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PITMAN TRANSFORMS AND BROWNIAN MOTION IN THE

INTERVAL VIEWED AS AN AFFINE ALCOVE

PHILIPPE BOUGEROL AND MANON DEFOSSEUX

Abstract. Pitman’s theorem states that if {Bt, t ≥ 0} is a one-dimensional
Brownian motion, then {Bt−2 infs≤tBs, t ≥ 0} is a three dimensional Bessel
process, i.e. a Brownian motion conditioned in Doob sense to remain forever
positive. In this paper one gives a similar representation for the Brownian
motion in an interval. Due to the double barrier, it is much more involved
and only asymptotic. This uses the fact that the interval is an alcove of the
Affine Lie algebra A1

1.
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1. Introduction

The probability transition of the Brownian motion conditioned to stay positive
Rt, t ≥ 0, is the difference of two heat kernels. This is a consequence of the
reflection principle at zero. Pitman’s theorem ([32]) of 1994 gives the path
representation R = PB where B is a standard Brownian motion and

PBt = Bt − 2 min
0≤s≤t

Bs.

The transformation PB is written with the reflection at 0. The Brownian motion
Zt conditioned to stay in the interval [0, 1] forever can be seen at the Doob
transform of the Brownian motion with Dirichlet condition at 0 and 1. It is
classical that its probability transition is an alternating infinite sum which can
be obtained by applying successive principles of reflection at 0 and 1 (method of
images). It is therefore natural to ask ourself if Pitman’s theorem as an analogue
written with an infinite number of transformations at 0 and 1. The main result
of this article is to show that, at our surprise, this is not exactly true. A small
correction (a Lévy transform) has to be added. We give the precise statement
in Section 2.

The proof of our main result is given in Section 3. It uses only basic tools (no
knowledge on Kac Moody algebra is necessary) but is somewhat intricate. Many
notions that are used come from representation theory. We first now explain the
ideas behind the scene in this perspective because this theory has been a source
of inspiration and also as a reading guide for the paper.

An interval can be viewed as a fundamental alcove for the action of an affine
Weyl group. A key remark is that one can write Zt = tB(1/t) where (t, Bt) is
the space time real Brownian motion conditioned to 0 ≤ Bs ≤ s for any s ≥ 0.
This can be interpreted as a condition to stay in a Weyl chamber of the affine
Lie algebra A1

1.
Let us elaborate on this point of view, by first recalling the link between the

classical Pitman’s theorem and the Lie algebra sl2(C), through Littelmann path
theory. Let α be a positive root and V = Rα (identified with the real part of
the dual of the Cartan subalgebra).

Fix T > 0. A path π : [0, T ]→ V is a continuous function such that π(0) = 0.
It can be written as π(t) = f(t)α with f(t) ∈ R. Fix T > 0. An integral
path is a path such that 2f(T ), 2 mint≤T f(t) ∈ Z. A dominant path is a path
with values in the Weyl chamber, which is here R+α. For an irreducible highest
weight sl2(C)-module, one chooses an integral dominant path π defined on [0, T ],
such that π(T ) is its highest weight. A path realization of the crystal associated
to this module is the Littelmann module Bπ, which is the set of integral paths η
defined on [0, T ] such that Pαη = π, where Pα is the path transformation defined
by

Pαη(t) = (ϕ(t)− 2 inf
s≤t

ϕ(s))α,(1.1)

where η(t) = ϕ(t)α. One recognizes the Pitman’s transform.
In the case of theA1

1 affine Lie algebra, a realization of a real Cartan subalgebra
hR and of its dual h∗R is given by three dimensional vector spaces defined by

hR = SpanR{α̃1, c, d}, and h∗R = SpanR{Λ0, α1, δ},
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where α̃1 = (0, 1, 0), c = (1, 0, 0), d = (0, 0, 1), and Λ0 = (1, 0, 0), α1 = (0, 2, 0),
δ = (0, 0, 1). We let α̃0 = (1,−1, 0) and α0 = (0,−2, 1) so that δ = α0 + α1.
In the following one identifies the quotient space h∗R/Rδ, in which α0 + α1 = 0,
with RΛ0 ⊕ Rα1. The Weyl group is generated by the fundamental reflections
sαi , i = 0, 1, defined on h∗R/Rδ by sαi(v) = v− α̃i(v)αi. A fundamental chamber
for its action is the convex cone

Caff = {tΛ0 + xα1/2 : t, x ∈ R, s.t. 0 ≤ x ≤ t}.

A path η is now a continuous function defined on an interval [0, T ], with values
in h∗R/Rδ, such that η(0) = 0. One defines path transformations Pαi , i ∈ {0, 1},
by

Pαiη(t) = η(t)−min
s≤t

α̃i(η(s))αi, t ∈ [0, T ].

A dominant path is a path with values in Caff. As above, one can define integral
paths. For an integral dominant path π defined on [0, T ], the Littelmann paths
module generated by π is the set of integral paths η defined on [0, T ] such that
it exists n ∈ N such that

PαnPαn−1 · · · Pα1Pα0η = π,

where αn = α0 when n is even and αn = α1 when n is odd. This gives a
description of the crystal of highest weight π(T ) (see [29], [3]).

For an integral path η, and t ∈ [0, T ], and more generally for continuous
piecewise C1 path (see Proposition 5.6), there is a k ∈ N such that for all n ≥ k,

Pαn · · · Pα0η(t) = Pαk · · · Pα0η(t).

We let

Pη = lim
n→∞

Pαn · · · Pα0η.(1.2)

A Brownian motion conditioned to remain in an interval [0, 1] is equal in law,
up to a time inversion, to the space component of the space time Brownian
motion B(0) = {tΛ0 + Btα1/2, t ≥ 0}, conditioned to remain in Caff, where B
is a standard real Brownian motion (see Section 5). Thus it is natural to ask if
the limit of (1.2) exists when η is replaced by the space-time Brownian motion

B(0). We prove in this paper that the answer is no. Nevertheless one proves
that a slight modification converges to the space-time Brownian motion B(0)

conditioned to remain in the affine Weyl chamber Caff.
Let us explain the strategy of the proof. We have to understand the sequence

Pαn · · · Pα0B
(0).(1.3)

One can associate to any path η defined on [0, T ] a sequence of positive real
numbers called the affine string parameters of η, which when η is integral co-
incide with the string parameters of Kashiwara or Littelmann of the element
corresponding in the crystal, ([26],[29]). Let ξ(T ) = (ξi(T ))i∈N be the se-
quence of affine string parameters of the space-time Brownian motion with drift
B(µ) = {tΛ0 + (Bt + µt)α1/2, 0 ≤ t ≤ T}. One has

Pαn · · · Pα0B
(µ)(T ) = B(µ)(T ) +

n∑
i=0

ξi(T )αi.
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The point is the following: when 0 < µ < 1 the limits ξi = limT→+∞ ξi(T )
are well defined (we call them the Verma affine string parameters as they cor-
respond to the crystal B(∞)). Moreover their law can be expressed easily with
independent exponential random variables. The law of ξ(T ) can be deduced by
a truncation argument. Finally we prove that a.s.

PB(µ)(t) = B
(µ)
t + lim

n→∞

n−1∑
i=0

ξi(t)αi +
1

2
ξn(t)αn, t ≥ 0,(1.4)

and identify the limit.
Actually to prove these results we approximate the space time Brownian mo-

tion B(µ) by planar Brownian motions with proper drifts and the affine Weyl
group by finite dihedral groups I(m),m ≥ 1, whose positive Weyl chambers
are a wedge in R2 of dihedral angle π/m and use deeply the results of [3] in
this situation. Due to the need of the correction term the approximation is not
immediate.

The paper is organized as follows. In Section 2 we state the main result of the
paper. In Section 3.1 we recall the Pitman representation theorem for a planar
Brownian motion in a dihedral cone and give a precise description of the law of
the string and Verma string parameters. One studies their asymptotic behaviour
in Section 3.2 and obtains a description of the Verma affine string parameters
ξ = (ξk) of a space time Brownian motion. In Section 3.3 one proves that the
series

∑n
i=0 ξiαi up to a correcting term, converges. In Section 3.5 we prove the

almost sure convergence of (1.4). The limit, called the highest weight process is
shown to be the space time Brownian motion conditioned to remain in the affine
Weyl chamber Caff. One obtains in Section 3.6 a representation theorem for this
conditioned space-time Brownian motion by applying a last Lévy transform to
the iterates of Pitman’s ones. In Section 3.8 one makes some comments on the
distributions of the first string parameter ξ1 of the space time Brownian motion
and of its affine Verma weight.

In Section 4, we show how our results are related to highest weight represen-
tation of the affine Lie algebra A1

1. We consider a kind of Duistermaat Heckman
measure appearing as a semiclassical limit, and study the asymptotic of large
weights for the infinity crystal B(∞). Section 5 is an appendix where we define
the conditioned Brownian motion in the interal [0, 1] and the conditioned space-
time Brownian motion in the affine Weyl chamber and prove that the first one is
equal in law, up to a time inversion, to the space component of the second one.
Notice that approximation by finite dihedral group is very natural but unusual
in the study of A1

1.

2. Representation of the conditioned Brownian motion in [0, 1]

In this section we state the main result of this paper for the Brownian motion
in the interval [0, 1]. We consider, for a continuous path ϕ : R+ → R, such that
ϕ(0) = 0,

L1ϕ(t) = ϕ(t)− inf
0≤s≤t

ϕ(s)

P1ϕ(t) = ϕ(t)− 2 inf
0≤s≤t

ϕ(s),
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that we call the classical Lévy and and Pitman transform. The first occurs in the
representation of the reflected Brownian motion, the second in the representation
of the Brownian motion conditioned to remain positive.

Let Tϕ(t) = t − ϕ(t). We introduce the transformations L0 and P0 given by
TL0 = L1T and TP0 = P1T , namely

L0ϕ(t) = ϕ(t) + inf
0≤s≤t

(s− ϕ(s))

P0ϕ(t) = ϕ(t) + 2 inf
0≤s≤t

(s− ϕ(s)).

The Brownian motion with drift is Bµ
t = Bt + tµ, t ≥ 0, where Bt is the

standard Brownian motion with B0 = 0. We let Pn = P0 and Ln = L0 when n
is even and Pn = P1 and Ln = L1 when n is odd. The main result of this paper
is the following representation theorem.

Theorem 2.1. Let µ ∈ [0, 1]. For any t > 0, almost surely,

lim
n→∞

tLnPn−1 · · · P1P0B
µ(1/t) = lim

n→∞
tLnPn−1 · · · P2P1B

µ(1/t) = Zt

where {Zt, t ≥ 0} is the standard Brownian motion starting from µ, conditioned
to remain in [0, 1] forever (see Definition 5.1).

The proof is the juxtaposition of Theorem 3.37 and Theorem 5.5. We also
show that, a.s.,

lim
n→∞

tPn−1 · · · P1P0B
µ(1/t) + (−1)n = Z(t)

which clearly shows the need of a correction for the Pitman transforms. As an
illustration we prove that (see Proposition 3.45),

Proposition 2.2. When 0 < µ < 1, there is a standard Brownian motion W , a
stopping time σ > 0 for W and a random variable Dµ such that for 0 ≤ t ≤ σ,

Zt = µ+Wt + tDµ.

3. Representation of the conditioned space-time Brownian motion
in the affine Weyl cone

In order to represent the Brownian motion Z conditioned to stay in [0, 1], we
will linearize the problem and use the fact that Z is the space component of
the time inverted process of A(µ), where A(µ) is the space-time Brownian motion
conditioned to stay in an affine cone Caff (see Appendix 5.3). This process A(µ)

will be approached by the planar Brownian motion conditioned to remain in a
dihedral cone.

3.1. Pitman representation for the dihedral cone Cm. In this section we
describe the representation of the planar Brownian motion conditioned to stay
in a dihedral cone, using the results of [3],[4].

3.1.1. Dihedral Coxeter system. The dihedral group I(m), where m ∈ N, is the
finite group generated by two involutions s0, s1 with the only relation (s0s1)m =

1. In the two dimensional vector space V = R2 identified with its dual Ṽ , one
chooses two pairs (vm0 , ṽ

m
0 ), (vm1 , ṽ

m
1 ) in V × Ṽ , such that

ṽm0 (vm0 ) = ṽm1 (vm1 ) = 2,

ṽm0 (vm1 ) = ṽm1 (vm0 ) = −2 cos(π/m).
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Namely, one takes

vm0 = (2 sin(π/m),−2 cos(π/m)), vm1 = (0, 2),

and ṽm0 = vm0 /2, ṽ
m
1 = vm1 /2. The following two reflections sm0 , s

m
1 of R2,

smi (v) = v − ṽmi (v)vmi , v ∈ R2,

generate the group I(m). The usual scalar product on R2 is denoted by 〈., .〉,
with our convention ṽmi (v) = 〈vmi , v〉.

Definition 3.1. The convex dihedral cone Cm, with closure C̄m, is

Cm ={v ∈ R2; ṽmi (v) > 0, i = 0, 1}
={(r cos θ, r sin θ) ∈ R2, r > 0, 0 < θ < π/m}.

Let C0(R2) be the set of continuous path η : R+ → R2 such that η(0) = 0.
The following path transformation is introduced in [3].

Definition 3.2. The Pitman transform Pmsmi , i = 0, 1, is defined on C0(R2) by

the formula, for η ∈ C0(R2), t ≥ 0,

Pmsmi η(t) = η(t)− inf
t≥s≥0

ṽmi (η(s))vmi .

Notice that

Pmsmi η(t) = η(t)− inf
t≥s≥0

(id− smi )η(s).

Theorem 3.3 ([3]). Let w = smir · · · s
m
i1

be a reduced decomposition of w ∈ I(m)
with smi1 , · · · , s

m
ir
∈ {sm0 , sm1 }. Then

Pmw := Pmsimr · · · P
m
sim1

depends only on w and not on the chosen decomposition.

For each i ∈ N, when we write vmi , ṽ
m
i , s

m
i , · · · , we take i modulo 2. In I(m)

there is a unique longest word, namely

w0 = smm−1 · · · sm1 sm0 = smm · · · sm2 sm1 .(3.1)

Proposition 3.4 ([3]). For any path η ∈ C0(R2), the path Pmw0
η takes values in

the closed dihedral cone C̄m.

Let γ ∈ R2 and let W (γ) be the standard planar Brownian motion in R2 with
drift γ and identity covariance matrix, starting from the origin. The conditioned
planar Brownian motion in the cone Cm with drift γ ∈ C̄m rigorously defined
in [3], [4], is intuitively given by W (γ) conditioned to stay in Cm forever (see
Section 5.2). We first recall:

Theorem 3.5 ([3]). Let W (γ) be the planar Brownian motion with drift γ, where

γ ∈ C̄m. Then Pmw0
W (γ) is the conditioned planar Brownian motion in the cone

Cm with drift γ.
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3.1.2. String parameters in C0(R2). We fix an integer m ≥ 1. For simplicity of
notations, one chooses the decomposition

w0 = smm−1 · · · sm1 sm0
of the longest word w0 in I(m). Notice that here the roles of sm0 and sm1 are
symmetric. When η ∈ C0(R2), one defines in [3] new paths ηk ∈ C0(R2), 0 ≤ k ≤
m− 1, by η0 = η, and, for k ≥ 1,

ηk = Pmsmk−1
. . .Pmsm1 P

m
sm0
η,

called Pitman’s transforms of η. Let

xmk (t) = − min
0≤s≤t

ṽmk (ηk(s)).

Definition 3.6. Let η be a path in C0(R2) and

xm(t) = (xm0 (t), xm1 (t), · · · , xmm−1(t)).

We call xm0 (t), · · · , xmm−1(t) the string parameters of the path {η(s), 0 ≤ s ≤ t}.
When

lim
s→+∞

ṽm0 (η(s)) = lim
s→+∞

ṽm1 (η(s)) = +∞,(3.2)

we define the Verma string parameters xm0 , · · · , xmm−1 of η by

xmk = − min
0≤s<+∞

ṽmk (ηk(s)).

Notice that

Pmw0
η(t) = η(t) +

m−1∑
k=0

xmk (t)vmk .(3.3)

When (3.2) holds, then the Pitman transforms of η have the same property and
for all t ≥ 0 and 0 ≤ k ≤ m− 1,

0 ≤ xmk (t) ≤ xmk < +∞.(3.4)

Remark 3.7. For t ≥ 0, for all k = 0, · · · ,m− 1,

2xmk (t) = ṽmk (Pmsmk · · · P
m
sm0
η(t)− Pmsmk−1

· · · Pmsm0 η(t)).

Let, for 1 ≤ k < m,
amk = sin(kπ/m).

Definition 3.8. The cone Γm in Rm is defined as

Γm = {(x0, · · · , xm−1) ∈ Rm;
x1

am1
≥ x2

am2
≥ · · · ≥ xm−1

amm−1

≥ 0, x0 ≥ 0}.

For λ ∈ C̄m, the polytope Γm(λ) is

Γm(λ) = {(x0, · · · , xm−1) ∈ Γm; 0 ≤ xr ≤ ṽmr (λ−
m−1∑
n=r+1

xnv
m
n ), 0 ≤ r ≤ m− 1}.

Notice that the particular role of x0. The following proposition is proved in [4],
Section 5.1, for the string parameters, its extension to Verma ones is immediate.

Proposition 3.9 ([4], 5.1). The set of string parameters of paths in C0(R2) is
contained in Γm and the set of Verma string parameters is equal to Γm.
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3.1.3. String parameters of the planar Brownian motion. When γ ∈ Cm, the
planar Brownian motion W (γ) with drift γ satisfies (3.2) by the law of large
numbers, so its Verma string parameters are well defined:

Definition 3.10. Let γ ∈ C̄m. We denote with ξm(t) = (ξm0 (t), · · · , ξmm−1(t)),

the string parameters of {W (γ)
s , 0 ≤ s ≤ t} and with ξm = (ξm0 , · · · , ξmm−1) the

Verma string parameters of W (γ) when γ ∈ Cm.

Theorem 3.11. (i) When γ ∈ C̄m, for any t > 0, conditionally on the σ-algebra

σ(Pmw0
W (γ)(s), s ≤ t) the random variables ξmk (t), 0 ≤ k < m, are independent

exponentials with parameters γmk = 〈γ, vmk 〉 conditioned to be in Γm(Pmw0
W (γ)(t)).

(ii) When γ ∈ Cm, the random variables ξmk , 0 ≤ k < m, are independent
exponentials with parameters γmk = 〈γ, vmk 〉 conditioned to be in Γm.

Proof. It is shown in [4], Theorem 5.2, that when γ = 0, the law of ξm(t) condi-

tionally on Ft = σ(Pmw0
W (0)(s), s ≤ t) is, when Pmw0

W (0)(t) = λ, the normalized
Lebesgue measure on Γm(λ). It follows from (3.3) that

W
(0)
t = Pmw0

W (0)(t)−
m−1∑
k=0

ξmk (t)vmk .(3.5)

By the Bayes and the Cameron-Martin formulas, for any bounded measurable
ψ : C0(R2)→ R,

E(ψ(W (γ)
s ,0 ≤ s ≤ t)|Ft)

=
E(ψ(W

(0)
s , 0 ≤ s ≤ t)e〈γ,W

(0)
t 〉|Ft)

E(e〈γ,W
(0)
t 〉|Ft)

=
E(ψ(W

(0)
s , 0 ≤ s ≤ t)e〈γ,P

m
w0
W (0)(t)−

∑m−1
k=0 ξmk (t)vmk 〉|Ft)

E(e〈γ,P
m
w0
W (0)(t)−

∑m−1
k=0 ξmk (t)vmk 〉|Ft)

.

If we take ψ(W
(γ)
s , 0 ≤ s ≤ t) = F (ξm(t)) where F : Rm → R, and if dx is the

Lebesgue measure on Rm we obtain that

E(F (ξm(t))|Ft) =

∫
1

Γm(Pmw0
W

(γ)
t )

(x)F (x)e−
∑m−1
k=0 γmk xk dx∫

1
Γm(Pmw0

W
(γ)
t )

(x)e−
∑m−1
k=0 γmk xk dx

,

which proves (i). We suppose that γ ∈ Cm, so for any 0 ≤ k < m, ξmk =
limt→+∞ ξ

m
k (t). Therefore, when F is bounded and continuous,

E(F (ξm)) = lim
t→+∞

E(F (ξm(t)))

= lim
t→+∞

E(E(F (ξm(t))|Ft))

= lim
t→+∞

E(

∫
1

Γm(Pmw0
W

(γ)
t )

(x)F (x)e−
∑m−1
k=0 γmk xk dx∫

1
Γm(Pmw0

W
(γ)
t )

(x)e−
∑m−1
k=0 γmk xk dx

)

=

∫
1Γm(x)F (x)e−

∑m−1
k=0 γmk xk dx∫

1Γm(x)e−
∑m−1
k=0 γmk xk dx

,
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since, a.s., Pmw0
W

(γ)
t /t) converges to γ as t → +∞ and thus each ṽmr (Pmw0

W
(γ)
t )

tends to +∞. This proves (ii). �

Proposition 3.12. Let εn, n ∈ N, be independent exponential random variables
with parameter 1. When γ ∈ Cm, in law, ξm0 = ε0/γ

m
0 , and for k = 1, · · · ,m− 1

and γmk = 〈γ, vmk 〉,

ξmk = amk

m−1∑
l=k

εl
γm1 a

m
1 + · · ·+ γml

aml .

Proof. Theorem 3.11 says that

P(ξm0 ∈dx0, · · · , ξmm−1 ∈ dxm−1)

= Ce−γ
m
0 x0 dx0

m∏
k=2

e−γ
m
k−1xk−11{xk−1

am
k−1
≥ xk
am
k
} dxk−1

= Ce−γ
m
0 x0dx0

m∏
k=2

e
−(γm1 a

m
1 +···+γmk−1a

m
k−1)(

xk−1
am
k−1
− xk
am
k

)
1{xk−1

am
k−1
≥ xk
am
k
} dxk−1

where by convention xm/a
m
m = 0 and C is a normalizing constant. Thus

(ξm0 ,
ξm1
am1
− ξm2
am2

,
ξm2
am2
− ξm3
am3

, · · · ,
ξmm−1

amm−1

)

has the same law as

(
ε0

γm0
,

ε1

γm1 a
m
1

,
ε2

γm1 a
m
1 + γm2 a

m
2

, · · · , εm−1

γm1 a
m
1 + · · ·+ γmm−1a

m
m−1

),

which proves the claim. �

Notice that (1) is similar to Renyi’s representation of order statistics ([34]).

Warning 3.13. In all this paper, when 0 < µ < 1, we suppose that m is large
enough to have m

π tan π
m > µ to insure that (mπ , µ) ∈ Cm.

3.2. Affine string parameter ξ of the space-time Brownian motion. We
will use a terminology inspired by the Kac-Moody affine algebra A1

1 (see in
particular [25, 26] and Section 4). The infinite dihedral group I(∞) is the infinite
group generated by two involutions s0, s1 with no relation. In V = R2 identified
with its dual Ṽ , let (α0, α̃0), (α1, α̃1) in V × Ṽ , given by

α1 = (0, 2), α0 = (0,−2),

α̃1 = (0, 1), α̃0 = (1,−1),

then α̃0(α0) = α̃1(α1) = 2, and α̃0(α1) = α̃1(α0) = −2. The two reflections
s0, s1 of R2,

si(v) = v − α̃i(v)αi, v ∈ R2,

generate the group I(∞). Notice that s0 is a non orthogonal reflection. For each
k ∈ N, as above when we write αk, α̃k, sk, · · · , we take k modulo 2. Thus

αk = (−1)kα0.

Definition 3.14. The affine Weyl cone (or chamber) is

Caff = {v ∈ R2; α̃i(v) > 0, i = 0, 1} = {(t, x) ∈ R2; 0 < x < t},

and C̄aff is its closure.
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As in the dihedral case, we define the Pitman transform Psi , i = 0, 1, associ-

ated with (αi, α̃i) on C0(R2) by the formula:

Psiη(t) = η(t)− inf
t≥s≥0

α̃i(η(s))αi,(3.6)

where η ∈ C0(R2). We will use space-time paths which can be written as η(t) =
(t, ϕ(t)), t ≥ 0, in this case,

Ps0η(t) = (t, ϕ(t) + 2 inf
s≤t

(s− ϕ(s))

Ps1η(t) = (t, ϕ(t)− 2 inf
s≤t

ϕ(s)).

One recognizes in the second component the transformations P0,P1 defined in
Section 2. One defines η0 = η, and, for k ≥ 1,

ηk = Psk−1
. . .Ps1Ps0η.

Definition 3.15. Let η a path in C0(R2), and x(t) = {xk(t), k ≥ 0} given by

xk(t) = − min
0≤s≤t

α̃k(ηk(s)).

We call xk(t), k ≥ 0, the affine string parameters of the path {η(s), 0 ≤ s ≤ t}.
When lims→+∞ α̃i(η(s)) = +∞, i = 0, 1, one defines the Verma affine string
parameters of η as x = {xk, k ≥ 0} where

xk = − min
0≤s≤+∞

α̃k(ηk(s)).

We fix a real µ such that 0 ≤ µ ≤ 1 and let

B
(µ)
t = (t, Bt + tµ)

where Bt is a standard real Brownian motion starting from 0.

Definition 3.16. We let ξ(t) = {ξk(t), k ≥ 0} be the affine string parameters of

{B(µ)
s , s ≤ t}, and, when 0 < µ < 1, ξ = {ξk, k ≥ 0}) be the Verma affine string

parameters of B(µ).

Let τm : R2 → R2 defined by

τm(t, x) = (
πt

m
, x),(3.7)

for (t, x) ∈ R2, We will frequently use that for v ∈ R2,

τmv = (
π

m sin π
m

(ṽm0 (v) + ṽm1 (v) cos
π

m
), ṽm1 (v)),(3.8)

so the asymptotics of τmv and (ṽm0 (v) + ṽm1 (v), ṽm1 (v)) are the same as m→∞.

Lemma 3.17. For i = 0, 1,

lim
m→+∞

τmv
m
i = αi

lim
m→+∞

τm ◦ smi ◦ τ−1
m = si.

Proof. The first statement is clear. The second one is trivial when i = 1 and for
(t, x) ∈ R2 and i = 0,

(τm ◦ (id− sm0 ) ◦ τ−1
m )(t, x) = τm(ṽm0 (

mt

π
, x)vm0 ) = ṽm0 (

mt

π
, x)τmv

m
0

converges to (t− x)(0,−2) = (id− s0)(t, x). �
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One considers for t ≥ 0, the string parameters ξm(t) of {W (m
π
,µ)

s , s ≤ t}, and
when 0 < µ < 1, and m large enough to have m

π tan π
m > µ, the Verma string

parameters ξm of W (m
π
,µ).

Proposition 3.18. Almost surely, for all t > 0,

lim
m→+∞

ξm(t) = ξ(t),

and when 0 < µ < 1,
lim

m→+∞
ξm = ξ.

Proof. Let, for all k ∈ N, wmk = smk · · · sm0 ∈ I(m) and wk = sk · · · s0 ∈ I(∞).
For any path ηm,

(τm ◦ Pmsmi ◦ τ
−1
m )(ηm)(t) = ηm(t) + inf

s≤t
(τm ◦ (id− smi ) ◦ τ−1

m )ηm(s),

so it follows from Lemma 3.17 and by iteration that

lim
m→+∞

(τm ◦ Pmwmk ◦ τ
−1
m ) = Pwk .

Hence, if ηm ∈ C0(R2) is a sequence of paths converging uniformly on compact
sets to a path η,

lim
m→+∞

(τm ◦ (Pmwmk − P
m
wmk−1

) ◦ τ−1
m )ηm(t) = (Pwk − Pwk−1

)η(t).

This implies that

lim
m→+∞

ṽmk (τm(Pmwmk − P
m
wmk−1

)τ−1
m ηm(t)) = α̃k((Pwk − Pwk−1

)η(t))

since ṽ1 = α̃1 and since the first coordinate of (Pwk − Pwk−1
)η(t) is 0 when k

is even. We choose ηm(t) = (πβtm + t, Bt + µt). Then η(t) = B
(µ)
t and τ−1

m ηm =

W (m/π,µ). One has

(Pmwmk − P
m
wmk−1

)τ−1
m ηm(t)) = ξmk (t)vmk .

Since, when m → ∞, ṽmk (τmv
m
k ) → 2, we see that ξmk (t) → ξk(t) using the

analogue of Remark 3.7 in the affine case. When 0 < µ < 1, this drift implies
that, a.s., ξmk = ξmk (t) and ξk = ξk(t) for t large enough, so ξmk → ξk. �

As before, we let εn, n ∈ N, be independent exponential random variables with
parameter 1.

Theorem 3.19. We suppose that 0 < µ < 1. In law ξ0 = ε0/2(1 − µ), and for
k ≥ 1,

ξk
k

=
+∞∑
n=k

2εn
n(n+ 1) + (1− 2µ)νn

,

where νn = n12N(n)− (n+ 1)12N(n+ 1).

Proof. The drift of W (m/π,µ) is (m/π, µ), thus

γm0 = 〈(m
π
, µ), vm0 〉 = 2(

m

π
sin(

π

m
)− µ cos(

π

m
)), γm1 = 〈(m

π
, µ), vm1 〉 = 2µ.

By Proposition 3.18 and Theorem 3.11

ξk
k

= lim
m→+∞

πξmk
mamk

= lim
m→+∞

π

m

m−1∑
n=k

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

.
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Let c = max{1/γmi ,m ∈ N, i = 0, 1}. Since 0 ≤ 2t ≤ sinπt, when 0 ≤ t ≤ 1/2,
one has for k ≤ [m/2],

k∑
n=1

amn ν
m
n ≥

1

c

k∑
n=1

sin(
nπ

m
) ≥

k∑
n=1

2n

cm
≥ k2

cm
.

For k ≥ [m/2],
k∑

n=1

amn ν
m
n ≥

[m/2]∑
n=1

amn ν
m
n ≥

m

4c
.

Therefore, by the law of large numbers, when N is large enough,

sup
m≥N

π

m

m−1∑
n=N

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

≤ sup
m≥N

(2cπ

[m/2]∑
n=N

εn
n2

+ 4cπ

m∑
n=[m/2]

εn
m2

)

≤ sup
m≥N

(2cπ
∞∑
n=N

εn
n2

+
4cπ

m

m∑
n=0

εn
m

)

is a.s. as small as we want. We finishes the proof by using that, for any fixed n,

lim
m→+∞

π

m

εn
am1 γ

m
1 + · · ·+ amn γ

m
n

=
2εn

n(n+ 1) + (1− 2µ)νn

since limm→+∞ma
m
k = kπ and for any r ∈ N,

lim
m→+∞

γm2r = lim
m→+∞

γm0 = 2(1− µ), lim
m→+∞

γm2r+1 = lim
m→+∞

γm1 = 2µ.

�

An important for us and maybe unexpected result is:

Theorem 3.20. Almost surely, limk→+∞ ξk = 2.

Proof. It is easy to see that E(ξk)→ 2 and that
∑∞

k=1 E((ξk − E(ξk))
4) is finite,

which implies the almost sure convergence. �

3.3. Affine Verma weight L(µ). In this subsection we introduce the affine
Verma weights. We consider for 0 < µ < 1, the affine Verma string parameters
ξ = (ξk) of B(µ). For k ≥ 1, let

Mk =

k−1∑
n=0

ξnαn +
1

2
ξkαk.

Notice that, more simply, since αn = (−1)nα0,

Mk = (0, (−1)k+1ξk + 2

k−1∑
n=0

(−1)n+1ξn),

the notation with the αn’s, maybe strange for the reader, is explained by its
natural interpretation in A1

1.

Proposition 3.21. Let µ ∈ (0, 1). When k goes to infinity, Mk converges almost
surely and in L2 towards

L(µ) =
1

2

∞∑
n=0

(
ε2n

n+ 1− µ
α0 +

ε2n+1

n+ µ
α1).
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Proof. One has

M2p+2 −M2p = (0,−ξ2p + 2ξ2p+1 − ξ2p+2) = (0,
ε2p+1

p+ µ
− ε2p

p+ 1− µ
),

hence {M2p, p ≥ 0} is a martingale, bounded in L2 and its limit is L(µ). As

M2p+1 = M2p +
1

2
(ξ2p − ξ2p+1)α0

and ξk → 2 by Theorem 3.20, M2p+1 has the same limit. �

Definition 3.22. We call L(µ) the affine Verma weight of B(µ).

The terminology is due to the fact, that we will see in Section 4, that L(µ)

plays the role of an asymptotic weight in the Verma module of highest weight
0 in the case of the affine Lie algebra A1

1 (more correctly of minus this weight

modulo δ). Remark that, in coordinates, L(µ) = (0, Dµ) where

Dµ =
∞∑
n=0

(
ε2n+1

n+ µ
− ε2n

n+ 1− µ
).(3.9)

Notice that L(µ) is not the limit of the series
∑n

k=0 ξkαk, since limk→∞ ξk = 2
(Theorem 3.20).

3.4. Some technical results. In this subsection we prove some results which
will be used to conclude the proof of our main theorem. We take here µ ∈ (0, 1)
and m large enough to have m

π tan π
m > µ. Let for 0 ≤ k ≤ m, with the

convention that ξmm = 0,

Mm
k =

k−1∑
n=0

ξmn v
m
n +

1

2
ξmk v

m
k .

Proposition 3.23. For any k ≥ 0, τmM
m
k converges to Mk a.s. when m goes

to infinity.

Proof. This follows from Lemma 3.17 and Proposition 3.18. �

Proposition 3.24. One has, in probability

lim
m→+∞

sup
1≤k≤m

‖τmMm
k −Mk‖ = 0.(3.10)

Proof. We use Theorem 3.11. For any 1 ≤ 2p+ 1 ≤ m,

Mm
2p+2 −Mm

2p =
1

2
ξm2p+2v

m
2p+2 + ξm2p+1v

m
2p+1 +

1

2
ξm2pv

m
2p.

Therefore,

ṽm0 (Mm
2p+2 −Mm

2p) = ξm2p+2 − 2 cos(
π

m
)ξm2p+1 + ξm2p

= −2 cos(
π

m
)am2p+1

ε2p+1

γm1 a
m
1 + γm0 a

m
2 + · · ·+ γm1 a

m
2p+1

+ am2p(
ε2p+1

γm1 a
m
1 + · · ·+ γm1 a

m
2p+1

+
ε2p

γm1 a
m
1 + · · ·+ γm0 a

m
2p

),

since
am2p+2 − 2 cos(

π

m
)am2p+1 + am2p = 0.
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One deduces that

ṽm0 (Mm
2p) = 2 sin

π

m

p−1∑
l=0

(
ε2l cos lπm

γm1 sin l
mπ + γm0 sin l+1

m π
−

ε2l+1 cos (l+1)π
m

γm1 sin l+1
m π + γm0 sin l

mπ
),

by using the relations

n∑
k=1

am2k =
sin nπ

m sin (n+1)π
m

sin π
m

,

n∑
k=1

am2k−1 =
sin2 nπ

m

sin π
m

,

n∑
k=1

amk =
sin nπ

2m sin (n+1)π
2m

sin π
2m

.

Similarly, one finds

ṽm1 (Mm
2p) = −2 cos

π

m
ξm0 + sin

π

m
tan

pπ

m
ξm2p

+2 sin
π

m

p−1∑
l=1

(
ε2l+1 cos lπm

γm1 sin l+1
m π + γm0 sin l

mπ
−

ε2l cos (l+1)π
m

γm1 sin l
mπ + γm0 sin l+1

m π
).

On the other hand, one has

Mm
2p+1 −Mm

2p =
1

2
(ξm2pv

m
0 + ξm2p+1v

m
1 ).

Thus the proposition follows from the next lemma. �

Lemma 3.25. Let for p ∈ {0, · · · , [m/2]}, 0 < µ < 1, and γm1 , γ
m
0 , which

converge respectively towards 2µ and 2(1− µ),

Smp = sin
π

m

p−1∑
l=0

(
ε2l cos lπm

γm1 sin l
mπ + γm0 sin l+1

m π
−

ε2l+1 cos (l+1)π
m

γm1 sin l+1
m π + γm0 sin l

mπ
),

Sp =

p−1∑
l=0

(
ε2l

2l + 2(1− µ)
− ε2l+1

2l + 2µ
).

Then in probability
lim
m→∞

sup
1≤p≤[m/2]

|Smp − Sp| = 0.

Proof. {Smp −Sp−E(Smp −Sp), p = 1, · · · , [m/2]} is a martingale. Let ε > 0. We
have

Var(Sm[m/2] − S[m/2]) =

[m/2]−1∑
l=0

(
sinπ/m cos lπ/m

γm1 sin l
mπ + γm0 sin l+1

m π
− 1

2l + 2(1− µ)
)2

+ (
sinπ/m cos(l + 1)π/m

γm1 sin l+1
m π + γm0 sin l

mπ
− 1

2l + 2µ
)2

As for x ∈ [0, π2 ], one has 2
πx ≤ sinx ≤ x, one has the majorations

sin π
m

γm1 sin l
mπ + γm0 sin l+1

m π
≤ π/2

γm1 l + γm0 (l + 1)
,

and
sin π

m

γm1 sin l+1
m π + γm0 sin l

mπ
≤ π/2

γm1 (l + 1) + γm0 l
,

for 0 ≤ l ≤ [m/2] − 1. Thus there is a p0 ∈ N such that for all m ≥ 2(p0 + 1),
the sum on the right hand side above for l ≥ p0 is smaller than ε. Since each
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term tends to 0, we obtain that for m large enough this sum is smaller than ε.
Thus we have by Doob’s martingale inequality

E( sup
1≤p≤[m/2]

(Smp − Sp − E(Smp − Sp))2) ≤ 4ε.

Thus sup1≤p≤[m/2] |Smp − Sp − E(Smp − Sp)| converges in probability toward 0.

Besides one has for p, q ∈ {0, · · · , [m/2]}, p ≥ q,

|E(Smp − Smq )| ≤
p−1∑
l=q

π2(γm0 + γm1 )

4(γ1l + γ0(l + 1))(γ1(l + 1) + γ0l)

and

E(Sp − Sq) =

p−1∑
l=q

2(2µ− 1)

(2l + 2(1− µ))(2l + 2µ)
.

As for a fixed k, E(Smk ) converges towards E(Sk) when m goes to infinity, one
obtains that sup0≤p≤[m/2] |E(Smp − Sp)| converges towards 0 when m goes to
infinity, which finishes the proof of the lemma. �

For a sequence x = (xk) ∈ RN
+ we let

σ(x) = lim
n→+∞

n−1∑
k=0

xkαk +
1

2
xnαn,(3.11)

when this limit exists in R2 (recall that αk = (−1)kα0).

Definition 3.26. One defines, for λ ∈ C̄aff,

Γ = {x = (xk) ∈ RN :
xk
k
≥ xk+1

k + 1
≥ 0, for all k ≥ 1, x0 ≥ 0, σ(x) ∈ R2},

Γ(λ) = {x ∈ Γ : xk ≤ α̃k(λ− σ(x) +
k∑
i=0

xiαi), for every k ≥ 0}.

We remark that x ∈ Γ is in Γ(λ) if and only if for all k ≥ 0,

α̃k(λ− σ(x) +

k−1∑
i=0

xiαi +
1

2
xkαk) ≥ 0.

When 0 < µ < 1, the Verma string parameters ξ of Bµ) are a.s. in Γ, and

σ(ξ) = L(µ).

The following proposition will allow us to pass from Verma affine string param-
eters to affine string parameters in the next subsection.

Proposition 3.27. Let (λm) be a sequence of R2 such that λm ∈ Cm and such
that τmλm → λ when m→∞ where λ ∈ Caff. The random sets {ξm ∈ Γm(λm)}
converge in probability to {ξ ∈ Γ(λ)}.
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Proof. To prove convergence in probability, it is enough to show that each subse-
quence has a subsequence which converges almost surely. Therefore, by Propo-
sitions 3.24 and 3.21, working with a subsequence, we can suppose that the set
of ω ∈ Ω for which

sup
1≤k≤m

‖τmMm
k (ω)−Mk(ω)‖ → 0,Mk(ω)→ L(µ)(ω)

is of probability one. So we see that if,

Xm
k = Mm

m −Mm
k , Xk = L(µ) −Mk.

then (see (3.8))

sup
0≤k≤m

|ṽmk (Xm
k (ω))− α̃k(Xk(ω))| → 0, α̃k(Xk(ω))→ 0.(3.12)

For these ω we will show that

lim sup
m→∞

{ξm ∈ Γm(λm)} ⊂ {ξ ∈ Γ(λ)} ⊂ lim inf
m→∞

{ξm ∈ Γm(λm)}.(3.13)

Notice that ṽmk (λm) → α̃k(λ) for k = 0, 1. One has ξm ∈ Γm(λm) if and only if
ṽmk (λm −Xm

k ) ≥ 0 for 0 ≤ k < m, and ξ ∈ Γ(λ) if and only if α̃k(λ −Xk) ≥ 0
for every k ∈ N. The left inclusion in (3.13) follows from (3.12). Now, suppose
that ξ(ω) ∈ Γ(λ). Since λ is fixed and the distributions of Xk are continuous,

P(∀k ≥ 0, α̃k(λ−Xk) = 0) = 0,

and one can suppose that

∀k ≥ 0, α̃k(λ−Xk(ω)) > 0.

We choose ε > 0 such that

α̃i(λ) > ε, i ∈ {0, 1}.

Using (3.12), one can choose m0 such that m ≥ m0 implies that

sup
0≤k≤m

ṽmk (Xm
k (ω))− α̃k(Xk(ω)) < ε.

and then we choose k0 such that k ≥ k0 implies that

α̃k(Xk(ω)) < α̃k(λ)− ε.

As for each k, ṽmk (Xm
k ) converges towards α̃k(Xk) when m goes to infinity, one

takes m1 such that when m ≥ m1,

ṽmk (Xm
k (ω)) < α̃k(λ),

for k = 1, · · · , k0. Then for m ≥ m0,m1 one has for k ≥ k0

ṽmk (Xm
k (ω)) = ṽmk (Xm

k (ω))− α̃k(Xk(ω)) + α̃k(Xk(ω)) < α̃k(λ),

and for k ≤ k0,

ṽmk (Xm
k (ω)) < α̃k(λ),

which proves the right inclusion, and finishes the proof of the proposition. �
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3.5. The highest weight process Λ(µ)(t). In this subsection we introduce the
highest process which will appear as the limit of our Pitman’s transform (with
a correction) and show that it coincide in law with the space-time Brownian
motion conditioned in Caff.

Let 0 ≤ µ ≤ 1. We define for k ≥ 0,

Mk(t) =
k−1∑
n=0

ξn(t)αn +
1

2
ξk(t)αk,

where ξ(t) = {ξn(t), n ≥ 0} are the affine string parameters of {B(µ)
s , s ≤ t}. We

consider the planar Brownian motion W (m/π,µ) with drift (m/π, µ) and let

Λm(t) = Pmw0
W (m/π,µ)(t),

and

Mm
k (t) =

k−1∑
n=0

ξmn (t)vmn +
1

2
ξmk (t)vmk .

Proposition 3.28. For every k ≥ 1, τmM
m
k (t) converges to Mk(t) almost surely

when m goes to infinity.

Proof. By the Cameron-Martin theorem, it is enough to prove the proposition
for µ ∈ (0, 1). In that case, it follows from Proposition 3.18 and Lemma 3.17. �

Theorem 3.29. When µ ∈ [0, 1], for each t ≥ 0, Mk(t) converges almost surely

when k goes to infinity. We denote by L(µ)(t) the limit.

Proof. By the Cameron-Martin theorem, it is enough to prove the proposition
for µ ∈ (0, 1). Let ε > 0. By Lemma 3.17 and Proposition 3.18, τmM

m
p (t)

converges a.s. to Mp(t) as m→∞. Hence, for p, q ∈ N,

P(‖Mp+q(t)−Mp(t)‖ ≥ ε) = lim
m→∞

P(‖τmMm
p+q(t)− τmMm

p (t)‖ ≥ ε)

= lim
m→∞

E(fm(Λm(t)))

where
fm(Λm(t)) = E(1‖τmMm

p+q(t)−τmMm
p (t)‖≥ε|Λm(t)).

One has, by Theorem 3.11,

fm(λ) = P(‖τmMm
p+q − τmMm

p ‖ ≥ ε|ξm ∈ Γm(λ)).

If τmλm → λ as in Proposition 3.27 then fm(λm)→ f(λ) where

f(λ) = P(‖Mp+q −Mp‖ ≥ ε|ξ ∈ Γ(λ)).

On the other hand we will show in Theorem 3.48, independently of this proof,

that when m tends to infinity, τmΛm(t) converges in law to A
(µ)
t therefore

E(fm(Λm(t))→ E(f(A
(µ)
t )) by Proposition 3.27. This shows that

P(‖Mp+q(t)−Mp(t)‖ ≥ ε) =

∫
Ω
P(‖Mp+q −Mp‖ ≥ ε|ξ ∈ Γ(A

(µ)
t (ω)))dP(ω).

Since (Mk) converges a.s. to L(µ), we see that Mp(t), p ∈ N, is a Cauchy sequence
for the convergence in probability, and thus converges in probability. We will
prove the almost sure convergence at the end of this subection. �

Proposition 3.30. In probability, as m→∞, τmM
m
m (t) converges to L(µ)(t).
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Proof. By Cameron-Martin theorem, it is enough to prove the proposition for
µ ∈ (0, 1). In that case, one has for ε > 0,

P(|τmMm
m (t)− L(µ)(t)| > ε) ≤ P(|τmMm

m (t)−Mm(t)| > ε

2
)

+ P(|Mm(t)− L(µ)(t)| > ε

2
).

For the first term, we condition by Λm(t) as in the proof of Theorem 3.29 and
use Proposition 3.24, and for the second we use Theorem 3.29. �

We had (see (3.3))

Λm(t) = Pmw0
W (m/π,µ)(t) = W (m/π,µ)(t) +Mm

m (t),

therefore it is natural to introduce the following definition.

Definition 3.31. For 0 ≤ µ ≤ 1, we define the highest weight process of

{B(µ)
t , t ≥ 0}, by, for t ≥ 0,

Λ(µ)(t) = B
(µ)
t + L(µ)(t).

Proposition 3.32. In probability,

lim
m→+∞

τmW
(m/π,µ)(t) = B

(µ)
t ,

lim
m→+∞

τmΛm(t) = Λ(µ)(t).

Proof. The first statement is obvious. The second is then a consequence of

Proposition 3.30 and the relation Λm(t) = W
(m/π,µ)
t +Mm

m (t). �

Let {A(µ)
t , t ≥ 0} be the conditioned space-time Brownian motion in the affine

Weyl chamber Caff, with drift µ, starting from the origin defined in 5.3.

Theorem 3.33. For any µ ∈ [0, 1], in law

{Λ(µ)(t), t ≥ 0} = {A(µ)
t , t ≥ 0}.

Proof. This follows from Proposition 3.32, and Theorem 3.48. �

In order to prove the almost sure convergence in Theorem 3.29, let us show:

Proposition 3.34. For 0 < µ < 1 and f : R2 → R bounded and continuous,

E(f(B
(µ)
t , ξ(t))|σ({Λ(µ)(s), s ≤ t})) = g(Λ(µ)(t))

for each t > 0 where

g(λ) = E(f(λ− L(µ), ξ)1{ξ∈λ})/P(ξ ∈ λ).

Proof. By Theorem 3.11, the conditional distribution of (τmM
m
m (t), ξm(t)) know-

ing σ({Λm(s), s ≤ t)}) is the one of (τmM
m
m , ξm) knowing {ξm ∈ Γm(Λm(t))}.

Hence

E(f(Λ(µ(t)− τmMm
m (t), ξm(t))|σ(Λm(s), s ≤ t))) = gm(Λm(t))

where

gm(λ) = E(f(λ− τmMm
m , ξm)1{ξm∈λ})/P(ξm ∈ λ).
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Using the convergences in probability obtained before, if β is bounded, continu-
ous, and depends only on a finite number of variables,

E(f(Λ(µ(t)− L(µ(t), ξ(t))β({Λ(µ)(s), s ≤ t})))

= lim
m→+∞

E(f(Λ(µ(t)− τmMm
m (t), ξm(t))β({τmΛm(s), s ≤ t)}))

= lim
m→+∞

E(gm(Λm(t))β({τmΛm(s), s ≤ t)})).

Since Λm(t) tends to Λ(µ)(t), we know from Proposition 3.27 that, in probability,

{ξm ∈ Γm(Λm(t))} tends to {ξ ∈ Γ(Λ(µ)(t))}. Therefore the limit above is equal
to

E(g(Λ(µ)(t))β({Λ(µ)(s), s ≤ t)}))
which proves the theorem. �

End of the proof of Theorem 3.29. By the Cameron-Martin theorem it is enough
to prove the proposition for µ ∈ (0, 1). In that case, this follows from

P(limMk(t) = L(µ)(t)) = E(E(1{limMk(t)=L(µ)(t)}|σ(Λ(µ)(t)))) = 1

since Mk → L(µ) a.s. and by Proposition 3.34 which implies that

E(1{limMk(t)=L(µ)(t)}|σ(Λ(µ)(t))) = E(1{limMk=L}|ξ ∈ Γ(Λ(µ)(t))) = 1

�

3.6. Representation using Pitman and Lévy’s transform. Let us remind

where we stand. For B
(µ)
t = (t, Bt + tµ), we have written, see (3.3),

Pαn · · · Pα1Pα0B
(µ)(t) = B

(µ)
t +

n∑
i=0

ξi(t)αi,

and

Mn+1(t) =

n∑
n=0

ξi(t)αi +
1

2
ξn+1(t)αn+1.

We have seen that when µ ∈ [0, 1], a.s., for t > 0, limk→+∞Mk(t) = L(µ)(t)

and that the process Λ
(µ)
t = B(µ)(t) + L(µ)(t) has the same distribution as A(µ).

Hence,

Theorem 3.35. When 0 ≤ µ ≤ 1, almost surely, the process

lim
n→+∞

Pαn · · · Pα1Pα0B
(µ)(t) +

1

2
ξn+1(t)αn+1, t ≥ 0,

exists and has the same distribution as {A(µ)(t), t ≥ 0}.

To interpret this correction term it is worthwhile to introduce the Lévy’s
transform. Lévy’s Theorem (see [35], VI.2) that if Bt is the Brownian motion

LB(t) = Bt − inf
0≤s≤t

Bs

has the same law as |Bt| and that − inf0≤s≤tBs is the local time of LB(t) at
0. We introduce here the following Lévy’s transform (sometimes the Lévy’s

transform of B is defined as
∫ t

0 sign(Bs)dBs, this is related but different from
our transform).
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Definition 3.36. For η ∈ C0(R2) and i = 0, 1, the Lévy transform Lαiη of η is

Lαiη(t) = η(t)− 1

2
inf
s≤t

α̃i(η(s))αi.

Another way to state the former theorem is

Theorem 3.37. Almost surely,

lim
n→+∞

Lαn+1Pαn · · · Pα1Pα0B
(µ)(t)

exists and has the same distribution as A
(µ)
t .

The following proposition indicates that the presence of this Lévy transform

is due to the bad behaviour of A
(µ)
t for t near 0 (recall that each ξk(t) is non

decreasing in t).

Proposition 3.38. For all t > 0, a.s.

lim
k→+∞

ξk(t) = 2.

Proof. Since ξk → 2 a.s. (Theorem 3.20), the proof is the same as the end of the
one of Theorem 3.29. �

It implies that

lim
n→+∞

Pαn · · · Pα1Pα0B
(µ)(t) + (−1)nα0 = A

(µ)
t .

So without correction the iterates of Pitman’s transform do not converge.

In the whole paper one has chosen to begin by the transformation Pα0 . Let
us notice that we obtain the same results if we begin with Pα1 . More precisely,
if we denote with a tilde the quantities previously defined when we begin by Pα1

rather than Pα0 , one has, for each µ ∈ [0, 1],

Theorem 3.39. (1). Almost surely,

lim
k→+∞

LαkPαk−1
· · · Pα1Pα0B

(µ)(t) = lim
k→+∞

Lαk+1
Pαk · · · Pα2Pα1B

(µ)(t).

(2) ξ̃(t) defined for B(µ) has the same law as ξ(t) defined for B(1−µ).

Proof. For (1) we have to prove that L(µ)(t) = L̃(µ)(t). We have seen in Propo-

sition 3.30 that τmM
m
m (t) converges in probability to L(µ)(t). By the same proof

τmM̃
m
m (t) converges in probability to L̃(µ)(t). Now we use the non trivial fact,

proven in [3], that Mm
m (t) = M̃m

m (t) by (3.1). Thus L(µ)(t) = L̃(µ)(t) a.s..
(2) follows from the fact that Id−Bµ has the same law as B1−µ. �

3.7. The law of B(µ)(t) conditionaly to {Λ(µ)(s), s ≤ t}. Let γ ∈ R2 and

let W (γ) be the standard Brownian motion in R2 with drift γ. There is a root
system associated with the group I(m) and a so-called alternating polynomial
(see [15], 6.2.3) defined as the product of roots and given explicitely by, for
v = (x, y) ∈ R2,

hm(v) = hm(x, y) = =[(x+ iy)m].
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For w ∈ I(m) let l(w) be the length of its shortest expression with sm0 and sm1 .
Let, for v ∈ R2, γ ∈ C̄m,

ψv(γ) =
∑

w∈I(m)

(−1)l(w)e〈w(γ),v〉−〈γ,v〉.

Lemma 3.40. For z ∈ R2 and v = Pmw0
W (γ)(t)

E(e〈z,W
(γ)
t 〉|σ(Pmw0

W (γ)(s), 0 ≤ s ≤ t)) =
ψv(z + γ)

ψv(γ)

hm(γ)

hm(z + γ)
e〈z,v〉.

Proof. Theorem 5.5 in [4] gives, for Ft = σ(Pmw0
W (0)(s), 0 ≤ s ≤ t),

E(e〈z,W
(0)
t 〉|Ft) = k

ψv(z)

hm(v)hm(z)
e〈v,z〉,

for v = Pmw0
W (γ)(t) and k a constant independent of v and z. We conclude with

the Bayes and the Cameron-Martin formulas which give

E(e〈z,W
(γ)
t 〉|Ft) =

E(e〈z+γ,W
(0)
t 〉|Ft)

E(e〈γ,W
(0)
t 〉|Ft)

.

�

For α ∈ (0, 1), we define a function ϕα on R∗+ × R by,

ϕα(t, x) = e−αx
∑
k∈Z

π sinh(α(2kt+ x))

sin(απ)
e−2(kx+k2t), t > 0, x ∈ R.(3.14)

Notice that the definition of ϕα makes sense by continuity for α = 0. Besides,
the following lemma implies that ϕα(t, x) = ϕ1−α(t, t− x) and allows to extend
the definition of ϕα to all α ∈ R.

Lemma 3.41. For α ∈ (0, 1), t > 0, x ∈ R,

ϕα(t, x) = e
1
2t

(x−αt)2
∑
k∈Z

√
π

2t
e−

1
2t
k2π2 π sin(kπα) sin(kπx/t)

sin(απ)
,

ϕ0(t, x) = e
x2

2t

∑
k∈Z

√
π

2t
e−

1
2t
k2π2

kπ sin(kπx/t).

Proof. The first identity follows from the Poisson summation formula (see [1])

for the 2t-periodic function x 7→ e−
x2

2t ϕα(t, x). Letting α goes to zero in the first
identity leads to the second one. �

Recall that τm(t, x) = (πt/m, x).

Lemma 3.42. Let vm ∈ R2, γm ∈ C̄m such that, as m→ +∞, τm(γm)→ (1, α)
and τm(vm)→ (t, x), then

lim
m→∞

ψvm(γm) =
sin(απ)

π
ϕα(t, x),(3.15)

lim
m→∞

(
π

m
)mhm(γm) = sin(πα).(3.16)
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Proof. We use complex notations. Let ω = e2iπ/m, the dihedral group I(m) of
order 2m is equal to the set of the m reflections rk : z 7→ z̄ωk and the m rotations
θk : z → zωk, 1 ≤ k ≤ m. When m→ +∞,

〈θj(γm), vm〉 = <((
m

π
+iα)ωj(

mt

π
−ix)) =

m2

π2
t−2k2t+2kxπ+(x−2kt)α+o(1),

〈rj(γm), vm〉 = <((
m

π
−iα)ωj(

mt

π
−ix)) =

m2

π2
t−2k2t+2kxπ−(x−2kt)α+o(1),

When [p2 ] + 1 ≤ |k| ≤ p, cos(2k
m π) ≤ 0, so one can choose m0 ∈ N such that for

m ≥ m0,

e−〈γ
m,vm〉

∑
k:[p/2]+1≤|k|≤p

(e〈r
kγm,vm〉 − e〈rks1γm,vm〉) ≤ ε.

Since

e−〈γ
m,vm〉

N∑
k=−N

(e〈r
kγm,vm〉−e〈rks1γm,vm〉) ∼

N∑
k=−N

sinh(µ(y−2kt))e−2(k2t−kx)−µx,

this gives (3.15). The relation (3.16) is immediate. �

Recall that B(µ)(t) = (t, Bt + tµ).

Theorem 3.43. One has, for s ∈ R, when L(µ)(t) = (0, Dµ
t )

E(esBt |σ(Λ(µ)(s), s ≤ t)) =
es(Λ

(µ)(t)−tµ)ϕs+µ(Λ(µ)(t))

ϕµ(Λ(µ)(t))

E(e−sD
µ
t )|σ(Λ(µ)(s), s ≤ t)) =

ϕs+µ(Λ(µ)(t))

ϕµ(Λ(µ)(t))
.

Proof. The first formula is obtained by letting m goes to infinity in the Lemma
3.40 and using Proposition 3.32 and Lemma 3.42. It gives the second one since

Λ(µ)(t) = B
(µ)
t + L(µ)(t). �

3.8. Remarks on the Verma weight L(µ) and string parameter ξ1.

3.8.1. Law of L(µ) = (0, Dµ). The Laplace transform of Dµ is, by (3.9),

E(e−sD
µ
) =

∞∏
n=0

((1 +
s

(n+ µ)
)(1− s

(n+ 1− µ)
))−1.

Using

Γ(α)Γ(β)

Γ(α+ γ)Γ(β − γ))
=

+∞∏
n=0

(1 +
γ

n+ α
)(1− γ

n+ β
)(3.17)

(Formula 8.325.1 of [20]) and Γ(z)Γ(1− z) = π/sin (πz) we obtain that

E(e−sD
µ
) =

sin(πµ)

sin(π(µ+ s))
,(3.18)

in particular,

E(Dµ) = π cot(πµ).(3.19)
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By taking the expectation in Theorem 3.43 one sees that, in law,

lim
t→∞

Dµ
t = Dµ.

Corollary 3.44. The density of D1/2 is 1/(π coshx).

Proof. One uses that the Fourier transform of 1/π cosh(x) is 1/ cosh(λπ/2). �

Notice that the law of
∑∞

n=1( ε2n+1

n − ε2n
n+1) appears in [10].

3.8.2. A representation of Zt before a small random time.

Proposition 3.45. When 0 < µ < 1 and Z0 = µ, there is a standard Brownian
motion W and a stopping time σ > 0 a.s. for W such that for 0 ≤ t ≤ σ,

Zt = Wt + µ+ tDµ.

Notice that E(Dµ) = π cotπµ in agreement with the generator 1
2d

2/dx2 +
(π cotπx)d/dx of Zt.

Proof. Let τ0 = max{t ≥ 0, B
(µ)
t 6∈ Caff}, and

τn+1 = max{t ≥ τn, B(µ)
t +

n∑
k=0

ξk(t)αk 6∈ Caff}

for n ≥ 0. Then, a.s., τ0 < +∞ and for t > τ0, ξ0(t) = ξ0, hence

τ1 = max{t ≥ τ0, B
(µ)
t + ξ0α0 6∈ Caff}.

Recursively, one has τn < +∞ and

τn+1 = max{t ≥ τn, B(µ)
t +

n∑
k=0

ξkαk 6∈ Caff}.

We know that
∑n

k=0 ξkαk is bounded, a.s., therefore τ = sup τn < +∞ and for

t > τ, ξk(t) = ξk for all k ≥ 0. This shows that for t > τ , L(µ)(t) = L(µ) hence

A
(µ)
t = B

(µ)
t + L(µ), which implies the representation since (t, tZ1/t) = A

(µ)
t . �

3.8.3. Law de ξ1. The Bessel 3 with drift ν can be defined as

%
(ν)
t = ‖W 2

1 (t) +W 2
2 (t) +W 2

3 (t) + tν‖
where W1,W2,W3 are three standard independent Brownian motions.

Corollary 3.46. For 0 < µ ≤ 1, ξ1 has the same law as supt≥0(%
(1−µ)
t − t).

Proof. By [33], %
(1−µ)
t has the same law as Pα1B

(1−µ)
t , so the claim follows from

(2) of Theorem 3.39 when 0 < µ < 1, and by continuity also when µ = 1. �

One has, when µ = 1,

ξ1 =
1

2

+∞∑
n=1

ε2n−1 + ε2n

n2

Its distribution is studied in [2] where it is symbolized π2

4 Σ2. Its Laplace trans-
form is

E(e−2λξ1) =
π2λ

sinh2(π
√
λ)
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and its distribution function is (cf. Table 1 in [2])

F (x) = 1 + 2

+∞∑
k=1

(1− 4k2x)e−2k2x

so in this case, Corollary 3.46 is also given in the exemple 20 of [38].
When µ = 1/2,

ξ1 =
+∞∑
n=1

2εn
n(n+ 1)

Proposition 3.47. When µ = 1/2, the Laplace transform of ξ1 is

E(e−λξ1) =
2πλ

cosh(π
√

2λ− 1/4)
,

its density is
+∞∑
n=0

(−1)n+1n(n+ 1)(2n+ 1)e−n(n+1)x/2,

and, in law,

ξ1 = sup
n>0,i=1,2,3

ε
(i)
n

n
,

where the ε
(i)
n are exponentials independent random variables with parameter 1.

Proof. It is easy to see that, using the formula

coshπz = (1 + 4z2)

+∞∏
n=1

(1 +
z2

(n+ 1
2)2

),

one has

E(e−λξ1) =
+∞∏
n=1

(1 +
2λ

n(n+ 1)
)−1 =

2πλ

cosh(π
√

2λ− 1/4)
.

Let

g(x) = 2
+∞∑
n=0

(−1)n(2n+ 1)e−
x
2

(n+ 1
2

)2 .

One knows (e.g. [2]) that 1/ cosh
√

2λ is the Laplace transform of πg(π2x)/2.
Hence

2λπ

coshπ
√

2λ− 1/4
=

∫ ∞
0

λe−λxex/8g(x) dx =

∫ ∞
0

e−λx(ex/8g(x))′ dx,

by an integration by parts. Computing the derivative (ex/8g(x))′ gives the den-
sity. By integration, the distribution function is

+∞∑
n=0

(−1)n(2n+ 1)e−n(n+1)x/2

which is equal to
∏∞
n=1(1− e−nx)3 by a formula of Jacobi (Thm 357 of [19]). �
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3.9. Convergence of the dihedral highest weight. In this subsection, we
prove the convergence of the dihedral highest weight to the conditioned space-

time Brownian motion {A(µ)
t , t ≥ 0} that we have used before. Let 0 ≤ µ ≤ 1

and m ≥ 1. We consider the planar Brownian motion W (m/π,µ) and

Λm(t) = Pmw0
W (m/π,µ)(t).

Theorem 3.48. As a process, {τmΛm(t), t ≥ 0} converges in law to {A(µ)
t , t ≥ 0}

when m→ +∞.

We will prove this theorem after the following proposition. Let {Zt, t ≥ 0},
be the conditioned Brownian motion in [0, 1] starting from µ (as defined in 5.1).

Proposition 3.49. For m ∈ N, let Xm
t , t ≥ 0, be the R2-valued continuous

process such that Xm
m2t is the conditioned planar Brownian motion in the cone

Cm, with drift γ = m2eiπµ/m where 0 ≤ µ ≤ 1. One writes in polar parameters

Xm
t = Rmt exp iπθmt ,

Rmt > 0, θmt ∈ [0, 1/m]. Then, when m→ +∞, as processes,

mθmt → Z1/π2t, R
m
t → t.

Proof. The process Xm
m2t, t ≥ 0, is an example of Dunkl process introduced in

[36, 37]. More precisely it is a radial multidimensional Dunkl process with drift
(see also [7], [14] and for the case with drift [18], here we are in the case where the
multiplicity k ≡ 1). Therefore, the process Rmm2t is a Bessel process of dimension

2(m+ 1) with drift m2, starting from 0. In other words, one can write

(Rmm2t)
2 = (m2t+Bt(1))2 + · · ·+ (Bt(2(m+ 1)))2

where Bt(1), · · · , Bt(2(m+1)) are independent standard real Brownian motions.
Since

E(

2(m+1)∑
k=1

(Bt/m2(k))2 = 2t(m+ 1)/m2

tends to 0 as m → +∞, Rmt converges to t in L1. It is shown in [18] that the
process Yt = Xm

m2t has the time inversion property, in the sense that tY1/t is the

conditioned planar Brownian motion in C̄m without drift but starting from the
drift γ. Using its skew product decomposition, one can write

πθmm2t = σmγmt , with γmt =

∫ +∞

t

1

(Rm
m2s

)2
ds,

where the process σmt is a solution of the following stochastic differential equation

dσmt = dBt +m cot(mσmt )dt

where B is a Brownian motion independent of Rm and σm0 = µπ/m (see [14]).
One remarks that Zt = m

π σ
m
tπ2/m2 satisfies to

dZt = dβt + π cot(πZt)dt(3.20)

for another Brownian motion β, and is therefore the conditioned Brownian mo-
tion in [0, 1] starting from µ (see (5.1)). As m→ +∞,

γmt/m2 =
1

m2

∫ +∞

t

1

(Rm
u/m2)2

du
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is equivalent to 1/tm2. Therefore mθmt = m
π σ

m
γm
t/m2

converges to Z1/tπ2 . �

Proof of Theorem 3.48. Let Xm
t = 1

mπΛm(π2t). Since

1

mπ
W

(m/π,µ)
π2m2t

= (βt +m2t, Bt +mµπt),

one sees that Xm
m2t is the conditioned planar Brownian motion in the cone Cm

with a drift equivalent to m2eiπµ/m. One writes its polar decomposition as
Xm
t = Rmt exp iπθmt . Using the continuity of the solution of (3.20) with respect

to the initial condition, we see that Proposition 3.49 also holds when the drift γ
is only equivalent to m2eiπµ/m. Therefore mθmt → Z1/tπ2 and Rmt → t and

τmΛm(t) = (π2Rmt/π2 cos(πθmt/π2),mπRmt/π2 sin(πθmt/π2))

converges in law, as a process, to (t, tZ1/t) which has the same law as A
(µ)
t �

4. Some asymptotics for representations of the affine algebra A1
1

As we said in the introduction, there are strong links between what we have
done and the affine Lie algebra A1

1. In this section we will see that some quantities
we have met occur in the description of some semi-classical limits of highest
representations of A1

1. In particular a kind of Duistermaat Heckman measure is
given by the conditional law of the space time Brownian motion. The asymptotic
behaviour of the infinity crystal B(∞) of Kashiwara, for large weights is given
by our Verma string coordinates ξ.

4.1. The Kac Moody algebra A1
1. We consider the affine Lie algebra A1

1. For
our purpose, we only need to consider a realization of a real Cartan subalge-
bra. We introduce, as in the introduction, hR = SpanR{α̃1, c, d}, and h∗R =
SpanR{Λ0, α1, δ}, where α̃1 = (0, 1, 0), c = (1, 0, 0), d = (0, 0, 1), and Λ0 =
(1, 0, 0), α1 = (0, 2, 0), δ = (0, 0, 1). We let α̃0 = (1,−1, 0) and α0 = (0,−2, 1),
so that c = α̃0 + α̃1 and δ = α0 + α1. Notice that these α0 and α1 project on
the ones given in 3.2 by the projection on h∗R/Rδ which we identified with V .
Also α̃0, α̃1 project on the ones given by their projections on hR/Rd, identified

with Ṽ . Usually α1 and α0 are called the two positive simple roots and α̃1 and
α̃0 their coroots. One considers the set of integral weights

P = {λ ∈ h∗R : λ(α̃i) ∈ Z, i = 0, 1},
and the set of dominant integral weights

P+ = {λ ∈ h∗R : λ(α̃i) ∈ N, i = 0, 1}.
For a dominant integral weight λ one defines the character of an irreducible
highest-weight representation V (λ) of A1

1 with highest weight λ, as a formal
series

chλ =
∑
β∈P

dim(V (λ)β)eβ,(4.1)

where V (λ)β is the weight space of V (λ) corresponding to the weight β. If we

let eβ(h) = eβ(h), for h ∈ hR, and evaluate this formal series at h, the series
converges absolutely or diverges, and it converges if and only if δ(h) > 0. For
more details about affine Lie algebras and their representations, we refer to [25].
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4.2. A Duistermaat Heckman measure. A way to define the Duistermaat
Heckman measure for a semi-simple complex Lie algebra, is an approximation of
the distribution of the weights of an irreducible representation when its highest
weight is large (see [21]). For a compact connected Lie group, this measure
also appears as a measure associated to a coadjoint orbit. Actually this is the
pushforward measure of the Liouville measure on this coadjoint orbit by the
projection on a Cartan subalgebra.

In an affine framework it is also possible to consider a semiclassical approxi-
mation of the distribution of the weights of an highest weight irreducible module
when the highest weight is large. Let us explain how. Let r ≥ 1, for a dominant
weight λr, and hr ∈ hR such that δ(hr) > 0, we define a measure γr on h∗R,
letting

γr =
∑
β∈P

dim(V (λr)β)eβ(hr) δβ/r,(4.2)

where δβ/r is the Dirac measure at β/r.

Proposition 4.1. Let (t, x) ∈ Caff, and {λr, r ∈ N∗} be a sequence of dominant

weights such that λr is equivalent to r(tΛ0 + xα1
2 ) when r goes to infinity. If for

µ ∈ [0, 1] one chooses hr = 1
r (µα̃1 + 2d) in (4.2), then, as r →∞,∫

h∗R

esβ(α̃1) γr(dβ) ∼ 1

π
√
πr
erπ

2/4e(s+µ)xϕs+µ(t, x)

Proof. One has for any v ∈ h,∫
eβ(v) γr(dβ) = chλr(

v

r
+ hr).

The Weyl-Kac character formula implies that

chλr(aα̃1 + bd) =

∑
k∈Z sinh(a(m+ 1) + 2ak(n+ 2))e−b(k(m+1)+k2(n+2))∑

k∈Z sh(a+ 4ak)e−b(k+2k2)
,

for λr = nΛ0 +mα1
2 , with (m,n) ∈ N2 such that 0 ≤ m ≤ n, a ∈ R, and b ∈ R∗+

(see [11]). For λr equivalent to r(tΛ0 + xα1/2), v = sα̃1, and hr = 1
r (µα1 + 2d),

one has immediately that the numerator of the character chλ(vr + hr) converges
towards

e(s+µ)x sin(s+ µ)π

π
ϕs+µ(t, x),

when r goes to infinity. Besides Lemma 3.41 implies that the denominator of
the character is equivalent to

√
πre−

1
4
rπ2

sinπ(s+ µ),

which finishes the proof. �

We denote by νr the probability measure on h∗R

νr =
1

chλr(hr)
γr.

The theorem below states that the conditional measure of Theorem 3.43 can be
interpreted as a kind of normalized Duistermaat Heckman measure.
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Theorem 4.2. Under the hypotheses of Proposition 4.1, the sequence of the
push forward probabilities of {νr, r ≥ 1} by the quotient map from h∗R to h∗R/Rδ
converges to the law of B

(µ)
t conditionally to Λ

(µ)
t = (t, x) when r goes to infinity.

Proof. This follows immediately from Theorem 3.43 and Proposition 4.1. �

Remark 4.3. Frenkel has shown in [17] that the law of a Brownian motion on
su(2) indexed by [0, 1] given the orbit of the endpoint of its wrapping on SU(2)
plays the role of normalized Liouville measure on a coadjoint orbit. Identifying
su(2) and its dual, the Duistermaat Heckman probability measure appearing as a
limit measure in Theorem 4.2 is actually the projection of this law on a Cartan
subalgebra of su(2).

4.3. Asymptotics for the crystal B(∞) of A1
1. The infinity crystal B(∞) of

Kashiwara ([26]) is the crystal associated with the Verma module with highest
weight 0. It is important since any irreducible highest weight crystal may be
obtained from B(∞). It is shown in [31] that using string parametrizations, a
realization of B(∞) is given by

B(∞) = {x ∈ NN; for some n ∈ N,
x1

1
≥ x2

2
≥ · · · ≥ xn

n
> 0, xk = 0 for k > n}.

Notice that the only condition on x0 is x0 ∈ N. For x ∈ B(∞), we let

σ(x) =
n∑
k=0

xkαk ∈ h∗R,

when xk = 0 for k > n. Then −σ(x) is the weight of x in the crystal B(∞) (see
[26]). Notice that (3.11) holds modulo δ. For ρ̃ = 2d+ α̃1/2, we define

s(x) =
+∞∑
k=0

xk = σ(x)(ρ̃).

The character ch∞ of the Verma module is defined as in (4.1), and one has
that (see chapter 9 of [25]),

ch∞ =
∏
β∈R+

(1− e−β)−1,(4.3)

where

R+ = {αi + nδ, i = 0, 1, n ∈ N} ∪ {nδ, n ∈ N∗}(4.4)

are the so called positive roots. As previously, if we let eβ(h) = eβ(h), for h ∈ hR,
and evaluate the formal character at h, it converges if and only if δ(h) > 0. Let
r ∈ R∗+. On each element x of the crystal B(∞) we put the Boltzman weight

e−s(x)/r. Then
Zr =

∑
x∈B(∞)

e−s(x)/r = ch∞(ρ̃/r)

and we introduce the probability distribution βr on B(∞) given by

βr(x) =
e−s(x)/r

Zr
, x ∈ B(∞).

Since B(∞) is a subset of Γ we consider βr as a probability on Γ. By the
convergence in distribution below we mean the convergence of finite coordinates.
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The following theorem indicates that the affine Brownian model describes an
asymptotic (or continuous) version of the infinity crystal B(∞) for the affine Lie
algebra A1

1.

Theorem 4.4. Let χr ∈ Γ, r ∈ N, be random variable with distribution βr.
Then χr/r converges in distribution on Γ to the law of the Verma parameter ξ

of B(1/2).

Proof. We use the results on anti-lecture Hall compositions recalled in 5.5. Let
us first prove that χr1/r converges in law to ξ1. For q = e−1/r, it follows from
(5.9), (5.10) that

P(χr1 ≤ ar) =

∑
x∈B(∞);x1≤ar q

s(x)∑
x∈B(∞) q

s(x)
=

∑
λ∈A∞;λ1≤ar q

|λ|∑
λ∈A∞ q

|λ|

=
1

1− q
(q; e−aq2)∞(e−aq; e−aq2)∞(e−aq2; e−aq2)∞.

Since (q; e−aq2)∞ is equivalent to (1− q)(e−a; e−a) one has, by Proposition 3.47

lim
r→∞

P(
χr1
r
≤ a) = (e−a; e−a)3

∞ =

∞∏
n=1

(1− e−na)3 = P(ξ1 ≤ a).

So χr1/r converges to ξ1.
We now consider the full sequence χrk/r, k ∈ N. First it is clear that χr0/r

converges in law to ξ0. For any r and n ≥ 1, one has

χr1
1
≥ χr2

2
≥ · · · ≥ χrn

n
,

which implies that for any n ∈ N, the collection of laws of (1
rχ

r
1, · · · , 1

rχ
r
n)r>0

is tight. By Cantor’s diagonal argument, we construct an increasing sequence

ϕ(r) ∈ N, r ∈ N, such that the sequence of random variables ( 1
ϕ(r)χ

ϕ(r)
k , k ≥ 0)

converges in finite dimensional distribution when r goes to infinity. Let us denote
by (χk, k ≥ 0) the limit, and let us first prove that {χk/k−χk+1/(k+ 1), k ≥ 1}
has the same distribution as {2εk/k(k + 1), k ≥ 1}. For x ∈ B(∞), one has

P(χr = x) =
1

ch∞(1
r ρ̃)

e−
1
r
x0

∞∏
k=2

e−
1
2r

(kxk−1−(k−1)xk)1{xk−1
k−1

≥xk
k
}

=
1

ch∞(1
r ρ̃)

e−
1
r
x0

∞∏
k=1

e−
k+1
2r

(xk−d k
k+1

xk+1e)e−
1
2r

(kd k−1
k
xke−(k−1)xk)1{xk≥dk

xk+1
k+1
e}.

As for k = 1, · · · , n,

e−
k
2r ≤ e−

1
2r

(kd k−1
k
xke−(k−1)xk) ≤ 1,

one obtains for n ∈ N and t0, · · · , tn ∈ R+,

C(r)(1 + o(
1

r
)) ≤

P(χr0 ≥ t0, · · · , χrn − d n
n+1χ

r
n+1e ≥ tn)

P(Y r
0 ≥ t0, · · · , Y r

n ≥ tn)
≤ C(r),

where C(r) is independent of t0, · · · , tn, and where Y r
0 and Y r

k , k = 1, · · · , n,
are independent geometric random variables with values in N, and parameters 1
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and e−
k+1
2r , k = 1, · · · , n. This proves that for any n,

1

r
χr0,

1

r
(χrk − d

k

k + 1
χrk+1e), 1 ≤ k ≤ n,

converges jointly towards ε0,
2

k+1εk, 1 ≤ k ≤ n, when r goes to infinity. Besides

lim
r→∞

1

ϕ(r)
(χ
ϕ(r)
k − d k

k + 1
χ
ϕ(r)
k+1e) = χk −

k

k + 1
χk+1.

Thus, for k ≥ 1, 1
kχk −

1
k+1χk+1, are independent random variables with the

same law as 2
k(k+1)εk. The positive sequence χk/k is decreasing. Let S be its

limit. We has the identity in law, for all k ≥ 1,

χk
k

=
+∞∑
n=k

2εn
n(n+ 1)

+ S.

We have proved that in law χ1 = ξ1, so S = 0 which finishes the proof. �

Recall (Corollary 3.44) that L(1/2) = (0, D1/2) where the density of D1/2 is
1/(π coshx).

Proposition 4.5. When r goes to infinity, in law,

(1) The normalized weights σ(χr)/r converges to L(1/2) in the quotient space
h∗R/Rδ.

(2) The coordinate of σ(χr)/r along δ goes to infinity.

Proof. In view of (4.4), the expression (4.3) of the character shows that, in
distribution,

σ(χr) =
∑
n≥0

(G0(n)(α0 + nδ) +G1(n)(α1 + nδ) +G2(n)(n+ 1)δ),

where Gi(n), i = 0, 1, 2, and n ∈ N, are independant random variables such
that G0(n), G1(n) and G2(n), are geometrically distributed with respective pa-

rameter e−(α0+nδ)(ρ̃), e−(α1+nδ)(ρ̃), and e−(n+1)δ(ρ̃), i.e. with respective parameter
e−2(n+1/2)/r, e−2(n+1/2)/r and e−2(n+1)/r. The proposition follows easily. �

5. Appendix

5.1. The conditioned Brownian motion in [0, 1]. We recall some well known
facts about the Brownian motion conditioned to stay forever in the interval [0, 1].
It first appeared in Knight ([28]), called there the Taboo process, as the limit
when t→∞ of the standard Brownian motion conditioned to reach the boundary
after time t. To define it rigorously, consider the Brownian motion in [0, 1] killed
at the boundary (its generator is half the Laplacian with Dirichlet boundary
condition). Its maximal eigenvalue is π2/2 with eigenvector

h(x) = sin(πx),

called the ground state. This function h is π2/2-harmonic, and we consider the
h-Doob process {Zt, t ≥ 0}. It is the Markov process with transition probability
density qt(x, y) given when x, y ∈ (0, 1) by

qt(x, y) =
sin(πy)

sin(πx)
eπ

2t/2ut(x, y),
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where ut(x, y) is the transition probability density of the killed Brownian motion.

Definition 5.1. We call Zt the conditioned Brownian motion process in [0, 1].

It can also be viewed as the diffusion with generator

1

2

d2

dx2
+ π cot(πx)

d

dx

in [0, 1]. It is well known (and follows from the reflection principle), that, for
x, y ∈ (0, 1),

ut(x, y) =
∑
k∈Z

(pt(x+ 2k, y)− pt(−x− 2k, y)),(5.1)

where pt is the standard heat kernel ([24]). Using the Poisson formula, or the
spectral decomposition of the generator,

ut(x, y) =
∑
n∈Z

sin(nπx) sin(nπy)e−π
2n2t/2.(5.2)

By scale function techniques, one sees that 0 and 1 are entrance non–exit bound-
aries. In other words, Zt can be started form the boundaries and do not touch
them at positive time. The entrance density measure from 0 is the limit of
qt(x, y) when x→ 0, which is for y ∈ (0, 1), by (5.2),

qt(0, y) = sin(πy)
∑
n∈Z

n sin(nπy)e−
t
2
π2(n2−1).(5.3)

Let us remark that Zt can also be defined by the latitude of the Brownian
motion on the 3-dimensional sphere ([24] Section 7.15) or the argument of an
eigenvalue of the Brownian motion in SU(2). The boundaries behaviour is also
clear from this description. Another interpretation is given by the distance be-
tween two non colliding Brownian motions on a circle ([22]). A natural question
is to extend our results to more than two points on a circle, or in other words to
consider the affine Lie algebra A1

n, n ≥ 2.

5.2. The conditioned planar Brownian motion in the dihedral cone Cm.
It is given by the two dimensional Brownian motion starting from 0 conditioned
to stay in the cone Cm forever. It is rigorously defined in 5.1 of [3].

5.3. The conditioned space-time Brownian motion in Caff. We fix some

µ ∈ [0, 1] and define rigorously the process A
(µ)
t , t ≥ 0, which is the space time

Brownian motion with drift µ starting from (0, 0), namely

B
(µ)
t = (t, Bt + µt)

(where (Bt) is the standard real Brownian motion), conditioned to stay forever
in the affine cone

Caff = {(t, x) ∈ R+ × R+ : 0 < x < t}.

Let {Kµ
t , t ≥ 0} be the space-time process B

(µ)
t killed at the boundary of C̄aff.

This is the process in the cone with generator ∂
∂t + 1

2
∂2

∂x2
+ µ ∂

∂x and Dirichlet
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boundary condition, and let uµt be its transition probability density. Using the
Cameron-Martin formula and [12], Proposition 2.2,

uµt ((s, x), (t+ s, y)) =eµ(y−x)− t
2
µ2 p̂0

t ((s, x), (t+ s, y))(5.4)

=
∑
k∈Z

e−2(kx+k2s)(eµ(2ks+x)pµt (x+ 2ks, y)(5.5)

− e−µ(2ks+x)pµt (−x− 2ks, y)),

where pµt is the standard heat kernel with a drift µ. The function ϕµ defined on
R∗+ × R by

ϕµ(t, x) = e−µx
∑
k∈Z

π sinh(µ(2kt+ x))

sin(µπ)
e−2(kx+k2t), t > 0, x ∈ R,(5.6)

when 0 < µ < 1 and by continuity for µ = 0, 1, is a space-time harmonic for the
killed process K(µ), non negative on Caff and vanishing on its boundary [11].

Definition 5.2. For 0 ≤ µ ≤ 1, the continuous Markov process {A(µ)
t , t ≥ 0} in

Caff, with transition densities

q̂µt ((s, x), (s+ t, y)) =
ϕµ(s+ t, y)

ϕµ(s, x)
ûµt ((s, x), (s+ t, y)),(5.7)

for (s, x), (s+ t, y) ∈ Caff and entrance measure

q̂µt ((0, 0), (t, y)) = ϕµ(t, y) sin(
y

t
π)e−

1
2t

(y−µt)2(5.8)

for (t, y) ∈ Caff is the space-time Brownian motion conditioned to stay in Caff.

Lemma 5.3. For 0 ≤ s ≤ t,

u0
1/s−1/t(y/t, x/s)e

− 1
2t
y2 = u0

t−s((s, x), (t, y))e−
1
2s
x2 .

Proof.

u0
1/s−1/t(y/t, x/s) =

∑
k∈Z

(p1/s−1/t(y/t+ 2k, x/s)− p1/s−1/t(−y/t− 2k, x/s))

=
∑
k∈Z

ps(0, x)

pt(0, y + 2kt)
(pt−s(x, y + 2kt)− pt−s(x,−y − 2kt))

=
ps(0, x)

pt(0, y)

∑
k∈Z

e−2kx−2k2s(pt−s(x+ 2kt, y)− pt−s(−x− 2ks, y)),

which gives the lemma, by identity (5.5). �

Lemma 3.41 and (5.2) imply the following lemma.

Lemma 5.4.

qt(x, y) = ct sin(πy)e−
1
2t

(y−x)2ϕx(1/t, y/t).

Theorem 5.5. For µ ∈ [0, 1], the processes {A(µ)
t , t > 0} and {(t, tZ1/t), t > 0},

where Z starts from µ, are equal in law.
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Proof. We let Xt = tZ1/t, t > 0. For 0 < t1 < · · · < tn, the quantity P(Xt1 ∈
dx1, · · · , Xtn ∈ dxn) is equal to

q 1
tn

(µ,
xn
tn

)q 1
tn−1

− 1
tn

(
xn
tn
,
xn−1

tn−1
) · · · q 1

t1
− 1
t2

(
x2

t2
,
x1

t1
) dx1 · · · dxn.

We conclude by Lemma 5.4 for the first factor and Lemma 5.3 for the others. �

Since we have described in a precise way the boundary behaviour of Zt, the

one of A
(µ)
t follows from this theorem.

5.4. A property of Pitman transform for piecewise C1 paths. As men-
tioned in the introduction, the need of an infinite number of Pitman transforms to
represent the space-time Brownian motion in Caff is due to its wild behaviour.
The situation is much simpler for regular curves, as shown by the following
proposition. Let η(t) = (t, π(t)) be a continuous piecewise C1 path such that
π(0) = 0.

Proposition 5.6. For any T > 0, there is an n such that for all t ∈ [0, T ],

Pαn · · · Pα2Pα1η(t) ∈ Caff.

We use the notations of Section 2. It is equivalent to prove that there is an
n > 0 such that

0 ≤ Pn · · · P2P1π(t) ≤ t,
for all t ∈ [0, T ]. Let τ1(π) = inf{t > 0;π(t) < 0} and τ0(π) = inf{t > 0;π(t) >
t}, and let |π′| be the supremum of the left and right derivatives of π on [0, T ].

Lemma 5.7. (1) Si |π′| ≤M , then

|P1π
′| ≤M, and |P0π

′| ≤ 2 +M.

(2) Pour 0 ≤ t ≤ τ1(π) ∧ τ0(π)

P1π(t) = P0π(t) = π(t).

(3) There is an n > 0 such that

0 ≤ (Pn · · · P2P1π)′(0) ≤ 1.

Proof. (1) and (2) are straightforward. For (3): if s0(x) = −x and s1(x) = 2−x,
for i = 0, 1, Piπ′(0) = siπ

′(0), and it is well known that one can bring any real
into [0, 1] be the actions of s0 and s1. �

Lemma 5.8. Theorem 5.6 holds when τ1(π) ∧ τ0(π) > 0.

Proof. By symmetry it is enough to consider the case where τ1(π) < τ0(π).
Let π1 = P1π, π2 = P0π1, π3 = P1π2, · · · and a1 = τ1(π), a2 = τ0(π1), a3 =
τ1(π2), · · · . By (1) of Lemma 5.7, |π′n| ≤M + 2n so, by the mean value theorem,

|π2n(a2n+1)− π2n(a2n)| ≤ (M + 4n)(a2n+1 − a2n)

|π2n+1(a2n+2)− π2n+1(a2n+1)| ≤ (M + 4n+ 2)(a2n+2 − a2n+1)

One has π2n(a2n) = a2n, π2n(a2n+1) = 0, π2n+1(a2n+1) = 0, π2n+1(a2n+2) =
a2n+2, thus

a2n+1 ≥
M + 4n+ 1

M + 4n
a2n, a2n+2 ≥

M + 4n+ 2

M + 4n+ 1
a2n+1,

and an ≥ T for n large enough. �
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Proof of Proposition 5.6. Using (3) of Lemma 5.7 one can suppose that 0 ≤
π′(0) ≤ 1.When 0 < π′(0) < 1, then τ1(π) ∧ τ0(π) > 0 and we can apply Lemma
5.8. If for instance π′(0) = 0, let η = P1π. Then η′(0) = 0, and η(t) ≥ 0
for t ≥ 0. In that case τ1(η) ≥ 1, and τ0(η) > 0. Indeed otherwise there is a
sequence tn decreasing to 0 such that η(tn) ≥ tn and η′(0) is not 0. So we can
also apply Lemma 5.8. �

5.5. Anti-lecture Hall compositions. The set A∞ of anti-lectures Hall com-
positions is defined in [8] as the sets of sequence of integers λ1, λ2, · · · such that,
for some n ∈ N,

λ1

1
≥ λ2

2
· · · ≥ λn

n
> 0,

and λp = 0 when p > n. So we see that

A∞ = {(λ1, λ2, · · · ); (0, λ1, λ2, · · · ) ∈ B(∞)}.
For λ = (λ1, λ2 · · · , λn, 0, 0, · · · ) ∈ A∞, let |λ| =

∑n
k=1 λk. It is shown, see [8, 9]

and (1.2) and (1.3) in [6], that for 0 ≤ q < 1,∑
λ∈A∞

q|λ| =
(−q; q)∞
(q2; q)∞

,(5.9)

∑
λ∈A∞,λ1≤k

q|λ| =
(−q; q)∞(q; qk+2)∞(qk+1; qk+2)∞(qk+2; qk+2)∞

(q; q)∞
,(5.10)

where (a; q)∞ =
∏∞
n=0(1− aqn).
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