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Abstract

The damage detection problem in mechanical systems, using vibration measure-
ments, is commonly called Structural Health Monitoring (SHM). Many tools are
able to detect damages by changes in the vibration pattern, mainly, when dam-
ages induce nonlinear behavior. However, a more difficult problem is to detect
structural variation associated with damage, when the mechanical system has
nonlinear behavior even in the reference condition. In these cases, more so-
phisticated methods are required to detect if the changes in the response are
based on some structural variation or changes in the vibration regime, because
both can generate nonlinearities. Among the many ways to solve this problem,
the use of the Volterra series has several favorable points, because they are a
generalization of the linear convolution, allowing the separation of linear and
nonlinear contributions by input filtering through the Volterra kernels. On the
other hand, the presence of uncertainties in mechanical systems, due to noise, ge-
ometric imperfections, manufacturing irregularities, environmental conditions,
and others, can also change the responses, becoming more difficult the damage
detection procedure. An approach based on a stochastic version of Volterra
series is proposed to be used in the detection of a breathing crack in a beam
vibrating in a nonlinear regime of motion, even in reference condition (without
crack). The system uncertainties are simulated by the variation imposed in the
linear stiffness and damping coefficient. The results show, that the nonlinear
analysis done, considering the high order Volterra kernels, allows the approach
to detect the crack with a small propagation and probability confidence, even
in the presence of uncertainties.
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1. Introduction

The process of damage detection in mechanical, aerospace and civil sys-
tems and structures, based on damage features and statistical analysis of them,
is commonly called as Structural Health Monitoring (SHM) [1]. The study and
application of SHM techniques are motivated by the potential life-safety and eco-
nomic impact of their implementation, which contributes to the development of
new approaches [2]. As it is widely known, the damage-sensitive features can be
sensitive to confounding effects such as environmental or operating conditions,
temperature and humidity changes, sensor bonding conditions, and others [3].
In addition, real systems and structures are subject to uncertainties, mostly
related to noise in the measurements (experimental data variation), geometric
imperfections, manufacturing irregularities, environmental conditions, or even,
lack of knowledge about the system physics [4, 5, 6]. These uncertainties can
complicate the damage detection problem and have to be considered in the SHM
applications, reducing the occurrence of false alarms [7].

To overcome this problem, the damage detection can be done based on statis-
tical procedures, taking into account confidence limits to the dynamic behavior
of the systems and structures. Thus, the structural monitoring can be done,
usually, based on: (i) novelty detection, i. e., detection of discrepant behaviors
of the structure compared with the normal condition which it is known, in most
cases with the establishment of statistical thresholds to the system behavior in
normal condition; (ii) classification, in this case all states are known and the
condition of the structure or system is classified into groups of different damage
stages or healthy condition; (iii) regression algorithms, in which some variable
or process is monitored with confidence limits. The choice of the more interest-
ing approach to be used it depends on the specific problem and on the level of
knowledge about the damage (detection, location, assessment, prediction) de-
sired [8]. In this sense, a lot of methods can be used, such as linear and nonlinear
Principal Component Analysis (PCA - NPCA) [9] , Extreme Value Statistics
(EVS) [10], Peaks Over Threshold (POT) [11], machine learning algorithms [12],
neural network [13], Bayesian approaches [14], Mahalanobis distance [15, 16],
and others. In all these applications, the final objective of the methods used are
the same, differentiate the uncertainties and variabilities of the damages.

On the other hand, many existing SHM features use the nonlinear character-
istics of damages to detect them. In this context, cracks [17], delamination [18]
or rubbing in rotor systems [19], induce linear systems to exhibit nonlinear phe-
nomena and the damage detection problem becomes a problem of nonlinearities
detection. So, in this situation, the damage can be detected using harmonic
distortions, coherence functions, probability density functions, correlation tests,
Hilbert transform and others [20]. Thus, the crack detection in beams can be
performed based on the nonlinear behavior induced by this type of damage.
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Andreaeus et al. [21] have used the nonlinear aspects of the dynamic response
of a beam under harmonic excitation to relate the nonlinear resonances to the
presence and size of the crack. Rébillat et al. [22] have used cascade of Hammer-
stein models to detect nonlinear damage through the monitoring of the energy
of the nonlinear components in the system response. The approach was applied
in a simulated breathing crack problem detection and in the monitoring of a
composite plate. Lim et al. [17] have shown a reference-free fatigue crack de-
tection technique, based on nonlinear ultrasonic modulation. In this last work,
a sequential outlier analysis was used to identify the crack presence without re-
ferring to any baseline data obtained from the intact condition of the structure.

All these approaches are powerful tools used to detect the presence of fatigue
crack or any other damage that induces nonlinear effects in the system behavior.
However, the SHM problem increases when the intrinsic nonlinear behavior
of the systems and structures is considered because the nonlinear phenomena
can be confused with damage when classical SHM techniques, based on linear
metrics, are used [23]. Furthermore, many mechanical systems and structures
can operate with strong nonlinear behavior, that makes them exhibit complex
responses containing subharmonic and superharmonic resonances, jumps, modal
interactions, bifurcation, quasi-periodicity, and possible chaos [24, 25]. In this
situation, the nonlinear behavior of the system in the reference condition has,
necessarily, to be considered.

In this regard, many approaches, in time and frequency domain, can be used
to describe the nonlinear behavior, such as Hilbert transform, Narmax Models,
High-Order FRFs [26, 27], restoring force surface methods (RFS) [28, 29], har-
monic balance method [30] and others. Unfortunately, these nonlinearities have
many individualities, in a way that it is difficult to obtain a general model
that describes all the structures of interest. Among the different methods for
nonlinearities identification, the Volterra series stands out, because it is a gener-
alization of the linear convolution concept, allowing the separation of the system
response in linear and nonlinear components [31]. The main procedure to esti-
mate the Volterra kernels is the Harmonic Probing method, that was extensively
used in system identification problems [32, 33] and damage characterization [34].
The limitation of the approach is the dependence of a parametric model of the
system.

Another possible formulation is the direct use of input/output signals to
estimate the Volterra kernels. Tang et al. (2010) [35] have used the classical
version of the Volterra series approach to detect structural variations in a rotor,
using the vibration signals of different points as input/output signals. Tang et al.
(2010) have used the classical version of the Volterra series approach to detect
structural variations in a rotor, using the vibration signals of different points
as input/output signals. The Volterra kernels coefficients and the Principal
Component Analysis (PCA) were used as damages features. In this study, the
use of the first 3 kernels has shown better performance, with the capability of
separate all the conditions considered. However, as mentioned by the authors,
the high number of parameters to be identified has difficulted the approach
implementation using an optimization process. Similarly, Xia et al. (2016) [36]
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have used a key kernels-PSO (KK-PSO) method to identify the Volterra model,
combined with neural networks, also to detect structural variation in a rotor.
The implementation has been facilitated by the model reduction obtained using
the KK-PSO method. The results have shown the capability to the method
to detect different types of structural variation. In both works, the Volterra
series coefficients have been used as damage sensitivity feature, but they have
not considered the presence of uncertainties in the damage detection process to
study the capability of the approaches to detect the damages with a probabilistic
confidence.

Additionally, Shiki et al. (2017) [37] have used this Volterra series formu-
lation, based on input/output signals, to detect structural variations related
with damage, in a beam with nonlinear behavior, even in the reference condi-
tion. They have shown the use of Volterra series expanded through the Kautz
functions, as a reference model to predict the nonlinear system response and
to monitor the structure of interest. A statistical study of the damage index
proposed was done with satisfactory results, but only the variation related to
measurement noise was taken into account. The authors have not considered
the possible system response variation related to the uncertainties, like environ-
mental and operating conditions, and others as mentioned before.

Thus, in this work, it is proposed to use a stochastic version of the Volterra
series approach, expanded using random Kautz functions, as a stochastic model
for damages detection based on novelty detection. The Volterra kernels are
estimated in a probabilistic framework, considering the data variation, that is
obtained through the variabilities in fundamental frequency and damping of the
studied system. To allow the description of the response variation, the Kautz
parameters are treated as random variables and the Kautz functions, used to
reduce the number of terms of the Volterra kernels, as random processes. This
methodology gives to the proposed model the ability to describe the system
nonlinear behavior and the data variation simultaneous.

To detect the presence of damage, the stochastic model obtained through
the stochastic version of Volterra series is used as a set of reference models, so
new models are estimated in unknown condition and compared with this set
of models, through a distance-based method. The capability of the Volterra
series model to separate linear and nonlinear contributions in system response
is used. Two methodologies are compared, considering the linear and nonlinear
components of the Volterra series. The first methodology considers only the
Volterra kernels coefficients and the second considers the kernels contribution.
The approaches are applied in a simulated uncertain nonlinear system that de-
scribes the real behavior of a nonlinear beam, and, the damage is simulated
by the propagation of a breathing crack, described as a bilinear stiffness oscil-
lator. The results obtained show that the methodologies proposed are able to
differentiate the nonlinear behavior and data variation of the damage presence,
with better performance than the simple linear analysis. It is showed that the
use of Volterra series in this situation represents a clear advantage in damage
detection process, with the improvement in the results in comparison with the
linear approach. In addition, the stochastic version proposed allows the dam-
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age detection through the approach, even in the presence of uncertainties, with
probability confidence.

The present paper is organized as follows. Section 2 reviews the fundamental
aspects of system identification based on Volterra series, showing the expansion
of the theory to the proposed stochastic Volterra series model, and describes the
methodology used to detect damage in nonlinear systems, considering uncertain-
ties of different natures. Section 3 presents the model of the nonlinear uncertain
beam simulated and the breathing crack model used to simulate the presence
and propagation of damage. Section 4 shows the results obtained through the
application of the approach in the studied system. Finally, section 5 presents
the main conclusions and some paths for future work.

2. The stochastic Volterra series approach for damage detection

This section describes the proposed methodology for modeling nonlinear sys-
tems assuming data uncertainties. The approach is based on a stochastic version
of the Volterra series, expanded using Kautz functions as the orthonormal ba-
sis. The sections 2.1 and 2.2 summarize the deterministic version of the Volterra
series expanded using Kautz functions, which is known in the literature and it
was used to detect damage in initially nonlinear systems by Shiki et al. [37].
Additionally, the sections 2.3, 2.4 and 2.5 show the expansion of the classical
deterministic concept to the new random version of the approach, proposed to
be used to model uncertain nonlinear systems. Finally, section 2.6 presents the
two new proposed damage detection methodologies, to be used considering the
random version of the Volterra series.

2.1. Deterministic Volterra series

Consider a discrete-time causal nonlinear system with a single output k ∈
Z+ 7→ y(k) caused by a single input k ∈ Z+ 7→ u(k), with Z+ representing
the set of nonnegative integers. Through the discrete-time Volterra series, the
output of this nonlinear system can be written in the form

y(k) =

∞∑
η=1

N1−1∑
n1=0

. . .

Nη−1∑
nη=0

Hη(n1, . . . , nη)

η∏
i=1

u(k − ni), (1)

where (n1, .., nη) ∈ Zη+ 7→ Hη(n1, . . . , nη) represents the η-order Volterra kernel.
This formalism is very versatile, in a way that it allows one to represent different
types of nonlinear systems using the convolution concept [31]. Also, it allows
one to split the system output into a sum of linear and nonlinear contributions

y(k) = y1(k)︸ ︷︷ ︸
linear

+ y2(k) + y3(k) + · · ·+ yη(k)︸ ︷︷ ︸
nonlinear

. (2)

The main drawback of the approach is the difficulty of convergence of the series
when a large number of terms N1, ..., Nη are used. In order to reduce the number
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of terms necessary to obtain a good approximation, the Volterra kernels Hη can
be expanded into an orthonormal basis, such as the Kautz functions, that is
employed in this work [38, 39]. In this way, one can write

Hη(n1, ... , nη) ≈
J1∑
i1=1

...

Jη∑
iη=1

Bη (i1, ... , iη)

η∏
j=1

ψη,ij (nj) , (3)

where J1, . . . , Jη are the number of Kautz functions used in each orthonormal
projections of the Volterra kernels, (i1, . . . , iη) ∈ Zη+ 7→ Bη(i1, . . . , iη) represents
the η-order Volterra kernel, expanded in the orthonormal basis, and nj ∈ Z+ 7→
ψη,ij (nj) represents the ij-th Kautz filter.

Thus, using the discrete Volterra series representation of Eq. (1) and the
Kautz approximation (3), the system response can be approximated by the
multidimensional convolution between the orthonormal kernels Bη and the input
signal filtered by the Kautz functions, i.e.,

y(k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (i1, . . . , iη)

η∏
j=1

lη,ij (k) , (4)

where k ∈ Z+ 7→ lη,ij (k) is a simple filtering of the input signal u(k) by the
Kautz function ψη,ij , i.e.,

lη,ij (k) =

V−1∑
ni=0

ψη,ij (ni)u(k − ni) , (5)

where V = max{J1, . . . , Jη}.
More information on the identification approach based on Volterra series can

be found in [40, 41]. Details about Kautz functions are given in section 2.2. The
reader is also encouraged to see [42, 43, 37].

2.2. Deterministic Kautz functions

The generalized form of the Kautz functions is written as [44]

Ψη,2j−1(z) =
z
√

(1− b2η)(1− c2η)

z2 + bη(cη − 1)z − cη

[
−cηz2 + bη(cη − 1)z + 1

z2 + bη(cη − 1)z − cη

]j−1

, (6)

and

Ψη,2j(z) = Ψη,2j−1(z)
z − bη√
1− b2η

, (7)

being the values of bη and cη, respectively, defined by

bη =
(Zη + Z̄η)

1 + ZηZ̄η
(8)
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and
cη = −ZηZ̄η , (9)

where Z and Z̄ are, respectively, the Kautz poles and its complex conjugate in
discrete domain. The discrete poles Zη can be related to the continuous poles
Sη through the equation

Zη = exp

(
Sη
Fs

)
, (10)

where Fs represents the sampling frequency. The Kautz poles for each kernel
are defined as

Sη = −ξηωη ± jωη
√

1− ξ2
η , (11)

where ωη and ξη are the Kautz parameters and η represents the number of the
kernel considered. Remembering that, for the linear kernel, the Kautz parame-
ters are the natural frequency and damping ratio of the system. In identification
processes, it is common to use some optimization methodology to find ωη and
ξη [45]. The use of the Kautz functions as the orthonormal basis is driven by
their properties to describe the oscillatory dynamic systems [38].

2.3. System uncertainties

Uncertainties are classified in the literature as being of two types, aleatory or
epistemic. The first type is intrinsic to scenarios with variabilities, such as mea-
surement noise in the system observations (experimental data) and variabilities
of the real system with respect to its nominal configuration (due to geomet-
ric imperfections, manufacturing irregularities, environmental conditions, etc.)
[4, 5, 6]. These uncertainties can not be eliminated, only better characterized.
On the other hand, epistemic uncertainties are due to the lack of knowledge
(ignorance) about the system physics. By increasing knowledge about a certain
system, these uncertainties can be mitigated [4, 5, 6].

For the sake of simplicity, in this work, only the aleatory uncertainties, also
known as data uncertainties, are taken into account. In the context of system
identification, such uncertainties are materialized in the form of variations in the
model parameters. Implicit in this approach is the hypothesis that the Volterra
series is capable of producing a reliable representation of the system response.

2.4. The stochastic Volterra series

In this work, a stochastic version of the Volterra series is proposed to identify
the nonlinear system of interest. The model parameters subjected to uncertain-
ties are described as random variables or processes, defined on the probability
space (Θ,�,P), where Θ is a sample space, � is a σ-algebra over Θ, and P is a
probability measure. It is assumed that any random variable θ ∈ Θ 7→ Y(θ) ∈ R
in this probabilistic setting, with a probability distribution PY(dy) on R, admits
a probability density function (PDF) y 7→ pY(y) with respect to dy.
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Therefore, the discrete-time Volterra series describes the random nonlinear
system output as

y(θ, k) =

∞∑
η=1

N1−1∑
n1=0

. . .

Nη−1∑
nη=0

Hη(θ, n1, . . . , nη)

η∏
i=1

u(k − ni) , (12)

where u(k) is the deterministic input signal, the random process (θ, k) ∈ Θ ×
Z+ 7→ y(θ, k) is the aleatory system response and (θ, n1, .., nη) ∈ Θ × Zη 7→
Hη(θ, n1, . . . , nη) represents the random version of the η-order Volterra kernel.

The kernels expansion in terms of Kautz functions now is written as

Hη(θ, n1, ... , nη) ≈
J1∑
i1=1

...

Jη∑
iη=1

Bη (θ, i1, ... , iη)

η∏
j=1

 η,ij (θ, nj) , (13)

where J1, . . . , Jη are the number of Kautz functions used in each orthonormal
projection of the Volterra kernels, the random process (θ, i1, . . . , iη) ∈ Θ×Zη+ 7→
Bη(θ, i1, . . . , iη) represents the η-order random Volterra kernel, expanded in the
orthonormal basis, and (θ, nj) ∈ Θ × Z+ 7→  η,ij (θ, nj) represents the random
version of the ij-th Kautz filter related with the η-order random Volterra kernel.
The Kautz functions are modeled as random processes, because their definition
is associated with the dynamic system response y(θ, k) and depends on the
damping ratio and natural frequency, which are subjected to uncertainties.

The stochastic version equivalent of the approximation shown in (4) is writ-
ten

y(θ, k) ≈
∞∑
η=1

J1∑
i1=1

. . .

Jη∑
iη=1

Bη (θ, i1, . . . , iη)

η∏
j=1

lη,ij (θ, k) , (14)

where the random process (θ, k) ∈ Θ × Z+ 7→ lη,ij (θ, k) is a simple filtering of
the deterministic input signal u(k) by the random Kautz function  η,ij , i. e.,

lη,ij (θ, k) =

V−1∑
ni=0

 η,ij (θ, ni)u(k − ni) , (15)

for V = max{J1, . . . , Jη}.
Then, the coefficients of the kernels can be estimated, considering Monte

Carlo simulations and the least squares method. Figure 1 shows a flowchart
of the Volterra kernels identification considering the random Kautz functions
and the Monte Carlo simulations. So, considering each stochastic realization θ,
the matrix Γ can be completed with the input signal filtered lη,ij (θ, k) and the
vector y with the experimental output signal y(θ, k)

Φ = (ΓTΓ)−1ΓTy , (16)

where Φ has the terms of the orthonormal kernels Bη, in each realization θ. The

8



procedure is repeated until the Monte Carlo convergence is achieved.

Figure 1: Description of the Volterra kernels identification approach used, based on Monte
Carlo simulations.

2.5. The stochastic Kautz parameters

In order to create a robust identification, it is necessary to provide some type
of certification, i. e., an envelope of reliability for the nominal values of the model
parameters. Such certification can be obtained by a stochastic model, where
probability distributions, instead of scalar values, are identified for the model
parameters. In this case, the system response also becomes random, a stochastic
process to be precise, allowing the model to predict the variations in the response
related to uncertainties. As consequence of the system response variation, the
natural frequency and the damping ratio of the equivalent linear system can
also vary, becoming random variables θ ∈ Θ 7→ �n(θ) ∈ R, θ ∈ Θ 7→ �n(θ) ∈ R.
As mentioned before, the Kautz parameters for each kernel are related with the
systems natural frequency and damping ratio, so they are also considered as
random variables θ ∈ Θ 7→ �η(θ) ∈ R, θ ∈ Θ 7→ �η(θ) ∈ R.

So, the random system response is used to define the Kautz poles values.
Thus, the Kautz parameters, related with the first Volterra kernel, can be ap-
proximated as natural frequencies and damping ratios of the equivalent linear
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system. These values can be obtained through modal analysis techniques and
using the low amplitude system response, which is approximately linear. As
the system linear dynamics vary, it is clear that the modal parameters, and
consequently, the Kautz parameters vary too. The definition of the Kautz pa-
rameters related with the high order Volterra kernels is more complicated since
they are not exactly natural frequencies and damping ratios. But, it is possible
to define linear approximations between modal parameters and the high order
Kautz parameters

�1(θ) = �n(θ) , �1(θ) = �n(θ) ,

�2(θ) = p1 �n(θ) , �2(θ) = p2 �n(θ) , (17)

�3(θ) = p3 �n(θ) , �3(θ) = p4 �n(θ) ,

where the relationships p1, p2, p3 and p4 are estimated minimizing the error
function

min
∆

J =

N∑
k=1

[ŷ(k)− y(k)]2 (18)

where y(k) is the deterministic discrete-time system response, ŷ(k) is the de-
terministic model response and the vector ∆ contains the coefficients of the
relationships between modal and Kautz parameters. Once the coefficients were
defined, the Kautz parameters variation can be obtained based on the model
parameters variation. The optimization procedure does not need to be repeated
every time, but only for one representative data. In the simulations performed,
in this work, only the response correspondent to the deterministic values of the
system parameters was used to optimize the Kautz poles. And, the variation of
the Kautz poles was considered through the estimation of the modal parameters
in each Monte Carlo realization.

2.6. Damage detection based on Volterra series

The stochastic Volterra series can be used as a mathematical model to ap-
proximate the system response, first in the healthy condition to define a set of
reference models and, then, for each unknown condition (healthy or damaged),
to make predictions about the condition of the system. Since the stochastic ver-
sion of the Volterra series is able to describe linear and nonlinear systems, the
damage detection approach can be applied with linear or nonlinear behavior in
reference or damaged conditions. So, the system can be identified several times,
using Monte Carlo simulations, in the reference condition, to construct a set of
Volterra models. In the unknown condition, a new Volterra model can be iden-
tified and compared with the set of models constructed to detect the possible
presence of structure variations related with damages, all this, considering the
presence of uncertainties. The stochastic version of the Volterra series proposed
allows the damage detection with probability confidence. In this work, two dif-
ferent approaches are shown, based on the kernels coefficients and on the linear
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and nonlinear contributions to the total system response, in each structural
condition. The approaches are described as follow.

2.6.1. Damage detection based on kernels coefficients

The first approach is based on the coefficients of the Volterra kernels iden-
tified. This methodology does not consider the direct influence of the Kautz
functions, because only the coefficients expanded in the orthonormal basis are
considered. The influence of the random Kautz functions is taken into ac-
count only in the process of model identification. Considering Eq. (16) and
the Volterra series truncated in the third order term, the reduced order kernels
coefficients, for each Monte Carlo realization, are allocated as

Φ =

Φ1

Φ2

Φ3

 , Φ1 =


B1(1)
B1(2)

...
B1(J1)

 , Φ2 =



B2(1, 1)
B2(1, 2)

...
B2(1, J2)
B2(J2, 1)

...
B2(J2, J2)


, Φ3 =



B3(1, 1, 1)
B3(1, 2, 1)

...
B3(1, J3, 1)
B3(1, 1, 2)

...
B3(1, J3, J3)

...
B3(J3, J3, J3)



, (19)

remembering that J1, J2 and J3 are the number of Kautz functions used, con-
sidering the first, second and third kernels, respectively. It is expected that the
main information about the high order kernels is allocated in the main diago-
nal, so it is considered as monitoring parameters only the coefficients positioned
in this region. Then, the coefficients with higher contribution can be used to
represent the model identified

λ1 =


B1(1)
B1(2)

...
B1(J1)

 , λ2 =


B2(1, 1)
B2(2, 2)

...
B2(J2, J2)

 , λ3 =


B3(1, 1, 1)
B3(2, 2, 2)

...
B3(J3, J3, J3)

 , λnl =

{
λ2

λ3

}
. (20)

Now, considering the stochastic version of the Volterra series and the Monte
Carlo simulations, multiple models are estimated in the reference condition and
each vector becomes a random process. The random processes estimated, using
Monte Carlo simulations, represents the set of models identified in reference
condition

�1 =


B1(θ, 1)
B1(θ, 2)

...
B1(θ, J1)

 , �2 =


B2(θ, 1, 1)
B2(θ, 2, 2)

...
B2(θ, J2, J2)

 , �3 =


B3(θ, 1, 1, 1)
B3(θ, 2, 2, 2)

...
B3(θ, J3, J3, J3)

 , �nl =

{
�2
�3

}
. (21)
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Additionally, the index m is used to represent the four different indicators
calculated. So, the general notation �m is used from here, with m = 1, 2, 3,
or nl, depending on the number of the kernel considered in the analysis. The
damage detection can be summarized as follows

1. Identification of the multiple Volterra models in the reference condition,
through the stochastic version of the Volterra series;

2. Construction of the indexes based on kernels coefficients, in the reference
condition (�m);

3. Identification of a new Volterra model in an unknown condition;

4. Construction of the indexes based on kernels coefficients, in an unknown
condition (λm);

5. Comparison between the coefficients estimated in unknown and reference
conditions, if the new model belongs to the set of reference models, the
structure is classified as healthy.

The comparison between new and reference indexes will be done based on the
novelty detection or outliers analysis in multivariate data, using Mahalanobis
squared distance, described further.

2.6.2. Damage detection based on kernels contribution

With the aim of comparison between the results, a different approach is pro-
posed, based on the contribution of the Volterra kernels identified, to the total
response. In this situation, the convolution between the input signal filtered
by the Kautz functions and the kernels expanded in the orthonormal basis is
considered, giving higher importance to the random Kautz functions. The main
advantage of Volterra series approach is the capability of separate the model
response in linear and nonlinear contributions, through the kernels estimated

y1(k) ≈
J1∑
i1=1

B1 (i1) li1(k) , (22)

y2(k) ≈
J2∑
i1=1

J2∑
i2=1

B2 (i1, i2) li1(k) li2(k) , (23)

y3(k) ≈
J3∑
i1=1

J3∑
i2=1

J3∑
i3=1

B3 (i1, i2, i3) li1(k) li2(k) li3(k) , (24)

ynl(k) = y2(k) + y3(k) . (25)

where y1(k), y2(k), y3(k) and ynl(k) are the linear, quadratic, cubic and nonlin-
ear contributions, respectively. Again, considering the stochastic version of the
Volterra series and the Monte Carlo simulations, multiple models are estimated
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in the reference condition and each vector becomes a random process

y1(θ, k) ≈
J1∑
i1=1

B1 (θ, i1) li1(θ, k) , (26)

y2(θ, k) ≈
J2∑
i1=1

J2∑
i2=1

B2 (θ, i1, i2) li1(θ, k) li2(θ, k) , (27)

y3(θ, k) ≈
J3∑
i1=1

J3∑
i2=1

J3∑
i3=1

B3 (θ, i1, i2, i3) li1(θ, k) li2(θ, k) li3(θ, k) , (28)

ynl(θ, k) = y2(θ, k) + y3(θ, k) . (29)

As mentioned before, the index m is used to represent the five different
indexes calculated. So, the general notation ym is used from here, with m =
1, 2, 3, or nl. The damage detection is very similar to the methodology proposed
using kernels coefficients and can be summarized as follows

1. Identification of the multiple Volterra models in the reference condition,
through the stochastic version of the Volterra series;

2. Calculation of the kernels contribution to the total model response, in the
reference condition (ym);

3. Identification of the Volterra model in an unknown condition;

4. Calculation of the kernels contribution to the total model response, in an
unknown condition (ym);

5. Comparison between the contributions estimated in unknown and refer-
ence condition, if the new model belongs to the set of reference models,
the structure is classified as healthy.

The difference here is that using the kernels contribution, the Kautz func-
tions have an influence on the process, whereas using only the coefficients, they
do not. Based on that, the variations in the frequency of oscillation and the
damping coefficients are captured by the Kautz parameters, this version of the
approach is sensitive to these variabilities. The damage detection is also done
based on the novelty detection, considering multivariate data.

2.6.3. Novelty detection

The indexes proposed based on Volterra models are described as random
processes in the reference condition. This methodology combined with Monte
Carlo simulations allows the generation of a set of reference models that can be
used as monitoring parameters, as described before. So, the damage detection
can be done based on the novelty detection or outliers analysis, considering
multivariate data. Let us consider the set of indexes in the reference condition
(�m or ym), the classical Mahalanobis squared distance can be calculated [15]

Dm(θ) = [�m(θ, i)− µ�m ]T Σ-1 [�m(θ, i)− µ�m ] (30)
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or

Dm(θ) = [ym(θ, k)− µym ]T Σ-1 [ym(θ, k)− µym ] (31)

where Dm(θ) is the Mahalanobis squared distance in the reference condition, Σ
is the covariance matrix and µ(.) is the mean operator. Note that, in the ref-
erence condition, Dm(θ) is a random variable, with a correspondent probability
density function (PDF). So, its PDF can be empirically estimated considering
the Kernel Density Estimation approach in order to establish a threshold value
to the distribution [46, 13]

p̂Dm(dm) =
1

Nh

N∑
i=1

K

(
dm − dm,i

h

)
, (32)

where p̂Dm(dm) is an approximation of pDm(dm) that is the true density of
Dm(θ), N is the total number of realizations of the random parameter, dm,i
is the ith realization of the random variable Dm(θ), K represents the kernel
of the transformation, in this work the Gaussian kernel is used, and h is the
smoothing parameter that controls the width of the Gaussian kernel chosen. The
main difficulty in the Kernel Density Estimation approach is the choice of the
optimal value to the smoothing parameter and, in this work, the cross-validation
was used to set the better value to h [47]. The Kernel Density Estimation is
used, because the distribution of Dm(θ) is assumed as unknown a priori and the
large number of Monte Carlo simulations, provides sufficient samples to estimate
its density using this approach.

Then, with the density estimated p̂Dm(dm) it is possible to establish a thresh-
old value for the distribution, which can be used in the damage detection pro-
cedure. The threshold value can be defined as [11]

Λm = {dm such that

∫ +∞

dm

pDm(dm) ddm = β} , (33)

where Λm represents the threshold value and β is the sensitivity of the approach
or probability of false alarms considered. The better value of β to be chosen
it depends on the level of security/confidence that each operational application
demands. Now, a new model is identified in an unknown condition (healthy or
damaged). The indexes are computed considering the new model (λunkm or yunkm )
and compared with the stochastic model (set of reference models), through the
Mahalanobis squared distance

Dunk
m = [λunkm − µ�m ]T Σ-1 [λunkm − µ�m ] (34)

or

Dunk
m = [yunkm − µym ]T Σ-1 [yunkm − µym ] (35)
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where Dunk
m is the Mahalanobis squared distance in the unknown condition.

Finally, the hypothesis test can be applied to determine if the system is in
healthy or damaged condition{

H0 : Dunk
m ≤ Λm ,

H1 : Dunk
m > Λm ,

(36)

where the null hypothesis H0 represents the healthy condition and H1 the dam-
aged. The methodology used to detect damage is summarized in the flowchart
showed in fig. 2, considering the two proposed approaches.

Figure 2: Description of the damage detection approach based on stochastic Volterra series.

3. Modeling a breathing crack in an uncertain nonlinear beam

This section describes the studied nonlinear system that can be approxi-
mated by a nonlinear single-degree-of-freedom (SDOF) model, a Duffing oscil-
lator [48]. The deterministic reference system is presented, then, the simulated
damage used, a breathing cracked model, is shown. Finally, the upgrade to the
stochastic version is done with the necessary information about the uncertainties
considered.

3.1. Deterministic system in reference condition

In this work, a single-degree-of-freedom (SDOF) model is used to simulate a
real system, composed by a clamped-free aluminum beam with a steel mass po-
sitioned in its free extremity, to generate a nonlinear interaction with a magnet
(fig. 3). The objective of the setup used is to emulate a hardening nonlinear
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system, to study the performance of the damage detection approach proposed.
In all simulations, the input and output signals considered are the force applied
by the shaker and the velocity measured near to the free extremity of the beam,
respectively. The real system presents nonlinear behavior only for large dis-
placements and its dynamic behavior can be well approximated, for a limited
frequency range, by its first mode shape that can be represented as a Duffing
oscillator [48]

mẍ(t) + c ẋ(t) + k1 x(t) + k2 x(t)2 + k3 x(t)3 = U(t), (37)

where m is the system equivalent mass in [kg], c is the damping coefficient in
[Ns/m], k1 is the linear stiffness in [N/m], k2 is the quadratic stiffness in [N/m2],
k3 is the cubic stiffness in [N/m3], and U(t) is the external force in [N]. The
displacement, velocity and acceleration in the free extremity of the beam are,
respectively, represented by x(t), ẋ(t) and ẍ(t). The quadratic stiffness was
added to emulate the interaction between shaker and beam, to ensure a more
realistic description of the system behavior, whereas the cubic stiffness describes
the interaction between beam and magnet.

Figure 3: Nonlinear system simulated in the reference condition.

The deterministic values of the Duffing oscillator parameters were estimated
and are shown in Table. 1. The estimation of the parameters was performed
considering modal analysis and the restoring force surface (RFS) method, con-
sidering experimental data measured. The description of the procedure used to
approximate the real system considered by the Duffing oscillator model it is not
shown here because it is not the focus of this work.

In order to illustrate the nonlinear behavior of the system in the reference
condition (Healthy), some tests were carried out. In all the tests, it was used a
sampling frequency of 512 Hz, 2048 samples and it was considered two levels of
the input signal (0.1 N - Low level and 1 N - High level) in order to study the
linear and nonlinear behavior of the system. The system was excited by a chirp
signal varying the excitation frequency from 15 to 30 Hz in 4 seconds.

Figure 4 shows the time-frequency diagram of the system response signals,
considering the low and high level of the input amplitude. The nonlinear effect
can be observed with the appearance of multiple harmonics (2 and 3 times the
fundamental harmonic) when a high level of input is applied. These results

16



Table 1: Duffing oscillator parameters.

Parameter Deterministic value
m [kg] 0.26
c [Ns/m] 1.36
k1 [N/m] 5.49× 103

k2 [N/m2] 3.24× 104

k3 [N/m3] 4.68× 107

confirm that the system has linear behavior to the low level of input signal and
nonlinear to the high level of input, in the reference condition. The presence of
multiple harmonics is related to the nonlinear stiffnesses of the Duffing oscillator
motion equation. These results show, clearly, the nonlinear behavior of the
system for large displacements (condition reached considering 1 N as excitation
amplitude).
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Figure 4: Time-frequency diagram of the response for different levels of input amplitude,
considering the reference condition (Healthy).

3.2. Damage simulated − A breathing crack model

The methodology showed in section 2 proposes to detect damages, or struc-
tural variations, in nonlinear systems, considering data variation. In this sense,
a breathing crack model is used to emulate the presence of a damage in the
reference studied system. Figure 5 shows the presence of a crack in the system
of interesting.

The objective is to detect the presence of the crack in the beam, consider-
ing that the system has nonlinear behavior before (Duffing oscillator) and after
(breathing crack) the damage occurrence, taking into account the data varia-
tion. In other words, the nonlinear characteristic of the damage has different
nature of the nonlinear behavior of the system in the reference condition. A
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Figure 5: Nonlinear system simulated in the damaged condition.

lot of papers, over the years, have shown the approximation of the breathing
crack phenomenon by a single-degree-of-freedom (SDOF) model, as a bilinear
oscillator [49, 50, 34, 51]. Combining the reference model (Duffing oscillator)
with the cracked beam model, the system behavior can be approximated by

mẍ(t) + c ẋ(t) + F(x(t), t) + k2 x(t)2 + k3 x(t)3 = U(t), (38)

where F(x(t), t) is the bilinear force

F(x(t), t) =

{
k1 x(t), if x(t) ≥ 0

αk1 x(t), if x(t) < 0

where 0 < α < 1 represents the crack severity. If α = 1 the system is in the ref-
erence condition (without crack). The breathing crack phenomenon generates a
nonlinear behavior with different nature of the cubic effect of the reference model
but similar to the quadratic effect of k2. This situation makes the application
of damage detection procedures difficult. The applied approach has to be able
to detect the nonlinear damage without confusions with the nonlinear behavior
of the reference condition. This is a great improvement compared with other
authors like Peng et al. (2007) [52], Surace et al. (2011) [53] and Prawin et al.
(2018) [51], for example, that have used the Volterra series to detect damage,
considering the linear behavior in reference condition and the nonlinear effects
as a consequence of the crack occurrence.

In the presence of the breathing crack, the nonlinear behavior does not de-
pend on the amplitude of the response and can be observed for all excitation
amplitudes. Figure 6 shows the time-frequency diagram of the system response
signals to the low and high level of amplitude excitation, considering the pres-
ence of a crack with α = 0.9. It can be observed, that to the low and high level of
input amplitude, the appearance of quadratic harmonics, mainly of the second
order. This behavior brings closer the breathing crack phenomenon by a SDOF
model and it is a consequence of the bilinear characteristic of the response.
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Figure 6: Time-frequency diagram of the response for different levels of input amplitude,
considering the crack severity α = 0.9.

3.3. Stochastic version of the nonlinear system

It is known that mechanical systems and structures are subjected to un-
certainties that have to be considered in the processes of models identification
and damage detection procedures, as it was exemplified in section 1. So, tak-
ing the uncertainties into account is essential to make robust predictions [54].
The data uncertainties considered are related with environmental or operating
conditions, temperature and humidity changes, sensor bonding conditions, that
can generate variations in the fundamental frequencies and damping ratios of
the structures and systems, making difficult the application of damage detec-
tion procedures [55]. The main idea is to simulate these variabilities in order to
reproduce, in a more realistic way, the difficulties involved in the damage detec-
tion procedures. In this context, it is not considered the simple noise addition
in the measurements, but the variations in the system dynamic behavior.

In order to simulate the presence of uncertainties in the system and to test
the performance of the stochastic identification and damage detection approach
proposed in section 2, the linear stiffness (k1) and damping coefficient (c) of Eq.
(38) are considered as random variables θ ∈ Θ 7→ k1(θ) ∈ R, θ ∈ Θ 7→ c(θ) ∈ R.
The variation of k1 and c reflects directly in the system dynamics, since these
parameters influence the fundamental frequency of oscillation and the damping
ratio of the system. So, the Eq. (38) can be rewritten as

m ẍ(θ, t) + c(θ) ẋ(θ, t) + F(x(θ, t), t) + k2 x(θ, t)
2 + k3 x(θ, t)

3 = U(t), (39)

where the bilinear random force F(x(θ, t), t) can be described as

F(x(θ, t), t) =

{
k1(θ) x(θ, t), if x(θ, t) ≥ 0

α k1(θ) x(θ, t), if x(θ, t) < 0

and the random processes (θ, t) ∈ Θ× R 7→ x(θ, t), (θ, t) ∈ Θ× R 7→ ẋ(θ, t), and
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(θ, t) ∈ Θ × R 7→ ẍ(θ, t), represent, respectively, the displacement, velocity and
acceleration in the beam free extremity.

To construct the probabilistic model, the PDFs of the random parameters
were determined through the maximum entropy principle [56, 57]. Considering
that the linear stiffness and the damping coefficient can not be negative, we
assumed the interval (0,∞) as the support of these random variables. Also, it
was considered that the expected value of k1 and c are known real numbers µk1

and µc. For technical reasons, see Soize (2017) [6] for details, we also supposed
that the expected value of ln k1 and ln c are finite. Using these conditions
as known information, such as done in Cunha and Sampaio (2015) [58], the
principle of maximum entropy says that the probability density function (PDF)
of these random variables is given by

pZ(z) = 1(0,∞)
1

µZ

(
1

δ2
Z

)(
1

δ2Z

)
1

Γ(1/δ2
Z)

(
z

µZ

)(
1

δ2Z
−1

)
exp

(
− z

δ2
Z µZ

)
(40)

where Z represents the random parameter (k1 or c), µZ is the mean value,
δZ is the dispersion, Γ indicates the gamma function, and 1(0,∞) denotes the
indicator function of the interval (0,∞). This PDF corresponds to a gamma
distribution. The stochastic formulation was made assuming, for the lack of
better knowledge, that k1 and c are independent random variables. To compute
the propagation of the uncertainties of the random parameters k1 and c through
the model, the Monte Carlo (MC) method [59] was employed, using 64 samples
of each parameter, combined to generate a total of 2048 MC realizations of the
deterministic system. The simulations were performed considering µk1 = 5.49×
103 [N/m], δk1

= 0.01, µc = 1.36 [Ns/m], δc = 0.01. These values of dispersion
were chosen to generate satisfactory variation in the system response. Figure
7 shows the probability densities of the random parameters used in the MC
simulations. The variation of the random parameters makes the system response
varies too and the data variation will be considered in the model identification
and damage detection procedures.

To exemplify the difficulty to detect damage in this situation, fig. 8 shows
the 99% confidence bands of the system Frequency Response Function (FRF),
considering 3 different structural conditions. It is not possible to distinguish
the damaged conditions of the reference state, considering the variation of the
response, since it can be observed an overlap of the envelopes. So, the use of
modal parameters or the direct system response to detect damage in this situa-
tion is not recommended, because only conditions of high severity damage can
be detected with probabilistic confidence. The propose is to use the nonlinear
behavior of the damage as an indicator of the structural variation. However,
the nonlinear behavior in the reference condition has to be considered to avoid
the confusion with damage.

Next section shows the application of the methodology proposed to detect
damages, based on stochastic Volterra series, in the cracked beam model de-
scribed, considering the initially nonlinear behavior and data variation.
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Figure 7: Distribution of the random parameters k1 and c.
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Figure 8: FRFs considering different structural conditions and 2 levels of input amplitude. B

represents α = 1 (reference condition), B α = 0.98 (damaged condition) and B α = 0.96
(damaged condition).

4. Damage detection procedure

This section shows the principal results obtained with the application of
the damage detection approach proposed, based on the stochastic Volterra se-
ries, in the nonlinear system described in section 3, considering the nonlinear
behavior of the system in the reference condition and the data variation. In
all simulations, it was used a sampling frequency of 512 Hz and 2048 sam-
ples. The Monte Carlo simulations were performed considering 2048 realiza-
tions, to ensure the method convergence. The response of the system described
in section 3 was simulated considering different structural conditions, i. e.,
α = 1.00, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86 (2 reference and 7 damage con-
ditions) and the simulated data variation. The simulations regarding the refer-

21



ence condition were repeated twice, 2048 realizations were used as training data
and 2048 as test data. To better emulate a real application, it was added to the
system response, in all situations simulated, a Gaussian noise in order to have
a signal to noise ratio (SNR) of 30 dB.

4.1. Stochastic Volterra models identification

The identification of the stochastic Volterra model was done considering 2048
realizations, for each structural condition, obtained through the simulations per-
formed. Only the first three kernels were used to identify the system, once its
nonlinear characteristic in the healthy and damaged condition can be approx-
imated by the quadratic and cubic term. First of all, the Kautz parameters
were parametrized in terms of the natural frequency (�n(θ)) and the damping
ratio (�(θ)) of the equivalent linear system. As the uncertainties considered in
this work influence on the modal parameters, they vary in each realization. So,
they were estimated to each response realization and the optimization process
described in section 2.5 was used to define the Kautz parameters, taking into
account the relations described in Eqs. (17). Table 2 shows the values of the
factors p1, p2, p3 and p4 found for the high order kernels, considering the dif-
ferent damage severities. Changes are observed in the position of the poles as
the crack increases, mainly related with the second order kernel, because of the
quadratic effect of the crack. The number of functions were chosen as done in
Shiki et al. (2017) [37], and defined as J1 = 2, J2 = 4 and J3 = 6.

Table 2: Relation factors between the Kautz and modal parameters, considering the high
order Volterra kernels.

Crack severity Second kernel Third kernel
(α) p1 p2 p3 p4

1.00 1.11 2.7 1.06 1.1
0.98 1.07 2.4 1.06 1.1
0.96 1.07 2.3 1.06 1.1
0.94 1.06 2.2 1.06 1.1
0.92 1.06 2.1 1.06 1.1
0.90 1.05 2.0 1.06 1.0
0.86 1.04 1.8 1.05 1.0

With the Kautz poles defined, the random Kautz functions can be obtained
and used in the models’ identification process. The identification of the Volterra
models was performed considering a chirp signal as input applied to the system,
varying the excitation frequency from 15 to 30 Hz (first mode region). The
kernels identification was carried out in two steps, first, the linear kernel was
estimated considering low level of input (0.1 N), and then, the high order kernels
were estimated considering a high level of input (1 N), as done in Shiki et al.
(2017) [37]. The models were estimated via MC simulation, in a total of 2048
realizations for each structural condition.
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The convergence of the MC method is measured with the aid of a function
that depends on the kernel vector or its main diagonal (high order kernels)
represented in the time domain, defined by

conv(N) =

√√√√ 1

N

N∑
n=1

∫ tf

t=t0

||h(θn, t)||2dt , (41)

where N is the number of MC simulations, ||.|| denotes the standard Euclidean
norm and h(θn, t) represents the n-th realization of the random first kernel or
main diagonal of high order kernels, in the time domain. For further details, the
reader is encouraged to see Soize (2005) [60]. The criterion was applied to the
first, second and third kernels. Figure 9 shows the results obtained, considering
the Volterra kernels identified in the reference condition. It can be seen that
the MC convergence is achieved with the number of samples used.
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Figure 9: MC convergence test applied to the Volterra kernels identified in the reference
condition (α = 1.00).
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4.2. Stochastic Volterra models validation

Before the application of the Volterra series models in the damage detection
process, it is important to verify if the Volterra kernels describe the dynamical
behavior of the system with certain statistical confidence. Thus, the same input
used to estimate the Volterra kernels was applied to the model. Figure 10 shows
the comparison between the 99% confidence bands of the stochastic Volterra
model and new simulated data, considering high level of input (1 N) and two
structural conditions, reference (α = 1.00) and severe damage (α = 0.86). It can
be seen that the model is able to describe the system behavior and to predict
the response, even in the presence of nonlinear behavior and data variation, in
both structural conditions.
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Figure 10: Stochastic Volterra model response in comparison with new simulated data, con-
sidering a high level amplitude chirp input (1 N) and two structural conditions. The gray box
represents the 99% confidence bands, – – represents the mean and – ◦ – the simulated data.

Then, a signal with different nature was applied to the system to validate
the stochastic Volterra model in the frequency domain. A single tone sine was
applied with a high level of input (1 N) and frequency close to the equivalent
linear system natural frequency (≈ 23 Hz), in order to amplify the nonlinear
behavior. Figure 11 shows the results obtained in the frequency domain, to help
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the visualization of the harmonic components, with 99% of statistical confidence
in comparison with new simulated data. Again, two structural conditions are
shown, healthy (α = 1.00) and severe damage (α = 0.86). It can be seen that the
model predicts the system behavior in healthy (fig. 11a) and damaged (fig. 11b)
conditions. All frequency components present in the signal can be described by
the stochastic Volterra model. The large dispersion observed is caused by the
number of Kautz functions used on the description of the third order Volterra
kernel, that amplifies the propagation of the uncertainties into the model, but a
lower number of functions does not do the model able to describe the nonlinear
behavior of the studied system. With the stochastic Volterra model validated,
the stochastic response can be used to detect damage in the system as shown
in the next section.
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(a) Healthy condition (α = 1.00).
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(b) Damaged condition (α = 0.86).

Figure 11: Stochastic Volterra model response in comparison with new simulated data, in
frequency domain, considering a single tone sine input and two structural conditions. The
gray box represents the 99% confidence bands, – – represents the mean and – ◦ – the simulated
data.

The main advantage in the use of the approach based on Volterra series is the
capability to separate linear and nonlinear contributions in the total response,
through the Volterra kernels. In this work, the idea is to use this capability
to filter and compare the nonlinear contributions to the total system response
before and after the damage occurrence. In order to exemplify this information,
fig. 12 shows the contributions of the first, second and third kernels with 99%
of statistical confidence, considering a high level of input signal (1 N) and two
structural conditions, healthy (α = 1.00) and severe damage (α = 0.86). All
the contributions, linear, quadratic and cubic, change with the occurrence of
the severe damage because the natural frequency and, consequently, the Kautz
poles are influenced by the crack behavior. This result shows that the kernels
contributions, or kernels coefficients, can be used in the process of damage de-
tection. The variation of the quadratic contribution is bigger, because of the
nonlinear nature of the damage. Finally, in the situation of severe damage, the
difference between the response in healthy and damaged condition can be visu-
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ally observed, but at the beginning of the crack propagation, the differentiation
is more difficult, mainly in the presence of uncertainties. Therefore, an index
has to be used to detect the structural variations. It is expected that the index
related with the second kernel will be more sensitive to the presence of the crack.
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(b) Quadratic contribution.
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(c) Cubic contribution.

Figure 12: Confidence bands of the kernels contribution to the total system response obtained

through the Volterra model with 99% of confidence, considering high level of input (1 N). B

represents the reference condition (α = 1.00) and B the damaged condition (α = 0.86).

4.3. Damage detection

This section exemplifies the two different metrics proposed to detect damage
in nonlinear systems, using the stochastic version of the Volterra series. As men-
tioned before, the tests were performed considering α = 1.00, 0.98, 0.96, 0.94,
0.92, 0.90, 0.88, 0.86 (2 reference and 7 damage conditions) and the simulated
data variation, considering the uncertainties in linear stiffness and damping co-
efficient. The first 2048 realizations in the reference condition were used as
training data and the others as test data.

4.3.1. Use of kernels coefficients

The approach proposed, based on Volterra kernels coefficients, showed in sec-
tion 2.6.1 was applied, combined with the novelty detection showed in section
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2.6.3. The multiple models identified in all structural conditions were considered
in the calculation of the indexes. Four different indexes were calculated (�1, �2,
�3 and �nl), to compare the results. Figure 13 shows the evolution of the Ma-
halanobis squared distance applied to the indexes, with the crack propagation.
The boxplot method is used to clarify the visualization of the results. The first
two boxes represent the reference condition, the data used to train the model
and the data used to test the model. It is observed that the linear index is not
able to detect the crack evolution, considering only the kernels coefficients as
an indicator. The cubic index has a small increase with the crack evolution,
whereas the quadratic index has a larger increase. This occurs because of the
quadratic nature of the crack behavior. How expected, the better performance
is obtained through the use of the nonlinear index, considering both the coef-
ficients of the second and third kernels. The dispersion of the values is small,
because the uncertainties in the modal parameters have lower influence in the
estimation of the higher order Volterra kernels coefficients. The dispersion ob-
served in the quadratic index is related to the noise added because the quadratic
component has the level of amplitude close to the noise.
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(b) Quadratic index (�2).
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(c) Cubic index (�3).

100

101

102

103

1.00 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86

M
ah
al
an
ob
is
sq
u
ar
ed

d
is
ta
n
ce

Crack severity (α)

(d) Nonlinear index (�nl).

Figure 13: Boxplot of the Mahalanobis squared distance applied to the four indexes calculated,
for different levels of crack severity.

With the Mahalanobis squared distance of the indexes calculated in the
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reference condition, and considering their empirical distribution obtained, it
is possible to define threshold values, taking into account a probability of false
alarms (β) required in each application. In this work, three different values were
considered, β = 0.005, 0.01 and 0.02. The results of the hypothesis test applied
are shown in fig. 14, for the three values of β used. The performance of the
linear index it is not satisfactory, with a low percentage of detection in the initial
propagation of the crack. The cubic index can detect the crack depending on the
severity of the damage, i. e., for α close to 1.00 the index fails, but for α ≤ 0.86,
all damaged conditions are detected. Finally, the quadratic and nonlinear (sum
of quadratic and cubic coefficients) indexes have similar behavior, detecting the
damage even on the initial conditions of crack propagation. Remembering that
it was considered the data variation, related with the presence of uncertainties,
in the process of kernels identification, but, nevertheless, the nonlinear index
was able to make difference between the variations related with changes in the
natural frequency and damping ratio and the variations related with the crack
behavior. This is an important result, showing that the approach can detect
damage in uncertain nonlinear systems with probabilistic confidence.
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(b) Quadratic index (�2).
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(c) Cubic index (�3).
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Figure 14: Percentage of damage detection obtained using the kernels coefficients, considering

different crack severities and probability of false alarms used. B represents β = 0.02, B

represents β = 0.01 and B represents β = 0.005.
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With the aim of study the performance of the approach proposed, the re-
ceiver operating characteristics (ROC) curve was computed [2]. This curve
presents the relation between true detections and false alarms for different β
values. Figure 15 shows the results obtained for the 4 indexes. The linear
index has the worst performance and the cubic index an intermediate perfor-
mance. The quadratic and nonlinear indexes have similar performance, with
a higher rate of detection without expressive false alarms rate. These results
show that the nonlinear index proposed is able to detect the initial propagation
of the crack even in the presence of uncertainties, simulated by variations in
the natural frequency and damping ratio of the system. This high performance
is possible because of the nonlinear nature of the damage simulated that has
a large influence in the coefficients of the second kernel estimated. The use of
the Volterra series in this situation improve the results in the damage detection
process, representing a real contribution when the data variation related to the
uncertainties is considered.
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Figure 15: Receiver operating characteristics (ROC) curve, obtained using the kernels coeffi-
cients. – – represents the linear index, – x – the quadratic index, – – the cubic index and
– – the nonlinear index.

4.3.2. Use of kernels contribution

Now, the approach proposed based on Volterra kernels contribution showed
in section 2.6.2 was applied, combined with the novelty detection showed in sec-
tion 2.6.3. This methodology uses the main advantage of the use of the Volterra
series, that is the capability of separate the kernels contribution to the total re-
sponse. The difference compared with the approach presented in the last section
is the influence of the Kautz functions in the process, that introduces the influ-
ence of the natural frequency and damping ratio in the approach, through the
Kautz poles dependence. The increase of the crack makes the natural frequency
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of the system change, and this variation can be detected using this approach,
but, on the other hand, it is expected that the uncertainties have more influence
using this approach, doing the indexes vary more.

Again, the multiple models identified in all system conditions (healthy and
damaged) were considered in the calculation of the contributions. The input
used here is the same chirp signal used in the estimation of the kernels, con-
sidering a high level of amplitude (1 N), to maximizes the nonlinear influence
in the response. Four different indexes were calculated (y1, y2, y3 and ynl), to
compare the results. Figure 16 shows the evolution of the Mahalanobis squared
distance applied to the kernels contribution, with the crack progression. It is
clear that using this approach the linear and cubic indexes have better perfor-
mance to detect the presence of the crack compared with the use of kernels
coefficients. The increase of the indexes is related to the variation of the natu-
ral frequency with the progression of the damage. Again, the better results are
obtained through the use of the quadratic or nonlinear indexes, because of the
nature of the damage simulated. The use of the kernels contribution increases
the performance of the linear and cubic indexes, but the performance of the
quadratic and nonlinear indexes continued to be better.

With the Mahalanobis squared distance of the kernels contribution calcu-
lated in the reference condition, and considering their empirical distribution
obtained, it is possible to define threshold values, taking into account the prob-
ability of false alarms (β) required in each application. Again, three different
values were considered, β = 0.005, 0.01 and 0.02. The results of the hypothesis
test applied are shown in fig. 17, for the three values of β used. The perfor-
mance of the linear and cubic indexes was improved with the use of kernels
contribution, with a higher percentage of detection of the crack for α ≤ 0.92.
The quadratic and nonlinear (sum of quadratic and cubic contributions) indexes
were able to detect the damage even on initial conditions of crack propagation.
The variation of the frequency and damping is considered in the Kautz poles
estimation, improving the capability of the approach to detect the frequency
variation related with the crack behavior, but confusing this variation with the
changes that are a consequence of the presence of uncertainties.

Finally, the receiver operating characteristics (ROC) curve was computed
again [2]. Figure 18 shows the results obtained in all situations, considering
linear and nonlinear kernels. The linear and cubic contributions have the worst
performance again because these components of the response have a slight vari-
ation for values of crack close to 1.00. The quadratic and nonlinear indexes
have close performance, with a higher rate of detection without expressive false
alarms rate. These results show that the analysis of the nonlinear contribution
to the total response is able to detect the initial propagation of the crack even in
the presence of the uncertainties. This higher performance is possible because
of the nonlinear nature of the damage simulated, that has a large influence on
the nonlinear dynamics of the system. Again, the use of the Volterra series in
this situation represents an advantage in the damage detection process, with the
improvement in the results in comparison with the linear approach represented
by the first kernel contribution.
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(a) Linear contribution (y1).
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(b) Quadratic contribution (y2).
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(c) Cubic contribution (y3).
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(d) Nonlinear contribution (ynl = y2 +
y3).

Figure 16: Boxplot of Mahalanobis squared distance of the kernels contribution calculated for
different levels of crack severity.

4.3.3. Comparison between the use of kernels coefficients and kernels contribu-
tion

Comparing the results that have been shown in figs. 13 and 16, it can be
noticed that the indexes variation is bigger using the kernels contribution, be-
cause the data variation induces the Kautz poles to vary, making the use of
kernels contribution more sensitive to the presence of uncertainties than the use
of the kernels coefficients. On the other hand, the capability of the Kautz func-
tions to describe the variation of the frequency of oscillation related with the
crack presence makes the approach more sensitive to the presence of the dam-
age, mainly considering the linear component of the response. So, damages that
induce linear variations in the response, related with frequencies of oscillation
or damping ratios, can be better detected using the kernels contribution. Addi-
tionally, comparing the figs. 15 and 18 one can observe that the performance of
the linear and cubic indexes improves with the use of the kernels contribution,
with a higher rate of true detection, but in some sceneries where the presence of
the uncertainties can have higher influence in the system response, the confusion
between the data variation and the presence of damage must be greater.

Now, when the damage induces the system to present nonlinear behavior,
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(b) Quadratic contribution (y2).
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(c) Cubic contribution (y3).
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Figure 17: Percentage of damage detection obtained using the kernels contribution, consider-

ing different crack severities and probability of false alarms used. B represents β = 0.02, B

represents β = 0.01 and B represents β = 0.005.

like the breathing crack phenomenon studied, the coefficients of the higher order
kernels showed to be sensitive to the presence of the damage. In this situation,
the approach based on the kernels coefficients is more effective to make differ-
ence between the uncertainties and the damages. Therefore, both approaches
have shown interesting performance and different characteristics, related to the
sensitivity to the presence of the damage and the uncertainties. So, the decision
about the use of one or other approach it will depend on the problem consid-
ered, given that, when the damage induces nonlinear behavior to the system
response, the level of noise it is not so high and the uncertainties are related
with linear components, like the example simulated in this paper, the use of the
kernels coefficients it is interesting.

5. Final remarks

The paper has presented an approach to detect damages in initially non-
linear systems, considering data variation caused by the uncertainties. The
approach is based on a stochastic version of the Volterra series expanded using
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Figure 18: Receiver operating characteristics (ROC) curve, obtained using the kernels contri-
bution. – – represents the linear index, – x – the quadratic index, – – the cubic index
and – – the nonlinear index.

random Kautz functions. Two different methodologies were presented, con-
sidering the Volterra kernels coefficients and the Volterra kernels contribution.
The final decision about the state of the system (healthy or damaged) was per-
formed considering the Mahalanobis squared distance and a threshold value,
established from the model estimated in the reference condition. Linear and
nonlinear analysis were compared, using the capability of the Volterra series to
separate the model’s contribution. About the results, the two approaches pro-
posed have presented similar performance. As expected, the linear analysis fails
when the damage has low severity, because of the influence of the uncertainties
in the system response. The nonlinear analysis uses the nonlinear dynamics of
the damage to detect it. It is important to highlight that the nonlinear behav-
ior is considered, in this work, even in the reference condition, which combined
with the presence of uncertainties, makes difficult the damage detection process.
But, the nonlinear indexes have shown to be able to differ the initial nonlinear
behavior and data uncertainties of the crack behavior, with satisfactory perfor-
mance. As future work, the authors intend to apply the procedure considering
an experimental setup composed by a nonlinear beam subject to the presence
of a breathing crack.
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