in Z. For an irreducible highest weight sl2(C)-module,
one chooses a dominant integral path π on [0, t], such that π(t) is its highest
weight. A path realization of the Kashiwara crystal associated to this module
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is the Littelmann module Bπ, which is the set of integral paths η on [0, t] such
that Pαη(s) = π(s), 0 ≤ s ≤ t, where Pα is the path transform defined by

Pαη(s) = (ϕ(s)− 2 inf
0≤u≤s

ϕ(u))α,(1.2)

when η(s) = ϕ(s)α. One recognizes the Pitman’s transform.

Let us consider now the Littelmann path theory for the affine Lie algebra A
(1)
1 .

A realization of a real Cartan subalgebra hR is given by R3 and we write the
canonical basis as {c, α̃1, d}, and the dual canonical basis of h∗R as {Λ0, α1/2, δ}.
We choose α̃0 = c − α̃1 and α0 = δ − α1. The Weyl group is generated by the
reflections sα0 , sα1 on h∗R defined by, for v ∈ h∗R and i = 0, 1,

sαi(v) = v − α̃i(v)αi.

which are reflections along the walls of the Weyl chamber

CW = {tΛ0 + xα1/2 + yδ, (t, x) ∈ Caff, y ∈ R} = Caff × R.

In Littelmann’s theory, a path η : R+ → h∗R is now a continuous map η(0) = 0.
One defines path transforms Pαi , i ∈ {0, 1}, by

Pαiη(t) = η(t)− inf
0≤s≤t

α̃i(η(s))αi.

A dominant path is a path with values in the closure of CW and as above, one
can define integral paths on [0, t]. For a fixed t > 0 and an integral dominant
path π on [0, t], the Littelmann paths module generated by π is the set of integral
paths η on [0, t] for which it exists n ∈ N such that

PαnPαn−1 · · · Pα1Pα0η(s) = π(s)

when 0 ≤ s ≤ t, where α2k = α0 and α2k+1 = α1 for any k ∈ N. This gives
a description of the Kashiwara crystal of highest weight π(t) (see Kashiwara
[26], Littelmann [28]). For an integral path η on [0, t] and more generally for a
continuous piecewise C1 path (see Proposition 5.8), there is a k ∈ N such that
for all n ≥ k,

Pαn · · · Pα0η(s) = Pαk · · · Pα0η(s),

for 0 ≤ s ≤ t. This new path is dominant. One can ask if, similarly to Pitman’s
theorem, at least the limit when n tends to infinity, of Pαn · · · Pα0η, exists when
η is replaced by a space-time Brownian motion.

We show in this paper that the answer is no. Nevertheless one proves that a
slight modification converges in h∗R/Rδ to the space-time Brownian motion B(µ)

conditioned to remain in the affine cone Caff. Actually it will be enough for us
to work in the space V = h∗R/Rδ, so our paths and transforms will be defined on
V .

We call the sequence {ξk(t), k ∈ N}, defined above, the affine string param-
eters, by analogy with the string parameters in the Littelmann model because,
for integral paths, they are the string parameters of the element corresponding
in the highest weight crystal (see Kashiwara [25], Littelmann [29]). Likewise,
we call ξk(∞), k ∈ N, the Verma affine string parameters, by analogy with the
string parameters of the crystal B(∞) of Kashiwara [25] associated with the
Verma module of highest weight 0.
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1.5. The paper is organized as follows. As said before the process Z is the space
component of the time inverse of the space time process A(µ). Dealing with the
two dimensional process A(µ) linearizes the situation and so is easier. So we first
study it in Section 2, by using approximations by processes in dihedral cones.

In Section 2.1 one recalls the Pitman representation theorem for a planar
Brownian motion in a dihedral cone and gives a precise description of the law
of their string and Verma string parameters. One studies their asymptotic be-
haviour in Section 2.2 and obtains a description of the Verma affine string pa-
rameters ξ(∞) of the space-time Brownian motion B(µ). In Section 2.3 one
proves that the series

∑n
k=0(−1)kξk(∞) converges up to a correcting term. In

Section 2.5 one shows the almost sure convergence of (1.1) and identifies the
limit. One obtains in Section 2.6 a representation theorem for the conditioned
space-time Brownian motion by applying at last a Lévy transform to the iterates
of Pitman’s ones. In Section 2.8 one makes some comments on the distributions
of the first string parameter ξ1(∞) of the space-time Brownian motion and of
its affine Verma weight.

In Section 3 one proves the main result of the paper on the Brownian motion
in the interval. As mentioned we only use probabilistic notions and arguments
up to this point.

In Section 4, we now consider the affine Lie algebra A
(1)
1 and show how our

results are related to its highest weight representations. First we show that
the conditional law of the Brownian motion is a Duistermaat Heckman measure
for a circle action, describing the semiclassical behaviour of the weights of the
representation its highest weight is large. Secondly, we show that the Lévy
correction term also occurs in the behaviour of the elements of large weight of
the Kashiwara crystal B(∞).

Section 5 is an appendix where we define rigoursosly the conditioned Brown-
ian motion in the interval [0, 1] and the conditioned space-time Brownian motion
in the affine Weyl chamber Caff. We prove in Theorem 5.7 that the first one
is equal in law, up to a time inversion, to the space component of the second one.

1.6. In conclusion we see that the, a priori simple, Brownian motion in the

interval can be studied thanks to its links with the affine Lie algebra A
(1)
1 . It

is an example of integrable probability in the sense of Borodin and Petrov ([5]).

It would be interesting to study the higher rank case A
(1)
n which occurs in the

analysis of n + 1 non colliding Brownian motions on a circle (see Hobson and
Werner [21]). This requires new ideas.

2. Representation of the conditioned space-time real Brownian
motion in the affine Weyl cone

In order to represent the Brownian motion Z conditioned to stay in [0, 1],
we will linearize the problem and use the fact that Z is the space component
of the time inverted process of A(µ), where A(µ) is the space-time Brownian
motion conditioned to stay in the affine cone Caff = {(t, x) ∈ R2; 0 < x < t},
rigourosly defined in Definition 5.5. This process A(µ) will be approached by
planar Brownian motions conditioned to remain in dihedral cones.
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2.1. Pitman representation for the planar Brownian motion in the di-
hedral cone Cm. In this section we describe the representation of the planar
Brownian motion conditioned to stay in a dihedral cone, using the results of
Biane et al. [3],[4].

2.1.1. Dihedral Coxeter system. The dihedral group I(m), where m ∈ N, is the
finite group generated by two involutions s0, s1 with the only relation (s0s1)m =

1. In the two dimensional vector space V = R2 identified with its dual Ṽ ,
one chooses two pairs (vm0 , ṽ

m
0 ), (vm1 , ṽ

m
1 ) in V × Ṽ , associated with the matrix

(ṽmi (vmj ))0≤i,j≤1 given by(
2 −2 cos(π/m)

−2 cos(π/m) 2

)
,

Namely, one takes

vm0 = (2 sin(π/m),−2 cos(π/m)), vm1 = (0, 2),

and ṽm0 = vm0 /2, ṽ
m
1 = vm1 /2. The following two reflections sm0 , s

m
1 of R2,

smi (v) = v − ṽmi (v)vmi , v ∈ R2,

generate the group I(m). The usual scalar product on R2 is denoted by 〈., .〉,
and with our convention ṽmi (v) = 〈vmi , v〉.

Definition 2.1. The convex dihedral cone Cm, with closure C̄m, is

Cm = {v ∈ R2; ṽmi (v) > 0, i = 0, 1} = {(r cos θ, r sin θ) ∈ R2, r > 0, 0 < θ < π/m}.

Let C0(R2) be the set of continuous path η : R+ → R2 such that η(0) = 0.
The following path transforms are introduced in [3].

Definition 2.2. The Pitman transforms Pmsmi , i = 0, 1, are defined on C0(R2) by

the formula, for η ∈ C0(R2), t ≥ 0,

Pmsmi η(t) = η(t)− inf
0≤s≤t

ṽmi (η(s))vmi .

Notice that

Pmsmi η(t) = η(t)− inf
0≤s≤t

(id− smi )(η(s)).

For each i ∈ N, when we write vmi , ṽ
m
i , s

m
i , · · · , we take i modulo 2.

Theorem 2.3 (Biane et al. [3]). Let w = smir · · · s
m
i1

be a reduced decomposition
of w ∈ I(m) where i1, · · · , ir ∈ {0, 1}. Then

Pmw := Pmsimr · · · P
m
sim1

depends only on w and not on the chosen decomposition.

In I(m) there is a unique longest word, namely

w0 = smm−1 · · · sm1 sm0 = smm · · · sm2 sm1 .(2.1)

Proposition 2.4 ([3]). For any path η ∈ C0(R2), the path Pmw0
η takes values in

the closed dihedral cone C̄m.
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Let γ ∈ C̄m and let W (γ) be the standard planar Brownian motion in R2 with
drift γ and identity covariance matrix, starting from the origin. The conditioned
planar Brownian motion in the cone Cm with drift is intuitively given by W (γ)

conditioned to stay in Cm forever. It is rigorously defined in Appendix 5.2. The
following is proved in Biane et al. [3] when there is no drift, the case with drift
follows easily and proved below in Proposition 5.3.

Theorem 2.5 (Biane et al. [3]). Let W (γ) be the planar Brownian motion with

drift γ, where γ ∈ C̄m. Then Pmw0
W (γ) is the conditioned planar Brownian

motion in the cone Cm with drift γ.

2.1.2. String parameters in C0(R2). We fix an integer m ≥ 1. For simplicity of
notations, and without loss of generality, one chooses one the two decompositions
of the longest word w0 in I(m), namely,

w0 = smm−1 · · · sm1 sm0 .

For η ∈ C0(R2), 0 ≤ k ≤ m− 1 and 0 ≤ t ≤ +∞, let

xmk (t) = − inf
0≤s≤t

ṽmk (Pmsmk−1
. . .Pmsm1 P

m
sm0
η(s)).

Definition 2.6. We call

xm(t) = (xm0 (t), xm1 (t), · · · , xmm−1(t))

the string parameters of the path η on [0, t] and we call xm(∞) its Verma string
parameters.

Notice that

Pmw0
η(t) = η(t) +

m−1∑
k=0

xmk (t)vmk .(2.2)

and that, for t ≥ 0, for all k = 0, · · · ,m− 1,

2xmk (t) = ṽmk (Pmsmk · · · P
m
sm0
η(t)− Pmsmk−1

· · · Pmsm0 η(t)).(2.3)

When

lim
s→+∞

ṽm0 (η(s)) = lim
s→+∞

ṽm1 (η(s)) = +∞(2.4)

holds, then the Pitman transforms Pmw η, w ∈ I(m), have the same property and
for all t ≥ 0 and 0 ≤ k ≤ m− 1,

0 ≤ xmk (t) ≤ xmk (∞) < +∞,(2.5)

and xmk (t) = xmk (∞) for t large enough. Let, for 1 ≤ k < m,

amk = sin(kπ/m).

Definition 2.7. The cone Γm in Rm is defined as

Γm = {(x0, · · · , xm−1) ∈ Rm;
x1

am1
≥ x2

am2
≥ · · · ≥ xm−1

amm−1

≥ 0, x0 ≥ 0}.

For λ ∈ C̄m, the polytope Γm(λ) is

Γm(λ) = {(x0, · · · , xm−1) ∈ Γm; 0 ≤ xr ≤ ṽmr (λ−
m−1∑
n=r+1

xnv
m
n ), 0 ≤ r ≤ m− 1}.
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Remark the particular role of x0. The following proposition is proved in [4],
Propositions 4.4 and 4.7.

Proposition 2.8. The set of string parameters of paths on [0, t] is Γm.

2.1.3. String parameters of the planar Brownian motion. When γ ∈ Cm, the
planar Brownian motion W (γ) with drift γ satisfies (2.4) by the law of large
numbers, so its Verma string parameters are finite.

Theorem 2.9. Let xm(t) be the string parameters of W (γ) on [0, t] and xm(∞)
be its Verma string parameters.

(i) When γ ∈ C̄m, for any t > 0, conditionally on σ(Pmw0
W (γ)(s), s ≤ t) the

random variables xmk (t), 0 ≤ k < m, are independent exponentials with parame-
ters γmk = 〈γ, vmk 〉 conditioned on the event

{xm(t) ∈ Γm(Pmw0
W (γ)(t))}.

(ii) When γ ∈ Cm, the random variables xmk (∞), 0 ≤ k < m, are independent
exponentials with parameters γmk = 〈γ, vmk 〉 conditioned on the event

{xm(∞) ∈ Γm}.

Proof. Let Fγt = σ(Pmw0
W (γ)(s), s ≤ t). It is shown in Biane et al. [4], Theorem

5.2, that when γ = 0, the law of xm(t) conditionally on F0
t is the normalized

Lebesgue measure on Γm(Pmw0
W (0)(t)). Let ψ : C0(R2) → R be a bounded

measurable function. Is is easy to see by applying the definition of the conditional
expectation and the Cameron Martin formula twice that we have the following
Bayes formula,

E(ψ(W (γ)
s , 0 ≤ s ≤ t)|Fγt ) = ϕ(Pmw0

W (γ)(t))(2.6)

where

ϕ(Pmw0
W (0)(t)) =

E(ψ(W
(0)
s , 0 ≤ s ≤ t)e〈γ,W

(0)
t 〉|F0

t )

E(e〈γ,W
(0)
t 〉|F0

t )
.

It follows from (2.2) that W
(0)
t = Pmw0

W (0)(t) −
∑m−1

k=0 x
m
k (t)vmk , where xm are

the string parameters of W (0), so that

ϕ(Pmw0
W (0)(t)) =

E(ψ(W
(0)
s , 0 ≤ s ≤ t)e−

∑m−1
k=0 xmk (t)vmk 〉|F0

t )

E(e−
∑m−1
k=0 xmk (t)vmk 〉|F0

t )
.

If we take ψ(W
(γ)
s , 0 ≤ s ≤ t) = F (xm(t)) where F : Rm → R is bounded and

continuous, and now xm are the string parameters of W (γ), and if dx is the
Lebesgue measure on Rm we obtain that

E(F (xm(t))|Fγt ) =

∫
1Γm(Pmw0

W (γ)(t))(x)F (x)e−
∑m−1
k=0 γmk xk dx∫

1Γm(Pmw0
W (γ)(t))(x)e−

∑m−1
k=0 γmk xk dx

,
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which proves (i). We suppose that γ ∈ Cm, so

E(F (xm(∞))) = lim
t→+∞

E(F (xm(t)))

= lim
t→+∞

E(E(F (xm(t))|Ft))

= lim
t→+∞

E(

∫
1Γm(Pmw0

W (γ)(t))(x)F (x)e−
∑m−1
k=0 γmk xk dx∫

1Γm(Pmw0
W (γ)(t))(x)e−

∑m−1
k=0 γmk xk dx

)

=

∫
1Γm(x)F (x)e−

∑m−1
k=0 γmk xk dx∫

1Γm(x)e−
∑m−1
k=0 γmk xk dx

,

since, a.s., Pmw0
W (γ)(t)/t converges to γ as t tends to +∞ and thus Γm(Pmw0

W (γ)(t))
tends to Γm for γ ∈ Cm. This proves (ii). �

Proposition 2.10. We suppose that γ ∈ Cm. Let εn, n ∈ N, be independent
exponential random variables with parameter 1. Then, in law, xm0 (∞) = ε0/γ

m
0 ,

and for k = 1, · · · ,m− 1, and γmk = 〈γ, vmk 〉,

xmk (∞) = amk

m−1∑
l=k

εl
γm1 a

m
1 + · · ·+ γml a

m
l

.

where xm(∞) are the Verma string parameters of W (γ).

Proof. Theorem 2.9 says that

P(xm0 (∞) ∈dx0, · · · , xmm−1(∞) ∈ dxm−1)

= Ce−γ
m
0 x0 dx0

m∏
k=2

e−γ
m
k−1xk−11{xk−1

am
k−1
≥ xk
am
k
} dxk−1

= Ce−γ
m
0 x0dx0

m∏
k=2

e
−(γm1 a

m
1 +···+γmk−1a

m
k−1)(

xk−1
am
k−1
− xk
am
k

)
1{xk−1

am
k−1
≥ xk
am
k
} dxk−1

where by convention xm/a
m
m = 0 and C is a normalizing constant. Thus

(xm0 (∞),
xm1 (∞)

am1
− xm2 (∞)

am2
,
xm2 (∞)

am2
− xm3 (∞)

am3
, · · · ,

xmm−1(∞)

amm−1

)

has the same law as

(
ε0

γm0
,

ε1

γm1 a
m
1

,
ε2

γm1 a
m
1 + γm2 a

m
2

, · · · , εm−1

γm1 a
m
1 + · · ·+ γmm−1a

m
m−1

),

which proves the claim. �

Notice that this is similar to Renyi’s representation of order statistics ([34]).

2.2. Affine string parameter x of the space-time Brownian motion. We

will use a terminology inspired by the Kac-Moody affine algebra A
(1)
1 (see in

particular Kac [24], Kashiwara [25] and Section 4). The infinite dihedral group
I(∞) is the infinite group generated by two involutions s0, s1 with no relation.
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In V = R2 identified with its dual Ṽ , let (α0, α̃0), (α1, α̃1) in V × Ṽ , given by
α0 = (0,−2),
α1 = (0, 2),
α̃0 = (1,−1),
α̃1 = (0, 1).

The matrix (α̃i(αj))0≤i,j≤1 is the Cartan matrix(
2 −2
−2 2

)
.

The two reflections s0, s1 of R2,

si(v) = v − α̃i(v)αi, v ∈ R2,

generate the group I(∞). Notice that s0 is a non orthogonal reflection. For each
k ∈ N, when we write αk, α̃k, sk, · · · , we take k modulo 2, as above. Thus

αk = (−1)kα0.

Definition 2.11. The affine Weyl cone (or chamber) is

Caff = {v ∈ R2; α̃i(v) > 0, i = 0, 1} = {(t, x) ∈ R2; 0 < x < t},

and C̄aff is its closure.

As in the dihedral case, we define the Pitman transform Psi , i = 0, 1, associ-

ated with (αi, α̃i) on C0(R2) by the formula:

Psiη(t) = η(t)− inf
0≤s≤t

α̃i(η(s))αi,(2.7)

where η ∈ C0(R2). We will use mainly space-time paths, i.e. paths which can be
written as η(t) = (t, ϕ(t)), t ≥ 0. In this case,

Ps0η(t) = (t, ϕ(t) + 2 inf
s≤t

(s− ϕ(s))

Ps1η(t) = (t, ϕ(t)− 2 inf
s≤t

ϕ(s)).

One recognizes in the second component the transforms P0,P1 defined in Section
3. One defines η0 = η, and, for k ≥ 1,

ηk = Psk−1
. . .Ps1Ps0η.

Let η a path in C0(R2), and x(t) = {xk(t), k ≥ 0} given by

xk(t) = − inf
0≤s≤t

α̃k(ηk(s)).

We call xk(t), k ≥ 0, the affine string parameters of the path η on [0, t] and we
call xk(∞), k ≥ 0, its Verma affine string parameters.

We fix a real µ such that 0 ≤ µ ≤ 1 and we consider the space time process

B
(µ)
t = (t, Bt + tµ)

where B is a standard real Brownian motion starting from 0.

Definition 2.12. We let ξ(t) = {ξk(t), k ≥ 0} be the affine string parameters of

B(µ) on [0, t], and ξ(∞) = {ξk(∞), k ≥ 0} be its Verma affine string parameters.
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One has, for any n ≥ 0,

Pαn · · · Pα0B
(µ)(t) = B

(µ)
t +

n∑
k=0

ξk(t)αk.(2.8)

When 0 < µ < 1, ξk(∞) < +∞ for each k ≥ 0 by the law of large numbers. We

will approach B
(µ)
t by W (m

π
,µ) which is the planar Brownian motion with drift

(mπ , µ) starting from the origin.

Definition 2.13. We define ξm(t) as the string parameters of W (m
π
,µ) on [0, t]

and ξm(∞) as its Verma string parameters. The dihedral highest weight process
is

Λm(t) = Pmw0
W (m/π,µ)(t), t ≥ 0.

Let τm : R2 → R2 defined by

τm(t, x) = (
πt

m
, x),(2.9)

for (t, x) ∈ R2. We will frequently use that for v ∈ R2,

τmv = (
π

m sin π
m

(ṽm0 (v) + ṽm1 (v) cos
π

m
), ṽm1 (v)),(2.10)

so the asymptotics of τmv and (ṽm0 (v) + ṽm1 (v), ṽm1 (v)) are the same as m tends
to +∞.

Lemma 2.14. For i = 0, 1,

lim
m→+∞

τmv
m
i = αi,

lim
m→+∞

τm ◦ smi ◦ τ−1
m = si.

Proof. The first statement is clear. The second one is trivial when i = 1. For
(t, x) ∈ R2 and i = 0,

(τm ◦ (id− sm0 ) ◦ τ−1
m )(t, x) = τm(ṽm0 (

mt

π
, x)vm0 ) = ṽm0 (

mt

π
, x)τmv

m
0

converges to (t− x)(0,−2) = (id− s0)(t, x). �

Proposition 2.15. Almost surely, for all t > 0, k ∈ N,

lim
m→+∞

ξmk (t) = ξk(t),

and when 0 < µ < 1,

lim
m→+∞

ξmk (∞) = ξk(∞).

Proof. Let, for all k ∈ N, wmk = smk · · · sm0 ∈ I(m) and wk = sk · · · s0 ∈ I(∞).
For any path ηm ∈ C0(R2),

(τm ◦ Pmsmi ◦ τ
−1
m )(ηm)(t) = ηm(t)− inf

s≤t
(τm ◦ (id− smi ) ◦ τ−1

m )ηm(s),

so it follows from Lemma 2.14 and by iteration that

lim
m→+∞

(τm ◦ Pmwmk ◦ τ
−1
m ) = Pwk .
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The sequence of paths ηm(t) = (πβtm +t, Bt+µt) converge to the path η(t) = B
(µ)
t ,

hence

lim
m→+∞

(τm ◦ (Pmwmk − P
m
wmk−1

) ◦ τ−1
m )ηm(t) = (Pwk − Pwk−1

)η(t).

This implies that

lim
m→+∞

ṽmk (τm(Pmwmk − P
m
wmk−1

)τ−1
m ηm(t)) = α̃k((Pwk − Pwk−1

)η(t)).

On the other hand, τ−1
m ηm = W (m/π,µ), one has

(Pmwmk − P
m
wmk−1

)τ−1
m ηm(t)) = ξmk (t)vmk .

When m tends to ∞, ṽmk (τmv
m
k ) tends to 2, so we see that ξmk (t) tends to ξk(t)

using the analogue of Remark 2.3 in the affine case. When 0 < µ < 1, a.s.,
ξmk (∞) = ξmk (t) and ξk(∞) = ξk(t) for t large enough. As a consequence ξmk (∞)
tends to ξk(∞). �

As before, we let εn, n ∈ N, be independent exponential random variables with
parameter 1.

Theorem 2.16. We suppose that 0 < µ < 1. In law ξ0(∞) = ε0/2(1− µ), and
for k ≥ 1,

ξk(∞)

k
=

+∞∑
n=k

2εn
n(n+ 1) + (1− 2µ)νn

,

where νn = n when n is even νn = −(n+ 1) when n is odd.

Proof. The drift of W (m/π,µ) is (m/π, µ), thus

γm0 = 〈(m
π
, µ), vm0 〉 = 2(

m

π
sin(

π

m
)− µ cos(

π

m
)), γm1 = 〈(m

π
, µ), vm1 〉 = 2µ.

By Propositions 2.15 and 2.10, since limm→+∞ma
m
k = kπ,

ξk(∞)

k
= lim

m→+∞

ξmk (∞)

k
= lim

m→+∞

π

m

m−1∑
n=k

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

.

Let c = max{1/γmi ,m ∈ N, i = 0, 1}. Since 0 ≤ 2t ≤ sinπt when 0 ≤ t ≤ 1/2,
one has, for k ≤ [m/2],

k∑
n=1

amn γ
m
n ≥

1

c

k∑
n=1

sin(
nπ

m
) ≥

k∑
n=1

2n

cm
≥ k2

cm
,

and, for k > [m/2],
k∑

n=1

amn γ
m
n ≥

[m/2]+1∑
n=1

amn γ
m
n ≥

m

4c
.

Therefore, by the law of large numbers, a.s., when N is large enough,

sup
m≥N

π

m

m−1∑
n=N

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

≤ sup
m≥N

(cπ

[m/2]∑
n=N

εn
n2

+ 4cπ

m∑
n=[m/2]+1

εn
m2

)

≤ sup
m≥N

(cπ

∞∑
n=N

εn
n2

+
4cπ

m

m∑
n=0

εn
m

)
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is as small as we want. We finish the proof by using that, for any fixed n,

lim
m→+∞

π

m

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

=
2εn

n(n+ 1) + (1− 2µ)νn

since for any r ∈ N,

lim
m→+∞

γm2r = lim
m→+∞

γm0 = 2(1− µ), lim
m→+∞

γm2r+1 = lim
m→+∞

γm1 = 2µ.

�

An important for us and maybe unexpected result is:

Theorem 2.17. Almost surely, limk→+∞ ξk(∞) = 2.

Proof. It is easy to see that E(ξk(∞)) tends to 2 and that
∑∞

k=1 E((ξk(∞) −
E(ξk(∞)))4) is finite, which implies the almost sure convergence. �

2.3. Affine Verma weight L(µ)(∞). In this subsection we introduce the affine
Verma weights. We consider for 0 < µ < 1, the affine Verma string parameters
ξ(∞) = {ξk(∞)), k ≥ 0} of B(µ). For k ≥ 1, let

Mk =
1

2
ξk(∞)αk +

k−1∑
n=0

ξn(∞)αn.

Notice that, more simply, since αn = (0, (−1)n+12),

Mk = (0, (−1)k+1ξk(∞) + 2
k−1∑
n=0

(−1)n+1ξn(∞)),

the notation with the αn’s may be strange for the reader. It is explained by its

natural interpretation in A
(1)
1 (see 4.1).

Proposition 2.18. Let µ ∈ (0, 1). When k goes to infinity, Mk converges almost
surely and in L2 towards

L(µ)(∞) =
1

2

∞∑
n=0

(
ε2n

n+ 1− µ
α0 +

ε2n+1

n+ µ
α1).

Proof. One has the key relation

M2p+2 −M2p = (0,−ξ2p(∞) + 2ξ2p+1(∞)− ξ2p+2(∞)) = (0,
ε2p+1

p+ µ
− ε2p

p+ 1− µ
),

hence {M2p, p ≥ 0} is a martingale, bounded in L2 and its limit is L(µ)(∞). As

M2p+1 = M2p +
1

2
(ξ2p(∞)− ξ2p+1(∞))α0

and ξk(∞) tends to 2 by Theorem 2.17, M2p+1 has the same limit. �

Definition 2.19. We call L(µ)(∞) the affine Verma weight of B(µ).

The terminology is due to the fact, that we will see in Section 4, that L(µ)(∞)
plays the role of an asymptotic weight in the Verma module of highest weight
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0 in the case of the affine Lie algebra A
(1)
1 (more correctly of minus this weight

modulo δ). Remark that, in coordinates, L(µ)(∞) = (0, Dµ(∞)) where

Dµ(∞) =
∞∑
n=0

(
ε2n+1

n+ µ
− ε2n

n+ 1− µ
).(2.11)

Notice that L(µ)(∞) is not the limit of the series
∑n

k=0 ξk(∞)αk, since ξk(∞)

tends to 2 (Theorem 2.17). For a sequence x = (xk) ∈ RN
+ we let

σ(x) = lim
n→+∞

n−1∑
k=0

xkαk +
1

2
xnαn,(2.12)

when this limit exists in R2 (recall that αk = (−1)kα0).

Definition 2.20. One defines, for λ ∈ C̄aff,

Γ = {x = (xk) ∈ RN :
xk
k
≥ xk+1

k + 1
≥ 0, for all k ≥ 1, x0 ≥ 0, σ(x) ∈ R2},

Γ(λ) = {x ∈ Γ : xk ≤ α̃k(λ− σ(x) +
k∑
i=0

xiαi), for every k ≥ 0}.

We remark that x ∈ Γ is in Γ(λ) if and only if for all k ≥ 0,

α̃k(λ− σ(x) +

k−1∑
i=0

xiαi +
1

2
xkαk) ≥ 0.

Notice the occurence of the coefficient 1/2 here which will explain the correction
term in the representation theorem. The same coefficient already occurs in the

crystal B(λ) of A
(1)
1 given by Nakashima [31] which is the discrete analogue of

Γ(λ). When 0 < µ < 1, the Verma string parameters ξ(∞) of B(µ) are a.s. in Γ,
and

σ(ξ(∞)) = L(µ)(∞).

In a sense Γ will have the role of a continuous Verma crystal and σ(x) has a role
of weight of x ∈ Γ. In the same way Γ(λ) will be a kind of continuous crystal of
highest weight λ.

2.4. Some technical results. In this subsection we prove some results which
will be used to conclude the proof of our main theorem. We take here µ ∈ (0, 1).
Notice that for m large enough, (mπ , µ) ∈ Cm so that the Verma string parameters

of W (m
π
,µ) are finite. Let, for 0 ≤ k ≤ m, with the convention that ξmm(∞) = 0,

Mm
k =

1

2
ξmk (∞)vmk +

k−1∑
n=0

ξmn (∞)vmn .

Proposition 2.21. For any k ≥ 0, τmM
m
k converges to Mk a.s. when m goes

to infinity.

Proof. This follows from Lemma 2.14 and Proposition 2.15. �

Proposition 2.22. One has, in probability,

lim
m→+∞

sup
1≤k≤m

‖τmMm
k −Mk‖ = 0.(2.13)
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Proof. We use Theorem 2.9. For 1 ≤ 2p+ 1 ≤ m,

Mm
2p+2 −Mm

2p =
1

2
ξm2p+2(∞)vm2p+2 + ξm2p+1(∞)vm2p+1 +

1

2
ξm2p(∞)vm2p.

Therefore,

ṽm0 (Mm
2p+2 −Mm

2p) = ξm2p+2(∞)− 2 cos(
π

m
)ξm2p+1(∞) + ξm2p(∞)

= −2 cos(
π

m
)am2p+1

ε2p+1

γm1 a
m
1 + γm0 a

m
2 + · · ·+ γm1 a

m
2p+1

+ am2p(
ε2p+1

γm1 a
m
1 + · · ·+ γm1 a

m
2p+1

+
ε2p

γm1 a
m
1 + · · ·+ γm0 a

m
2p

),

since

am2p+2 − 2 cos(
π

m
)am2p+1 + am2p = 0.

One deduces that

ṽm0 (Mm
2p) = 2 sin

π

m

p−1∑
l=0

(
ε2l cos lπm

γm1 sin l
mπ + γm0 sin l+1

m π
−

ε2l+1 cos (l+1)π
m

γm1 sin l+1
m π + γm0 sin l

mπ
),

by using the relations

n∑
k=1

am2k =
sin nπ

m sin (n+1)π
m

sin π
m

,

n∑
k=1

am2k−1 =
sin2 nπ

m

sin π
m

,

n∑
k=1

amk =
sin nπ

2m sin (n+1)π
2m

sin π
2m

.

Similarly, one finds

ṽm1 (Mm
2p) = −2 cos

π

m
ξm0 (∞) + sin

π

m
tan

pπ

m
ξm2p(∞)

+2 sin
π

m

p−1∑
l=1

(
ε2l+1 cos lπm

γm1 sin l+1
m π + γm0 sin l

mπ
−

ε2l cos (l+1)π
m

γm1 sin l
mπ + γm0 sin l+1

m π
).

On the other hand, one has

Mm
2p+1 −Mm

2p =
1

2
(ξm2p(∞)vm0 + ξm2p+1(∞)vm1 ).

Thus the proposition follows from the next lemma. �

Lemma 2.23. Let γm0 , γ
m
1 ,m ∈ N, be real numbers such that γm0 tends to 2(1−µ)

and γm1 tends to 2µ. Let for p ∈ {0, · · · , [m/2]},

Smp = sin
π

m

p−1∑
l=0

(
ε2l cos lπm

γm1 sin l
mπ + γm0 sin l+1

m π
−

ε2l+1 cos (l+1)π
m

γm1 sin l+1
m π + γm0 sin l

mπ
),

Sp =

p−1∑
l=0

(
ε2l

2l + 2(1− µ)
− ε2l+1

2l + 2µ
).

Then in probability

lim
m→∞

sup
1≤p≤[m/2]

|Smp − Sp| = 0.
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Proof. For each m ∈ N, {Smp −Sp−E(Smp −Sp), p = 1, · · · , [m/2]} is a martingale.
Let ε > 0. We have

Var(Sm[m/2] − S[m/2]) =

[m/2]−1∑
l=0

(
sinπ/m cos lπ/m

γm1 sin l
mπ + γm0 sin l+1

m π
− 1

2l + 2(1− µ)
)2

+ (
sinπ/m cos(l + 1)π/m

γm1 sin l+1
m π + γm0 sin l

mπ
− 1

2l + 2µ
)2.

As 2x
π ≤ sinx ≤ x for 0 ≤ x ≤ π

2 , one has the majorations

sin π
m

γm1 sin l
mπ + γm0 sin l+1

m π
≤ π/2

γm1 l + γm0 (l + 1)
,

and
sin π

m

γm1 sin l+1
m π + γm0 sin l

mπ
≤ π/2

γm1 (l + 1) + γm0 l
,

for 0 ≤ l ≤ [m/2] − 1. Thus there is a p0 ∈ N such that for all m ≥ 2(p0 + 1),
the sum on the right hand side of the variance above is smaller than ε for l ≥ p0.
Since each term tends to 0, we obtain that for m large enough this sum is smaller
than ε. Thus we have by Doob’s martingale inequality

E( sup
1≤p≤[m/2]

(Smp − Sp − E(Smp − Sp))2) ≤ 4ε.

Hence sup1≤p≤[m/2] |Smp −Sp−E(Smp −Sp)| converges in probability to 0. Besides

one has for p, q ∈ {0, · · · , [m/2]}, p ≥ q,

|E(Smp − Smq )| ≤
p−1∑
l=q

π2(γm0 + γm1 )

4(γm1 l + γm0 (l + 1))(γm1 (l + 1) + γm0 l)

and

E(Sp − Sq) =

p−1∑
l=q

2(2µ− 1)

(2l + 2(1− µ))(2l + 2µ)
.

As for a fixed k, when m goes to infinity, E(Smk ) converges towards E(Sk) when
m goes to infinity, one obtains that sup0≤p≤[m/2] |E(Smp −Sp)| converges towards
0, which finishes the proof of the lemma. �

Recall that ξm(∞), resp. ξ(∞), are the Verma string parameters of W (m/π,µ),

resp. B(µ). The following proposition will allow us to pass from Verma affine
string parameters to affine string parameters in the next subsection.

Proposition 2.24. Let (λm) be a sequence of R2 such that λm ∈ Cm and such
that τmλm tends to λ when m tends to ∞ where λ ∈ Caff. The random sets

{ξm(∞) ∈ Γm(λm)} converge in probability to {ξ(∞) ∈ Γ(λ)}.

Proof. To prove convergence in probability of a sequence, it is enough to show
that each subsequence has a subsequence which converges almost surely. There-
fore, by Propositions 2.22 and 2.18, working with a subsequence, we can suppose
that the set of ω ∈ Ω for which

sup
1≤k≤m

‖τmMm
k (ω)−Mk(ω)‖ → 0,
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and Mk(ω) tends to L(µ)(∞)(ω) is of probability one. So we see that if,

Xm
k = Mm

m −Mm
k , Xk = L(µ)(∞)−Mk.

then (see (2.10))

sup
0≤k≤m

|ṽmk (Xm
k (ω))− α̃k(Xk(ω))| → 0, α̃k(Xk(ω))→ 0.(2.14)

For these ω we will show that

lim sup
m→∞

{ξm(∞) ∈ Γm(λm)} ⊂ {ξ(∞) ∈ Γ(λ)} ⊂ lim inf
m→∞

{ξm(∞) ∈ Γm(λm)}.

Notice that ṽmk (λm) tends to α̃k(λ) for k = 0, 1. One has ξm(∞) ∈ Γm(λm) if
and only if ṽmk (λm − Xm

k ) ≥ 0 for 0 ≤ k < m, and ξ(∞) ∈ Γ(λ) if and only if
α̃k(λ − Xk) ≥ 0 for every k ∈ N. The left inclusion above follows from (2.14).
Now, suppose that ξ(∞)(ω) ∈ Γ(λ). Since λ is fixed and the distributions of Xk

are continuous, for any k ≥ 0,

P(α̃k(λ−Xk) = 0) = 0,

and one can suppose that

∀k ≥ 0, α̃k(λ−Xk(ω)) > 0.

We choose ε > 0 such that α̃i(λ) > ε, i ∈ {0, 1}. Using (2.14), one can choose
m0 such that m ≥ m0 implies that

sup
0≤k≤m

ṽmk (Xm
k (ω))− α̃k(Xk(ω)) < ε,

and then we choose k0 such that k ≥ k0 implies that

α̃k(Xk(ω)) < α̃k(λ)− ε.
As for each k, ṽmk (Xm

k ) converges towards α̃k(Xk) when m goes to infinity, one
takes m1 such that when m ≥ m1,

ṽmk (Xm
k (ω)) < α̃k(λ),

for k = 1, · · · , k0. Then for m ≥ m0,m1 one has for k ≥ k0

ṽmk (Xm
k (ω)) = ṽmk (Xm

k (ω))− α̃k(Xk(ω)) + α̃k(Xk(ω)) < α̃k(λ),

and for k ≤ k0,
ṽmk (Xm

k (ω)) < α̃k(λ),

which proves the right inclusion above, and shows the proposition. �

2.5. The highest weight process Λ(µ). In this subsection we introduce the
highest process associated with the space-time Brownian motion B(µ) which will
appear as the limit of its Pitman’s transforms (with a correction) and show

that it coincides in law with B(µ) conditioned to remain in Caff forever. Let
0 ≤ µ ≤ 1. We define for k ≥ 0,

Mk(t) =
1

2
ξk(t)αk +

k−1∑
n=0

ξn(t)αn,

where ξ(t) = {ξn(t), n ≥ 0} are the affine string parameters of B(µ) on [0, t] and

Mm
k (t) =

1

2
ξmk (t)vmk +

k−1∑
n=0

ξmn (t)vmn ,
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where ξm(t) = {ξmn (t), 0 ≤ n < m} are the string parameters of W (m/π,µ) on [0, t]

(by convention ξmn (t) = 0 when n ≥ m). In particular, Mm
m (t) =

∑m−1
n=0 ξ

m
n (t)vmn .

Proposition 2.25. For every k ≥ 1 and t ≥ 0, τmM
m
k (t) converges to Mk(t)

almost surely when m goes to infinity.

Proof. By the Cameron-Martin theorem, it is enough to prove the proposition
for µ ∈ (0, 1). In that case, it follows from Proposition 2.15 and Lemma 2.14. �

Theorem 2.26. When µ ∈ [0, 1], for each t ≥ 0, Mk(t) converges almost surely

when k goes to infinity. We denote by L(µ)(t) the limit.

Proof. By the Cameron-Martin theorem, one can suppose that µ ∈ (0, 1). Let
ε > 0. By Lemma 2.14 and Proposition 2.15, τmM

m
p (t) converges a.s. to Mp(t)

as m tends to ∞. Hence, for p, q ∈ N,

P(‖Mp+q(t)−Mp(t)‖ ≥ ε) = lim
m→∞

P(‖τmMm
p+q(t)− τmMm

p (t)‖ ≥ ε)

= lim
m→∞

E(fm(Λm(t)))

where

fm(Λm(t)) = E(1‖τmMm
p+q(t)−τmMm

p (t)‖≥ε|Λm(t)).

One has, by Theorem 2.9,

fm(λ) = P(‖τmMm
p+q − τmMm

p ‖ ≥ ε|ξm(∞) ∈ Γm(λ)).

If λ ∈ Caff and τmλm tends to λ, then by Proposition 2.24, fm(λm) tends to
f(λ) where

f(λ) = P(‖Mp+q −Mp‖ ≥ ε|ξ(∞) ∈ Γ(λ)).

On the other hand we will show in Theorem 2.45, independently of this proof,

that when m tends to infinity, τmΛm(t) converges in law to A
(µ)
t . Therefore

E(fm(Λm(t)) tends to E(f(A
(µ)
t )). This shows that

P(‖Mp+q(t)−Mp(t)‖ ≥ ε) =

∫
Ω
P(‖Mp+q −Mp‖ ≥ ε|ξ(∞) ∈ Γ(A

(µ)
t (ω)))dP(ω).

Since Mk converges a.s. to L(µ)(∞) (Proposition 2.18) we see that Mp(t), p ∈ N,
is a Cauchy sequence for the convergence in probability, and thus converges
in probability. We will prove the almost sure convergence at the end of this
subsection. �

Notice that the first component of L(µ)(t) is 0, so one can write

L(µ)(t) = (0, Dµ(t)),

where Dµ(t) ∈ R.

Proposition 2.27. When 0 < µ < 1 there is an almost surely finite B(µ)-
stopping time σ such that, for t ≥ σ, L(µ)(t) = L(µ)(∞).

Proof. Let σ0 = max{t ≥ 0, B
(µ)
t 6∈ Caff}, and

σn+1 = max{t ≥ σn, B(µ)
t +

n∑
k=0

ξk(t)αk 6∈ Caff}
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for n ≥ 0. Then, a.s., σ0 < +∞ and for t > σ0, ξ0(t) = ξ0(∞), hence

σ1 = max{t ≥ σ0, B
(µ)
t + ξ0(∞)α0 6∈ Caff}.

Recursively, one has σn < +∞ and

σn+1 = max{t ≥ σn, B(µ)
t +

n∑
k=0

ξk(∞)αk 6∈ Caff}.

We know that
∑n

k=0 ξk(∞)αk is bounded, a.s., therefore σ = supσn < +∞ and

for t > σ, ξk(t) = ξk(∞) for all k ≥ 0. So, for t ≥ σ, L(µ)(t) = L(µ)(∞). �

Proposition 2.28. In probability, as m tends to ∞, τmM
m
m (t) converges to

L(µ)(t).

Proof. By Cameron-Martin’s theorem, it is enough to prove the proposition for
µ ∈ (0, 1). In that case, one has for ε > 0,

P(|τmMm
m (t)−L(µ)(t)| > ε) ≤ P( sup

1≤k≤m
|τm(Mm

m (t)−Mm
k (t))| > ε

3
)

+ P(|τmMm
p (t)−Mp(t)| >

ε

3
) + P(|Mp(t)− L(µ)(t)| > ε

3
).

For the first term, we condition by Λm(t) as in the proof of Theorem 2.26 and
use covergences (2.14) which imply that sup0≤k≤m |τm(Mm

m −Mm
k )| →

m→∞
0 in

probability, and proposition 2.22. For the second one we use proposition 2.25
and Theorem 2.26 for the third one. �

Notice that

Λm(t) = Pmw0
W (m/π,µ)(t) = W

(m/π,µ)
t +Mm

m (t).(2.15)

We introduce the following definition,

Definition 2.29. For 0 ≤ µ ≤ 1, we define the (affine) highest weight process

of {B(µ)
t , t ≥ 0} by, for t ≥ 0,

Λ(µ)(t) = B
(µ)
t + L(µ)(t).

In the analogy with the Littelmann model, for t > 0 fixed, {B(µ)
s , 0 ≤ s ≤ t}

is a path with weight B
(µ)
t , with highest weight Λ(µ)(t), and L(µ)(t) is the weight

seen from the highest weight.

Proposition 2.30. In probability,

lim
m→+∞

τmW
(m/π,µ)
t = B

(µ)
t ,

lim
m→+∞

τmΛm(t) = Λ(µ)(t).

Proof. The first statement is obvious. The second is then a consequence of
Proposition 2.28 and (2.15). �

Let {A(µ)
t , t ≥ 0} be the conditioned space-time Brownian motion in the affine

Weyl chamber Caff, with drift µ, starting from the origin defined in 5.3.

Theorem 2.31. For any µ ∈ [0, 1], in law,

{Λ(µ)(t), t ≥ 0} = {A(µ)
t , t ≥ 0}.
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Proof. This follows from Proposition 2.30, and Theorem 2.45. �

This shows in particular that Λ(µ)(t), t ≥ 0, has a continuous version. In order
to prove the almost sure convergence in Theorem 2.26, let us show:

Proposition 2.32. For 0 < µ < 1 and f : R2×Γ→ R, bounded and measurable,

E(f(B
(µ)
t , ξ(t))|σ(Λ(µ)(s), s ≤ t)) = g(Λ(µ)(t))

for each t > 0, where

g(λ) = E(f(λ− L(µ)(∞), ξ(∞))1{ξ(∞)∈Γ(λ)})/P(ξ(∞) ∈ Γ(λ)).

Proof. By Theorem 2.9, the conditional distribution of ξm(t) knowing the sigma-
algebra σ(Λm(s), s ≤ t) is the one of ξm(∞) knowing {ξm(∞) ∈ Γm(Λm(t))}.
Hence

E(f(τmΛm(t)− τmMm
m (t), ξm(t))|σ(Λm(s), s ≤ t))) = gm(Λm(t))

where

gm(λ) = E(f(τmλ− τmMm
m , ξ

m)1{ξm(∞)∈Γm(λ)})/P(ξm(∞) ∈ Γm(λ)).

Using the convergences in probability of the propositions 2.28 and 2.30, if h is
bounded, measurable, and depends only on a finite number of variables,

E(f(Λ(µ)(t)− L(µ(t), ξ(t))h(Λ(µ)(s), s ≤ t)))
= lim

m→+∞
E(f(τmΛm(t)− τmMm

m (t), ξm(t))h(τmΛm(s), s ≤ t)))

= lim
m→+∞

E(gm(Λm(t))h(τmΛm(s), s ≤ t))).

Since τmΛm(t) tends to Λ(µ)(t), we know from Proposition 2.24 that, in proba-

bility, {ξm(∞) ∈ Γm(Λm(t))} tends to {ξ(∞) ∈ Γ(Λ(µ)(t))}. Therefore the limit
above is equal to

E(g(Λ(µ)(t))h(Λ(µ)(s), s ≤ t)))

which proves the proposition. �

Corollary 2.33. Almost surely, ξ(∞) is in Γ, and when the highest weight

Λ(µ)(t)) is equal to λ, ξ(t) ∈ Γ(λ).

End of the proof of Theorem 2.26. By the Cameron-Martin theorem it is enough
to prove the proposition for µ ∈ (0, 1). In that case, the theorem follows from

P(limMk(t) = L(µ)(t)) = E(E(1{limMk(t)=L(µ)(t)}|σ(Λ(µ)(t)))) = 1

since Mk tends to L(µ)(∞) a.s., by Proposition 2.32 which implies that

E(1{limMk(t)=L(µ)(t)}|σ(Λ(µ)(t))) = E(1{limMk=L(µ)(∞)}|ξ(∞) ∈ Γ(Λ(µ)(t))) = 1.

�
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2.6. Representation using Pitman and Lévy’s transforms. Let us remind

where we stand. For B
(µ)
t = (t, Bt + tµ) we have written, see (2.8),

Pαn · · · Pα1Pα0B
(µ)(t) = B

(µ)
t +

n∑
i=0

ξi(t)αi,

and

Mn+1(t) =
1

2
ξn+1(t)αn+1 +

n∑
n=0

ξi(t)αi.

We have seen that when µ ∈ [0, 1], for t > 0, limk→+∞Mk(t) = L(µ)(t) a.s. and

that the process Λ(µ)(t) = B
(µ)
t +L(µ)(t), t ≥ 0, has the same distribution as the

process A
(µ)
t , t ≥ 0. Hence,

Theorem 2.34. When 0 ≤ µ ≤ 1, for t ≥ 0, almost surely,

lim
n→+∞

Pαn · · · Pα1Pα0B
(µ)(t) +

1

2
ξn+1(t)αn+1

exists, and the limiting process has the same distribution as {A(µ)(t), t ≥ 0}.

To interpret the correction term, it is worthwhile to introduce the Lévy’s
transform (sometimes called Skorokhod’s transform). Lévy’s theorem (see Revuz
and Yor [35], VI.2) states that if β is the standard Brownian motion, then

Lβ(t) = βt − inf
0≤s≤t

βs

has the same law as |βt| and that − inf0≤s≤t βs is the local time of Lβ at 0. We
introduce here the following Lévy’s transform (sometimes the Lévy’s transform

of β is defined as
∫ t

0 sign(βs)dβs, this is related to our transform, but different).

Definition 2.35. For η ∈ C0(R2) and i = 0, 1, the Lévy transform Lαiη of η is

Lαiη(t) = η(t)− 1

2
inf

0≤s≤t
α̃i(η(s))αi.

Another way to state the former theorem is

Theorem 2.34 bis. For t ≥ 0,

lim
n→+∞

Lαn+1Pαn · · · Pα1Pα0B
(µ)(t)

exists a.s. and the limiting process has the same distribution as A(µ).

The following proposition indicates that the presence of this Lévy transform

is due to the bad behavior of A
(µ)
t for t near the origin.

Proposition 2.36. For all t > 0, a.s.

lim
k→+∞

ξk(t) = 2.

Proof. Since ξk(∞) tends to 2 almost surely (Theorem 2.17), this follows from

Proposition 2.32 by conditioning by σ(Λ
(µ)
t ). �
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It implies that, for t > 0,

lim
n→+∞

Pαn · · · Pα1Pα0B
(µ)(t) + (−1)nα1 = A

(µ)
t .

So without correction the iterates of Pitman’s transform do not converge.

In the whole paper we have chosen, in the iterations of Pitman’s transforms,
to begin by first applying Pα0 to B(µ). Let us show the non trival fact that we
obtain the same limits if we begin with Pα1 . More precisely, if we denote with
a tilde the quantities previously defined when we begin by Pα1 rather than by
Pα0 , one has, for each µ ∈ [0, 1],

Theorem 2.37. (1). Almost surely,

lim
n→+∞

Lαn+1Pαn · · · Pα1Pα0B
(µ)(t) = lim

n→+∞
Lαn+1Pαn · · · Pα2Pα1B

(µ)(t).

(2) ξ̃(t) defined for B(µ) has the same law as ξ(t) defined for B(1−µ).

Proof. For (1) we have to prove that L(µ)(t) = L̃(µ)(t). We have seen in Propo-

sition 2.28 that τmM
m
m (t) converges in probability to L(µ)(t). By the same proof

τmM̃
m
m (t) converges in probability to L̃(µ)(t). Now we use the equality Mm

m (t) =

M̃m
m (t) which follows from Theorem 2.3 and (2.1). Thus L(µ)(t) = L̃(µ)(t) a.s..
(2) follows from the fact that Id−Bµ has the same law as B1−µ. �

2.7. The law of B
(µ)
t conditionally to {Λ(µ)(s), s ≤ t}. We will compute the

conditional law of B
(µ)
t by approaching it by the dihedral case. The alternating

polynomial associated to the dihedral group I(m) is given by (see Dunkl and Xu
[14], 6.2.3), for v = (x, y) ∈ R2,

hm(v) = hm(x, y) = =((x+ iy)m).

It is equal to the product of roots for the root system of I(m). For w ∈ I(m)
let l(w) be the length of its shortest expression with sm0 and sm1 . Let, for v ∈
R2, γ ∈ C̄m,

ψmv (γ) =
∑

w∈I(m)

(−1)l(w)e〈w(γ)−γ,v〉,(2.16)

and let W (γ) be the standard planar Brownian motion in R2 with drift γ.

Lemma 2.38. For ζ ∈ R2 and v = Pmw0
W (γ)(t),

E(e〈ζ,W
(γ)
t 〉|σ(Pmw0

W (γ)(s), 0 ≤ s ≤ t)) =
ψmv (ζ + γ)

ψmv (γ)

hm(γ)

hm(ζ + γ)
e〈ζ,v〉.

Proof. Theorem 5.5 in [4] gives, for Ft = σ(Pmw0
W (0)(s), 0 ≤ s ≤ t),

E(e〈ζ,W
(0)
t 〉|Ft) = k

ψmv (ζ)

hm(v)hm(ζ)
e〈ζ,v〉,

for v = Pmw0
W (0)(t) and a constant k independent of v and ζ. We conclude with

the Bayes formula (2.6). �
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For α ∈ R, we define a theta function ϕα on R∗+ × R first, when α 6∈ Z, by

ϕα(t, x) =
e−αx

sin(απ)

∑
k∈Z

sinh(α(2kt+ x))e−2(kx+k2t),(2.17)

for t > 0, x ∈ R, and then by continuity for all α ∈ R using Lemma 2.41 which
implies that ϕα(t, x) = ϕ1−α(t, t− x). Its importance for us is in particular due
to its harmonicity (see Proposition 5.4).

Lemma 2.39. Let vm ∈ R2, γm ∈ C̄m such that, as m tends to +∞, τm(γm)
tends to (1, α) and τm(vm) tends to (t, x), then

lim
m→∞

ψmvm(γm) =
sin(απ)

2
ϕα(t, x),(2.18)

lim
m→∞

(
π

m
)mhm(γm) = sin(απ).(2.19)

Proof. Let r be the rotation of R2 of angle 2π/m and s be the symmetry s(x, y) =
(x,−y), (x, y) ∈ R2. Let J(m) = {−[m/2], · · · , [m/2]} when m is odd and
J(m) = {−[m/2] + 1, · · · , [m/2] − 1} ∪ {m/2} when m is even. The dihedral
group I(m) is I(m) = {rk, k ∈ J(m)}o{Id, s}, and l(r) = 2, l(s) = 1. Therefore

ψmvm(γm) = e−〈γm,vm〉
∑

k∈J(m)

(e〈r
k(γm),vm〉 − e〈rks(γm),vm〉) = 2e−γ

2
mv

2
m

∑
k∈J(m)

I(m, k)

where

I(m, k) = ev
1
mγ

1
m(cos 2kπ

m
−1)+γ1mv

2
m sin 2kπ

m sinh(γ2
m(−v1

m sin
2kπ

m
+ v2

m cos
2kπ

m
))

and where we write vm = (v1
m, v

2
m), γm = (γ1

m, γ
2
m) with vm equivalent to (mt/π, x)

and γm equivalent to (m/π, α). For ε > 0, we choose m0 ≥ 0 such that, for
m ≥ m0, ∑

m/4≤|k|≤m/2

|I(m, k)| ≤ ε.

by using the inequality cos(2k
m π) ≤ 0 when m

4 ≤ |k| ≤
m
2 . Besides, when t ∈

[−π
2 ,

π
2 ], then cos t ≤ 1− t2

π and | sin(t)| ≤ |t|, Hence, for |k| ≤ m
4 ,

|I(m, k)| ≤ e−c1k2+c2k

where c1, c2 > 0 do not depend on m. So, one can choose N such that for m ≥ 1∑
m
4
≥|k|≥N

|I(m, k)| ≤ ε.

Since, for N fixed,

lim
m→+∞

N∑
k=−N

I(m, k) = e−αx
N∑

k=−N
sinh(α(2kt+ x))e−2(kx+k2t),

we obtain (2.18) The relation (2.19) is immediate. �

Theorem 2.40. One has, when ζ = (0, τ) ∈ R2,

E(e〈ζ,B
(µ)
t 〉|σ(Λ(µ)(s), s ≤ t)) =

e〈ζ,Λ
(µ)(t)〉ϕτ+µ(Λ(µ)(t))

ϕµ(Λ(µ)(t))
.
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Proof. The first formula is obtained by letting m goes to infinity in the Lemma
2.38 and using Proposition 2.30 and Lemma 2.39. �

We have used the following lemma which follows from the Poisson summation

formula (see Bellman [1]) for the 2t-periodic function x 7→ e−
x2

2t ϕα(t, x).

Lemma 2.41. For α ∈ (0, 1), t > 0, x ∈ R,

ϕα(t, x) =

√
πe

(x−αt)2
2t

√
2t sin (απ)

∑
k∈Z

sin(kπα) sin(kπx/t)e−
k2π2

2t .

2.8. Remarks on the laws of L(µ)(∞) and ξ1(∞).

2.8.1. Law of L(µ)(∞). Recall that L(µ)(∞) = (0, Dµ(∞)). The Laplace trans-
form of Dµ(∞) is, by (2.11), for τ > 0,

E(e−τD
µ(∞)) =

∞∏
n=0

((1 +
τ

(n+ µ)
)(1− τ

(n+ 1− µ)
))−1.

Using

Γ(α)Γ(β)

Γ(α+ γ)Γ(β − γ))
=

+∞∏
n=0

(1 +
γ

n+ α
)(1− γ

n+ β
),(2.20)

(Formula 8.325.1 of [19]) and Γ(z)Γ(1− z) = π/sin (πz), we obtain that

E(e−τD
µ(∞)) =

sin(πµ)

sin(π(µ+ τ))
.(2.21)

In particular,

E(Dµ(∞)) = π cot(πµ).(2.22)

Corollary 2.42. The density of D1/2(∞) is 1/(π coshx).

Proof. One uses that the Fourier transform of 1/(π coshx) is 1/ cosh(λπ/2). �

Notice that the law of
∑∞

n=1( ε2n+1

n − ε2n
n+1) appears in Diaconis et al. [9].

2.8.2. Law of ξ1(∞). The three dimensional Bessel process ρ(ν) with drift ν ≥ 0
is the norm of a Brownian motion in R3 with a drift of length ν.

Corollary 2.43. For 0 ≤ µ ≤ 1, ξ1(∞) has the same law as supt≥0(%
(1−µ)
t − t).

Proof. By Pitman and Rogers [33], %
(1−µ)
t has the same law as Pα1B

(1−µ)
t , so the

claim follows from (2) of Theorem 2.37 when 0 < µ < 1, and by continuity also
when µ = 1. For µ = 0, ξ1(∞) = +∞. �

When µ = 1, ξ0(∞) = +∞ and

ξ1(∞) =
1

2

+∞∑
n=1

ε2n−1 + ε2n

n2
.

Its distribution is studied in Biane et al. [2] where it is symbolized π2S2/4. Its
Laplace transform is given by, for τ ≥ 0,

E(e−2τξ1(∞)) =
π2τ

sinh2(π
√
τ)
,
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and its distribution function is (cf. Table 1 in [2])

F (x) = 1 + 2
+∞∑
k=1

(1− 4k2x)e−2k2x,

so in this case the corollary is also given in Exemple 20 of Salminen and Yor [37].
When µ = 1/2,

ξ1(∞) =

+∞∑
n=1

2εn
n(n+ 1)

.

Proposition 2.44. When µ = 1/2, the Laplace transform of ξ1(∞) is, for τ ≥ 0

E(e−τξ1(∞)) =
2πτ

cosh(π
√

2τ − 1/4)
,

its density is
+∞∑
n=0

(−1)n+1n(n+ 1)(2n+ 1)e−n(n+1)x/2,

and, in law,

ξ1(∞) = sup
n>0,i=1,2,3

ε
(i)
n

n
,

where the ε
(i)
n are exponential independent random variables with parameter 1.

Proof. It is easy to see that, using the formula

coshπz = (1 + 4z2)
+∞∏
n=1

(1 +
z2

(n+ 1/2)2
),

one has

E(e−τξ1(∞)) =

+∞∏
n=1

(1 +
2τ

n(n+ 1)
)−1 =

2πτ

cosh(π
√

2τ − 1/4)
.

Let

g(x) = 2
+∞∑
n=0

(−1)n(2n+ 1)e−
x
2

(n+ 1
2

)2 .

Since 1/ cosh
√

2τ is the Laplace transform of πg(π2x)/2, (e.g. [2]),

2τπ

coshπ
√

2τ − 1/4
=

∫ ∞
0

τe−τxex/8g(x) dx =

∫ ∞
0

e−τx(ex/8g(x))′ dx,

by an integration by parts. Computing the derivative (ex/8g(x))′ gives the den-
sity. By integration, the distribution function is

+∞∑
n=0

(−1)n(2n+ 1)e−n(n+1)x/2

which is equal to
∏∞
n=1(1 − e−nx)3 by a formula of Jacobi (Theorem 357 of

[18]). �
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2.9. Convergence of the dihedral highest weight to the affine one. In
this subsection, we prove the convergence of the dihedral highest weight to the

conditioned space-time Brownian motion {A(µ)
t , t ≥ 0} that we have used before.

Let 0 ≤ µ ≤ 1 and m ≥ 1. We consider the planar Brownian motion W (m/π,µ)

and

Λm(t) = Pmw0
W (m/π,µ)(t).

Theorem 2.45. As a process, {τmΛm(t), t ≥ 0} converges in law to {A(µ)
t , t ≥ 0}

when m tends to +∞.

We will prove this theorem after the following proposition. Let {Zt, t ≥ 0},
be the conditioned Brownian motion in [0, 1] starting from µ (as defined in 5.1).

Proposition 2.46. For m ∈ N, let Xm
t , t ≥ 0, be the R2-valued continuous

process such that Xm
m2t is the conditioned planar Brownian motion in the cone

Cm, with drift γm = m2eiπµ/m where 0 ≤ µ ≤ 1. One writes in polar coordinates

Xm
t = Rmt exp iπθmt ,

Rmt > 0, θmt ∈ [0, 1/m]. Then, when m tends to +∞, as processes, mθmt tends to
Z1/π2t, R

m
t → t.

Proof. As shown in Appendix 5.2, Xm
m2t, t ≥ 0, is a radial multidimensional

Dunkl process with drift. and Rmm2t is a Bessel process of dimension 2(m + 1)

with drift m2, starting from 0. In other words, one can write

(Rmm2t)
2 = (m2t+B

(1)
t )2 + · · ·+ (B

(2(m+1))
t )2

whereB
(1)
t , · · · , B(2(m+1))

t are independent standard real Brownian motions. Since

E(

2(m+1)∑
k=1

(B
(k)
t/m2)2) = 2t(m+ 1)/m2

tends to 0 as m tends to +∞, Rmt converges to t in L1. It is shown in Gallardo
and Yor [17] that the process Yt = Xm

m2t has the time inversion property, in the

sense that tY1/t is the conditioned planar Brownian motion in C̄m without drift
but starting from the drift γm. Using its skew product decomposition, one can
write

πθmm2t = σmamt , with amt =

∫ +∞

t

1

(Rm
m2s

)2
ds,

where the process σmt is a solution of the following stochastic differential equation

dσmt = dBt +m cot(mσmt )dt

where B is a Brownian motion independent of Rm and σm0 = µπ/m (see Demni
[13]). One remarks that Zt = m

π σ
m
tπ2/m2 satisfies to

dZt = dβt + π cot(πZt)dt(2.23)

for another Brownian motion β, and is therefore the conditioned Brownian mo-
tion in [0, 1] starting from µ (see Appendix 5.1). As m tends to +∞, amt/m2 is

equivalent to 1/tm2. Therefore mθmt = m
π σ

m
am
t/m2

converges to Z1/tπ2 . �
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Proof of Theorem 2.45. Let Xm
t = 1

mπΛm(π2t). Since

1

mπ
W

(m/π,µ)
π2m2t

= (βt +m2t, Bt +mµπt),

one sees that Xm
m2t is the conditioned planar Brownian motion in the cone Cm

with a drift equivalent to m2eiπµ/m. One writes its polar decomposition as
Xm
t = Rmt exp iπθmt . Using the continuity of the solution of (2.23) with respect

to the initial condition, we see that Proposition 2.46 also holds when the drift
γm is only equivalent to m2eiπµ/m. Therefore mθmt tends to Z1/tπ2 and Rmt tends
to t and the process

τmΛm(t) = (π2Rmt/π2 cos(πθmt/π2),mπRmt/π2 sin(πθmt/π2)), t ≥ 0,

converges in law to (t, tZ1/t), t ≥ 0, equal in law to A(µ) by Theorem 5.7. �

3. Representation of the conditioned Brownian motion in [0, 1]

Let us first recall some notions of the introduction. For a continuous real path
ϕ : R+ → R, such that ϕ(0) = 0, we have defined

L1ϕ(t) = ϕ(t)− inf
0≤s≤t

ϕ(s),

P1ϕ(t) = ϕ(t)− 2 inf
0≤s≤t

ϕ(s),

and L0 = TL1T,P0 = TP1T , where Tϕ(t) = t− ϕ(t). Let Bµ
t = Bt + tµ, t ≥ 0.

The theorem stated in the introduction is

Theorem 3.1. Let µ ∈ [0, 1]. For any t > 0, almost surely,

lim
n→∞

tLn+1Pn · · · P1P0B
µ(1/t) = lim

n→∞
tLn+1Pn · · · P2P1B

µ(1/t) = Zt,

where Zt, t ≥ 0, is the Brownian motion conditioned to stay in the interval [0, 1]
forever, starting from Z0 = µ.

Proof. The proof is just the juxtaposition of the theorems ??, 2.37 and 5.7. �

Remark that one also have that, for t > 0, a.s.,

lim
n→∞

tPn · · · P1P0B
µ(1/t) + (−1)n2 = Zt,

which clearly shows the need of a correction for the Pitman transforms. As an
illustration let us show that:

Proposition 3.2. When 0 < µ < 1 and Z0 = µ, there is a standard Brownian
motion β and a stopping time τ > 0 a.s. for β such that for 0 ≤ t ≤ τ ,

Zt = βt + µ+ tDµ(∞).

Proof. For σ given by Proposition 2.27, for t > σ, L(µ)(t) = L(µ)(∞) hence

A
(µ)
t = B

(µ)
t + L(µ)(∞), which implies the representation for τ = 1/σ, since

(t, tZ1/t) = A
(µ)
t . �

Notice that, by (2.22), E(Dµ(∞)) = π cotπµ as expected from the generator
1
2d

2/dx2 + (π cotπx)d/dx of Zt.
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4. Some asymptotics for representations of the affine algebra A
(1)
1

As we said in the introduction, there are strong links between what we have

done and the affine Kac-Moody Lie algebra A
(1)
1 . In this section we will see that

quantities we have met also occur in the description of some semi-classical limits

of highest representations of A
(1)
1 . In particular a Duistermaat Heckman measure

is given by the conditional law of the space-time Brownian motion knowing the
highest weight process. The asymptotic behaviour of the infinity crystal B(∞)
of Kashiwara, for large weights is given by the Verma affine string coordinates
ξ(∞).

4.1. The Kac-Moody algebra A
(1)
1 . We consider the affine Lie algebra A

(1)
1 .

For our purpose, we only need to consider a realization of a real Cartan subal-
gebra. We introduce, as in the introduction

hR = SpanR{c, α̃1, d}, h∗R = SpanR{Λ0, α1, δ},

where c = (1, 0, 0), α̃1 = (0, 1, 0), d = (0, 0, 1), and Λ0 = (1, 0, 0), α1 = (0, 2, 0),
δ = (0, 0, 1). We let α̃0 = (1,−1, 0) and α0 = (0,−2, 1), so that c = α̃0 + α̃1 and
δ = α0 +α1. Notice that these α0 and α1 project on the ones given in 2.2 by the
projection on h∗R/Rδ, identified with RΛ0 ⊕ Rα1, and thus also with the space
V = R2 of Section 2. Usually α0, α1 are called the two positive simple roots of

A
(1)
1 and α̃0, α̃1 their coroots. One considers the set of integral weights

P = {λ ∈ h∗R : λ(α̃i) ∈ Z, i = 0, 1},

and the set of dominant integral weights

P+ = {λ ∈ h∗R : λ(α̃i) ∈ N, i = 0, 1}.

For a dominant integral weight λ one defines the character of the irreducible

highest-weight representation V (λ) of A
(1)
1 with highest weight λ, as a formal

series

charλ =
∑
β∈P

dim(Vβ(λ))eβ,(4.1)

where Vβ(λ) is the weight space of V (λ) corresponding to the weight β. If we

let eβ(h) = eβ(h), for h ∈ hR, and evaluate this formal series at h, the series
converges absolutely or diverges, and it converges when δ(h) > 0. For more
details about affine Lie algebras and their representations, we refer to Kac [24].

4.2. A Duistermaat Heckman measure. A way to define the Duistermaat
Heckman measure for a semi-simple complex Lie algebra, is as an approximation
of the distribution of the weights of an irreducible representation when its highest
weight is large (see Heckman [20]). Let us explain how the same approach is

possible in A
(1)
1 . Let r ≥ 1, for a dominant integral weight λr, and hr ∈ hR such

that δ(hr) > 0, we define a measure γr on h∗R, letting

γr =
∑
β∈P

dim(V (λr)β)eβ(hr) δβ/r,(4.2)

where δβ/r is the Dirac measure at β/r.
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Proposition 4.1. Let µ ∈ [0, 1], (t, x) ∈ Caff, and {λr, r ∈ N∗} be a sequence

of dominant weights such that

lim
r→+∞

λr/r = tΛ0 + x
α1

2
,

and hr = 1
r (µα̃1 + 2d). As r →∞, for τ ∈ R, u ≥ 0.∫

h∗R

eβ(τα̃1+ud) γr(dβ) ∼
√

2(2 + u)

πr
e

rπ2

2(2+u)
+(τ+µ)x

ϕ 2(τ+µ)
2+u

(
(2 + u)t

2
,
(2 + u)x

2
).

Proof. One has for any v ∈ h,∫
h∗R

eβ(v) γr(dβ) = charλr(
v

r
+ hr).

When λ = nΛ0 + mα1
2 , with (m,n) ∈ N2 such that 0 ≤ m ≤ n, a ∈ R, and

b ∈ R∗+, the Weyl-Kac character formula implies that

charλ(aα̃1 + bd) =

∑
k∈Z sinh(a(m+ 1) + 2ak(n+ 2))e−b(k(m+1)+k2(n+2))∑

k∈Z sinh(a+ 4ak)e−b(k+2k2)
,

(see Kac [24]). So for v = τα̃1 + ud, one has immediately that the numerator of
the character chλr(

v
r + hr) converges, when r goes to infinity, towards

e(τ+µ)x sin(
2π(τ + µ)

2 + u
)ϕ 2(τ+µ)

2+u

(
(2 + u)t

2
,
(2 + u)x

2
).

Besides Lemma 2.41 implies that the denominator of the character is equivalent
to √

πr√
2(2 + u)

e
− 1

2(u+2)
rπ2

sin(
2π(τ + µ)

u+ 2
),

which finishes the proof. �

By taking u = 0 we obtain

Corollary 4.2. For τ ∈ R,

lim
r→+∞

1

charλr(hr)

∫
h∗R

eτβ(α̃1) γr(dβ) = eτx
ϕτ+µ(t, x)

ϕµ(t, x)
.

We denote by νr the probability measure on h∗R given by

νr =
1

charλr(hr)
γr.

From the next theorem we see that the conditional measure of Theorem 2.40 can
be interpreted as a kind of normalized Duistermaat Heckman measure.

Theorem 4.3. Under the hypotheses of Proposition 4.1, the sequence of the
push forward probabilities of {νr, r ≥ 1} by the quotient map from h∗R to h∗R/Rδ
converges to the law of B

(µ)
t conditionally to Λ

(µ)
t = (t, x) when r goes to infinity.

Proof. This follows from the corollary and Theorem 2.40. �

Remark 4.4. Let FrΛ0 +Grα1 +Hrδ be a random variable in h∗R with law νr.
From the theorem, as r tends to infinity, Fr tends to the constant t, and Gr
converges in law. But Hr tends to −∞, as follows from Proposition 4.1 with
s = 0 and u ≥ 0.
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For a compact connected Lie group, the Duistermaat Heckman measure also
appears as the pushforward measure of the Liouville measure on a coadjoint
orbit by the projection on a Cartan subalgebra. Frenkel has shown in [16] that
the law of a Brownian motion on su(2) indexed by the time in [0, 1], given
the orbit of the endpoint of its wrapping on SU(2) under conjugacy, plays the
role of a normalized Liouville measure on a coadjoint orbit of the loop group
L(SU(2)). Identifying su(2) and its dual, the probability measure appearing
as a limit measure in Theorem 4.3 is actually the projection of this law on a
Cartan subalgebra of su(2) (see Frenkel [16] and also Defosseux [12]). It is the
Duistermaat-Heckman measure corresponding to the action of the torus of SU(2)
on the coadjoint orbit through (t, x).

4.3. Asymptotics for the crystal B(∞) of A
(1)
1 . The infinity crystal B(∞)

of Kashiwara ([25]) is the crystal of the Verma module with highest weight 0 of

A
(1)
1 . This crystal is important since any irreducible highest weight crystal may

be obtained from B(∞). It is shown in Nakashima and Zelevinski ([30]) that
using string parametrizations, a realization of B(∞) is given by

B(∞) = {x ∈ NN; for some n ∈ N∗,
x1

1
≥ x2

2
≥ · · · ≥ xn

n
> 0, xk = 0 for k > n}.

Notice that the only condition on x0 is x0 ∈ N. For x ∈ B(∞), we let

σ(x) =
n∑
k=0

xkαk ∈ h∗R,

when xk = 0 for k > n. Then −σ(x) is the weight of x in the crystal B(∞) (see
[30]). For ρ̃ = 2d+ α̃1/2, we define

s(x) =

+∞∑
k=0

xk = σ(x)(ρ̃).

The character char∞ of the Verma module of highest weight 0 is defined as in
(4.1), and

char∞ =
∏
β∈R+

(1− e−β)−1,(4.3)

where

R+ = {αi + nδ, i = 0, 1, n ∈ N} ∪ {nδ, n ∈ N∗}(4.4)

are the so called positive roots of A
(1)
1 (see Kac [24], (9.7.2)). As previously, if we

let eβ(h) = eβ(h), for h ∈ hR, and evaluate the formal character at h, it converges
if and only if δ(h) > 0. Let r ∈ R∗+. On each element x of the crystal B(∞) we

put the Boltzman weight e−s(x)/r. We introduce the probability distribution βr
on B(∞) by

βr({x}) =
e−s(x)/r

Zr
, x ∈ B(∞),

where

Zr =
∑

x∈B(∞)

e−s(x)/r = char∞(ρ̃/r).
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Since B(∞) is a Borel subset of Γ we may consider βr as a probability on Γ. The
following theorem indicates that the affine Brownian model describes a kind of

continuous version of the infinity crystal B(∞) for the affine Lie algebra A
(1)
1 .

Theorem 4.5. Let X(r) ∈ Γ, r ∈ N, be random variables with distribution βr.
Then X(r)/r converges in distribution on Γ to the Verma parameter ξ(∞) of

B(1/2).

Proof. We use the results on anti-lecture hall compositions recalled in 5.5. Let

us first prove that X
(r)
1 /r converges in law to ξ1(∞). For q = e−1/r, it follows

from (5.8), (5.9) that, for a ≥ 0,

P(X
(r)
1 ≤ ar) =

∑
{x∈B(∞);x1≤ar} q

s(x)∑
{x∈B(∞)} q

s(x)
=

∑
{λ∈A∞;λ1≤ar} q

|λ|∑
{λ∈A∞} q

|λ|

=
1

1− q
(q; e−aq2)∞(e−aq; e−aq2)∞(e−aq2; e−aq2)∞.

where (p; q)∞ =
∏∞
n=0(1−pqn). Since (q; e−aq2)∞ is equivalent to (1−q)(e−a; e−a)∞

one has, by Proposition 2.44

lim
r→∞

P(X
(r)
1 ≤ ra) = (e−a; e−a)3

∞ =
∞∏
n=1

(1− e−na)3 = P(ξ1(∞) ≤ a).

So X
(r)
1 /r converges to ξ1(∞). We now consider the full sequence X

(r)
k /r, k ∈ N.

First it is clear that X
(r)
0 /r converges in law to ξ0(∞). For any r and n ≥ 1, one

has

X
(r)
1

1
≥ X

(r)
2

2
≥ · · · ≥ X

(r)
n

n
,

which implies that for any n ∈ N, the collection of laws of (1
rX

(r)
1 , · · · , 1

rX
(r)
n )r>0

is tight since X
(r)
1 /r converges in law. By Cantor’s diagonal argument, we con-

struct an increasing sequence ϕ(r) ∈ N, r ∈ N, such that the sequence of random

variables ( 1
ϕ(r)X

(ϕ(r))
k , k ≥ 0) converges in finite dimensional distribution when r

goes to infinity. Let us denote by (Rk, k ≥ 0) the limit, and let us first prove that

{Rkk −
Rk+1

k+1 , k ≥ 1} has the same distribution as {2εk/k(k+1), k ≥ 1} where (εk)

are independent exponential random variables with parameter 1. For x ∈ B(∞),
one has, since s(x) = x0 + 1

2

∑+∞
k=2(kxk−1 − (k − 1)xk),

P(X(r) = x) =
1

char∞(1
r ρ̃)

e−
1
r
x0

∞∏
k=2

e−
1
2r

(kxk−1−(k−1)xk)1{xk−1
k−1

≥xk
k
}

=
1

char∞(1
r ρ̃)

e−
1
r
x0

∞∏
k=1

e−
k+1
2r

(xk−d k
k+1

xk+1e)e−
1
2r

(kd k−1
k
xke−(k−1)xk)1{xk≥dk

xk+1
k+1
e},

where d·e is the ceiling function. As for k = 1, · · · , n,

e−
k
2r ≤ e−

1
2r

(kd k−1
k
xke−(k−1)xk) ≤ 1,
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one obtains for n ∈ N and t0, · · · , tn ∈ R+,

C(r, n)(1 + o(
1

r
)) ≤

P(X
(r)
0 ≤ t0, · · · , X(r)

n − d n
n+1X

(r)
n+1e ≤ tn)

P(Y
(r)

0 ≤ t0, · · · , Y (r)
n ≤ tn)

≤ C(r, n),

where C(r, n) is independent of t0, · · · , tn, and tends to 1 when r tends to +∞,

where Y
(r)

0 and Y
(r)
k , k = 1, · · · , n, are independent geometric random variables

with values in N, and Y
(r)

0 with parameter 1 and Y
(r)
k with parameter e−

k+1
2r ,

when k ≥ 1. This proves that for any n,

1

r
X

(r)
0 ,

1

r
(X

(r)
k − d

k

k + 1
X

(r)
k+1e), 1 ≤ k ≤ n,

converges jointly towards ε0,
2

k+1εk, 1 ≤ k ≤ n, when r goes to infinity. Besides

lim
r→∞

1

ϕ(r)
(X

(ϕ(r))
k − d k

k + 1
X

(ϕ(r))
k+1 e) = Rk −

k

k + 1
Rk+1.

Thus, for k ≥ 1, Rk− k
k+1Rk+1 are independent random variables with the same

law as 2
k+1εk. The positive sequence Rk/k is decreasing. Let S be its limit. We

have the identity in law, for all k ≥ 1,

Rk
k

=
+∞∑
n=k

2εn
n(n+ 1)

+ S.

We have proved that in law R1 = ξ1(∞), so S = 0 which finishes the proof. �

Recall (Corollary 2.42) that L(1/2)(∞) = (0, D1/2(∞)) where the density of

D1/2(∞) is 1/(π coshx).

Proposition 4.6. When r goes to infinity, in law,

(1) The normalized weights σ(X(r))/r converges to L(1/2)(∞) in the quotient
space h∗R/Rδ.

(2) The coordinate of σ(X(r))/r along δ goes to +∞.

Proof. One has for any u ∈ hR,

E(e−σ(X(r))(u)) =
char∞(u+ ρ̃/r)

char∞(ρ̃/r)
.

In view of (4.4), the expression (4.3) of the character gives the Laplace transform

of σ(X(r)) and shows that, in distribution,

σ(X(r)) =
∑
n≥0

(G0(n)(α0 + nδ) +G1(n)(α1 + nδ) +G2(n)(n+ 1)δ),

where Gi(n), i = 0, 1, 2, and n ∈ N, are independant random variables such that
G0(n), G1(n) and G2(n), are geometrically distributed with respective parameter

e−(α0+nδ)(ρ̃/r), e−(α1+nδ)(ρ̃/r), and e−(n+1)δ(ρ̃/r), i.e. with respective parameter
e−2(n+1/2)/r, e−2(n+1/2)/r and e−2(n+1)/r. The proposition follows easily. �

Notice that, due to the need of the Lévy correction, the formal expression

σ(limr→+∞
X(r)

r ) is not equal to limr→+∞ σ(X
(r)

r ), mod δ.
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5. Appendix

5.1. The conditioned Brownian motion in [0, 1]. We recall some well known
facts about the Brownian motion conditioned to stay forever in the interval
[0, 1]. It first appeared in Knight ([27]), called there the Taboo process, as the
limit when t tends to ∞ of the standard Brownian motion starting in (0, 1),
conditioned to reach the boundary after time t. To define it rigorously, consider

the Brownian motion in [0, 1] killed at the boundary. Its generator is 1
2
d2

dx2
with

Dirichlet boundary condition. Its maximal eigenvalue is −π2/2 with positive
eigenvector

h(x) = sin(πx),

called the ground state. We consider the associated h-Doob process {Zt, t ≥ 0}.
It is the Markov process with transition probability density qt(x, y) given when
x, y ∈ (0, 1) by

qt(x, y) =
sin(πy)

sin(πx)
eπ

2t/2ut(x, y),(5.1)

where ut(x, y) is the transition probability density of the killed Brownian motion.

Definition 5.1. We call (Zt) the conditioned Brownian motion process in [0, 1].

It can also be viewed as the diffusion in [0, 1] with generator

1

2

d2

dx2
+ π cot(πx)

d

dx
.

It is well known (and follows from the reflection principle), that, for x, y ∈ (0, 1),

ut(x, y) =
∑
k∈Z

(pt(x+ 2k, y)− pt(−x− 2k, y)),(5.2)

where pt is the standard heat kernel ([23]). Using the Poisson formula, or the
spectral decomposition of the generator, one has,

ut(x, y) =
∑
n∈Z

sin(nπx) sin(nπy)e−π
2n2t/2.(5.3)

By scale function techniques, one sees that 0 and 1 are entrance non–exit bound-
aries. In other words, (Zt) can be started from the boundaries and does not touch
them at positive time. Let us remark that (Zt) can also be defined by the lati-
tude of the Brownian motion on the 3-dimensional sphere (see Ito and McKean
[23], Section 7.15) or by the argument of an eigenvalue of the Brownian motion
in SU(2). The boundaries behaviour is also clear from this description.

The entrance density measure starting from 0 is the limit of qt(x, y) when x
tends to 0, which is for y ∈ (0, 1), by (5.3),

qt(0, y) = sin(πy)
∑
n∈Z

n sin(nπy)e−
t
2
π2(n2−1).(5.4)

Another interpretation of Z is given by the distance between two non colliding
Brownian motions on a circle (see Hobson and Werner [21]).
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5.2. The conditioned planar Brownian motion in a dihedral cone. It
is intuitively given by the two dimensional Brownian motion with drift starting
from 0 conditioned to stay in the cone Cm forever. It is rigorously defined in 5.1
of [4] for a planar Brownian motion without drift. The definition when there is
a drift is the following. We recall (see Section 2.7) that for v = (x, y) ∈ R2,

hm(v) = hm(x, y) = =((x+ iy)m).

and, for γ ∈ C̄m
ψmv (γ) =

∑
w∈I(m)

(−1)l(w)e〈w(γ)−γ,v〉.

For x, y ∈ Cm, let

rt(x, y) =
ψmγ (y)

ψmγ (x)
vγt (x, y),

where vγt is the semi group density of the standard planar Brownian motion with
drift γ killed at the boundary of Cm.

Definition 5.2. The conditioned planar Brownian motion A
(γ)
m in the dihedral

cone Cm with drift γ ∈ C̄m, is the continuous Markov process with values in
Cm ∪ {0} with transition probability density rt(x, y) for x, y ∈ Cm, such that

A
(γ)
m (0) = 0, and with entrance probability density at time t proportional to, for

x ∈ Cm,

hm(x)
ψmγ (x)

hm(γ)
e−

1
2t
〈x,x〉.

In the definition above, ψmγ (x)/hm(γ) is obtained by analytical continuation
when hm(γ) = 0.

Proposition 5.3. Let W (γ) be the planar Brownian motion with drift γ ∈ C̄m
starting from the origin. The process Pmw0

W (γ) has the same law as A
(γ)
m .

Proof. This is proved in Biane et al. [4] when γ = 0. For 0 < t1 < · · · < tn, and
a bounded measurable function F : Rn → R, the Cameron–Martin formula gives

E(F (A(γ)
m (t1), . . . , A(γ)

m (tn)) = E(F (A(0)
m (t1), . . . , A(0)

m (tk))e
− 1

2
〈γ,γ〉tn+〈γ,W (0)

tn
〉).

By Theorem 5.5 of [4], this is equal to

kE(F (A(0)
m (t1), . . . , A(0)

m (tn))e−
1
2
〈γ,γ〉tn ψmγ (A

(0)
m (tn))

hm(γ)hm(A
(0)
m (tn))

e〈γ,A
(0)
m (tn)〉),

where k is a constant. This implies easily the proposition. �

Another quick manner to define rigorously A
(γ)
m is to use Dunkl processes

with multiplicity one and the approach given by Gallardo and Yor in [17]. One
considers the Dunkl Laplacian associated with I(m) given, for f ∈ C2(R2), by

∆̃f = ∆f + 2
∑
α∈R+

〈∇f(x), α〉
〈α, x〉

− f(x)− f(σαx)

〈α, x〉2

where σα is the reflection with respect to {x ∈ R2, 〈x, α〉 = 0}, ∆ is the Laplacian
and ∇ the gradient. Roesler and Voit ([36], Section 3) show that for any γ ∈ R2,

there exists a cad-lag process Xγ(t), t ≥ 0, with generator ∆̃/2 such that Xγ(0) =
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γ. Let p : R2 → C̄m be the projection where C̄m is identified with R2/I(m). Then
(Roesler Voit, Theorems 4.10, 4.11) X̄γ(t) = p(Xγ(t)) is a continuous process
and its norm is a Bessel process of dimension 2(m + 1). According to Gallardo
and Yor ([17], Section 3.3), the conditioned Brownian motion in Cm with drift
γ ∈ C̄m, starting from 0 is defined as tX̄γ(1/t). Its probability transitions are

given by (25) of [17], which shows that it coincides in law with A
(γ)
m .

5.3. The conditioned space-time Brownian motion in Caff. Let (Bt) be

the standard real Brownian motion and B
(µ)
t = (t, Bt + µt) be the space time

Brownian motion with drift µ. We will define rigorously the process A
(µ)
t , t ≥ 0,

which is the process B(µ) conditioned to stay forever in the affine cone Caff =
{(t, x) ∈ R+ × R+ : 0 < x < t} starting from (0, 0). It has been introduced and
studied in Defosseux [10, 11, 12].

We suppose that µ ∈ [0, 1]. Let {K(µ)
t , t ≥ 0} be the space-time process B

(µ)
t

killed at the boundary of C̄aff. This is the process in the cone with generator
∂
∂t + 1

2
∂2

∂x2
+ µ ∂

∂x and Dirichlet boundary condition.

Proposition 5.4. The function ϕµ defined in (2.17) is a space-time non negative

harmonic function for the killed process K(µ) on Caff, vanishing on its boundary.

Proof. The harmonicity is clear by computation. The boundary condition ϕµ(t, 0)
= 0, resp. ϕµ(t, t) = 0, follows from the change of variable from k in −k, resp. k
in −1− k. Positivity follows for instance from the lemmas 2.38 and 2.39. �

Using the Cameron-Martin formula and Defosseux ([11], Proposition 2.2), one
obtains that, if we write Kµ

t = (t,Kµ
t ), the density wµt ((r, x), (t + r, .)) of Kµ

t+r

given Kµ
r = x is

wµt ((r, x), (t+ r, y)) =eµ(y−x)− t
2
µ2w0

t ((r, x), (t+ r, y))(5.5)

=
∑
k∈Z

e−2(kx+k2r)(eµ(2kr+x)pµt (x+ 2kr, y)

− e−µ(2kr+x)pµt (−x− 2kr, y)),

where pµt is the standard heat kernel with a drift µ. For 0 ≤ µ ≤ 1, let {A(µ)
t , t ≥

0} be the Markov process in Caff ∪{(0, 0)} such that, if we write A
(µ)
t = (t, Aµt ),

the law of Aµt+r given Aµr = x has the density

sµt ((r, x), (r + t, y)) =
ϕµ(r + t, y)

ϕµ(r, x)
wµt ((r, x), (r + t, y)),(5.6)

for (r, x), (r + t, y) ∈ Caff, such that A
(µ)
0 = (0, 0) and with entrance density

given for (t, y) ∈ Caff by

sµt ((0, 0), (t, y)) = ϕµ(t, y) sin(
y

t
π)e−

1
2t

(y−µt)2 .(5.7)

Definition 5.5. For 0 ≤ µ ≤ 1, the process {A(µ)
t , t ≥ 0} is the space-time

Brownian motion conditioned to stay in Caff.

Recall that ut, resp. qt, is the transition probability density of the killed Brow-
nian motion in [0, 1], resp. of Z (see (5.1)).
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Lemma 5.6. For 0 < r ≤ t,

u1/r−1/t(y/t, x/r)e
− 1

2t
y2 = w0

t−r((r, x), (t, y))e−
1
2r
x2 , for 0 ≤ x ≤ r, 0 ≤ y ≤ t,

qt(x, y) = ct sin(πy)e−
1
2t

(y−x)2ϕx(1/t, y/t), for 0 ≤ x, y ≤ 1.

Proof.

u1/r−1/t(y/t, x/r) =
∑
k∈Z

(p1/r−1/t(y/t+ 2k, x/r)− p1/r−1/t(−y/t− 2k, x/r))

=
∑
k∈Z

pr(0, x)

pt(0, y + 2kt)
(pt−r(x, y + 2kt)− pt−r(x,−y − 2kt))

=
pr(0, x)

pt(0, y)

∑
k∈Z

e−2kx−2k2r(pt−r(x+ 2kt, y)− pt−r(−x− 2kr, y)),

which gives the first equality, by identity (5.5). The second one follows from
Lemma 2.41 and (5.3). �

Theorem 5.7. For µ ∈ [0, 1], the processes {A(µ)
t , t > 0} and {(t, tZ1/t), t > 0},

where Z starts from µ, are equal in law.

Proof. We let Xt = tZ1/t, t > 0. For 0 < t1 < · · · < tn, the quantity P(Xt1 ∈
dx1, · · · , Xtn ∈ dxn) is equal to

q 1
tn

(µ,
xn
tn

)q 1
tn−1

− 1
tn

(
xn
tn
,
xn−1

tn−1
) · · · q 1

t1
− 1
t2

(
x2

t2
,
x1

t1
) dx1 · · · dxn.

We conclude by using the Lemma 5.6. �

This implies that A
(µ)
t is really in the interior of the cone for t > 0.

5.4. A property of Pitman transform for piecewise C1 paths. As men-
tioned in the introduction, the need of an infinite number of Pitman transforms to
represent the space-time Brownian motion in Caff is due to its wild behaviour.
The situation is much simpler for regular curves, as shown by the following
proposition (recall that paths in C̄aff are fixed under the Pitman transforms).

Proposition 5.8. Let π : [0, T ] → R and η(t) = (t, π(t)) be a continuous
piecewise C1 path such that π(0) = 0. There is an n such that for all t ∈ [0, T ],

Pαn · · · Pα1Pα0η(t) ∈ C̄aff.

We use the notations of Section 3. It is equivalent to prove that there is an
n > 0 such that

0 ≤ Pn · · · P1P0π(t) ≤ t,
for all t ∈ [0, T ]. Let τ1(π) = inf{t > 0;π(t) < 0}, τ0(π) = inf{t > 0;π(t) > t},
and let |π′| be the supremum of the left and right derivatives of π on [0, T ].

Lemma 5.9. (1) |(P1π)′| ≤ |π′|, and |(P0π)′| ≤ 2 + |π′|.
(2) When 0 ≤ t ≤ τ1(π) ∧ τ0(π), P1π(t) = P0π(t) = π(t).
(3) There is an n > 0 such that 0 ≤ (Pn · · · P2P1π)′(0) ≤ 1.

Proof. (1) and (2) are straightforward. For (3): if s0 and s1 are given by s0(x) =
−x and s1(x) = 2− x, then (Piπ)′(0) = siπ

′(0), for i = 0, 1 and it is well known
that one can bring any real into [0, 1] be the actions of s0 and s1. �
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Lemma 5.10. Proposition 5.8 holds when τ1(π) ∧ τ0(π) > 0.

Proof. We first suppose that τ0(π) < τ1(π). Let π1 = P0π, π2 = P1π1, π3 =
P0π2, · · · and a1 = τ0(π), a2 = τ1(π1), a3 = τ0(π2), · · · . By (1) of Lemma 5.9,
|π′n| ≤ |π′|+ 2n. Since π2n(a2n) = 0, π2n(a2n+1) = a2n+1, we obtain by the mean
value theorem that

a2n+1 − a2n ≥
a2n+1

|π′|+ 4n

and so the increasing sequence an is bigger that T for n large enough. When
τ0(π) > τ1(π), then τ0(π1) > τ1(π1) and we apply the same proof to π1, beginning
by applying P1. �

Proof of Proposition 5.8. Using (3) of Lemma 5.9 one can suppose that 0 ≤
π′(0) ≤ 1.When 0 < π′(0) < 1, then τ1(π) ∧ τ0(π) > 0 and we can apply Lemma
5.10. If π′(0) = 1, let γ = P0π. Then γ′(0) = 1, and γ(t) ≤ t for t ≥ 0. In
that case τ0(γ) ≥ T , and τ1(γ) > 0. Indeed otherwise there is a sequence tn
decreasing to 0 such that γ(tn) ≥ 0n and γ′(0) is not 1. So we can also apply
Lemma 5.10. The case π′(0) = 0 is similar. �

5.5. Anti-lecture hall compositions. The set A∞ of anti-lecture hall com-
positions is defined in Corteel and Savage [7] as the set of sequence of integers
λ1, λ2, · · · such that, for some n ∈ N,

λ1

1
≥ λ2

2
· · · ≥ λn

n
> 0,

and λp = 0 when p > n. So we see that

A∞ = {(λ1, λ2, · · · ); (0, λ1, λ2, · · · ) ∈ B(∞)}.
For λ = (λ1, λ2 · · · , λn, 0, 0, · · · ) ∈ A∞, let |λ| =

∑n
k=1 λk. It is known, see

Corteel et al. [7, 8] and (1.2) and (1.3) in Chen et al. [6], that for 0 ≤ q < 1,∑
λ∈A∞

q|λ| =
(−q; q)∞
(q2; q)∞

,(5.8)

∑
λ∈A∞,λ1≤k

q|λ| =
(−q; q)∞(q; qk+2)∞(qk+1; qk+2)∞(qk+2; qk+2)∞

(q; q)∞
,(5.9)

where (a; q)∞ =
∏∞
n=0(1− aqn).
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M. D. : Université Paris Descartes, MAP5-UMR 8145, Paris, France
E-mail address: manon.defosseux@parisdescartes.fr


	1. Introduction
	2. Representation of the conditioned space-time real Brownian motion in the affine Weyl cone
	2.1. Pitman representation for the planar Brownian motion in the dihedral cone Cm
	2.2. Affine string parameter x of the space-time Brownian motion
	2.3. Affine Verma weight L()()
	2.4. Some technical results
	2.5. The highest weight process ()
	2.6. Representation using Pitman and Lévy's transforms
	2.7. The law of B()t conditionally to {()(s),st} 
	2.8. Remarks on the laws of L()() and 1()
	2.9. Convergence of the dihedral highest weight to the affine one

	3. Representation of the conditioned Brownian motion in [0,1] 
	4. Some asymptotics for representations of the affine algebra A(1)1
	4.1. The Kac-Moody algebra A1(1)
	4.2. A Duistermaat Heckman measure
	4.3. Asymptotics for the crystal B() of A1(1)

	5. Appendix
	5.1. The conditioned Brownian motion in [0,1]
	5.2. The conditioned planar Brownian motion in a dihedral cone
	5.3. The conditioned space-time Brownian motion in Caff 
	5.4. A property of Pitman transform for piecewise C1 paths
	5.5. Anti-lecture hall compositions

	References

